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Abstract
We connect three ways to achieve relational parametricity: uni-
versal types, runtime type generation, and cryptographic sealing.
We study a polymorphic blame calculus, λB, inspired by that of
Ahmed, Findler, Siek, and Wadler (2011), that ties universal types
to runtime type generation; and a cryptographic lambda calculus,
λK, inspired by that of Pierce and Sumii (2000), that relies on cryp-
tographic sealing. Our λB calculus avoids the ‘topsy turvy’ aspects
of Ahmed et al., who evaluate terms one would expect to be val-
ues, and leave as values terms one would expect to be evaluated.
We present translations from λB to λK and back that we show
to be simulations. We extract from λB the subset λG that corre-
sponds to the polymorphic lambda calculus λF of Girard (1972)
and Reynolds (1974); λG is also a subset of the system G studied
by Neis, Dreyer, and Rossberg (2009). We present translations from
λF to λG and back that we show to be fully abstract. Further, we
shed light on the embedding given by Pierce and Sumii of λF into
λK, describing how it is related to the composition of our transla-
tions from λF to λG and λB to λK, and that the conversions and
casts of λB relate to the C and G components of their embedding.

1. Introduction
Researchers have discovered three mechanisms for enforcing
type abstraction: universal types, proposed by Girard (1972) and
Reynolds (1974), provide a static type discipline; cryptographic
sealing, proposed by Morris (1973), provides a runtime mecha-
nism for restricting access to a value; and runtime type genera-
tion, proposed by Abadi et al. (1995), Sewell (2001), and Rossberg
(2003), provides a runtime mechanism for generating new type
names and controlling access to their underlying type. Variations
on these three mechanisms have been studied by authors ranging
from Ahmed to Zdancewic. (See Section 6.)

In particular, Pierce and Sumii (2000) presented a cryptographic
lambda calculus, and demonstrated that encryption and decryption
relate to universal types by describing an embedding of polymor-
phic lambda calculus into their calculus. They conjectured that their
embedding was fully abstract which remains open to this day.

Findler and Felleisen (2002) introduced contracts and blame,
which informed a flowering of work on the use of gradual types to
integrate dynamic and static typing. (Again, see Section 6.)

In particular, Ahmed et al. (2011) presented a polymorphic
blame calculus designed to satisfy the relational parametricity of
Reynolds (1983) despite allowing casts of untyped code to poly-
morphic type. However, their system is ‘topsy turvy’ in that it eval-
uates things one would expect to be values, and leaves as values
things one would expect to be evaluated. Namely, it evaluates un-
der type abstractions and takes some type generators to be values.
The authors recognise these issues, but plea that their formalism
forces these undesirable choices.

Here we present a new formulation of the polymorphic blame
calculus, based on three constructions, runtime type generation,

λF� λG ⊆ λB� λK

Figure 1. Calculi and transformations

conversions, and casts. Conversions correspond to similar features
previously studied by Grossman et al. (2000), Rossberg (2003), and
Vytiniotis et al. (2005), while Matthews and Ahmed (2008) studied
a boundary feature with aspects of both conversions and casts. Our
calulus puts things to rights, in that type abstractions are values
(adopting the value polymorphism restriction of Wright (1995) and
Pitts (1998)), and type generators are always evaluated.

Our paper makes the following contributions.

• We introduce the polymorphic blame calculus, λB, inspired by
that of Ahmed et al. (2011). Our system is based on runtime
type generation, conversion, and casts, and does not suffer from
the ‘topsy turvy’ problems of the previous work. Our system
satisfies the usual properties of type safety and blame safety.
(Section 2.)

• We introduce the cryptographic lambda calculus, λK, inspired
by that of Pierce and Sumii (2000). Where they give a deno-
tational semantics, we give a small-step operational semantics
and type safety proof. We give translations from λB to λK and
back again, and show they are simulations. The translations
are surprising. (They surprised us, at least!) A name genera-
tor translates to two key generators, where one key is used for
translating conversions (which never fail) and one key is used
for translating casts (which may fail). Conversely, a key trans-
lates to a one name generator encapsulated by an existential
type, with encoding and decoding each requiring both a conver-
sion and a cast. (Section 3.)

• We introduce a polymorphic lambda calculus, λF, which is
identical to that of Girard (1972) and Reynolds (1974), save that
following Wright (1995) and Pitts (1998), bodies of type ab-
stractions are restricted to values. We also introduce a polymor-
phic lambda calculus with runtime type generation, λG, which
is the subset of λB suitable as a target for translation from λF,
and is also a subset of the system G studied by Neis et al. (2009).
We give translations from λF to λG and back, and show that
they are bisimulations and fully abstract. (Section 4.)

• We consider the embedding given by Pierce and Sumii of λF
into λK, and discuss how it relates to the composition of our
translations from λF to λG and λB to λK. The components C
and G of their embedding correspond to two different constructs
of λB, conversions and casts, offering insight into the structure
of the translation. (Section 5.)

Figure 1 summarises the calculi and translations between them.
Section 6 discusses related work and Section 7 concludes. Exam-
ples and proofs appear in the supplemental material.
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2. Polymorphic blame calculus, λB
2.1 Casts
Blame calculus integrates typed and untyped code. One scenario is
that we begin with untyped code to which we wish to add types.
Here is a program assembling untyped components.

let inc? = dλx. x+ 1e in
let two? = dλf. λx. f (f x)e in
dtwo? inc? 0e

It evaluates to d2e : ?.
Untyped code is surrounded by ceiling brackets, d·e. Following

a slogan of Dana Scott (Statman 1991; Harper 2013) we treat
“untyped as unityped”: untyped code is typed code where every
term has the dynamic type ?. By convention, we add ? to the name
of untyped components.

It is trivial to rewrite a three-line program, but we wish to add
types gradually: our technique should work as well when each one-
line definition is replaced by a thousand-line module. We use casts
to manage the transition between typed and untyped code.

A cast has the form

M : A
+`

=⇒ B

where M is a term of type A and the cast as a whole has type
B. Here ` is a blame label used to ascribe fault if the cast fails.
Writing both source and target types eases the formalism; a practi-
cal language might use more compact notation. We will also need
casts of the form

M : A
−`

=⇒ B

which may arise as a result of reducing higher-order casts.
Here is our program, mostly untyped, with one typed compo-

nent cast to untyped.

let inc? = dλx. x+ 1e in
let two = (ΛX.λf :X→X.λx:X. f (f x)) in
let two? = (two : ∀X.(X→X)→X→X =⇒+` ?) in
dtwo? inc? 0e

(1)

It evaluates to d2e : ?. If in (1) we replace

dtwo? inc? 0e by dtwo? 0 inc?e (2)

it now evaluates to blame−`. Blaming −` indicates fault lies with
the context containing the cast.

Conversely, here is our program, mostly typed, with one un-
typed component cast to a type.

let inc = (λx:num. x+ 1) in
let two? = dλf. λx. f (f x)e in
let two = (two? : ? =⇒+` ∀X.(X→X)→X→X) in
two num inc 0

(3)

It evaluates to 2 : num. If in (3) we replace

dλf. λx. f (f x)e by dλf. λx. 2e (4)

it now evaluates to blame +`. Blaming +` indicates fault lies with
the term contained in the cast.

We introduce a precision ordering on types, written A <:n B,
where ? is the least precise type, A <:n ? for all types A. The
blame safety property assures that blame never falls on the more
precisely typed side of a cast: so M : A =⇒+` B never blames
+` if A <:n B and never blames −` if B <:n A. In other words,
“Well-typed programs can’t be blamed” (Wadler and Findler 2009).

Untyped lambda calculus is defined by embedding into blame
calculus. For example, dλx. x+ 1e is equivalent to

(λx : ?. ((x : ?
+m
=⇒ num) + 1) : num

+n
=⇒ ?) : ?→? +o

=⇒ ?

where m,n, o are fresh blame labels.

Casting a number to ? and back to num acts as the identity.

(2 : num
+`

=⇒ ?) : ?
+m
=⇒ num −→ 2

On the other hand, casting the number to a function raises blame.

(2 : num
+`

=⇒ ?) : ?
+m
=⇒ (num→num) −→ blame +m

A cast that yields a function reduces to two casts, one contravariant
on the domain and one covariant on the range.

(dλx. x+ 1e : ?
+`

=⇒ num→num) 2

−→∗(λx: ? . dx+ 1e) (2 : num
−`

=⇒ ?) : ?
+`

=⇒ num

−→∗d3e
The blame label is negated on the contravariant cast.

2.2 Generators and conversion
A fundamental semantic property of polymorphic types is rela-
tional parametricity, introduced by Reynolds (1983) and popu-
larised by Wadler (1989b) under the slogan “Theorems for free”.
For instance, any function of type ∀X.X → X must either be the
identity function or the undefined function that ignores its argument
and always loops or always yield blame. Our system is designed to
guarantee relational parametricity, even for untyped code cast to a
polymorphic type.

In particular, we have that

let id? = dλx. xe in
let id = (id? : ? =⇒+` ∀X.X→X) in
id num 1

(5)

evaluates to 1 : num. If in (5) we replace

dλx. xe by dλx. 2e (6)

it now evaluates to blame +`, because the term contained in the
cast to ∀X.X→X did not behave parametrically. Similarly, if in
the above we replace

dλx. xe by dλx. x+ 1e (7)

it evaluates to blame+m, wherem is introduced by the translation
of dλx. x + 1e at the end of Section 2.1, indicating an attempt to
access a value with abstract type as if it were a num.

The traditional way to reduce type application is by substitution.
This cannot work in our case! To see why, consider reducing (5) by
substituting num for X , yielding

(dλx. xe : ?
+`

=⇒ num→ num) 1

which in turn evaluates to 1 : num, satisfying parametricity. But if
in the above we replace dλx. xe by dλx. 2e or by dλx. x + 1e it
now evaluates to 2 : num, violating parametricity!

To solve this problem, we introduce two constructs, generators
and conversions, and use them to rephrase type application.

A type name generator of the form

νX:=A.N

introduces a fresh name X associated with type A in the scope of
term N . The type of N is also the type of the generator as a whole,
and it must not contain X , since X is not meaningful outside the
scope of the generator.

Within the scope of the generator, we can convert between name
X and its associated type A. A conversion has the form

M : B
+X
=⇒ B[X:=A]

where M is a term of type B and the conversion as a whole has
type B[X:=A]. Conversions differ from casts in that they never
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fail, and are decorated with a name rather a blame label. We will
also need conversions of the form

M : B[X:=A]
−X
=⇒ B

which may arise as a result of reducing higher-order conversions.
We rewrite type applications by defining

LA
def
= νX:=A.(LX : B

+X
=⇒ B[X:=A]) where L : ∀X.B

which generates a fresh name X associated with type A, forms
the type application LX , and converts the result from type B to
type B[X:=A]. Here we exploit the “anti-Barendregt” convention
of Pitts (2011) to choose the bound name in the universal type to
be the same as the name introduced by the generator. The name
generator separates name X from type A, which we need to ensure
parametricity, while conversion brings the two together again; with-
out conversion, the type application would have the wrong type, B
rather than B[X:=A].

Returning to example (5), the subterm id num 1 is replaced by

(νX:=num.(id X : X→X +X
=⇒ num→num)) 1

which eventually reduces to

X:=numB (dλx. xe : ?
+`

=⇒ X→X +X
=⇒ num→num) 1

which in turn evaluates to 1 : num, satisfying parametricity. And if
we replace dλx. xe by dλx. 2e or by dλx. x+1e it now evaluates to
blame+` or blame+m, again satisfying parametricity. The role of
B and the reduction rules are discussed below, and reductions for
examples (1)–(7) appear in the supplemental material.

2.3 Righting the topsy-turvy system
The material in the previous two sections corresponds largely to
the approach taken in Ahmed et al. (2011). There are some minor
differences in terminology and approach. In that paper, what we call
‘casts’ are called ‘dynamic casts’ and what we call ‘conversions’
are called ‘static casts’. Notationally, we use +` and −` where
they use ` and `. In their work, conversions may be implicit or
explicit, while we require conversions to be explicit since they
play an important role in the translation to cryptographic lambda
calculus and in the relation to the work of Pierce and Sumii (2000).

More significantly, as noted in the introduction, the system of
Ahmed et al. (2011) is ‘topsy turvy’ in that it evaluates things one
might expect to be values, and leaves as values things one might
expect to be evaluated. In particular, following Wright (1995) and
Pitts (1998), one might expect the bodies of type abstractions to
be restricted to values. They mention that this would be desirable,
but it is impossible in their system due to their formulation of
reductions for casts:

V : A→B p
=⇒ C→D −→ λw:C. V (w : C

−p
=⇒ A) : B

p
=⇒ D

V : A
p

=⇒ ∀X.B −→ ΛX.V : A
p

=⇒ B

The right-hand side of the second rule is a type abstraction with a
body that is a cast, and hence not a value. One might take any type
abstraction to be a value, regardless of whether its body is a value,
but this would lead to a violation of parametricity. For instance,
parametricity requires that there should be no values of type ∀X.X ,
but the term ΛX. blame +` has that type! To avoid the problem,
they require evaluation underneath type abstractions. That in turn
leads to a problem with generators, so instead of generating new
names globally, they push generators inside of values:

νX:=A.c −→ c

νX:=A.λy:B.N −→ λy:B[X:=A]. νX:=A.N

νX:=A.ΛX.V −→ ΛX. νX:=A.V

The second rule causes generators to be retained in function values,
where one might expect the generator to be evaluated immediately.

It turns out, there is a simple way to avoid these convolutions.
We reformulate the reductions for casts as follows:

(V : A→B p
=⇒ C→D)W −→ V (W : C

−p
=⇒ A) : B

p
=⇒ D

(V : A
p

=⇒ ∀X.B)X −→ V : A
p

=⇒ B

In place of abstraction on the right we have application on the left.
As a result, we are free to restrict the body of a type abstraction
to be a value, as desired. This rules out any need to evaluate under
type abstractions. In particular, ΛX. blame +` is no longer a valid
term, since blame +` is not a value. In turn, this permits more
straightforward evaluation of generators. We let Σ range over name
stores with entries of the form X:=A, and we write Σ B M for
a configuration that pairs a name store with a term. The three
reduction rules for generators given above are replaced by one rule:

ΣB νX:=A.N −→ Σ, X:=ABN

We choose X to be a fresh name not already in Σ. Generated
names are kept in a global store, as in Neis et al. (2009, 2011), and
generators are evaluated rather than retained in function values.

A drawback of the new formulation is that abstraction is no
longer the only way to form values of function and universal type.
In addition to considering function and type abstractions as val-
ues, we must also consider casts to function and universal types as
values, and further we must do the same for conversions as well.
However, other considerations also push in this direction; in partic-
ular, the space-efficient treatment of casts in Siek et al. (2015) also
requires that casts to function type be taken as values. On balance,
the solution we provide here seems simpler and more in line with
other developments than that given by Ahmed et al. (2011).

2.4 Types and Terms
We now begin the formal development. Figure 2 presents the type
rules of λB.

Let A,B,C,D range over types, which are either base type
ι, function type A → B, universal type ∀X.B, name X , or the
dynamic type ?. Let ι range over base types, which include numbers
num. Let G,H range over ground types, which are either base type
ι, the function type ? → ?, or name X . Casts to and from ? factor
through the ground types. Write X 6∈ A to indicate that name X
does not occur free in type A.

Let `,m, n, o range over simple labels, letQ range over conver-
sion labels of the form +X or −X , and let p, q range over blame
labels of the form +` or −`. Define involutions −Q and −p by

−(+X) = −X −(+`) = −`
−(−X) = +X −(−`) = +`

so that −(−Q) = Q and −(−p) = p.
Let L,M,N range over terms, which are either constant c, vari-

able x, operator application op( ~M) where op is a operator and ~M
is a sequence of zero or more terms, function abstraction λx:A.N ,
function application LM , type abstraction ΛX.V , type applica-
tionLX , name generator νX:=A.N , conversionM : A =⇒Q B,
cast M : A =⇒p B, or blame blame p. In a type abstraction the
body of the abstraction must be a value, and in a type application
the type must be a name.

Let Γ range over type contexts, which are lists of hypotheses of
the forms X:tp, X:=A, and x:A. Write Γ wf to indicate that Γ is
a well-formed type context. Write X:tp ∈ Γ to indicate that Γ wf
andX:tp appears in Γ, and similarly forX:=A in Γ and x:A ∈ Γ.

Write Γ ` A ≺Q B to indicate that in context Γ types A
and B are convertible under Q. Conversions must be between con-
vertible types, and the rules for convertibility ensure that reduc-
tions preserve convertibility. Under hypothesis X:=A, judgements

3 2016/9/27



Syntax

A,B,C,D ::= ι | A→ B | ∀X.B | X | ? ι ::= num | · · ·
G,H ::= ι | ?→ ? | X Q ::= +X | −X

Γ ::= • | Γ, X:tp | Γ, X:=A | Γ, x:A p, q ::= + ` | −`
L,M,N ::= c | op( ~M) | x | λx:A.N | LM | ΛX.V | LX | νX:=A.N |M : A

Q
=⇒ B |M : A

p
=⇒ B | blame p

Contexts Γ wf

• wf
Γ wf X 6∈ Γ

Γ, X : tp wf

Γ wf X 6∈ Γ Γ ` A : tp

Γ, X:=A wf

Γ wf x 6∈ Γ Γ ` A : tp

Γ, x : A wf

Types Γ ` A : tp

Γ wf
Γ ` ι : tp

Γ ` A : tp Γ ` B : tp

Γ ` A→ B : tp

Γ, X:tp ` B : tp

Γ ` ∀X.B : tp
X:=A ∈ Γ
Γ ` X : tp

X:tp ∈ Γ

Γ ` X : tp
Γ wf

Γ ` ? : tp

Convertible Γ ` A ≺Q B

Γ wf

Γ ` ι ≺Q ι

Γ ` C ≺−Q A Γ ` B ≺Q D

Γ ` A→ B ≺Q C → D

Γ, X:tp ` A ≺Q B X 6∈ Q
Γ ` ∀X.A ≺Q ∀X.B

X:=A ∈ Γ

Γ ` X ≺+X A

X:=A ∈ Γ

Γ ` A ≺−X X

X : tp ∈ Γ X 6∈ Q
Γ ` X ≺Q X

Γ wf

Γ ` ? ≺Q ?

Compatible Γ ` A ≺ B

Γ wf
Γ ` ι ≺ ι

Γ ` C ≺ A Γ ` B ≺ D
Γ ` A→ B ≺ C → D

Γ, X:tp ` A ≺ B X 6∈ A
Γ ` A ≺ ∀X.B

Γ ` A[X:=?] ≺ B
Γ ` ∀X.A ≺ B

Γ wf X:tp ∈ Γ

Γ ` X ≺ X
Γ ` A : tp

Γ ` A ≺ ?
Γ ` A : tp

Γ ` ? ≺ A

Terms Γ `M : A

Γ wf

Γ ` c : type(c)

x:A ∈ Γ
Γ ` x : A

Γ ` ~M : ~A Γ ` B : tp op : ~A→ B

Γ ` op( ~M) : B

Γ ` A : tp Γ, x:A ` N : B

Γ ` (λx:A.N) : A→ B
Γ ` L : A→ B Γ `M : A

Γ ` (LM) : B

Γ, X:tp ` V : B

Γ ` (ΛX.V ) : ∀X.B
Γ ` L : ∀X.B X:=A ∈ Γ

Γ ` (LX) : B

Γ ` A : tp Γ, X:=A ` N : B X 6∈ B
Γ ` (νX:=A.N) : B

Γ `M : A Γ ` A ≺Q B

Γ ` (M : A
Q

=⇒ B) : B

Γ `M : A Γ ` A ≺ B
Γ ` (M : A

p
=⇒ B) : B

Γ ` A : tp

Γ ` blame p : A

Figure 2. Polymorphic blame calculus, λB (types)

B ≺+X C and C ≺−X B hold iff C = B[X:=A]. Further,
A ≺Q B iff B ≺−Q A. Write X 6∈ Q if Q is not +X or −X .
Convertability is almost reflexive, in that A ≺Q A if X 6∈ Q for
every free name X in A.

Write Γ ` A ≺ B to indicate that in context Γ types A and
B are compatible. Casts must be between compatible types, and
the rules for compatibility ensure that reductions preserve compat-
ibility. For every type B we have both ∀X.B ≺ B[X:=?] and
B[X:=?] ≺ ∀X.B. However, compatiblity is not symmetric since
∀X.B ≺ B[X:=A] for all A, but B[X:=A] 6≺ ∀X.B when
A 6= ?. Compatibility is reflexive but not transitive, since we al-
ways have A ≺ ? and ? ≺ B, even when A 6≺ B.

Write Γ `M : A to indicate that in context Γ term M has type
A. Typing for constants, operators, function abstraction, function
application, type abstraction, and type application is standard. Each
constant c has type type(c). Typing for name generators, casts, and
conversions is as discussed previously, and blame p has type A for
every valid type A.

Every well-typed term with no subterms of the form blame p
has a unique type. We also have the following.

Lemma 1 (Well-formedness).
• If Γ ` A : tp then Γ wf.
• If Γ ` A ≺Q B then Γ ` A : tp and Γ ` B : tp.
• If Γ ` A ≺ B then Γ ` A : tp and Γ ` B : tp.
• If Γ `M : A then Γ ` A : tp.

If Γ wf it is easy to verify that Γ ` A ≺Q B and Γ ` A ≺ B
imply Γ ` A : tp and Γ ` B : tp, and that Γ ` M : A implies
Γ ` A : tp.

Untyped lambda calculus embeds into blame calculus.

dce = c : type(c)
+`

=⇒ ?

dop( ~M )e = op(d ~Me : ~?
+~̀

=⇒ ~A) : B
+`

=⇒ ?, if op : ~A→B
dxe = x

dλx.Ne = (λx: ? . dNe) : ?→? +`
=⇒ ?

dLMe = (dLe : ?
+`

=⇒ ?→?) dMe

The embedding introduces fresh blame labels for each cast.
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We abbreviate a sequence of casts in the obvious way,

M : A
p

=⇒ B
q

=⇒ C
def
= (M : A

p
=⇒ B) : B

q
=⇒ C,

and similarly for combinations of conversions and casts.

2.5 Reductions
Figure 3 presents the reduction rules of the polymorphic blame
calculus.

Let V,W range over values, which include constants, function
abstractions, and type abstractions. A value whose type is a name
is a conversion of the form V : A =⇒−X X , and a value of
dynamic type is a cast of the form V : G =⇒p ?. In addition,
conversions or casts to a function or a universal type are values,
which reduce when applied to a value or name, respectively. A cast
V : A =⇒p ∀X.B is a value only if A is not a universal type.

Let Σ range over stores, which are type contexts consisting only
of hypotheses X:=A. Let E range over evaluation contexts, which
are standard. Write ΣBM for a configuration, used in reduction to
ensure each name allocated is fresh, and to record the association of
names with types, which will help to formulate type preservation.

Write M 7−→ N for reduction of terms. Reductions for opera-
tors are standard. Each operator op is specified by a total meaning
function [[op]] that preserves types: if op : ~A→ B and ~V : ~A, then
[[op]](~V ) is a value W such that W : B. Reduction for function
and type applications is also standard, save that type applications
are restricted to names, with substitution implemented via the anti-
Barendregt convention.

Conversions are reduced as follows. Conversion from a base
type, name, or the dynamic type to the same type is the identity; a
name converts to itself only if the conversion label refers to a differ-
ent name. Conversion between two function types, when applied to
a value, reduces to a contravariant conversion on the domain (negat-
ing the label) and a covariant conversion on the range. Conversion
between two universal types, when applied to a name, reduces to
a conversion between the instances of the universal types. In scope
of hypothesis X:=A, conversion from A to X and back reduces to
the identity.

Casts are reduced as follows. A cast from a base type, name, or
the dynamic type to the same type is the identity. A cast between
two function types, when applied to a value, reduces to a contravari-
ant cast on the domain (negating the label) and a covariant cast on
the range. A cast to universal type, when applied to a name, reduces
to a cast to the instance of the universal type. A cast from universal
type reduces by instantiating the value at type ?. The last rule is
equivalent to

V : ∀X.A p
=⇒ B 7−→ νX:= ? .(V X : A

+X
=⇒ A[X:=?]

p
=⇒ B)

by the definition of type application. Given a cast from universal
type to universal type, the rules may apply in in either order, as
both orders yield the same result.

Finally we discuss casts to and from ?. Say A is uniquely
groundable, and write ug(A), if A 6= ?, and A 6= G′ for any
ground type G′, and A 6= ∀X.A′ for any A′. If ug(A) then there
is a unique G such that A ≺ G and G ≺ A. (In fact, if ug(A) then
A = A′→B′ for some A′ and B′, and if ug(A) and A ≺ G or
G ≺ A then G = ?→?. But our formulation adapts if we permit
other ground types, such as ? × ?.) If ug(A) and A ≺ G, then a
cast from A to ? reduces to a cast from A to G followed by a cast
from G to ?, and similarly for a cast from ? to A. Casts from a
ground type G to type ? and back to type G reduce to the identity
(a successful cast), while casts from ground type G to type ? and
back to a different ground type H allocate blame to the label of the
outer cast (an unsuccessful cast).

Write Σ BM −→ Σ′ BM ′ for reduction of configurations.
Reduction is closed under evaluation contexts, evaluating blame
terminates reduction, and evaluating a generator adds a fresh name
to the configuration. In general, if −→ is a reduction relation,
write −→? for its reflexive closure and −→∗ for its reflexive and
transitive closure. Detailed reductions for examples (1)–(7) from
Sections 2.1 and 2.2 appear in the supplemental material.

2.6 Type safety
The usual type safety properties hold. The canonical forms lemma
needs to be adjusted to account for conversions and casts that are
taken as values.

Lemma 2 (Canonical forms). If V : A then either

• V = c′ and A = ι′

• V = λx : A′. N ′ and A = A′ → B′

• V = V ′ : A′→B′ =⇒Q′
C′→D′ and A = C′→D′

• V = V ′ : A′→B′ =⇒p′ C′→D′ and A = C′→D′
• V = ΛX.V ′ and A = ∀X.B′
• V = V ′ : ∀X.A′ =⇒Q′

∀X.B′ and A = ∀X.B′
• V = V ′ : A′ =⇒p′ ∀X.B′ and A = ∀X.B′
• V = V ′ : G′ =⇒p′ ? and A = ?
• V = V ′ : A′ =⇒−X

′
X ′ and A = X ′

where all primed variables are existentially quantified.

We have the usual preservation and progress results.

Proposition 3 (Type safety).

1. If Σ `M : A and ΣBM −→ Σ′ BM ′ then Σ′ `M ′ : A.
2. If Σ `M : A then either

• M = V ′

• M = blame p′

• ΣBM −→ Σ′ BM ′

where all primed variables are existentially quantified.

Convertibility and compatibility exactly ensure that reductions
of conversions and casts preserve typability. For instance, the com-
patibility rule

C ≺−Q A B ≺Q D

A→ B ≺Q C → D
ensures for the reduction

(V : A→B Q
=⇒ C→D)W 7−→ V (W : C

−Q
=⇒ A) : B

Q
=⇒ D

that if the conversion on the left is well-typed then the two conver-
sions on the right are also well-typed. Similarly for each convert-
ibility and compatibility rule and the corresponding reduction for
conversions or casts.

2.7 Blame safety
Preservation and progress on their own are relatively weak, in
that they permit blame to arise. We now consider under what
circumstances we can guarantee absence of blame.

Blame safety is defined in terms of three relations. Positive and
negative subtyping, A <:+ B and A <:− B, characterise when a
cast A =⇒p B can never result in blaming p or −p, respectively.
Naive subtyping, A <:n B, characterises when type A is more
precise than type B. The three relations are as given by Ahmed
et al. (2011), and are presented in the supplemental material.

As noted by Ahmed et al. (2011), positive, negative, and naive
subtyping are closely related.

Proposition 4 (Factoring). A <:n B iff A <:+ B and B <:− A.

Say that a castA =⇒q B is safe for p if p = q andA <:+ B or
p = −q and A <:− B or p 6= q and p 6= −q. A term M is safe for
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Syntax
V,W ::= c | λx:A.N | ΛX.V | V : A→ B

Q
=⇒ C → D | V : ∀X.A Q

=⇒ ∀X.B | V : A
−X
=⇒ X |

V : A→ B
p

=⇒ C → D | V : A
p

=⇒ ∀X.B | V : G
p

=⇒ ?

Σ ::= • | Σ, X:=A

E ::= � | op(~V , E , ~M) | EM | V E | E X | E : A
Q

=⇒ B | E : A
p

=⇒ B

Reduction M 7−→ N

op(~V ) 7−→ [[op]](~V )

(λx:A.N)V 7−→ N [x:=V ]

(ΛX.V )X 7−→ V

V : ι
Q

=⇒ ι 7−→ V

(V : A→ B
Q

=⇒ C → D)W 7−→ V (W : C
−Q
=⇒ A) : B

Q
=⇒ D

(V : ∀X.A Q
=⇒ ∀X.B)X 7−→ V X : A

Q
=⇒ B if X 6∈ Q

V : X
Q

=⇒ X 7−→ V if X 6∈ Q

V : A
−X
=⇒ X

+X
=⇒ A 7−→ V

V : ?
Q

=⇒ ? 7−→ V

V : ι
p

=⇒ ι 7−→ V

(V : A→ B
p

=⇒ C → D)W 7−→ V (W : C
−p

=⇒ A) : B
p

=⇒ D

(V : A
p

=⇒ ∀X.B)X 7−→ V : A
p

=⇒ B

V : ∀X.A p
=⇒ B 7−→ (V ?) : A[X:=?]

p
=⇒ B

V : X
p

=⇒ X 7−→ V

V : ?
p

=⇒ ? 7−→ V

V : A
p

=⇒ ? 7−→ V : A
p

=⇒ G
p

=⇒ ? if ug(A), A ≺ G

V : ?
p

=⇒ A 7−→ V : ?
p

=⇒ G
p

=⇒ A if ug(A), G ≺ A

V : G
p

=⇒ ?
q

=⇒ G 7−→ V

V : G
p

=⇒ ?
q

=⇒ H 7−→ blame q if G 6= H

Reduction of configurations ΣBM −→ Σ′ BN

M 7−→ N
ΣB E [M ] −→ ΣB E [N ] ΣB E [blame p] −→ ΣB blame p

X 6∈ Σ

ΣB E [νX:=A.N ] −→ Σ, X:=AB E [N ]

Figure 3. Polymorphic blame calculus, λB (reductions)

Syntax
A,B,C,D ::= ι | A→ B | key〈A〉 | bits

L,M,N ::= c | op( ~M) | x | λx:A.N | LM | blame p | κ | new〈A〉 | bMcN | dLepN
V,W ::= c | λx:A.N | κ | bV cκ

Γ ::= • | Γ, x:A | Γ, κ:key〈A〉
∆ ::= • | ∆, κ:key〈A〉

E ::= � | op(~V , E , ~M) | EM | V E | bEcN | bV cE | dEepN | dV e
p
E

Terms Γ `M : A

new〈A〉 : key〈A〉
M : A N : key〈A〉
bMcN : bits

L : bits N : key〈A〉
dLepN : A

Reduction M 7−→ N
op(~V ) 7−→ [[op]](~V ) dbV cκepκ 7−→ V

(λx:A.N)V 7−→ N [x:=V ] dbV cκepκ′ 7−→ blame p if κ 6= κ′

Reduction of configurations ∆BM −→ ∆′ BM ′

M −→ N
∆B E [M ] −→ ∆B E [N ] ∆B E [blame p] −→ ∆B blame p

κ 6∈ ∆

∆B E [new〈A〉] −→ ∆, κ : key〈A〉B E [κ]

Figure 4. Cryptographic lambda calculus, λK

p, written M safe p, if every cast within it is safe for p. We have
variants of preservation and progress.

Proposition 5 (Blame safety).

1. If M safe p and ΣBM −→ Σ′ BM ′ then M ′ safe p.

2. If M safe p then ΣBM 6−→ Σ′ B blame p.

A corollary of Propositions 4 and 5 is that if A <:n B then a
cast A =⇒p B is safe for p, and a cast B =⇒p A is safe for −p.
Hence, if a cast between a less-precise and a more-precise type
fails, blame always falls on the less-precise side of the cast.
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Types (|A|)BK

(|ι|) = ι

(|A→ B|) = (|A|)→ (|B|)
(|∀X.B|) = key〈bits〉 → (|B|)

(|X|) = bits

(| ? |) = bits

Ground types (|G|)BKR

(|ι|)R = κι

(|?→ ?|)R = κ?→?

(|X|)R = k if X 7→ (j, k) ∈ R

Terms (|M |)BKR

(|c|)R = c

(|x|)R = x

(|λx:A.N |)R = λx : (|A|). (|N |)R
(|ΛX.V |)R = λk : key〈bits〉. (|V |)R,X 7→(•,k)

(|op( ~M)|)R = op((| ~M |)R)

(|blame p|)R = blame p

(|LM |)R = (|L|)R (|M |)R
(|LX|)R = (|L|)R k if (X 7→ (j, k)) ∈ R

(|νX:=A.N |)R = let j = new〈(|A|)〉 in let k = new〈bits〉 in (|N |)R,X 7→(j,k)

(|M : A
Q

=⇒ B|)R = (|M |)R @ (|A Q
=⇒ B|)R

(|M : A
p

=⇒ B|)R = (|M |)R @ (|A p
=⇒ B|)R

Conversions (|A Q
=⇒ B|)BKR

(|ι Q
=⇒ ι|)R = λv:ι. v

(|X Q
=⇒ X|)R = λv:bits. v if X 6∈ Q

(|? Q
=⇒ ?|)R = λv:bits. v

(|A −X
=⇒ X|)R = λv:(|A|). bvcj if (X 7→ (j, k)) ∈ R

(|X +X
=⇒ A|)R = λv:bits. dve•j if (X 7→ (j, k)) ∈ R

(|A→ B
Q

=⇒ C → D|)R = λv:(|A→ B|). λw:(|C|). (v (w @ (|C −Q
=⇒ A|)R)) @ (|B Q

=⇒ D|)R

(|∀X.A Q
=⇒ ∀X.B|)R = λv:key〈bits〉→(|A|). λk:key〈bits〉. (v k) @ (|A Q

=⇒ B|)R,X 7→(•,k) if X 6∈ Q

Casts (|A p
=⇒ B|)BKR

(|ι p
=⇒ ι|)R = λv:ι. v

(|X p
=⇒ X|)R = λv:bits. v

(|? p
=⇒ ?|)R = λv:bits. v

(|G p
=⇒ ?|)R = λv:(|G|). bvck if k = (|G|)R

(|? p
=⇒ G|)R = λv:bits. dvepk if k = (|G|)R

(|A p
=⇒ ?|)R = λv:(|A|). (v @ (|A p

=⇒ G|)R) @ (|G p
=⇒ ?|)R if ug(A), A ≺ G

(|? p
=⇒ A|)R = λv:bits. (v @ (|? p

=⇒ G|)R) @ (|G p
=⇒ A|)R if ug(A), G ≺ A

(|A→ B
p

=⇒ C → D|)R = λv:(|A→ B|). λw:(|C|). (v (w @ (|C −p
=⇒ A|)R)) @ (|B p

=⇒ D|)R
(|A p

=⇒ ∀X.B|)R = λv:(|A|). λk:key〈bits〉. v @ (|A p
=⇒ B|)R,X 7→(•,k)

(|∀X.A p
=⇒ B|)R = λv:key〈bits〉→(|A|). let j = new〈bits〉 in let k = new〈bits〉 in

((v k) @ (|A +X
=⇒ A[X:=?]|)R,X 7→(j,k)) @ (|A[X:=?]

p
=⇒ B|)R

Figure 5. Translation from λB to λK

3. Cryptographic lambda calculus, λK
Figure 4 presents the cryptographic lambda calculus, λK.

Our calculus is inspired by Pierce and Sumii (2000), but makes
some small modifications for ease of comparison with our system.
We restrict the body of a type abstraction to be a value, and a
failed decryption raises blame on a given label rather than invoking
arbitrary code.

The calculus modifies the simply-typed lambda calculus by
adding a type key〈A〉 of cryptographic keys, and a type bits of
encoded values, and operations to allocate a new key, encode a

value under a key, and decode a value under a key. An attempt to
decode a value with the wrong key yields blame.

Let A,B,C,D range over types, which are either base type ι,
function type A → B, key type key〈A〉 that encodes or decodes
values of type A, and the type bits of encoded values.

Let κ range over key constants. Let L,M,N range over terms,
which are either a constant, an operator, a function abstraction, a
function application, or blame, as before, or a key constant, or terms
to allocate a fresh key or encrypt or decrypt a value by a given key.
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Types (|A|)KB

(|ι|) = ι (|A→ B|) = (|A|)→ (|B|) (|key〈A〉|) = ∃X.((|A|)→ X)× (X → (|A|)) (|bits|) = ?

Terms (|M |)KB

(|c|) = c

(|x|) = x

(|λx:A.N |) = λx : (|A|). (|N |)

(|op( ~M)|) = op((| ~M ′|))
(|blame p|) = blame p

(|LM |) = (|L|) (|M |)

(|new〈A〉|) = νX:=(|A|).pack (X, (λv. v : (|A|) −X=⇒ X,λw.w : X
+X
=⇒ (|A|))) as ∃X.((|A|)→X)× (X→(|A|))

(|bMcN |) = let v = (|M |) in unpack (X, y) = (|N |) in let (f, g) = y in (f v) : X
•

=⇒ ?

(|dLepN |) = let w = (|L|) in unpack (X, y) = (|N |) in let (f, g) = y in g (w : ?
p

=⇒ X)

Figure 6. Translation from λK to λB

Let Γ range over type contexts, which associate variables and
key constants with types, and let ∆ range over key stores, which are
type contexts that bind only key constants. Unlike the polymorphic
blame calculus, where types later in the store may contain names
declared earlier in the store, the types in a key store are independent
of the keys declared in the store.

Write ` A : tp to indicate that A is a valid type, and Γ `
M : A to indicate that M is a term of type A under context
Γ. The formation rules for contexts and types are straightforward
and omitted. The formation rules for constant, operator, function
abstraction, function application, and blame are as before, and are
also omitted. We give formation rules for the three new term forms.
Term new〈A〉 allocates a fresh key of typeA, term bMcN encrypts
M of type A by key N of type key〈A〉 yielding a value of type
bits, and term dLepN decrypts L of type bits by key N of type
key〈A〉 yielding a value of type A or possibly failing and blaming
p.

Let V,W range over values, which are constants, functions,
key constants, or encoded values. Write M 7−→ N for a single
reduction step. Reduction for operators and function application is
standard. Encrypting and decrypting on the same key is the identity,
while encrypting and decrypting on different keys yields blame.

Write ∆ BM −→ ∆′ BM ′ for reduction of configurations.
Reduction is closed under evaluation contexts, evaluating blame
terminates reduction, and evaluating a key generator adds a fresh
key to the configuration, returning that key.

The canonical forms and type safety results are straightforward.

Lemma 6 (Canonical forms). If V : A then either

• V = c′ and A = ι′

• V = λx : A′. N ′ and A = A′ → B′

• V = κ′ and A = key〈A′〉
• V = bV ′cκ′ and A = bits

where all primed variables are existentially quantified.

Proposition 7 (Type safety).

1. If ∆ `M : A and ∆BM −→ ∆′ BM ′ then ∆′ `M ′ : A.
2. If ∆BM : A then either

• M = V ′

• M = blame p′

• ΣBM −→ Σ′ BM ′

where all primed variables are existentially quantified.

Unlike λB, the type system of λK does not provide guarantees
regarding the absence of blame. It ensures that a matching encode
and decode have keys of the same type, but not the same key.

3.1 Translation of λB to λK
Figure 5 presents the translation from polymorphic blame calculus
λB to cryptographic lambda calculus λK.

We extend λK with postfix application and let bindings:

M @ L
def
= LM

let x = M inN
def
= (λx:A.N)M where M : A

Write (|A|) for the translation of types. A base type translates
to itself. A function type A → B translates homomorphically to
(|A|) → (|B|). A universal type ∀X.B translates to a function
key〈bits〉 → (|B|), which accepts a key (used for performing
casts in the body of the type abstraction), and returns a value of
type (|B|). Every name translates to the type bits of encrypted
values. The dynamic type ? also translates to the type bits.

The translation associates each nameX in the source with a pair
of variables j and k bound to keys in the target. If X is introducted
by a generator, with X:=A, then j : key〈(|A|)〉 and k : key〈bits〉
in the target. Key j is used for conversions from A to X and back,
while key k is used for casts from X to ? and back. The translation
of terms, conversions, and casts is parameterised by a relation R
consisting of associationsX 7→ (j, k). IfX is introduced by a type
abstraction, with X : tp, then it participates in no conversions, so
we write X 7→ (•, k).

To each ground type G we associate a key used for casts from
G to ? and back, written (|G|)R, where R is a relation from names
to pairs of keys as described above. We assume that at the top level
we have allocated keys

κι : key〈ι〉 and κ?→? : key〈bits→ bits〉
for this purpose. The only other ground type is a name, which is
translated according to the relation R. We pick the second key of
the pair, which is the one used for casts.

Write (|M |)R for the translation of terms, (|A =⇒Q B|)R for the
translation of conversions, and (|A =⇒p B|)R for the translation of
casts, whereR is a relation from names to pairs of keys as described
above. The translation inserts administrative λ’s in the sense of
Plotkin (1975), which are marked with an overline, as in λ. The
translation implicitly performs β-reduction whenever it produces a
redex involving an adminstrative λ, which simplifies the simulation
between λB and λK (Proposition 9).

Terms are translated as follows. Constants, operators, variables,
function abstractions, function applications, and blame translate
homomorphically. A type abstraction ΛX.V translates to a func-
tion abstraction that accepts a key k and recursively translates
the body V , where the relation R is extended by an association
X 7→ (•, k). The first key is written • because it is irrelevant (no
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conversions on X happen in the body of the abstraction), and the
second is the parameter k passed to the function (used for casts on
X in the body of the abstraction). Correspondingly, a type applica-
tion LX translates to an application of the translation of L to the
key k, where the association X 7→ (j, k) occurs in relation R. A
generator νX:=A.N translates to a term that binds j and k to fresh
keys of the appropriate type, and recursively translates the body N
where the relation R is extended by X 7→ (j, k). Conversions and
casts are translated by recursively translating the term and then ap-
plying the translation of the conversion or cast.

A conversion between name X and its corresponding type A
is performed by encrypting or decrypting with the relevant key
from the relation. The blame label for decryption is irrelevant, since
a decryption corresponding to a conversion never fails. Most of
the translation rules for conversions corresponds to the reduction
rules for conversions. A conversion between two universal types
translates to a term that accepts a function over keys and a key,
applies the function to the key, and converts instances of the types at
a fresh name. To preserve the invariant that every name mentioned
in a term appears in the relation, the relation is extended by the
fresh name, even though the key associated with it is not used in
the translation. Indeed, in the translation of a conversion with label
Q = +X or Q = −X , although we pass the entire relation R (to
maintain the correspondence with casts), the only relevant key is
j in the association X 7→ (j, k) ∈ R, since that is the only key
required to translate the conversion.

A cast from G to ? or from ? to G translates as encoding or
decoding with the appropriate key. Most of the translation rules for
casts corresponds to the reduction rules for casts. A cast from A
to ∀X.B translates to a term that accepts a value v of type (|A|)
and a key k, and recursively casts v from A to B. For the cast, the
relationR is extended by an associationX 7→ (•, k), where the key
for conversions is written • because it is irrelevant, and k is the key
for casts. A cast from ∀X.A to B translates to a term that accepts
a function over keys and allocates two fresh keys, then applies the
function at the appropriate key and recursively converts from A to
A[X:=?] and then casts A[X:=?] to B. For the conversion, the
relation is extended by the association X 7→ (j, k), where j is the
key for conversions and k is the key for casts (though the latter
is unused in the conversion), while for the cast the relation is not
extended (since the nameX does not appear in its source or target).

We translate stores as follows. Let Σ be a store. For each
Xi:=Ai in Σ where R contains the association Xi 7→ (ji, ki),
let ∆ have entries ji : key〈(|Ai|)〉, ki : key〈bits〉. Define
(|Σ|)R = ∆. We write Σ ∼ R if for every association X:=A
in Σ there is an association X 7→ (j, k) in R.

The translation preserves types and is a simulation.

Proposition 8 (Type preservation, λB to λK).
If Σ `M : A and Σ ∼ R then (|Σ|)R ` (|M |)R : (|A|).

Proposition 9 (Simulation, λB to λK).
Assume Σ `M : A and Σ ∼ R. Then

1. If M = V then (|M |)R is a value.
2. If ΣBM −→B Σ′BM ′ then

(|Σ|)RB(|M |)R −→∗K (|Σ′|)R′B(|M ′|)R′ , for some R′.

3.2 Translation of λK to λB
Figure 6 presents the translation from cryptographic lambda cal-
culus λK to polymorphic blame calculus λB. We extend λB with

products and existentials by the standard encodings:

A×B def
= ∀Z.(A→ B → Z)→ Z

(V,W )
def
= ΛZ. λh : A→B→Z. z V W

let (x, y) = L inN
def
= LC (λx : A. λy : B.N)

if L : A×B and N : C

∃X.B def
= ∀Z.(∀X.B → Z)→ Z

pack (A, V ) as ∃X.B def
= ΛZ. λh : ∀X.B→Z. hAV

unpack (X, y) = L inN
def
= LC (ΛX.λy : B.N)

if L : ∃X.B and N : C

We write (|A|) for the translation of types. A base type translates
to itself. A function type A → B translates homomorphically to
(|A|)→ (|B|). Type key〈A〉 translates to the existential type

∃X.((|A|)→ X)× (X → (|A|))

which corresponds to functions that encrypt and decrypt values of
type A by converting them to existentially quantified type X . Type
bits translates to the dynamic type ?.

We write (|M |) for the translation of terms. Constant, opera-
tor, variable, blame, function abstraction, and function application
translate homomorphically. Term new〈A〉 translates to a value of
the existential type, which generates a freshX associated with type
A, and uses conversions fromA toX andX toA for the encrypting
and decrypting functions. Term bMcN unpacks the existential type
X corresponding to the key, and combines the encrypting function
from A to X with a cast from X to ?. Conversely, term dLepN
unpacks the existential type X corresponding to the key, and com-
bines a cast from ? to X with the decrypting function from X to
A. The encoding cast can never fail, so its blame label is irrelevant,
while the decoding cast takes its blame label from the decryption
term.

We might imagine an alternative design that avoids the use of
existential types:

(|key〈A〉|) = ((|A|)→ ?)× (?→ (|A|))

(|new〈A〉|) = νX:=(|A|).(λv. v : A
−X
=⇒ X

•
=⇒ ?,

λw.w : ?
q

=⇒ X
+X
=⇒ A )

(|bMcN |) = let v = (|M |) in let (f, g) = (|N |) in f v
(|dMepN |) = let w = (|M |) in let (f, g) = (|N |) in g w

However, this design is not quite right: if a decryption fails it
blames label q, which appears in the translation of key allocation,
rather than the label p that appears on the decryption term.

We translate key stores as follows. Let ∆ be a key store. For
each κi : key〈Ai〉 in ∆ where νXi:=(|Ai|).NBi = (|new〈Ai〉|), let
Σ be the store consisting of all the associations Xi:=(|Ai|), and let
σ be a substitution consisting of all the replacements κi 7→ NBi.
Define (|∆|) = (Σ, σ).

The translation preserves types and is a simulation.

Proposition 10 (Type preservation, λK to λB).
If ∆BM : A and (|∆|) = (Σ, σ), then ΣB (|M |)σ : (|A|).

Proposition 11 (Simulation, λK to λB).
Assume ∆BM : A and (|∆|) = (Σ, σ). Then

1. If M = V then ΣB (|M |)σ −→∗B ΣBW , for some W .
2. If ∆BM −→K ∆′BM ′ then ΣB(|M |)σ −→∗B Σ′B(|M ′|)σ′,

where (|∆′|) = (Σ′, σ′).
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Polymorphic lambda calculus, λF

A,B ::= ι | A→ B | ∀X.B | X

L,M,N ::= c | op( ~M) | x | λx:A.N | LM | ΛX.V | LA

Polymorphic lambda calculus with generativity, λG

L,M,N ::= c | op( ~M) | x | λx:A.N | LM | ΛX.V |
LX | νX:=A.N |M : A

Q
=⇒ B

Translation of λF to λG (|M |)FG

(|c|) = c (|λx : A.N |) = λx : A. (|N |)
(|op( ~M)|) = op((| ~M |)) (|LM |) = (|L|) (|M |)

(|x|) = x (|ΛX.V |) = ΛX. (|V |)

(|LA|) = νX:=A.((|L|)X : B
+X
=⇒ B[X:=A])

where L : ∀X.B

Translation of λG to λF (|M |)GF

(|c|) = c (|λx : A.N |) = λx : A. (|N |)
(|op( ~M)|) = op((| ~M |)) (|LM |) = (|L|) (|M |)

(|x|) = x (|ΛX.V |) = ΛX. (|V |)

(|LX|) = (|L|)X
(|νX:=C.A|) = (|N |)[X:=A]

(|M : A
Q

=⇒ B|) = (|M |)

Figure 7. Polymorphic lambda calculus λF, and polymorphic lambda calculus with generativity λG

4. Polymorphic λ-calculus, λF, and polymorphic
λ-calculus with generativity, λG

Figure 7 presents the polymorphic lambda calculus, λF, and the
polymorphic lambda calculus with runtime type generation, λG,
and translations between them.

Polymorphic lambda calculus, λF consists of constants, opera-
tors, variables, function abstraction, function application, type ab-
straction, and type application. Type abstraction is restricted so the
body is a value. We write M −→F M

′ for reduction. The reduc-
tion rules for constants and functions are as in λB and λK, and the
reduction rule for for type abstractions is standard:

(ΛX.V )A −→F V [X:=A]

Polymorphic lambda calculus with runtime type generation,
λG, is the subset of blame calculus λB without casts or the dynamic
type. We write Σ BM −→G Σ′ BM ′ for reduction. Its reduction
rules are those of λB, minus those that deal with casts or the
dynamic type.

We write (|M |)FG for the translation from a term of λF to a term
of λG. The translation is homomorphic save for type application,
which introduces a generator and a conversion.

We write (|M |)GF for the translation from a term of λG to a term
of λF. The translation is homomorphic save for generators, which
substitute the associated type for the name, and conversions, which
are elided. We extend the translation to configurations, by taking
(|ΣBM |)GF = (|M |)GFΣ, applying store Σ as a substitution.

The two translation are inverses.

Lemma 12 (Inverses). (|(|M |)FG|)GF = M .

The translation from λG to λF is a bisimulation.

Proposition 13 (Bisimulation, λG to λF).
Assume ΣBN : A and (|ΣBN |)GF = M .

• If N =G W then M =F V , for some V .
• If M =F V then N =G W , for some W .
• If ΣBN −→G Σ′ BN ′ then M −→?

F M
′ and

(|Σ′ BN ′|)GF =F M
′, for some M ′.

• If M −→F M
′ then ΣBN −→∗G Σ′ BN ′ and

(|Σ′ BN ′|)GF =F M
′, for some Σ′, N ′.

The proof of this proposition is in the supplemental material.
We say M and N are contextually equivalent, and write M ctx

=F

N , if for every context C we have C[M ] −→∗F c if and only if
C[N ] −→∗F c. Similarly, mutatis mutandis, for M ctx

=G N .
The translation from λG to λF is fully abstract.

Proposition 14 (Full abstraction, λG to λF). Assume M : A and
N : A in λG. Then M ctx

=G N iff (|M |)GF ctx
=F (|N |)GF.

The proof of this proposition is in the supplemental material.
It follows immediately from Lemma 12 that the inverse transla-

tion is also fully abstract.

Proposition 15 (Full abstraction, λF to λG). Assume M : A and
N : A in λF. Then M ctx

=F N iff (|M |)FG ctx
=G (|N |)FG.

5. Translation of λF to λK
Figure 8 presents the translation from λF to λK given by Pierce
and Sumii (2000) (their Figures 4 and 5). Since we restrict the
body of type abstractions to be values, our version of their trans-
lation is slightly simpler, in that we do not need to introduce func-
tion abstractions with a dummy argument when translating type
abstractions. We have adjusted their notation slightly to better cor-
respond to our own: we write T `(M) where they write T (M) for
the top-level translation of programs from λF to λK. We write
v @ C±X,`k (A) where they write C±X(v, k,A) to encode each type
variable X into bits and to encrypt/decrypt values of type X . We
write v@G±`(A) where they write G±(v,A) to guard parametricity
via encryption/decryption. In each case we have added a primitive
label ` for reporting blame as an additional parameter.

Define the following mapping from types of λF to types of λB.

|ι| = ι |∀X.B| = |B|
|A→ B| = |A| → |B| |X| = ?

Let M be a term of λF, (|M |)FG be the translation of terms of λF
to terms of λG from Section 4, (|M |)BKR and (|A =⇒p B|)BKR be the
translations of terms and casts of λB to λK from Section 3.1, and
ctx
=K be contextual equality on terms of λK, defined as usual. Then
we conjecture that Pierce and Sumii’s top-level translation from λF
to λK is contextually equivalent to our translations as follows.

Conjecture 16 (Top-level translations T ).

T `(M)
ctx
=K (|(|M |)FG|)BKR @ (|A +`

=⇒ |A||)BKR if R = •
Indeed, each part of their translation relates directly to parts of

our translation. Define forward composition:

f # g def
= λv. (v @ f) @ g

Then we have the following.

• E(A) = (||A||)BK

• E(M) relates to (|(|M |)FG|)BK
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Top level T `(M)

T `(M) = E(M) @ G+`(A) where M : A

Types E(A)

E(ι) = ι

E(A→ B) = E(A)→ E(B)

E(∀X.B) = E(B)

E(X) = bits

Terms E(M)

E(c) = c

E(op( ~M)) = op(E( ~M))

E(x) = x

E(λx:A.N) = λx:E(A). E(N)

E(LM) = E(L) E(M)

E(ΛX.V ) = E(V )

E(LA) = let k = new〈E(A)〉 in

E(L) @ C−X,•k (B) where L : ∀X.B

Conversions CQ,`k (A)

CQ,`k (ι) = λv. v

CQ,`k (A→ B) = λv. λw. v(w @ C−Q,`k (A)) @ CQ,`k (B)

CQ,`k (∀X.B) = λv. v @ CQ,`k (B) if X 6∈ Q

C+X,`k (X) = λv. bvck
C−X,`k (X) = λv. dve−`k
CQ,`k (X) = λv. v if X 6∈ Q

Guards Gp(A)

Gp(ι) = λv. v

Gp(A→ B) = λv. λw. v(w @ G−p(A)) @ Gp(B)

G+`(∀X.B) = λv. v @ G+`(B)

G−`(∀X.B) = λv. let k = new〈bits〉 in

(v @ C−X,`k (B)) @ G−`(B)

Gp(X) = λv. v

Figure 8. Translation from λF to λK, after Pierce and Sumii (2000)

• C−X,•j (B) relates to (|B +X
=⇒ B[X:=A]|)BKR ,

where X 7→ (j, k) ∈ R

• C+X,•j (B) relates to (|B[X:=A]
−X
=⇒ B|)BKR ,

where X 7→ (j, k) ∈ R

• C−X1,`
k1

(A)#· · ·#C−Xn,`
kn

(A)#G−`(A) relates to (|A +`
=⇒ |A||)BKR

where R = {X1 7→ (j1, k1), . . . Xn 7→ (jn, kn)}.

• G+`(A)#C+Xn,`
kn

(A)#· · ·#C+X1,`
k1

(A) relates to (||A| −`=⇒ A|)BKR
where R = {X1 7→ (j1, k1), . . . Xn 7→ (jn, kn)}.

Note the reversal of sign! Their C labelled with−X corresponds to
conversions or casts labelled with +X , and conversely.

The comparison reveals a surprise. Occurrences of C±X,•k (A)
in E(M) corresponds to the translation of conversions, while oc-
currences of C±X,`k (A) in G±`(M) corresponds to the translation
of casts! Encryptions and decryptions in the former use keys of
type key〈A〉, and are guaranteed not to fail, while encryptions and
decryptions in the latter use keys of type key〈bits〉, and may fail.

6. Related Work
Polymorphic lambda calculus Girard and Reynolds indepen-
dently discovered the polymorphic lambda calculus (Girard 1972;
Reynolds 1974, 1983). Their calculus corresponds to second-order
predicate calculus P2 via the Curry-Howard correspondence. Gi-
rard’s representation theorem provides a projection from P2 into
λF and Reynold’s abstraction theorem provides an injection from
λF into P2. Wadler (2007) proves that this pair of functions form
an embedding-projection pair. Parametricity has many applica-
tions, e.g., providing “theorems for free” (Wadler 1989a), and it
has broader connections to category theory (Hermida et al. 2014).
Because of parametricity, λF can be implemented by erasure to the
the untyped lambda calculus, as recently proved correct by Hou
et al. (2015).

Cryptographic sealing The use of cryptographic sealing to en-
force type abstraction goes back to Morris (1973), who described

a language with a Createseal primitive that returns a pair of func-
tions for sealing and unsealing, which correspond to encryption and
decryption, respectively. Pitts and Stark (1993) and Stark (1995)
study a language with fresh name generation (akin to Scheme’s
gensym) and define a logical relation for reasoning about repre-
sentation independence. It is straightforward to implement sealing
using name generation and equality on names. Pierce and Sumii
(2000) study a simply-typed λ-calculus with cryptographic seal-
ing, upon which the λK language of this paper in based. They de-
fine a logical relation and prove parametricity for the language, and
they present an embedding of polymorphic lambda calculus into
their cryptographic lambda calculus which they conjecture is fully
abstract. Our Section 5 describes the relation between their embed-
ding and our translations from λF to λG and from λB to λK. Sumii
and Pierce (2003) updates their calculus and logical relation result,
and applies them to reason about cryptographic protocols. Sumii
and Pierce (2004) study an untyped variant of the cryptographic
lambda calculus and develop a bisimulation proof method for rea-
soning about contextual equivalence in the language.

Runtime type generation and conversions Variations on the gen-
eration and conversion constructs of λB have appeared many times
in the literature. Grossman et al. (2000) use brackets to hide a host’s
knowledge that X=A from a client; so their [M ]Bh corresponds to
our negative conversion M : B[X:=A] =⇒−X B and their [M ]Bc
corresponds to our positive conversion M : B =⇒+X B[X:=A].
Rossberg (2003) uses generation and conversion to enforced type
abstraction in a language with modules and dynamic linking. He
generates type names with the construct NX ≈ A.M , which cor-
responds to our νX:=A.M , and uses conversions {M : B}+X≈A
and {M : B}−X≈A, which correspond to our negative and positive
conversions, respectively. (Note that they are flipped!) Vytiniotis
et al. (2005) apply runtime type generation to provide open and
closed forms of ad-hoc polymorphism. Their construct new X :
κ = A in M corresponds to our type generation and their positive
and negative conversions, {{M : B}}+X=A and {{M : B}}−X=A, cor-
responds to our negative and positive conversions. (Again flipped.)
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Sewell (2001) enforces type abstraction in the context of distributed
computing.

Matthews and Ahmed (2008) use runtime type generation and
boundaries to enforce parametricity in a multi-language setting,
modeling interoperation between ML and Scheme. They also show
how to implement boundaries in terms of runtime sealing. Their
translation Ep,qA (ρ,M) corresponds to our M @ G′p(A)R, where
their parties p, q play a role similar to our blame label p, and their
ρ plays a role similar to our R. Their translation differs from that
of Pierce and Sumii (2000) and ours in that it generates seals for
universals in both positive and negative situations.

Neis et al. (2009, 2011) study a language G with runtime type
generation and a variant of Girard’s J operator, which causes G to,
in general, not be parametric. However, they show how to regain
parametricity by wrapping universally-typed terms using runtime
type generation. Our language λG is a subset of their G (minus
Girard’s J), as well as a subset of our λB (minus casts). The relative
power of Girard’s J and our casts is an open question and the
subject of ongoing investigation.

Contracts and gradual typing Abadi et al. (1991) integrate dy-
namic typing into a statically-type language with a type named Dy-
namic. Findler and Felleisen (2002) introduce higher-order con-
tracts and develop blame tracking to indicate which party is at
fault when a contract is violated. Ou et al. (2004) combines sim-
ple types and dependent typing into a single language, with im-
plicit coercions between the different regions. Flanagan (2006) in-
troduces hybrid typing, which combines simple types with refine-
ment types and inserts runtime checks whenever the automated
theorem prover cannot prove that an implication corresponding to
a subtype coercions is either true or false. Siek and Taha (2006,
2007) introduce gradual typing to enable fine-grained migration
of code between static and dynamic typing disciplines, building
on prior work of Thatte (1990) and Anderson and Drossopoulou
(2003). Gronski et al. (2006) combines gradual typing with hy-
brid typing in the Sage language. Tobin-Hochstadt and Felleisen
(2006) introduce coarse-grained (module-level) gradual typing and
the use of blame tracking to characterizes the safe versus possibly
unsafe casts. Wadler and Findler (2009) introduce the blame the-
orem for fine-grained gradual typing and show how to formulate
the proof using a progress and preservation argument. Greenberg
et al. (2010) studies the relationship between contracts and refine-
ment types with casts (manifest contracts), extending the work of
Gronski and Flanagan (2007) to handle dependent function con-
tracts and dependent refinement types. Wadler (2015) surveys work
on the blame calculus.

Polymorphism in contracts and gradual typing Guha et al.
(2007) use dynamic sealing in the design of polymorphic contracts
for PLT Scheme. Belo et al. (2011) and Greenberg (2013) study
parametricity in the context of manifest contracts, which is quite
different from the setting of this paper because their type system
statically enforces parametricity. Ahmed et al. (2009, 2011) use
runtime type generation to enforce parametricity in the polymor-
phic blame calculus, the predecessor of λB of this paper. Rastogi
et al. (2015) erase polymorphic types and forbid their use in dy-
namic contexts, which sidesteps the issues addressed by λB.

7. Conclusion
We have introduced four calculi and described the relations be-
tween them: the polymorphic blame calculus, λB; the crypto-
graphic lambda calculus, λK; the polymorphic lambda calculus,
λF, and the polymorphic lambda calculus with seals, λG. The
translations from λB to λK and back are simulations; while the
translations from λF to λG and back are bisimulations and fully

abstract. We relate our translations to the embedding of polymor-
phic lambda calculus into cryptographic lambda calculus of Pierce
and Sumii (2000), revealing how conversions and casts offer insight
into the structure of the translation.

Pierce and Sumii (2000) conjectured that their embedding is
fully abstract, but their conjecture remains open after a decade
and a half. Ahmed et al. (2011) claimed that their system satisfied
the Jack-of-all-Trades theorem, but their proof turned out to have
an error which they could not repair; and they conjectured that
their system satisfies relational parametricity, but never published a
proof. Perhaps the insights offered here may provide a step toward
progress on these problems.
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