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Abstract
We introduce the blame calculus, which adds the notion of blame
from Findler and Felleisen’s contracts to a system similar to Siek
and Taha’s gradual types and Flanagan’s hybrid types. We charac-
terise where positive and negative blame can arise by decomposing
the usual notion of subtype into positive and negative subtyping,
and show that these recombine to yield naive subtyping. Naive typ-
ing has previously appeared in type systems that are unsound, but
we believe this is the first time naive subtyping has played a role in
establishing type soundness.

1. Introduction
Much recent work has focussed on how to integrate dynamic and
static typing, using the contracts of Findler and Felleisen (2002)
to ensure that dynamically-typed code meets statically-typed in-
variants. Examples include the gradual types of Siek and Taha
(2006) the hybrid types of Flanagan (2006), the dynamic dependent
types of Ou et al. (2004), and the multi-language programming of
Matthews and Findler (2007); we list many others under related
work.

Both Meijer (2004) and Bracha (2004) argue in favor of mixing
dynamic and static typing. Static and dynamic typing are both
supported in Visual Basic, and there are plans to bring similar
integration to Perl 6 and ECMAScript 4. The latter, more popularly
known as JavaScript, benefits from the involvement of Herman and
Flanagan (2007), researchers known for their work on gradual and
hybrid types (Herman et al. 2007).

Here, we provide a uniform view of much of this work, by in-
troducing a notion of blame (from contracts) into a type system
with casts (similar to intermediate languages for gradual and hy-
brid types), yielding a system we dub the blame calculus. In this
calculus, programmers may add casts to evolve dynamically typed
code into statically typed, (as with gradual types) or to evolve stat-
ically typed code to use refinement types (as with hybrid types).

The technical content of this paper is to introduce notions of
positive and negative subtyping, and prove a theorem that charac-
terises when positive and negative blame can occur. A corollary
of this theorem is that when a program integrating less-typed and
more-typed components goes wrong, the blame must lie with the
less-typed component. Though obvious, this result has either been
ignored in previous work or required a complex proof; here we give
a simple proof.

[Copyright notice will appear here once ’preprint’ option is removed.]

A novel aspect of our work is that it involves both ordinary sub-
typing (which for functions is contravariant in the domain and co-
variant in the range) and naive subtyping (which for function is
covariant in both the domain and the range). Ordinary subtyping
characterizes a cast that cannot fail, while naive subtyping charac-
terizes which side of a cast is less-typed (and hence will be blamed
if the cast fails). We show that ordinary subtyping decomposes into
positive and negative subtyping, and that these recombine in a dif-
ferent way to yield naive subtyping. A striking analogy is a tan-
gram, where a square decomposes into parts that recombine into
a different shape (see Figure 1). Naive subtyping has previously
appeared in type systems that are unsound, notably that of Eiffel
(Meyer 1988), but we believe this is the first time naive subtyping
has played a role in establishing type soundness.

Many readers will recognise that our title is the third in a series.
“Well-typed programs can’t go wrong” summarised a denotational
approach to soundness introduced by Milner (1978). “Well-typed
programs don’t get stuck” refined this slogan, summarising an oper-
ational approach to soundness introduced by Wright and Felleisen
(1994). A related slogan, “safety is preservation plus progress”, is
due to Harper (Pierce 2002, page 95). “Well-typed programs can’t
be blamed” describes an approach suited to systems that use con-
tracts and blame, characterising interaction between more-typed
and less-typed components of a program.

Unlike the source languages for gradual and hybrid types, the
blame calculus has the advantage that the source language makes
clear where static guarantees hold and where dynamic checks are
enforced. We therefore suggest that what has been used as an
intermediate language for gradual and hybrid types is itself useful
as a source language. We also suggest, in contrast to some previous
work, that hybrid types can be useful even in the absence of a
theorem prover—one need not have a sophisticated type checker to
benefit from sophisticated types!—and that one should not regard
every type as a subtype of the dynamic type.

We make the following contributions:

Figure 1. Tangrams as metaphor: Ordinary subtyping decomposes
into components that recombine to yield naive subtyping.
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• We introduce the blame calculus, showing that a language with
explicit casts and no theorem prover is suited to many of the
same purposes as gradual types and hybrid types (Section 2).

• We give a framework similar to that of the hybrid typing of
Flanagan (2006) and the dynamic dependent typing of Ou et al.
(2004), but with a decidable type system for the source lan-
guage and satisfying unicity of type (Section 3).

• We factor the well-known notion of subtyping into new notions
of positive and negative subtyping, and show that these recom-
bine into naive subtyping. We prove that a cast from a positive
subtype cannot give rise to positive blame, and that a cast from a
negative subtype cannot give rise to negative blame (Section 4).

• We apply our theorem to sharpen published results for gradual
types (Siek and Taha 2006) and hybrid types (Flanagan 2006),
and to shed light on recently published results by Matthews and
Findler (2007) and Gronski and Flanagan (2007) (Section 5).

Section 6 describes related work, and Section 7 concludes.1

2. The blame calculus
2.1 From Untyped to Typed
Consider the following untyped code.

dlet
x = 2

in let
f = λy. y + 1

in let
h = λg. g (g x)

in
h fe

By default, our programming language is typed, so we indicate
untyped code by surrounding it with ceiling brackets. Untyped code
is really uni-typed; it is a special case of typed code where every
term has type Dyn (Harper 2007). The above term evaluates to
d4e : Dyn.

As a matter of software engineering, when we add types to our
code we may not wish to do so all at once. For instance, here is a
version of the program containing typed and untyped parts; to fit
them together, the untyped code is cast to a suitable type. Gradual
evolution is overkill for such a short piece of code, but it should be
clear how this would work in a larger system.

let
x = 2

in let
f = 〈Int → Int ⇐ Dyn〉p dλy. y + 1e

in let
h = λg : Int → Int. g (g x)

in
h f

Here, dλy. y + 1e has type Dyn, and the cast converts it to type
Int → Int. The above term evaluates to 4 : Int.

In general, a cast from source type S to target type T is written

〈T ⇐ S〉p s,

1 This is a revision of a workshop paper (Wadler and Findler 2007). The
current version is completely rewritten, has an improved treatment of blame
(a rule requiring merging positive blame and negative blame from distinct
casts has been eliminated, and as a consequence we use a simpler notation
with one label rather than two); and a generalized treatment of subset types
(previously subset types were limited to base types, whereas now they may
be over any type).

where subterm s has type S and the whole term has type T , and
p is a blame label. We assume an involutive operation of negation
on blame labels: if p is a blame label then p̄ is its negation, and p
is the same as p. Consider the failure of a cast with blame label p.
Blame is allocated to p when it is the term contained the cast that
fails to satisfy the contract associated with the cast, while blame is
allocated to p̄ when it is the context containing the cast that fails to
satisfy the contract.

Our notation is chosen for clarity rather than compactness. Writ-
ing the source type is redundant, but convenient for a core calculus.
Even writing the target can be cumbersome. The gradual type sys-
tem of Siek and Taha (2006), the hybrid type system of Flanagan
(2006), and the dynamic dependent types of Ou et al. (2004) use
source languages where most or all casts are omitted, but inferred
by a type-directed translation (and all three use quite similar trans-
lations). However, we prefer to have an indication in the source
code of where casts are required. Our notation is based on that in
Gronski and Flanagan (2007).

2.2 Contracts and refinement types
Findler and Felleisen (2002) introduced higher-order contracts, and
Flanagan (2006) observed that contracts can be incorporated into a
type system as a form of refinement type.

An example of a refinement type is {x : Int | x ≥ 0}, the type
of all integers greater than zero, which we will write Nat. A cast
from Int to Nat performs a dynamic test, checking that the integer
is indeed greater than or equal to zero.

Just as we can start with an untyped program and add types, we
can start with a typed program and add refinement types. Here is a
version of the previous program with refinement types added.

let
x = 〈Nat ⇐ Int〉p 2

in let
f = 〈Nat → Nat ⇐ Int → Int〉q (λy : Int. y + 1)

in let
h = λg : Nat → Nat. g (g x)

in
h f

The hybrid type system of Flanagan (2006) allows one to write
this program without any casts, and uses a theorem prover and
a type-directed inference system to add the casts shown above.
However, we want to stress the point that a theorem prover, or a
fancy inference system, is not essential. The above is not just useful
as a core calculus, but is also suitable as a source language.

The type system presented in this paper does not require sub-
typing or subsumption, unlike similar type systems in the literature
(Flanagan 2006; Gronski et al. 2006; Ou et al. 2004). This gives the
system the pleasant property of unicity of type: every well-typed
term has exactly one type. (This constrasts with principal types,
where every well-typed term has a most general type, of which all
its other types are instances.) In order to achieve unicity, we must
add new value forms corresponding to the result of casting to a
subset type. Thus, the value of the above term is not 4 : Int but
4Nat : Nat.

2.3 The Blame Game
The above examples execute with no errors, but in general we may
not be so lucky. Casts perform dynamic tests at run-time that fail if
a value cannot be coerced to the given type.

A cast on to a subset type reduces to a dynamic test of the
condition on the type. Recall that Nat denotes {x : Int | x ≥ 0}.
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Here is a successful test:

〈Nat ⇐ Int〉p 4
−→

4 ≥ 0 �p 4Nat
−→

4Nat

And here is a failed test:

〈Nat ⇐ Int〉p −4
−→
−4 ≥ 0 �p −4Nat

−→
⇑ p

The middle line shows a new term form that performs a dynamic
test, of the form s �p v{x:T |t}. If s evaluates to true, the value of
subset type is returned; if s evaluates to false, blame is allocated to
p, written ⇑ p.

Given an arbitrary term that takes integers to integers, it is
not decidable whether it also takes naturals to naturals. Therefore,
when casting a function type the test is deferred until the function
is applied. This is the essence of higher-order contracts.

Here is an example of casting a function and applying the result.

(〈Nat → Nat ⇐ Int → Int〉p (λy : Int. y + 1)) 2Nat
−→
〈Nat ⇐ Int〉p((λy : Int. y + 1) (〈Int ⇐ Nat〉p̄ 2Nat)

−→
〈Nat ⇐ Int〉p((λy : Int. y + 1) 2)

−→
〈Nat ⇐ Int〉p3

−→
3Nat

The cast on the function breaks into two casts, each in opposite
directions: the cast on the result takes the range of the source to
the range of the target, while the cast on the argument takes the
domain of the target to the domain of the source. Preserving order
for the range while reversing order for the domain is analogous to
the standard rule for function subtyping, which is covariant in the
range and contravariant in the domain.

Observe that the blame label on the reversed cast has been
negated, because if that cast fails it is the fault of the context, which
supplies the argument to the function. Conversely, the blame label
is not negated on the result cast, because if that cast fails it is the
fault of the function itself.

The above cast took a function with range and domain Int to a
function with more precise range and domain Nat. Now consider a
cast to a function with less precise range and domain Dyn.

(〈Dyn → Dyn ⇐ Int → Int〉p (λy : Int. y + 1)) d2e
−→
〈Dyn ⇐ Int〉p((λy : Int. y + 1) (〈Int ⇐ Dyn〉p̄ d2e))

−→
〈Dyn ⇐ Int〉p((λy : Int. y + 1) 2)

−→
〈Dyn ⇐ Int〉p 3

−→
d3e

Again, a cast on the function breaks into two casts, each in opposite
directions. What is interesting here is the cast on the argument—
reduction converts the static type Int of the argument of f into a
dynamically enforced cast!

If we consider a well-typed term of the form

(〈Nat → Nat ⇐ Int → Int〉p f) x

we can see that negative blame never adheres to this cast, because
the type checker guarantees that x has type Nat, and the cast from
Nat to Int always succeeds. However positive blame may adhere,
for instance if f is λy : Int. y − 2 and x is 1.

Conversely, if we consider a well-typed term of the form

(〈Dyn → Dyn ⇐ Int → Int〉p f) x

we can see that positive blame never adheres to this cast, because
the type checker guarantees that f returns a value of type Int, and
the cast from Int to Dyn always succeeds. However negative blame
may adhere, for instance if f is λy : Int. y + 1 and x is dtruee.

The key result of this paper is to show that casting from a more
precise type to a less precise type cannot give rise to positive blame
(but may give rise to negative); and that casting for a less precise
type to a more precise type cannot give rise to negative blame (but
may give rise to positive). Here are two of the examples considered
above, with the more precise type on the left, and the less precise
type on the right.

Nat → Nat <:n Int → Int
Int → Int <:n Dyn → Dyn

We call this naive subtyping (hence the subscript n) because it is
covariant in both the domain and the range of function types, in
contrast to traditional subtyping, which is contravariant in the do-
main and covariant in the range. We formally define both subtyping
and naive subtyping in Section 3.3.

2.4 Well-typed programs can’t be blamed
Consider a program that mixes typed and untyped code; it will
contain two sorts of casts.

One sort takes untyped code and gives it a type. Such a cast
makes types more precise, and so cannot give rise to negative
blame. For instance, the following code fails, blaming p.

let
x = dtruee

in let
f = λy : Int. y + 1

in let
h = 〈(Int → Int) → Int ⇐ Dyn〉p dλg. g (g x)e

in
h f

Because the blame is positive, the fault lies with the untyped code
inside the cast.

The other sort takes typed code and makes it untyped. Such a
cast makes types less precise, and so cannot give rise to positive
blame. For instance, the following code fails, blaming p̄.

let
x = dtruee

in let
f = 〈Dyn ⇐ Int → Int〉p (λy : Int. y + 1)

in let
h = dλg. g (g x)e

in
dh fe

Because the blame is negative, the fault lies with the untyped code
outside the cast.

Both times the fault lies with the untyped code! This is of course
what we would expect, since typed code should contain no type
errors. Understanding positive and negative blame, and knowing
when each can arise, is the key to giving a simple proof of this
expected fact.
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The same analysis generalizes to code containing refinement
types. For instance, the following code fails, blaming q.

let
x = 〈Nat ⇐ Int〉p 3

in let
f = 〈Nat → Nat ⇐ Int → Int〉q (λy : Int. y − 2)

in let
h = dλg. g (g x)e

in
dh fe

Here both casts make the types more precise, so cannot give rise
to negative blame. Because the blame is positive, the fault lies with
the less refined code inside the cast.

We now formalise the above analysis.

3. Types, reduction, subtyping
Findler and Felleisen (2002) includes a system with dependent con-
tracts, and Flanagan (2006) and Ou et al. (2004) similarly use de-
pendent function types. We follow Gronski and Flanagan (2007),
in using a simpler system without dependent function types. Re-
finement types include terms within types and thus constitute a re-
stricted form of dependent type. We omit dependent function types
for simplicity. (It is not clear whether it is possible, or desirable,
to maintain unicity of types in the presence of dependent function
types.)

Flanagan (2006), Ou et al. (2004), and Gronski and Flanagan
(2007) restrict subset types to base types. We follow Gronski et al.
(2006) in permitting subset types over arbitrary types.

Compile-time type rules of our system are presented in Figure 2,
run-time type rules and reduction rules in Figure 3, and rules for
subtyping in Figure 4. We discuss each of these in turn in the
following three subsections.

3.1 Types and terms
Figure 2 presents the syntax of types and terms and the compile-
time type rules. The language is explicitly and statically typed. We
discuss how to embed untyped terms in Section 3.4.

We let S, T range over types, and s, t range over terms. A type is
either a base type B, the dynamic type Dyn, a function type S → T ,
or a subset type {x : T | t}. A term is either a variable x, a
constant c, a lambda expression λx : S. t, an application s t, or
a cast expression 〈T ⇐ S〉p s. We write let x = s in t as an
abbreviation for (λx : S. t) s where s has type S.

We assume a denumerable set of constants. Every constant c is
assigned a unique type ty(c). We assume Bool is a base type with
true and false as constants of type Bool; and that Int is a base
type with 0, 1, and so on, as constants of type Int, and + and − as
constants of type Int → Int → Int, and ≥ as a contant of type
Int → Int → Bool, and possibly other constants.

The type system is explained in terms of three judgements,
which are presented in Figure 2. We write T wf if type T is well
formed, we write Γ ` t : T if term t has type T in environment Γ,
and we write S ∼ T if type S is compatible with type T . We let
Γ range over type environments, which are a list of variable-type
pairs x : T .

A type is well-formed if for every subset type {x : T | t} we
have that t has type Bool on the assumption that x has type T (no
other free variables may appear in t). In what follows, we assume
all types are well-formed. We call T the domain of the subset type
{x : T | t}.

The type rules for variables, constants, lambda abstraction, and
application are standard. The type rule for casts is straightforward:
if term s has type S and type S is compatible with type T (which
we define below), then the term 〈T ⇐ S〉p s has type T .

We write S ∼ T for the compatibility relation, which holds if it
may be sensible to cast type S to type T . A base type is compatible
with itself, type Dyn is compatible with any type, two function types
are compatible if their domains and ranges are compatible, and a
subset type is compatible with every type that is compatible with
its domain.

Compatibility is reflexive and symmetric but not transitive. For
example, S ∼ Dyn and Dyn ∼ T hold for any types S and T , but
S ∼ T does not hold if one of S or T is a function type and the
other is a base type. Requiring compatibility ensures that there are
no obviously foolish casts, but does not rule out the possibility of
two successive casts, one from S to Dyn and the next from Dyn to
T .

Our cast rule is inspired by the similar rules found for gradual
types and hybrid types. Gradual types introduce compatibility, but
do not have subset types. Hybrid types include subset types, but
do not bother with compatibility. Neither system uses both positive
and negative blame labels, as we do here.

Hybrid types also have a subsumption rule: if s has type S, and
S is a subtype of T , then s also has type T . This greatly increases
the power of the type system. For instance, in hybrid types each
constant is assigned the singleton type c : {x : B | c = x}; and by
subtyping and subsumption it follows that each constant belongs
to every subset type {x : B | t} for which t[x := c] −→∗ true.
However, the price paid for this is that type checking for hybrid
types is undecidable, because the subtype relation is undecidable.

Since we do not have subsumption our type system over the
source language remains decidable. A pleasant consequence of
omitting subsumption is that, as with gradual types, each term has
a unique type.

Proposition 1. (Unicity) If Γ ` s : S and Γ ` s : T then S = T .

An even more pleasant consequence is that our type system for the
source language is decidable, unlike that for hybrid types.

Proposition 2. (Decidability) Given Γ and t, it is decidable
whether there is a T such that Γ ` t : T .

Both propositions are easy inductions.
However, there are some less pleasant consequences. (The tiger

is caged, not tamed!) Reduction may introduce terms that are not
permitted in the source language, and we need additional semide-
cidable run-time rules to check the types of these terms. We explain
the details of how this works below.

3.2 Reductions
Figure 3 defines additional term forms, values, evaluation contexts,
additional run-time type rules, and reduction.

We let v, w range over values. A value is either a variable, a
constant, a lambda term, a cast to a function type from another
function type, an injection into dynamic from a ground type, or an
injection into a subset type from its domain type. The first two of
these are standard, and we explain the other three below.

We take a cast to a function type from another function type
as a value for technical convenience. Flanagan (2006) and Siek
and Taha (2006) make the opposite choice, and reduce a cast to
a function type from another function type to a lambda expression.

Values of dynamic type take the form DynG(v), where G is
ground type, which is either a base type B or the function type
Dyn → Dyn, and v is a value of type G. For example, the cast

〈Dyn ⇐ Int → Int〉p (λx : Int. x + 1)

reduces to the value

DynDyn→Dyn(〈Dyn → Dyn ⇐ Int → Int〉p (λx : Int. x + 1)).
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Syntax
variables x, y
blame labels p, q
base types B ::= Bool | Int | · · ·
constants c ::= true | false | 0 | 1 | · · · | + | − | ≥ · · ·
types S, T ::= Dyn | B | S → T | {x : T | t}
terms s, t, u ::= x | c | λx : S. t | t s | 〈T ⇐ S〉p s

Well-formed types T wf

Dyn wf B wf

S wf T wf

(S → T ) wf

T wf x : T ` t : Bool

{x : T | t} wf

Compile-time typing Γ ` t : T

x : T ∈ Γ

Γ ` x : T

T = ty(c)

Γ ` c : T

Γ, x : S ` t : T

Γ ` λx : S. t : S → T

Γ ` t : S → T Γ ` s : S

Γ ` t s : T

Γ ` s : S S ∼ T

Γ ` 〈T ⇐ S〉p s : T

Compatibility S ∼ T

B ∼ B Dyn ∼ T S ∼ Dyn

S ∼ S′ T ∼ T ′

S → T ∼ S′ → T ′
S ∼ T

{x : S | s} ∼ T

S ∼ T

S ∼ {y : T | t}

Figure 2. Compile-time types
Syntax

ground type G ::= B | Dyn → Dyn
terms s, t, u ::= · · · | DynG(v) | v{x:T |t} | s �p v{x:T |t}
values v, w ::= x | c | λx : S. t | 〈S′ → T ′ ⇐ S → T 〉p v | DynG(v) | v{x:T |t}
results r ::= t | ⇑ p
evaluation context E ::= [ ] | E s | v E | 〈T ⇐ S〉p E | E �p v{x:T |t}

Run-time typing Γ ` t : T

Γ ` v : G

Γ ` DynG(v) : Dyn

Γ ` v : T t[x := v] −→∗ true

Γ ` v{x:T |t} : {x : T | t}
Γ ` s : Bool Γ ` v : T t[x := v] −→∗ s

Γ ` s �p v{x:T |t} : {x : T | t}

Reductions s −→ r

c v −→ [[c]](v)

(λx : S. t) v −→ t[x := v]

〈B ⇐ B〉p v −→ v

(〈S′ → T ′ ⇐ S → T 〉p v) w −→ 〈T ′ ⇐ T 〉p v (〈S ⇐ S′〉p̄ w)

〈Dyn ⇐ Dyn〉p v −→ v

〈Dyn ⇐ B〉p v −→ DynB(v)

〈Dyn ⇐ S → T 〉p v −→ DynDyn→Dyn(〈Dyn → Dyn ⇐ S → T 〉p v)

〈T ⇐ Dyn〉p DynG(v) −→ 〈T ⇐ G〉p v, if G ∼ T

〈T ⇐ Dyn〉p DynG(v) −→ ⇑ p, if G 6∼ T

〈{x : T | t} ⇐ S〉p v −→ let x = 〈T ⇐ S〉p v in t �p x{x:T |t}

true �p v{x:T |t} −→ v{x:T |t}

false �p v{x:T |t} −→ ⇑ p

〈T ⇐ {x : S | s}〉p v{x:S|s} −→ 〈T ⇐ S〉p v

s −→ t

E[s] −→ E[t]

s −→ ⇑ p

E[s] −→ ⇑ p

Figure 3. Run-time types and reduction
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Note that the inner cast is a value, since it is to a function type from
another function type.

Values of subset type take the form v{x:T |t} where v is a value
of type T and t[x := v] −→∗ true. We also need an intermediate
term to test the predicate associated with a cast to a subset type.
This term has the form s �p v{x:T |t}, where v is a value of type T ,
and s is a boolean term such that t[x := v] −→∗ s. If s reduces to
true the term reduces to v{x:T |t}, and if s reduces to false the term
allocates blame to p.2

We let E range over evaluation contexts, which are standard.
The cast operation is strict, and reduces the term being cast to a
value before the cast is performed, and the subset test is strict in its
predicate.

We write s −→ r to indicate that a single reduction step takes
term s to result r, which is either a term t or the form ⇑ p, which
indicates allocation of blame to label p. We write s −→∗ r for the
reflexive and transitive closure of reduction.

There are three additional type rules for the three additional
term forms. These are straightforward, save that the two rules
for subset types involve reduction, and hence are semi-decidable.
Hence, Proposition 2 (Decidability) holds only for the compile-
time syntax type rules of Figure 2, and fails when these are ex-
tended with the run-time type rules of Figure 3. However, it is easy
to check that Proposition 1 (Unicity), holds even when the compile-
time type rules are extended with the run-time type rules.

The good news is that semi-decidability is not a show stopper.
We introduce the semi-decidable type rules precisely in order to
prove preservation and progress. Typing of the source language
is decidable, and reduction is decidable. We never need to check
whether a term satisfies the semi-decidable rules, since this is
guaranteed by preservation and progress!

We now go through each of the reductions in turn. Constants of
function type are interpreted by a semantic function consistent with
their type: if ty(c) = S → T and value v has type S, then [[c]](v)
is a term of type T .

c v −→ [[c]](v)

For example, ty(+) = Int → Int → Int, with [[+]](3) = +3,
where ty(+3) = Int → Int and [[+3]](4) = 7.

The rule for applying a lambda expression is standard.

(λx : S. t) v −→ t[x := v]

A cast to a base type from itself is the identity.

〈B ⇐ B〉p v −→ v

A cast to a function type from another function type decom-
poses into separate casts on the argument and result.

(〈S′ → T ′ ⇐ S → T 〉p v) w −→
〈T ′ ⇐ T 〉p v (〈S ⇐ S′〉p̄ w)

Note the reversal in the argument cast, and the corresponding negat-
ing of the blame label.

2 In contrast, Flanagan (2006) has essentially the following rule.

t[x := v] −→∗ true

〈{x : T | t} ⇐ T 〉p v −→ v{x:T |t}

This formulation is unusual, in that a single reduction step in the conclusion
depends on multiple steps in the hypothesis. The rule makes it awkward to
formulate a traditional progress theorem, because if reduction of t[x := v]
proceeds forever, then evaluation gets stuck.

The next three rules concern casts to the dynamic type.

〈Dyn ⇐ Dyn〉p v −→ v

〈Dyn ⇐ B〉p v −→ DynB(v)

〈Dyn ⇐ S → T 〉p v −→
DynDyn→Dyn(〈Dyn → Dyn ⇐ S → T 〉p v)

A cast to Dyn from itself is the identity. A cast to Dyn from a
base type is a value. A cast to Dyn from a function type S → T
decomposes into a cast to Dyn from the ground type Dyn → Dyn,
and a cast to Dyn → Dyn from S → T .

The next two rules concern casts from the dynamic type.

〈T ⇐ Dyn〉p DynG(v) −→ 〈T ⇐ G〉p v, if G ∼ T

〈T ⇐ Dyn〉p DynG(v) −→ ⇑ p, if G 6∼ T

Consider a cast to type T from the dynamic type. Recall that values
of the dynamic type have the form DynG(v), where G is a ground
type and v has type G. If the types T and G are compatible, the
cast collapses to a cast directly to T from G, otherwise the cast
fails with blame allocated to the label on the original cast.

The next three rules concern casts to subset type.

〈{x : T | t} ⇐ S〉p v −→
let x = 〈T ⇐ S〉p v in t �p x{x:T |t}

true �p v{x:T |t} −→ v{x:T |t}

false �p v{x:T |t} −→ ⇑ p

A cast to subset type with domain T from type S decomposes into
a cast to T from S, followed by a test that the value satisfies the
predicate. If the predicate evaluates to true the test reduces to the
subset type, otherwise it allocates blame to the label on the test.

The next rule concerns casts from a subset type.

〈T ⇐ {x : S | s}〉p v{x:S|s} −→ 〈T ⇐ S〉p v

Consider a cast to type T from a subset type. Recall that values of
subset type have the form v{x:S|s}, where v has type S. The cast
collapses to a cast directly to T from S. Note that S and T must be
compatible, since a subset type is only compatible with a type that
is compatible with its domain.

The final two rules give the compatible closure of reduction with
regard to evaluation contexts.

s −→ t

E[s] −→ E[t]

s −→ ⇑ p

E[s] −→ ⇑ p

3.3 Subtyping
We do not need subtyping to assign types to terms, but we will use
subtyping to characterise when a cast cannot give rise to blame.
Figure 4 presents entailment and four subtyping judgements—
ordinary, positive, negative, and naive.

Entailment is written

x : T ⇐ S |= t

and holds if for all values v of type S and w of type T such that
〈T ⇐ S〉p v −→∗ w we have that t[x := w] −→ true.

We write S <: T if S is a subtype of T . Function subtyping
is contravariant in the domain and covariant in the result. A subset
type is a subtype of its domain; and a type is a subtype of a subset
type if membership in the type entails satisfaction of the subset
type’s predicate.

For example, say that we define Pos = {x : Int | x > 0} and
Nat = {x : Int | x ≥ 0}. Then x : Int ⇐ Pos |= x ≥ 0, and so
Pos <: Nat by the sixth rule.

For another example, Int <: Int by the first rule, so Pos <:
Int by the fifth rule, so Pos <: Dyn by the third rule.
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Entailment x : T ⇐ S |= t

for all v and w, if ` v : S and 〈T ⇐ S〉p v −→∗ w then t[x := w] −→∗ true

x : T ⇐ S |= t

Subtype S <: T

B <: B Dyn <: Dyn

S <: G

S <: Dyn

S′ <: S T <: T ′

S → T <: S′ → T ′
S <: T

{x : S | s} <: T

S <: T x : T ⇐ S |= t

S <: {x : T | t}

Positive subtype S <:+ T

B <:+ B S <:+ Dyn

S′ <:− S T <:+ T ′

S → T <:+ S′ → T ′
S <:+ T

{x : S | s} <:+ T

S <:+ T x : T ⇐ S |= t

S <:+ {x : T | t}

Negative subtype S <:− T

B <:− B Dyn <:− T

S <:− G

S <:− Dyn

S′ <:+ S T <:− T ′

S → T <:− S′ → T ′
S <:− T

{x : S | s} <:− T

S <:− T

S <:− {x : T | t}

Naive subtype S <:n T

B <:n B S <:n Dyn

S <:n S′ T <:n T ′

S → T <:n S′ → T ′
S <:n T

{x : S | s} <:n T

S <:n T x : T ⇐ S |= t

S <:n {x : T | t}

Figure 4. Subtypes

Entailment, and hence subtyping, are undecidable. This is not
a hindrance, since our type system does not depend on subtyping.
Defining subtyping in terms of entailment means we can show more
types are in the subtype relation, making our results more powerful.

Our rules for subtyping are similar to those found in Flanagan
(2006), Ou et al. (2004), and Gronski et al. (2006). Our treatment is
particularly close to the latter, which include the dynamic type and
allows subset types over any domain (the other two restrict subset
types to be over base types).

However, Gronski et al. (2006) take every type to be a subtype
of Dyn. In contrast, we only take S to be a subtype of T if a cast
from S to T can never receive any blame, and therefore the only
subtypes of Dyn are Dyn itself, and subtypes of ground types. It is
not appropriate to take function types (other that Dyn → Dyn) as
subtypes of Dyn, because a cast to Dyn from a function type may
receive negative blame. The issues are similar to the treatment of
the contract Any, as discussed by Findler and Blume (2006).

In order to characterize when positive and negative blame can-
not occur, we factor subtyping into two subsidiary relations, posi-
tive subtyping, written S <:+ T and negative subtyping, written
S <:− T . The two judgements are defined in terms of each other,
and track the swapping of positive and negative blame labels that
occurs with function types, with the contravariant position in the
function typing rule reversing the roles. We have S <:+ Dyn and
Dyn <:− T for every type S and T , since casting to Dyn can never
give rise to positive blame, and casting from Dyn can never give rise
to negative blame. We only check entailment between subtypes for
positive subtyping, since failure of a subset predicate gives rise to
positive blame.

It is easy to check that all four of the relations <:, <:+, <:−,
and <:n are reflexive and transitive. We also have that S <: T
implies S ∼ T , and similarly for the three other relations.

The main results concerning positive and negative subtyping are
given in Section 4. We show that S <: T if and only if S <:+ T
and S <:− T . We also show that if S <:+ T then a cast from S to

T cannot receive positive blame, and that if S <:− T then a cast
from S to T cannot receive negative blame.

We also define a naive subtyping judgement, S <:n T , which
corresponds to our informal notion of type S being more precise
than type T , and is covariant for both function arguments and re-
sults. In Section 4, we show that S <:n T if and only if S <:+ T
and T <:− S. (Note the reversal! In the similar statement for
ordinary subtyping, we wrote S <:− T , where here we write
T <:− S.) Hence if S is more precise than T we have S <:+ T ,
and if S is less precise than T we have S <:− T . This result con-
nects our informal discussion relating precision and blame above
to our formal results below.

Here are some examples:

Int → Nat <: Nat → Int

Int → Nat <:+ Nat → Int

Int → Nat <:− Nat → Int

Nat → Nat <:n Int → Int

Nat → Nat <:+ Int → Int

Int → Int <:− Nat → Nat

The first line shows that ordinary subtyping is contravariant in the
domain and covariant in the range, while the fourth line shows that
naive subtyping is covariant in both. The first line is equivalent to
the second and third, and the fourth line is equivalent to the fifth
and sixth.

3.4 Typed and untyped lambda calculus
We introduce a separate grammar for untyped terms, and show
how to embed untyped terms into typed terms (and vice versa). Let
M, N range over untyped terms.

M, N ::= x | k | λx. N | M N | btc

The term form btc lets us embed typed terms into untyped terms;
it is well-formed only if the typed term t has type Dyn. Below we
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define a mapping dMe, that lets us embed untyped terms into typed
terms.

An untyped term is well-formed if every variable appearing free
in it has type Dyn, and if every typed subterm has type Dyn. We
write Γ ` M wf to indicate that M is well formed.

(x : Dyn) ∈ Γ

Γ ` x wf

Γ, x : Dyn ` N wf

Γ ` (λx. N) wf

Γ ` M wf Γ ` N wf

Γ ` (M N) wf

Γ ` t : Dyn

Γ ` btc wf

A simple mapping takes untyped terms into typed terms.

dxe = x
dce = 〈Dyn ⇐ ty(c)〉 c
dλx. Ne = 〈Dyn ⇐ Dyn → Dyn〉 (λx : Dyn. dNe)
dM Ne = (〈Dyn → Dyn ⇐ Dyn〉 dMe) dNe
dbtce = t

An untyped term is well-formed if and only if the corresponding
typed term is well-typed with type Dyn.

Lemma 3. We have Γ ` M wf if and only if Γ ` dMe : Dyn.

It is equally straightforward to define reduction for untyped
terms, and show that the embedding preserves and reflects reduc-
tions.

3.5 Type safety
We have usual substitution and canonical forms lemmas, and
preservation and progress results.

Lemma 4. (Substitution) If Γ ` v : S and Γ, x : S ` t : T , then
Γ ` t[x := v] : T .

Lemma 5. (Canonical forms) Let v be a value that is well-typed
in the empty context. One of three cases applies.

• If ` v : S → T then either
v = λx : S. t, with x : S ` t : T , or
v = c, with ty(c) = S → T , or
v = 〈S → T ⇐ S′ → T ′〉p v′ with ` v′ : S′ → T ′.

• If ` v : {x : T | t} then v = v′{x:T |t} with ` v′ : T and
t[x := v′] −→∗ true.

• If ` v : Dyn then v = DynG(v′) with ` v′ : G.

Proposition 6. (Preservation) If Γ ` s : T and s −→ t then
Γ ` t : T .

Proof. By induction over type derivations, with one case for each
reduction rule. We consider only the unusual cases.

• Consider the reduction

〈{x : T | t} ⇐ S〉p v −→
let x = 〈T ⇐ S〉p v in t �p x{x:T |t}

This preserves types because of the run-time typing rule for
s �p v{x:T |t} is trivially satisfied when s = t and v = x.

• Consider the reduction

true �p v{x:T |t} −→ v{x:T |t}

The left-hand side can only be well-typed by the run-time
typing rule

Γ ` s : Bool Γ ` v : T t[x := v] −→∗ s

Γ ` s �p v{x:T |t} : {x : T | t}

and we must have s = true, in which case the right-hand side
is well typed by the run-time type rule

Γ ` v : T t[x := v] −→∗ true

Γ ` v{x:T |t} : {x : T | t}.
• Consider the reduction

false �p v{x:T |t} −→ ⇑ p

This does not match the hypothesis, because ⇑ p is not a term.

Proposition 7. (Progress) If ` s : T then either

• s is a value, or
• s −→ t for some term t, or
• s −→ ⇑ p for some blame label p.

Proof. By induction over type derivations, with one case for each
reduction rule. We consider only the unusual cases.

• Consider a derivation ending

` v : T t[x := v] −→∗ true

` v{x:T |t} : {x : T | t}.
In this case, the typed term is a value.

• Consider a derivation ending

` s : Bool ` v : T t[x := v] −→∗ s

` s �p v{x:T |t} : {x : T | t}
Since ` s : Bool, by induction there are three possibilities for
s.

s is a value, in which case s must be true or false, and
the term reduces to v{x:T |t} or ⇑ p.
s −→ s′ for some s′, and the term reduces to s′�p v{x:T |t}
with

` s′ �p v{x:T |t} : {x : T | t}
s −→ ⇑ q, for some q, and the term reduces to ⇑ q.

In this case, preservation and progress do not guarantee a great
deal, since they do not rule out blame as a result. However, Sec-
tion 4 gives results that let us identify circumstances where certain
kinds of blame cannot arise.

4. The Blame Theorem
Subtyping factors into positive and negative subtyping.

Proposition 8. (Factoring subtyping) We have S <: T if and only
if S <:+ T and S <:− T .

Proof. By induction on the syntactic form of S and T . There are
sixteen cases to consider (four syntactic forms for each of S and
T ), but several of these combine or are trivial. We consider some
interesting cases.

• Dyn <: Dyn
iff (by definition)
true
iff (by definition)
Dyn <:+ Dyn and Dyn <:− Dyn.

• S → T <: S′ → T ′

iff (by definition)
S′ <: S and T <: T ′

iff (by induction hypothesis)
(S′ <:+ S and S′ <:− S) and (T <:+ T ′ and T <:− T ′)
iff (rearrange)
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(S′ <:− S and T <:+ T ′) and (S′ <:+ S and T <:− T ′)
iff (by definition)
S → T <:+ S′ → T ′ and S → T <:− S′ → T ′.

• S <: {x : T | t}
iff (by definition)
S <: T and x : T ⇐ S |= t
iff (by induction hypothesis)
(S <:+ T and S <:− T ) and x : T ⇐ S |= t
iff (rearrange)
(S <:+ T and x : T ⇐ S |= t) and S <:− T
iff (by definition)
S <:+ {x : T | t} and S <:− {x : T | t}.

The other cases are similar.

Naive subtyping also factors into positive and negative subtyp-
ing, this time with the direction of negative subtyping reversed.
Hence, narrowing implies positive subtyping and widening implies
negative subtyping.

Proposition 9. (Factoring naive subtyping) We have S <:n T if
and only if S <:+ T and T <:− S.

Proof. Similar to the previous proof. We consider some interesting
cases.

• S <:n Dyn
iff (by definition)
true
iff (by definition)
S <:+ Dyn and Dyn <:− S.

• S → T <:n S′ → T ′

iff (by definition)
S <:n S′ and T <:n T ′

iff (by induction hypothesis)
(S <:+ S′ and S′ <:− S) and (T <:+ T ′ and T ′ <:− T )
iff (rearrange)
(S′ <:− S and T <:+ T ′) and (S <:+ S′ and T ′ <:− T )
iff (by definition)
S → T <:+ S′ → T ′ and S → T <:− S′ → T ′.

• S <:n {x : T | t}
iff (by definition)
S <:n T and x : T ⇐ S |= t
iff (by induction hypothesis)
(S <:+ T and T <:− S) and x : T ⇐ S |= t
iff (rearrange)
(S <:+ T and x : T ⇐ S |= t) and T <:− S
iff (by definition)
S <:+ {x : T | t} and {x : T | t} <:− S.

The other cases are similar.

The following is the central result of this paper. Note that the
subterms of a term include any term in a subset type in a cast.

Proposition 10. (Positive and negative blame) Let t be a well-
typed term and p be a blame label, and consider all subterms of
t containing p. If

• every cast with label p is a positive subtype, 〈T ⇐ S〉p s has
S <:+ T , and

• every cast with label p̄ is a negative subtype, 〈T ⇐ S〉p̄ s has
S <:− T , and

• every predicate test with label p will succeed, s�p v{x:T |t} has
s −→∗ true

then t 6−→∗ ⇑ p.

Proof. By induction over the length of the reduction sequence.
For each reduction, we show that if every subterm with a blame
label on the left-hand side satisfies the hypothesis, so does every
subterm with a blame label on the right-hand side. A trivial note:
the hypothesis puts no constraint on predicate tests with label p̄,
and the proposition does not rule out reduction to ⇑ p̄.

• Consider the reduction
(〈S′ → T ′ ⇐ S → T 〉p v) w −→

〈T ′ ⇐ T 〉p v (〈S ⇐ S′〉p̄ w)

If S → T <:+ S′ → T ′ for the cast on the left, then S′ <:− S
and T <:+ T ′ for the casts on the right, by definition of <:+.
Similarly, if S → T <:− S′ → T ′ for the cast on the left, then
S′ <:+ S and T <:− T ′ for the casts on the right, by definition
of <:−.

• Consider the reduction
〈{x : T | t} ⇐ S〉p v −→

let x = 〈T ⇐ S〉p v in t �p x{x:T |t}

If S <:+ {x : T | t} for the cast on the left, then S <:+ T
for the cast on the right. Further, x : T ⇐ S |= t implies
t −→∗ true, so the hypothesis also holds for the test on the
right.
Conversely, if S <:− {x : T | t} for the cast on the left, then
S <:− T for the cast on the right, and the predicate test satisfies
the hypothesis trivially (see ‘a trivial note’ above).

• Consider the reduction

〈T ⇐ Dyn〉p DynG(v) −→ 〈T ⇐ G〉p v, if G ∼ T

If Dyn <:+ T holds for the cast on the left, then G <:+ T
holds for the cast on the right, since G <:+ Dyn and <:+ is
transitive. Similarly, if Dyn <:− T holds for the cast on the left,
then G <:− T holds for the cast on the right, since G <:− Dyn
and <:− is transitive.

• Consider the reduction

〈T ⇐ Dyn〉p DynG(v) −→ ⇑ p, if G 6∼ T

If Dyn <:+ T then either T = Dyn or T = {x : T ′|t} with
Dyn <: T ′. It follows immediately that G ∼ T must hold. So
the reduction can never apply when Dyn <:+ T .
Conversely, Dyn <:− T always holds, but the hypothesis is
trivially satisfied (see ‘a trivial note’ above.)

We have an immediate corollary.

Corollary 11. (Well-typed programs can’t be blamed) Let t be a
well-typed term with a subterm

〈T ⇐ S〉p s

containing the only occurrences of p in t.

• If S <:+ T then t 6−→∗ ⇑ p.
• If S <:− T then t 6−→∗ ⇑ p̄.
• If S <: T then t 6−→∗ ⇑ p and t 6−→∗ ⇑ p̄

In particular, since S <:+ Dyn, any failure of a cast from a well-
typed term to a dynamically-typed context must be blamed on the
dynamically-typed context. And since Dyn <:− T , any failure of
a cast from a dynamically-typed term to a well-typed context must
be blamed on the dynamically-typed term.

Further, consider a cast from a more precise type to a less
precise type, which we can capture using naive subtyping. Since
S <:n T implies S <:+ T , any failure of a cast from a more-
precisely-typed term to a less-precisely-typed context must be
blamed on the less-precisely-typed context. And since T <:n S
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implies S <:− T , any failure of a cast from a less-precisely-typed
term to a more-precisely-typed context must be blamed on the less-
precisely-typed term.

5. Applications
5.1 Siek and Taha
Siek and Taha (2006) describe an intermediate language similar to
the one described here: it is decidable, has compatibility but no
subtyping, and possesses unicity of type. The type we write as Dyn
they write as ‘?’, and the cast we write as 〈T ⇐ S〉pn s they write
as 〈T 〉 s. (Given unicity of type, the type S of term s in the cast is
redundant.)

Siek and Taha present two languages, a source language and
an intermediate language, and a compilation algorithm that takes
the first into the second, inserting casts to convert to and from the
dynamic type.

They show that if the original program is well-typed in simply-
typed lambda calculus then it is well-typed in their system, and they
show that the only way an evaluation can go wrong is if some cast
fails. It follows that any intermediate program derived from a well-
typed source program with no dynamic types cannot get stuck.

But theirs is an all-or-nothing result. Our results show that if a
cast fails in a gradually typed program, then the blame must lie with
a fragment of the program that contains a dynamic type. Since the
purpose of gradual typing is to permit dynamic types in programs,
our result is a useful supplement to theirs.

5.2 Flanagan
Flanagan (2006) describes an intermediate language similar to the
language described here, except that it includes subsumption; hence
the type system is undecidable and does not have unicity of type.
The cast we write as 〈T ⇐ S〉p s he writes as 〈S � T 〉 s.

Flanagan presents two languages, a source language and an
intermediate language, and a compilation algorithm that takes the
first into the second, inserting casts to check inclusion between
types when a theorem prover fails to show that one is a subtype
of the other.

He shows that the compilation algorithm inserts only upcasts
when the original program is well-typed, and that in this case the
compiled program yields the same result as the original program.
It follows that an intermediate program that is derived from a well-
typed source program does not get stuck.

But his is an all-or-nothing result. Our results show that any
upcast in the intermediate language (that is, a cast from S to T
where S <: T ) does not get stuck, even if the intermediate program
contains other casts that are not upcasts. Since the purpose of hybrid
types is to insert dynamic checks when the theorem prover fails to
prove a subtyping relation (or to find a counterexample), our result
is a useful supplement to his.

5.3 Matthews and Findler
Matthews and Findler (2007) set out to solve a different problem
than the one we tackle here, but the technical details turn out to be
surprisingly similar.

Matthews and Findler define cross-language casts between
Scheme and ML. If e is a term in Scheme, they write

τMSG e

for the corresponding term of type τ in ML. Further, they prove
that this conversion need only check for positive blame. The corre-
sponding conversion in our calculus is

〈T ⇐ Dyn〉p t

where T corresponds to τ and t corresponds to e. Since Dyn <:− T
for any type T , we know that negative blame cannot arise, which
explains why Matthews and Findler only check for positive blame.

Similarly, if e is a term of type τ in ML, they write

GSM τ e

for the corresponding term in Scheme. Further, they prove that this
conversion need only check for negative blame. The corresponding
conversion in our calculus is

〈Dyn ⇐ T 〉p t

where T corresponds to τ and t corresponds to e. Since T <:+ Dyn
for any type T , we know that positive blame cannot arise, which
explains why Matthews and Findler only check for negative blame.

Matthews and Findler were concerned with integrating two in-
dependently specified programming languages, whereas we are
concerned with adding casts to a single language. But it turns out
their results are easily handled in our framework. Instead of treating
idealized Scheme and ML as separate languages, we have a single
language into which both are trivially embedded.

Our approach simplifies definitions and proofs, since we need
consider roughly half as many cases (only one form each of vari-
ables, constants, abstraction, and application, rather than separate
typed and untyped versions). Further, Matthews and Findler in ef-
fect only support casts where either the source or target is Dyn,
while we support casts between any two types.

However, without the Matthews and Findler work it would not
be so clear that our work does indeed provide a good model of
integrating two languages. Further, their approach may offer a
better basis than ours for extension to more complex languages,
in cases where the embedding into a single language is less clear.

5.4 Gronski and Flanagan
Gronski and Flanagan (2007) relate the contracts of Findler and
Felleisen (2002), modeled as a calculus λC , to the hybrid types of
Flanagan (2006), modeled as a calculus λH , by giving a translation
of λC into λH that preserves types and reductions.

Their calculus λC is a simply typed lambda calculus, with
function types and base types only, plus an operation that associates
a contract and blame labels to a term. They write this tc,l,l′ , where
c is a contract and l and l′ are blame labels. We’ll write it as tT,p,p̄,
since our types (including subset types) correspond essentially to
their contracts, and we use a single label (which can be negated)
where they use pairs. In the phrase tT,p,p̄, the type of t must be
base(T ), which replaces each subset type by its domain.

base(B) = B
base(S → T ) = base(S) → base(T )
base({x : T | t}) = base(T )

Just as our calculus negates the blame label in contravariant posi-
tion when applying a function cast, their λC swaps the blame labels
in contravariant position when applying a function contract.

Their calculus λH is essentially like the one given here, with the
crucial difference that they have a single blame label. They perform
no operation analgous to negating labels as in our calculus, or
swapping labels as in λC . (They also don’t have the type dynamic,
and restrict subset types to be over base type.)

The essence of their translation is to take the λC term

tT,p,p̄

into the λH term

〈base(T ) ⇐ T 〉p̄ 〈T ⇐ base(T )〉p t.

This is easily understood in terms of our results. Clearly, T <:n
base(T ). Hence, T <:+ base(T ), so the leftmost cast can only

Submitted to ICFP 2008 10 2008/5/16



allocate negative blame, and base(T ) <:− T , so the rightmost cast
can only allocate positive blame. Thus their translation manages to
assign blame appropriately even though they fail to negate or swap
blame labels.

However, in general λH , like our language, contains casts of
the form 〈T ⇐ S〉p s where neither S <:+ T nor S <:− T
holds, so we would argue that negating (or swapping) blame labels
is important. If blame is to be allocated, it should be divided into
positive blame and negative blame. One doesn’t want to know
merely which cast has failed, but also whether it is the contained
term or the containing context which is to blame for that failure.

6. Related work
6.1 Contracts
The notion of dynamic testing of specifications goes back at least
to Parnas (1972). A software engineering strategy based on such
checking, as well as the term contract, was popularised by the
language Eiffel (Meyer 1988).

Findler and Felleisen (2002) introduced the use of higher-order
contracts with blame in functional programming.

Blume and McAllester (2006) describe some counterintuitive
properties of contracts. Findler and Blume (2006) uses projections
to model contracts, and suggests that the counterintuitive aspects
of contracts may not be so counterintuitive after all. The issues
involved are similar to our discussion of the type Dynamic, and
our work echos the (perhaps counterintuitive) observation that one
should not regard all types as subtypes of Dynamic.

Meunier et al. (2006) is concerned with integrating static and
dynamic checking of contracts across modules, where the static
checking is implemented as a set-based constraint analysis. Tobin-
Hochstadt and Felleisen (2006) is also concerned with integrating
static and dynamic checking of contracts across modules, this time
using a more traditional type inference algorithm augmented to
insert contracts where appropriate. We believe the system presented
here provides roughly the same power as these other systems, but
in a simpler way.

Gray et al. (2005) discuss the practice of using contracts to
interface Java to Scheme, and Matthews and Findler (2007) discuss
the theory of using contracts to interface ML to Scheme. The
relation of the latter to our work is discussed in Section 5.3.

6.2 Gradual types
Integrating static and dynamic typing is not a new idea, and previ-
ous work includes the type Dynamic of Abadi et al. (1991), the soft
types of Wright and Cartwright (1997), the partial types of Thatte
(1988), and the Scheme-to-ML translation of Henglein and Rehof
(1995).

Siek and Taha (2006) introduced gradual types; its relation to
our work is described in Section 5.1. Siek and Taha (2007) extends
gradual typing to an object-oriented language.

Findler and Felleisen (2002) observed that adding contracts to
a program can lose the benefits of tail-recursion, and the same
observation applies to gradual types and hybrid types, which both
apply a form of contracts. Herman et al. (2007) observes how
to restore a bounded-space implementation of tail recursion for
gradual types. That work exhibits a further connection between
gradual types and hybrid types, since it was performed by the
team working on hybrid types. Unfortunately, the techniques in that
paper apply only to gradual types, and it is not yet clear how to
extend them to hybrid types.

6.3 Hybrid types
Subset types were first introduced in type theory by Nordström
and Petersson (1983) and Smith and Salvesen (1988). The form of

subset types used in hybrid types was influenced by the refinement
types of Freeman and Pfenning (1991) and the Dependent ML of
Xi and Pfenning (1999). An embedding of particular subset types
(non-empty lists, index ranges) into Haskell or O’Caml is described
by Kiselyov and chieh Shan (2006).

Flanagan (2006) introduced hybrid types; its relation to our
work is discussed in Section 5.2.

Gronski et al. (2006) describe Sage, a practical language based
on hybrid types. Both the theory of Sage and practical experience
with it is described. Sage extends hybrid types to subsume gradual
types by adding a Dynamic type, written *. Further, Sage extends
to higher-order types, where * is also the type of all types.

Knowles and Flanagan (2007) present a type reconstruction
algorithm for hybrid types that finds principle typings, analogous
to Hindley-Milner type reconstruction.

Gronski and Flanagan (2007) investigate the relationship be-
tween hybrid types and contracts; its relation to our work is dis-
cussed in Section 5.4.

Ou et al. (2004) present a language with dynamically-checked
dependent types, which is closely related to the work on hybrid
types. There is a compilation from a source language into an inter-
mediate language, very similar to that for hybrid types. The system
explicitly labels which portions of the code are to be dynamically
checked and which are to be statically checked, similar to our use
of the notation dMe to embed untyped lambda calculus.

Both Flanagan (2006) and Ou et al. (2004) support dependent
function types, while our work here is restricted to ordinary func-
tion types. Also, they both restrict subset types to be over base
types, while we follow Gronski et al. (2006) in permitting subset
types over any type.

7. Conclusion
For the future, we plan to investigate how to extend our work to
support polymorphic types and dependent function types.

Contracts for polymorphic types are considered by Guha et al.
(2007) and Matthews and Ahmed (2008). In these works, a cast
from a function to a polymorphic type introduces a seal that wraps
arguments and unwraps results of the function. The seal prevents
the function from examining values corresponding to the quantified
type variable, thus guaranteeing semantic parametricity, as proved
in the second paper using a step-indexed logical relation. Matthews
and Ahmed use the two-language framework of Matthews and
Findler (2007), and we are collaborating with them to adapt their
results to the single-language framework we use here, yielding the
advantages discussed in Section 5.3 (in particular, we expect the
new proofs to require roughly half as many cases).

Dependent function types are considered by Flanagan (2006)
and Ou et al. (2004). In these works, function types are written
x : S → T (or, equivalently, Πx : S. T ) where type T may contain
individual variable x. The relevant type rules are as follows.

Γ, x : S ` t : T

Γ ` λx : S. t : (x : S → T )

Γ ` s : (x : S → T ) Γ ` t : S

Γ ` s t : T [x := t]

While extension to dependent types should be possible, there are a
few technical challenges. The application rule substitutes a term,
not a value, for a variable, and so some care may be required
with respect to effects, including raising blame. Also, dependent
function types are usually accompanied by a liberal notion of type
equivalence, and so it may be desirable to abandon unicity of type.

A natural next step is to combine both extensions, giving a sys-
tem with universal quantification over both types and individuals
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(yielding polymorphic types and dependent function types, respec-
tively), similar in power to type theories such as Coq, LF, or the
lambda cube (Barendregt 1992). The presence of casts means that
not every term can be guaranteed to normalize, which is crucial if
typed terms are to represent proofs. One solution may be to add an
effect system: if casts and fixpoints are regarded as impure, then
pure terms can be guaranteed to have no side effects and to ter-
minate. Extended in this way, the blame calculus would support a
wide spectrum of expressiveness, ranging from Scheme to ML to
Coq.
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