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Abstract

C#, Dart, Pyret, Racket, TypeScript, VB: many recent languages
integrate dynamic and static types via gradual typing. We systematically
develop four calculi for gradual typing and the relations between them,
building on and strengthening previous work. The calculi are: λB, based
on the blame calculus of Wadler and Findler (2009); λC, inspired by the
coercion calculus of Henglein (1994); λS inspired by the space-efficient
calculus of Herman, Tomb, and Flanagan (2006); and λT based on the
threesome calculus of Siek and Wadler (2010). While λB and λT are little
changed from previous work, λC and λS are new. Together, λB, λC, λS,
and λT provide a coherent foundation for design, implementation, and
optimisation of gradual types.

We define translations from λB to λC, from λC to λS, and from λS
to λT. Much previous work lacked proofs of correctness or had weak
correctness criteria; here we demonstrate the strongest correctness crite-
rion one could hope for, that each of the translations is fully abstract.
Each of the calculi reinforces the design of the others: λC has a partic-
ularly simple definition, and the subtle definition of blame safety for λB
is justified by the simple definition of blame safety for λC. Our calcu-
lus λS is implementation-ready: the first space-efficient calculus that is
both straightforward to implement and easy to understand. We give two
applications: first, using full abstraction from λC to λS to validate the
challenging part of full abstraction between λB and λC; and, second, us-
ing full abstraction from λB to λS to easily establish the Fundamental
Property of Casts, which required a custom bisimulation and six lemmas
in earlier work.
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1 Introduction

Contracts and blame. Findler and Felleisen (2002) introduced two semi-
nal ideas: higher-order contracts to monitor adherence to a specification, and
blame to indicate which of two parties is at fault if the contract is violated.
In particular, at higher-order a contract allocates blame to the environment if
it supplies an incorrect argument or to the function if it supplies an incorrect
result. Blame characterises correctness: one cannot guarantee that a contract
interposed between typed and untyped code will not be violated, but one can
guarantee that if it is violated then blame is allocated to the untyped code, a
result first established by Tobin-Hochstadt and Felleisen (2006).

Findler and Felleisen’s innovation led to a bloom of others. Siek and Taha
(2006) introduced gradual typing; Flanagan (2006) introduced hybrid typing,
later implemented in Sage (Gronski et al., 2006); Ou et al. (2004) integrated
simple and dependent types. These systems built crucially on contracts, and all
used a similar translation from a source language to an intermediate language
of explicit casts. Alas, they ignored blame. Wadler and Findler (2009) restored
blame to this intermediate language and formalised it as as the blame calculus.
They established blame safety, a generalisation of the correctness criterion for
contracts: given a cast between a less-precise and a more-precise type, blame
is always allocated to the less-precisely typed side of the cast—“Well-typed
programs can’t be blamed”.

Space-efficient coercions. A naive implementation of contracts (or the blame
calculus) suffers space leaks. Two mutually recursive procedures where the re-
cursive calls are in tail position should run in constant space; but if one of them
is statically typed and the other is dynamically typed, the intervening casts
break the tail call property, and the program requires space proportional to the
number of calls.

Herman et al. (2007, 2010) proposed a solution to this problem based on
the coercion calculus of Henglein (1994). Alas, they also ignored blame. Their
calculus represents casts as coercions. When two coercions are applied in se-
quence, they are composed and normalised. The height of the composition of
two coercions is bounded by the heights of the two original coercions; the size
of a coercion in normalised form is bounded if its height is bounded, ensuring
that computation proceeds in bounded space. However, normalising coercions
requires that sequences of compositions are treated as equal up to associativity.
While this is not a difficult problem in symbol manipulation, it does pose a
challenge when implementing an efficient evaluator.

Siek and Wadler (2009, 2010) proposed an alternative solution. At first,
they also ignored blame. They observed that any cast factors into a downcast
from the source to a mediating type, followed by an upcast from the mediating
type to the target—called a threesome because it involves three types. Two
successive threesomes collapse to a single threesome, where the mediating type
is the greatest lower bound of the two original mediating types. The height of
the greatest lower bound of two types is bounded by their heights; and the size
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of a type is bounded if its height is bounded, again ensuring that computation
proceeds in bounded space.

Siek and Wadler (2010) then restored blame by decorating the mediating
type with labels that indicate how blame is to be allocated, and showed dec-
orated types are in one-to-one correspondence with normalised coercions. A
recursive definition computes the meet of the two decorated types (or equiva-
lently the composition of the two corresponding coercions); it is straightforward
to calculate, avoiding the associativity problem of coercions.

However, the notation for decorated types is far from transparent. Siek re-
ports that Tanter attempted to implement Gradualtalk with threesomes, but
found it too difficult. Wadler reports that while preparing a lecture on three-
somes a few years after the paper was published, he required several hours to
puzzle out the meaning of his own notation, ⊥mGp. Eventually, he could only
understand it by relating it to the corresponding coercion—a hint that coercions
may be clearer than threesomes once blame is involved.

Hence we have two approaches: Herman et al. (2007, 2010) is easy to un-
derstand, but hard to compute; Siek and Wadler (2010) is easy to compute,
but hard to understand. Garcia (2013) attempted to ameliorate this tension
by starting with the former and deriving the latter. However, the derivation
necessarily contains all the confusing notation of Siek and Wadler while also
introducing additional notations of its own, notably, a collection of ten super-
coercions. By design, his derived definition of composition matches Siek and
Wadler’s original and so is no easier to read.

Much previous work lacked proofs of correctness or had weak correctness
criteria. Herman et al. (2007, 2010) give no proof relating their calculus to
others for gradual typing. Siek and Wadler (2010) establish that a term in the
blame calculus converges if and only if its translation into the threesome calculus
converges, but they do so only at the top level (Kleene equivalence: roughly,
contextual equivalence without the context).

Our approach. We establish new foundations for gradual typing by consid-
ering a sequence of calculi and the relations between them: λB, based on the
blame calculus of Wadler and Findler (2009); λC, inspired by the coercion cal-
culus of Henglein (1994); λS, inspired by the space-efficient calculus of Herman
et al. (2007, 2010); and λT, based on the threesome calculus without blame of
Siek and Wadler (2010). While λB and λT are little changed from previous
work, λC and λS are new.

The two new calculi are based on ideas so simple it is surprising no one
thought of them years ago. For λC, the novel insight is to present a computa-
tional calculus as close as possible to the original coercion calculus of Henglein
(1994). For λS, the novel insight is to restrict coercions to a canonical form
and write out the algorithm that composes two canonical coercions to yield a
canonical coercion.

Henglein (1994) explored optimisation of coercions, but remarkably neither
he nor anyone else has written down the obvious reduction rules for evaluating
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a lambda calculus with coercions, as we have done here with λC. The result is
a pleasingly simple calculus, close to correct by construction.

Our translation from λB into λC resembles many in the literature; it compiles
casts into coercions. We show that this translation is a lockstep bisimulation,
where a single reduction step in λB corresponds to a single reduction step in
λC, giving a close correspondence between the two calculi. There are several
subtleties in the design of λB, but essentially none in the design of λC, and that
the two run in lockstep suggests that both designs are correct.

A key property of the blame calculus is blame safety—“Well-typed programs
can’t be blamed”. Surprisingly, no previous work considers whether translations
preserve blame safety. Here we show that blame safety is preserved by transla-
tions between calculi, and, as a pleasant consequence, that the subtle definition
of blame safety for λB is justified by the straightforward definition of blame
safety for λC.

Our reverse translation from λC to λB is novel. We observe that a single
coercion must translate into a sequence of casts, because a coercion may contain
many blame labels but a cast contains only one. The challenge is to show that
translating from λC to λB and back again yields a term contextually equivalent
to the original. This, together with the bisimulation, establishes the strongest
correctness criterion one could hope for, full abstraction: translation from λB
to λC preserves and reflects contextual equivalence.

For λS we isolate a novel grammar corresponding to coercions in canonical
form. Canonical forms are unique, and in one-to-one correspondence with nor-
mal forms. We present a simple recursive function that takes two coercions in
canonical form, s and t, and returns their composition in canonical form, s # t.
Validating the correctness of this definition against Henglein’s original rules is
straightforward. As with threesomes, it avoids the problems of associativity
previously attached to using coercions; but because it is based on coercions, it
avoids the problems of decoding the meaning of the decorated types attached
to threesomes.

Translation from λC to λS is straightforward, but establishing its correctness
is the most challenging result in the paper. The difficulty is that λC breaks
compositions into simpler components,

M〈c ; d〉 −→M〈c〉〈d〉,

while λS assembles simpler components into compositions,

M〈s〉〈t〉 −→M〈s # t〉.

(As explained in Sections 3 and 4, c, d range over coercions and s, t over space-
efficient coercions, and M〈c〉 and M〈s〉 denote application to term M of coer-
cions c and s, respectively.) We introduce a relation between terms of λC and
λS and show it is a bisimulation. In this case the bisimulation is not lockstep:
one step in λC may correspond to many in λS, and vice-versa. Siek and Wadler
(2010) establish a bisimulation similar to the one here, but our development is
simpler because it uses coercions rather than decorated types, and because it
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uses λC as an intermediate step. Because the mapping of λS back to λC is
simply an inclusion, the bisimulation easily establishes full abstraction of the
translation from λC to λS.

Lastly, we introduce λT, inspired by the threesomes without blame of Siek
and Wadler (2010). Although we no longer require the analogy to types and
decorated types to represent casts efficiently, we believe it is useful to clarify
that that a coercion can be characterised by a triple of types when one ignores
blame. Translating λS to λT is straightforward, and it is easy to establish a
lockstep bisimulation between the two. Whereas the mapping from λB to λC is
an injection, the mapping from λS to λT is a bijection, making it easy to extend
the bisimulation to a proof of full abstraction.

Example. Figure 1 gives an overview of our results by presenting a running
example in each of the four calculi. The example involves two mutually recursive
functions, odd and even, which return true if their argument is odd and even,
respectively. In each example, casts or coercions are used so that odd has type
num → bool, meaning it is statically typed and takes a number to a boolean,
while even has type ? → ?, meaning it is statically known to be a function,
but its argument and result are both of dynamic type. Each example uses
notations explained in greater detail in Sections 2 to 5, so the reader may wish
to return here after reading the relevant sections. To avoid excessive bracketing,
we assume that type casts and coercion applications bind weaker than any other
operator except lambda abstraction, the scope of which extends as far to the
right as possible.

In the blame calculus, λB, function odd accepts a number, which is cast to
dynamic type before being passed to even, and then the result returned is cast
from dynamic type to boolean. If no casts were required then the definitions
of odd and even would be tail recursive and run in constant space. But as
shown in the trace of the computation of odd 4, the result casts accumulate,
requiring space proportional to the number of calls. In traces, we write d3e to
embed numeric constants into the dynamic type. (As explained in Section 2,
M : A =⇒p B casts a term M of type A to type B, where p is a label used
to allocate blame if the cast fails. That section contains complete type and
reduction rules for λB.)

In the coercion calculus, λC, the casts have been replaced by coercions. As
before, coercions on the results of functions lose tail recursion, and the trace
shows the computation of odd 4 requires space proportional to the number of
calls. (As explained in Section 3, a coercion of the form G! casts a value from
ground type G to dynamic type ?, while a coercion of the form G?p casts a
value from dynamic type ? to base type G, allocating blame to label p if the
cast fails, where G ranges over ground types, which are either base types such
as numbers num or booleans bool, or the function type ? → ?. That section
contains complete type and reduction rules for λC.)

In the space-efficient coercion calculus, λS, the source program is identical to
that for λC, save that each coercion is replaced by its canonical form. Any two
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Blame calculus (λB)

odd = λx : num. if x == 0 then false else

even (x− 1 : num
p1

=⇒ ?) : ?
p2

=⇒ bool

even = λx : ?. if (x : ?
p5

=⇒ num) == 0 then true else

odd ((x : ?
p3

=⇒ num)− 1) : bool
p4

=⇒ ?

odd 4

−→ even d3e : ?
p2

=⇒ bool

−→ odd 2 : bool
p4

=⇒ ?
p2

=⇒ bool

−→ even d1e : ?
p2

=⇒ bool
p4

=⇒ ?
p2

=⇒ bool

−→ odd 0 : bool
p4

=⇒ ?
p2

=⇒ bool
p4

=⇒ ?
p2

=⇒ bool

−→ false

Coercion calculus (λC)

odd = λx : num. if x == 0 then false else

even (x− 1〈num!〉)〈bool?p2〉
even = λx : ?. if x〈num?p5〉 == 0 then true else

odd (x〈num?p3〉− 1)〈bool!〉

odd 4

−→ even d3e〈bool?p2〉
−→ odd 2〈bool!〉〈bool?p2〉
−→ even d1e〈bool?p2〉〈bool!〉〈bool?p2〉
−→ odd 0〈bool!〉〈bool?p2〉〈bool!〉〈bool?p2〉
−→ false

Space-efficient coercion calculus (λS)

odd 4

−→ even d3e〈bool?p2 ; idbool〉
−→ odd 2〈idbool ; bool!〉〈bool?p2 ; idbool〉 −→ odd 2〈idbool〉
−→ even d1e〈bool?p2 ; idbool〉〈idbool〉 −→ even d1e〈bool?p2 ; idbool〉
−→ odd 0〈idbool ; bool!〉〈bool?p2 ; idbool〉 −→ odd 0〈idbool〉

−→ false

Threesome calculus without blame (λT)

odd 4

−→ even d3e : ?
bool
=⇒ bool

−→ odd 2 : bool
bool
=⇒ ?

bool
=⇒ bool −→ odd 2 : bool

bool
=⇒ bool

−→ even d1e : ?
bool
=⇒ bool

bool
=⇒ bool −→ even d1e : ?

bool
=⇒ bool

−→ odd 0 : bool
bool
=⇒ ?

bool
=⇒ bool −→ odd 0 : bool

bool
=⇒ bool

−→ false

Figure 1: Examples
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subsequent coercions are immediately replaced by their composition in canonical
form. The height of the composition of two canonical coercions is bounded by
the heights of the two original compositions, and the size of a canonical coercion
is bounded by its height. Hence, the trace shows the computation of odd 4 now
requires only constant space. (As explained in Section 4, the canonical forms of
G! and G?p are idG ;G! and G?p ; idG, respectively, where idG is the identity
coercion on base type G, and c ; d denotes the composition of coercions c and
d. That section contains complete type and reduction rules for λS.)

In the calculus of threesomes without blame, λT, the source program is
identical to that for λB, save that each cast has been replaced by a corresponding
threesome cast, where the blame label has been replaced by a mediating type.
Any two subsequent threesome casts may be immediately replaced by a single
threesome cast, where the source is taken from the first cast, the target from the
second cast, and the mediating type by the meet of the two mediating types.
The trace shows the computation of odd 4 requires only constant space. (As
explained in Section 5, the threesome cast corresponding to M : A =⇒p B is
M : A =⇒T B, where the mediating type T is chosen equal to the meet A&B.
The blame label p is dropped because this calculus does not allocate blame.
That section contains complete type and reduction rules for λT.)

Outline. This paper revises Siek et al. (2015a). The example of the preceding
section, the switch from nested contexts to frames and labelled reductions, and
all material on λT is new.

Sections 2–5 systematically consider λB, λC, λS, and λT. For each caclulus
we introduce its syntax, type rules, and reduction rules; and we establish type
safety and blame safety. In Sections 3–5, for each calculus we also consider
translations to and from the previous calculus, show the translations preserve
type and blame safety, and demonstrate a bisimulation and full abstraction.

In Section 6, we observe that full abstraction often makes it easy to establish
equivalences in λB or λC, because equivalent terms in those calculi translate into
one and the same term in λS. In particular, we exploit full abstraction between
λC and λS to establish the key lemma required to show full abstraction between
λB and λC. We also exploit full abstraction between λB and λS to establish
The Fundamental Theorem of Casts, which required a custom bisimulation and
six lemmas in earlier work (Siek and Wadler, 2010). Section 7 compares with
previous work, and includes a survey of how gradual typing is used in practice.
Section 8 concludes.

2 Blame Calculus

Figure 2 defines the blame calculus, λB. This section reprises results from
Wadler and Findler (2009), Siek and Wadler (2010), and Ahmed et al. (2011).
Wadler (2015) provides additional motivation and examples.

Blame calculus is based on simply-typed lambda calculus, standard con-
structs of which are shown in gray. Let A,B,C range over types. A type is
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Syntax

A,B,C ::= ι | A→ B | ?
G,H ::= ι | ?→ ?

L,M,N ::= k | op( ~M) | x | λx:A.N | L M |M : A
p

=⇒ B | blame p

V,W ::= k | λx:A.N | V : A→ B
p

=⇒ A′ → B′ | V : G
p

=⇒ ?

E ::= op(~V ,�, ~M) | �M | V � | � : A
p

=⇒ B

Compatible A ∼ B

ι ∼ ι
A ∼ A′ B ∼ B′
A→ B ∼ A′ → B′ A ∼ ? ? ∼ B

Term typing Γ `B M : A

Γ `M : A A ∼ B
Γ ` (M : A

p
=⇒ B) : B Γ ` blame p : A

Reduction M −→B N

op(~V ) −→ [[op]](~V )

(λx:A.N) V −→ N [x:=V ]

V : ι
p

=⇒ ι −→ V

(V : A→ B
p

=⇒ A′ → B′) W −→ (V (W : A′
p

=⇒ A)) : B
p

=⇒ B′

V : ?
p

=⇒ ? −→ V

V : A
p

=⇒ ? −→ V : A
p

=⇒ G
p

=⇒ ? if ug(A,G)

V : ?
p

=⇒ A −→ V : ?
p

=⇒ G
p

=⇒ A if ug(A,G)

V : G
p

=⇒ ?
q

=⇒ G −→ V

V : G
p

=⇒ ?
q

=⇒ H −→ blame q if G 6= H

M −→M ′

E [M ] −→ E [M ′] E [blame p] −→ blame p

Embedding dynamically typed λ-calculus dMe

dke = k : ι
p

=⇒ ? if k : ι

dop( ~M )e = op(d ~Me : ~?
~p

=⇒ ~ι) : ι
p

=⇒ ? if op : ~ι→ ι

dxe = x

dλx.Ne = (λx: ? . dNe) : ?→ ?
p

=⇒ ?

dL Me = (dLe : ?
p

=⇒ ?→ ?) dMe

Figure 2: Blame calculus (λB)
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either a base type ι, a function type A → B, or the dynamic type ?. Let G,H
range over ground types. A ground type is either a base type ι or the function
type ?→ ?. The dynamic type satisfies the domain equation

? ∼= ι+ (?→ ?)

so each value of dynamic type belongs to one ground type.
Types A and B are compatible, written A ∼ B, if either is the dynamic

type, if they are both the same base type, or they are both function types
with compatible domains and ranges. Every type is either the dynamic type or
compatible with a unique ground type. Two ground types are compatible if and
only if they are equal.

Lemma 1 (Grounding).

1. If A 6= ?, there is a unique G such that A ∼ G.

2. G ∼ H iff G = H.

Incompatibility is the source of all blame: casting a type into the dynamic
type and then casting out at an incompatible type allocates blame to the second
cast. We rule out incompatible casts from the beginning because they always
fail at run time. Write ug(A,G) to indicate that A has unique ground G distinct
from A, that is that A 6= ?, A 6= G, and A ∼ G.

Let p, q range over blame labels. To indicate on which side of a cast blame
lays, each blame label p has a complement p. Complement is involutive, p = p.

Let L,M,N range over terms. Terms are those of simply-typed lambda
calculus, plus casts and blame. Each operator op on base types is specified by
a total meaning function [[op]] that preserves types: if op : ~ι→ ι and ~k : ~ι, then

[[op]](~k) = k with k : ι.
Typing, reduction, and safety judgments are written with subscripts indi-

cating to which calculus they belong, except we omit subscripts in figures to
avoid clutter. We write Γ `B M : A to indicate that in type environment Γ
term M has type A. Type rules for simply-typed lambda calculus are standard
and omitted. The type rule for casts is straightforward:

Γ `B M : A A ∼ B
Γ `B (M : A

p
=⇒ B) : B

If term M has type A and types A and B are compatible then a cast of M from
A to B is a term of type B. The cast is decorated with a blame label p. We
abbreviate a pair of casts

(M : A
p

=⇒ B) : B
q

=⇒ C as M : A
p

=⇒ B
q

=⇒ C,

and similarly for sequences of more than two casts. A term blame p has any
type.
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Every well-typed term not containing blame has a unique type: if Γ `M : A
and Γ ` M : A′ and M does not contain a subterm of the form blame p, then
A = A′.

If a cast from A to B decorated with p allocates blame to p we say it has
positive blame, meaning the fault lies with the term contained in the cast; and
if it allocates blame to p we say it has negative blame, meaning the fault lies
with the context containing the cast.

Let V,W range over values. A value is a constant, a lambda abstraction,
a cast of a value from function type to function type, or a cast of a value
from ground type to dynamic type. Let E range over single-level evaluation
contexts (Myers, 2013), which we call frames. They include casts in the obvious
way. It is more common to use deeply-nested evaluation contexts rather than
single-level frames; Section 4 explains why we prefer frames. We write M −→B

N to indicate that term M steps to term N . For any reduction relation −→,
we write its reflexive and transitive closure as −→∗.

The first two reduction rules are standard (and not repeated in subsequent
figures). A cast from a base type to itself leaves the value unchanged. A cast
of a function applied to a value reduces to a term that casts on the domain,
applies the function, and casts on the range; to allocate blame correctly, the
blame label on the cast of the domain is complemented, corresponding to the
fact that function types are contravariant in the domain and covariant in the
range (Findler and Felleisen, 2002; Wadler and Findler, 2009). A cast from type
? to itself leaves the value unchanged. Assume ug(A,G). Then a cast from A
to ? factors into a cast from A to G followed by a cast from G to ?, and a cast
from ? to A factors into a cast from ? to G followed by a cast from G to A.
A cast from a ground type G to type ? and back to the same ground type G
leaves the value unchanged. A cast from a ground type G to type ? and back to
an incompatible ground type H allocates blame to the label of the outer cast.
(Why the outer cast? This choice traces back to Findler and Felleisen (2002),
and reflects the idea that we always hold an injection from ground type to
dynamic type blameless, but may allocate blame to a projection from dynamic
type to ground type.)

Two rules have side conditions ug(A,G). The condition implies that G =
? → ?, so we could rewrite the rules replacing G by ? → ?. We use the given
form because it is more compact, and it adapts if we permit other ground types,
such as product G = ?× ?.

The following lemma will prove useful later.

Lemma 2 (Failure). If A 6= ?, A ∼ G, and G 6= H, then

V : A
p1

=⇒ G
p2

=⇒ ?
p3

=⇒ H
p4

=⇒ ?
p5

=⇒ B −→∗ blame p3

Embedding dMe takes terms of dynamically-typed lambda calculus into the
blame calculus. The embedding introduces a fresh label p for each cast.

The reduction rules are deterministic.

Proposition 3 (Determinism). If M −→B N and M −→B N
′ then N = N ′.
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Subtype A <: B

ι <: ι
A′ <: A B <: B′

A→ B <: A′ → B′ ? <: ?
A <: G
A <: ?

Positive subtype A <:+ B

ι <:+ ι

A′ <:− A B <:+ B′

A→ B <:+ A′ → B′ A <:+ ?

Negative subtype A <:− B

ι <:− ι

A′ <:+ A B <:− B′

A→ B <:− A′ → B′ ? <:− B

A <:− G

A <:− ?

Naive subtype A <:n B

ι <:n ι
A <:n A

′ B <:n B
′

A→ B <:n A
′ → B′ A <:n ?

Safe cast (A
p

=⇒ B) safeB q

A <:+ B

(A
p

=⇒ B) safe p

A <:− B

(A
p

=⇒ B) safe p

p 6= q p 6= q

(A
p

=⇒ B) safe q

Figure 3: Subtyping and blame safety

Type safety is established via preservation and progress.

Proposition 4 (Type safety, Wadler and Findler (2009)).

1. If `B M : A and M −→B N then `B N : A.

2. If `B M : A then either

(a) there exists a term N such that M −→B N , or

(b) there exists a value V such that M = V , or

(c) there exists a label p such that M = blame p.

The same will hold, mutatis mutandis, for λC, λS, and λT.
Type safety does not rule out blame as a result. How to guarantee blame

cannot arise in certain circumstances is the subject of the next section.

2.1 Blame Safety

Figure 3 presents four different subtyping relations and defines safety for blame
calculus.

Why do we need four different subtyping relations? Each has a different
purpose. Relation A <: B characterizes when a cast A =⇒ B never yields
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blame; relations A <:+ B and A <:− B characterize when a cast A =⇒ B
cannot yield positive or negative blame, respectively; and relation A <:n B
characterizes when type A is more precise than type B.

The first three subtyping relations are characterised by contravariance. A
cast from a base type to itself never yields blame. A cast from a function
type to a function type never yields positive blame if the cast of the arguments
never yields negative blame and if the cast of the results never yields positive
blame; and ditto with positive and negative reversed; as with casts, each rule
is contravariant in the function domain and covariant in the function range. A
cast from ground type to dynamic type never yields blame. A cast to dynamic
type never yields positive blame, while a cast from dynamic type never yields
negative blame.

Naive subtyping is characterised by covariance. A base type is as precise as
itself, precision of function types is covariant in both the domain and range of
functions, and the dynamic type is the least precise type.

All four relations imply compatibility: if A <: B then A ∼ B, and similarly
for <:+, <:−, and <:n. All four relations are reflexive, and both <: and <:n are
transitive and anti-symmetric.

As a counterexample to transitivity for <:−, observe that ι <:− ? and ? <:−

?→ ? both hold, but ι <:− ?→ ? does not hold (it relates incompatible types).
Contravariance then gives rise to a counterexample for <:+, since (? → ?) →
A <:+ ? → A and ? → A <:+ ι → A both hold for any A, but (? → ?) →
A <:+ ι→ A does not hold.

We must report a few errors in our previous work. Siek et al. (2015a) omits
the rule ? <: ? in its definition of subype. Wadler and Findler (2009) and Siek
et al. (2015a) incorrectly claim that <:+ and <:− are transitive. Wadler and
Findler (2009) incorrectly claims that <:− does not imply compatibility.

The four relations are closely connected: ordinary subtyping decomposes
into positive and negative subtyping, which can be reassembled to yield naive
subtyping, almost like a tangram.

Lemma 5 (Tangram, Wadler and Findler (2009)).

1. A <: B iff A <:+ B and A <:− B.

2. A <:n B iff A <:+ B and B <:− A.

A cast from A to B decorated with p is safe for blame label q,

(A
p

=⇒ B) safeB q,

if evaluation of the cast can never allocates blame to q. The three rules reflect
that if A <:+ B the cast never allocates positive blame, if A <:− B the cast
never allocates negative blame, and a cast with label p never allocates blame
other than to p or p. Safety extends to terms in the obvious way: M safeB q
if every cast in M is safe for q. Blame safety is established via a variant of
preservation and progress.
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Proposition 6 (Blame safety, Wadler and Findler (2009)).

1. If M safeB q and M −→B N then N safeB q.

2. If M safeB q then M 6−→B blame q.

The same will hold, mutatis mutandis, for λC, λS, and λT.

2.2 Contextual Equivalence

Contextual equivalence is defined as usual. Evaluating a term may have three
outcomes: converge, allocate blame to p, or diverge. Two terms are contextually
equivalent if they have the same outcome in any context.

Let C range over contexts. A context is an expression with a single hole
in any position. Write M↑B if M diverges; defined coinductively by M↑B if
M −→B N and N↑B.

Definition 7 (Contextual equivalence). Two terms are contextually equivalent,

M
ctx
=B N , if for any context C, either

1. both converge, C[M ] −→∗B V and C[N ] −→∗B W , for some values V and
W .

2. both blame the same label, C[M ] −→∗B blame p and C[N ] −→∗B blame p, for
some label p, or

3. both diverge, C[M ]↑B and C[N ]↑B.

The same will apply, mutatis mutandis, for λC, λS, and λT.

3 Coercion Calculus

Figure 4 defines the coercion calculus, λC. Our coercions correspond to those
of Henglein (1994), except that a coercion from dynamic type to ground type is
decorated with a blame label, as done by Siek and Wadler (2010), and we add
a coercion ⊥GpH , similar to Fail in Herman et al. (2007, 2010). Our type rules
and definition of height are well-known; our reduction rules and all results in
this section are updated versions from Siek et al. (2015a).

Blame labels and types are as in λB. Let c, d range over coercions. We write
c : A =⇒ B to indicate that c coerces values of type A to type B. Our type
rules follow Henglein (1994). The identity coercion at type A is written idA.
Injection from ground type G to dynamic type is written G!, and projection
from dynamic type to ground type G is written G?p. The latter is decorated
with a label p, to which blame is allocated if the projection fails. A function
coercion c → d coerces a function A → B to a function A′ → B′, where c
coerces A′ to A, and d coerces B to B′. This construct is contravariant in
the domain coercion c and covariant in the range coercion d. The composition
c ; d coerces A to C, where c coerces A to B, and d coerces B to C. The fail
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Syntax

c, d ::= idA | G! | G?p | c→ d | c ; d | ⊥GpH

L,M,N ::= k | op( ~M) | x | λx:A.N | L M |M〈c〉 | blame p
V,W ::= k | λx:A.N | V 〈c→ d〉 | V 〈G!〉

E ::= op(~V ,�, ~M) | �M | V � | �〈c〉

Coercion typing c : A =⇒ B

idA : A =⇒ A G! : G =⇒ ? G?p : ? =⇒ G

c : A′ =⇒ A d : B =⇒ B′

(c→ d) : A→ B =⇒ A′ → B′
A 6= ? A ∼ G G 6= H

⊥GpH : A =⇒ B

c : A =⇒ B d : B =⇒ C
(c ; d) : A =⇒ C

Term typing Γ `C M : A

Γ `M : A c : A =⇒ B
Γ `M〈c〉 : B Γ ` blame p : A

Reduction M −→C N

V 〈idA〉 −→ V

(V 〈c→ d〉) W −→ (V (W 〈c〉))〈d〉
V 〈G!〉〈G?p〉 −→ V

V 〈G!〉〈H?p〉 −→ blame p if G 6= H

V 〈c ; d〉 −→ V 〈c〉〈d〉
V 〈⊥GpH〉 −→ blame p

M −→M ′

E [M ] −→ E [M ′] E [blame p] −→ blame p

Safe coercion c safeC q

idA safe q G! safe q

p 6= q

G?p safe q

c safe q d safe q

c→ d safe q

c safe q d safe q

c ; d safe q

p 6= q

⊥GpH safe q

Height ||c||

||idA|| = 1 ||G?p|| = 1 ||c→ d|| = max(||c||, ||d||) + 1

||⊥GpH || = 1 ||G!|| = 1 ||c ; d|| = max(||c||, ||d||)

Figure 4: Coercion calculus (λC)
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coercion ⊥GpH represents the result of a failed coercion from ground type G to
ground type H, and is introduced because it is essential to the space-efficient
representation described in the following section. If the fail coercion is used at
type ⊥GpH : A → B, then G is compatible to A but H need not be related to
B! Even the case A = B is possible. For a completely formal treatment, the
fail coercion would have to be adorned with the source and target types as in
the translation of coercions from λC to λB in Figure 5.

Terms of the calculus are as before, except that we replace casts by applica-
tion of a coercion, M〈c〉. The typing rule is straightforward:

Γ `C M : A c : A =⇒ B

Γ `C M〈c〉 : B

If term M has type A, and c coerces A to B, then application to M of c is a
term of type B.

Every well-typed coercion not containing failure has a unique type: if c :
A =⇒ B and c : A′ =⇒ B′ and c does not contain a coercion of the form ⊥GpH
then A = A′ and B = B′. Conversely, distinct coercions may have the same
type: for example, id? and G?p ;G! both have type ? =⇒ ?.

Values and evaluation contexts are as in the blame calculus, with casts re-
placed by corresponding coercions. We write M −→C N to indicate that term
M steps to term N . The identity coercion leaves a value unchanged. A coercion
of a function applied to a value reduces to a term that coerces on the domain,
applies the function, and coerces on the range. If an injection meets a matching
projection, the coercion leaves the value unchanged. If an injection meets an
incompatible projection, the coercion fails and allocates blame to the label in
the projection. (Here it is clear why blame falls on the outer coercion: the inner
coercion is an injection and has no blame label, while the outer is a projection
with a blame label.) Application of a composed coercion applies each of the
coercions in turn.

A coercion c is safe for blame label q, written c safeC q, if application of
the coercion never allocates blame to q. The definition is pleasingly simple: a
coercion is safe for q if it does not mention label q.

The height of a coercion is as defined by Herman et al. (2007, 2010), and
will be used in Section 4.

Determinism, type safety, blame safety, and contextual equivalence for λC
are as in λB. Propositions 3, 4, and 6 and Definition 7 apply mutatis mutandis.

3.1 Relating λB to λC

The relation between λB and λC is presented in Figure 5. In this section, we
let M,N range over terms of λB and M ′, N ′ range over terms of λC.

We write
|A p

=⇒ B|BC = c

to indicate that the cast on the left translates to the coercion on the right. The
translation is designed to ensure there is a lockstep bisimulation between λB
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Blame to coercion (λB to λC) |A p
=⇒ B|BC = c

|ι p
=⇒ ι|BC = idι

|A→ B
p

=⇒ A′ → B′|BC = |A′ p
=⇒ A|BC → |B p

=⇒ B′|BC

|? p
=⇒ ?|BC = id?

|G p
=⇒ ?|BC = G!

|? p
=⇒ G|BC = G?p

|A p
=⇒ ?|BC = |A p

=⇒ G|BC ;G! if ug(A,G)

|? p
=⇒ A|BC = G?p ; |G p

=⇒ A|BC if ug(A,G)

Coercion to blame (λC to λB) |c|CB = Z

|idA|CB = [ ]

|G!|CB = [G
•

=⇒ ?]

|G?p|CB = [?
p

=⇒ G]

|c→ d|CB = (|c|CB → B) ++ (A′ → |d|CB) where c→ d : A→ B =⇒ A′ → B′

|c ; d|CB = |c|CB ++ |d|CB

|⊥GpHA=⇒B |
CB = [A

•
=⇒ G,G

•
=⇒ ?, ?

p
=⇒ H,H

•
=⇒ ?, ?

•
=⇒ B]

where if

Z = [A1
p1

=⇒ A2, · · ·, Am
pm
=⇒ Am+1]

Z ′ = [Am+1
pm+1
=⇒ Am+2, · · ·, Am+n

pm+n
=⇒ Am+n+1]

then

Z → B = [A1→B
p1

=⇒ A2→B, · · ·, Am→B
pm
=⇒ Am+1→B]

B → Z = [B→A1
p1

=⇒ B→A2, · · ·, B→Am
pm
=⇒ B→Am+1]

Z = [Am+1
pm
=⇒ Am, · · ·, A2

p1
=⇒ A1]

Z ++ Z ′ = [A1
p1

=⇒ A2, · · ·, Am+n
pm+n
=⇒ Am+n+1]

Figure 5: Relating λB to λC
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and λC. The translation extends to terms in the obvious way, replacing each
cast by the corresponding coercion as in

|M : A
p

=⇒ B|BC = |M |BC〈|A p
=⇒ B|BC〉

We write
|c|CB = Z

to indicate that the coercion on the left translates to the sequence of casts on
the right. Here Z ranges over sequences of casts. As defined in Figure 5, we
write Z → B (respectively B → Z) to replace in Z each source or target type
A by A → B (respectively B → A), we write Z to reverse the sequence Z
and complement all the blame labels, and we write Z ++Z ′ to concatenate two
sequences Z and Z ′, where the last type of one sequence must match the first
of the other. In the clause for c→ d, the right-hand side can be taken as either

(|c|CB→B) ++ (A′→|d|CB) or (A→|d|CB) ++ (|c|CB→B′),

equivalently. We write ⊥GpHA=⇒B to indicate that ⊥GpH is used as a cast from A to
B. This is an informal notation, with the extra information easily recovered by
type inference. We choose not to use ⊥GpHA=⇒B as a formal notation throughout,
since it would complicate the definition of # in Section 4. We write • as a blame
label in casts where the label is irrelevant because the cast cannot allocate blame.
The translation extends to terms in the obvious way, replacing each coercion by
the corresponding sequence of casts.

We start with some static properties of the translations. The subtle defini-
tion of positive and negative subtyping is justified by the correspondence to the
coercion calculus. It is not too surprising that the definition is sound (safety in
B implies safety in C), but it is surprising that the definition is also complete
(safety in C implies safety in B).

Lemma 8 (Positive and negative subtyping).

1. A <:+ B iff |A p
=⇒ B|BC safeC p.

2. A <:− B iff |A p
=⇒ B|BC safeC p.

(The full proof is in the supplementary material.)
It follows immediately that translation from λB to λC and back preserves

type and blame safety.

Proposition 9 (Preservation, λB to λC).

1. Γ `B M : A if and only if Γ `C |M |BC : A.

2. M safeB q if and only if |M |BC safeC q.

Proposition 10 (Preservation, λC to λB).

1. Γ `C M ′ : A if and only if Γ `B |M ′|CB : A.
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2. M ′ safeC q if and only if |M ′|CB safeB q.

Turning to operational properties, we observe several contextual equivalences
for λC.

Lemma 11 (Equivalences). The following hold in λC.

1. M〈id〉 ctx
=C M

2. M〈c ; d〉 ctx
=C M〈c〉〈d〉

3. M〈c→ d〉 ctx
=C M〈(c→ id) ; (id→ d)〉

4. M〈c→ d〉 ctx
=C M〈(id→ c) ; (d→ id)〉

The proof of this lemma is deferred to Section 6.1, where we apply a new
technique that makes the proof straightforward.

Translating from λC to λB and back again is the identity, up to contextual
equivalence.

Lemma 12 (Coercions to blame). If M ′ is a term of λC then ||M ′|CB|BC ctx
=C

M ′.

The translation from λB to λC is a bisimulation. The bisimulation is lock-
step: a single step in λB corresponds to a single step in λC, and vice versa.

Proposition 13 (Bisimulation, λB to λC).
Assume `B M : A and `C M ′ : A and |M |BC = M ′.

1. IfM−→BN thenM ′−→CN
′ and |N |BC=N ′ for some N ′.

2. IfM ′−→CN
′ thenM−→BN and |N |BC=N ′ for some N .

3. If M = V then M ′ = V ′ and |V |BC = V ′ for some V ′.

4. If M ′ = V ′ then M = V and |V |BC = V ′ for some V .

5. If M = blame p then M ′ = blame p.

6. If M ′ = blame p then M = blame p.

The translation from λB to λC is fully abstract.

Proposition 14 (Fully abstract, λB to λC). If M and N are terms of λB then

M
ctx
=B N iff |M |BC ctx

=C |N |BC.
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Syntax

s, t ::= id? | (G?p ; i) | i
i ::= (g ;G!) | g | ⊥GpH

g, h ::= idι | (s→ t)

L,M,N ::= k | op( ~M) | x | λx:A.N | L M |M〈t〉 | blame p
U ::= k | λx:A.N

V,W ::= U | U〈s→ t〉 | U〈g ;G!〉
E ::= F | �〈s〉

F ::= op(~V ,�, ~M) | �M | V �

Composition s # t = r

idι # idι = idι

(s→ t) # (s′ → t′) = (s′ # s)→ (t # t′)
id? # t = t

(g ;G!) # id? = g ;G!

(G?p ; i) # t = G?p ; (i # t)
g # (h ;H!) = (g # h) ;H!

(g ;G!) # (G?p ; i) = g # i

(g ;G!) # (H?p ; i) = ⊥GpH if G 6= H

⊥GpH # s = ⊥GpH

g #⊥GpH = ⊥GpH

Reduction −→S = −→E ∪ −→F M −→E N M −→F N

op(~V ) −→E [[op]](~V )

(λx:A.N) V −→E N [x:=V ]

(U〈s→ t〉) V −→E (U (V 〈s〉))〈t〉

U〈idι〉 −→F U
M〈s〉〈t〉 −→F M〈s # t〉
U〈⊥GpH〉 −→F blame p

M −→M ′

F [M ] −→E F [M ′]

M −→E M ′
M〈s〉 −→F M ′〈s〉

F [blame p] −→E blame p (blame p)〈s〉 −→F blame p

Figure 6: Space-efficient coercion calculus (λS)
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4 Space-efficient Coercion Calculus

Figure 6 defines the space-efficient coercion calculus, λS. Space-efficient coer-
cions correspond to coercions in a canonical form. All the results in this section
are updated versions of the results of Siek et al. (2015a).

Blame labels and types are as in λB and λC. There is one space-efficient
coercion for each equivalence class of coercions with respect to the equational
theory of Henglein (1994). Space-efficient coercions follow a specific, three-part
grammar, chosen to facilitate the definition of a recursive composition opera-
tor, which takes two canonical coercions and computes the canonical coercion
corresponding to their composition.

Let s, t range over space-efficient coercions, i range over intermediate coer-
cions, and g, h range over ground coercions. Space-efficient coercions are either
the identity coercion at dynamic type id?, a projection followed by an inter-
mediate coercion (G?p ; i), or just an intermediate coercion i. An intermediate
coercion is either a ground coercion followed by an injection (g ; G!), just a
ground coercion g, or the failure coercion ⊥GpH . A ground coercion is an iden-
tity coercion of base type idι or a function coercion s→ t.

The source of an intermediate coercion is never the dynamic type. Source
and target of a ground coercion are never the dynamic type, and both are
compatible with the same unique ground type.

Lemma 15 (Source and Target).

1. If i : A =⇒ B then A 6= ?.

2. If g : A =⇒ B then A 6= ? and B 6= ? and there exists a unique G such
that A ∼ G and G ∼ B.

Terms of the calculus are as in λC, except that we restrict coercions to
space-efficient coercions. The key idea of the dynamics, as in Herman et al.
(2007, 2010) and Siek and Wadler (2010), is to combine and normalize adjacent
coercions, which ensures space efficiency. Ensuring that adjacent coercions are
combined requires we adjust the notion of value and of reduction. Let U range
over uncoerced values, that is, values that do not contain a top-level coercion
(constants and lambda abstractions). Let V,W range over values, which we
constrain to have at most one top-level coercion. Let E range over evaluation
frames, as before, and let F range over all evaluation frames except for coercions.

If space-efficient coercions s and t are the canonical form of coercions c and
d, then s # t is the canonical form of c ; d. A straightforward induction shows
that composition is well-defined. The key is to observe that the composition
(i # t) yields an intermediate coercion for any t and that the composition of two
ground coercions (g # h) yields a ground coercion. We establish the termination
of composition by observing that the sum of the sizes of the arguments gets
smaller at each recursive call. Further the correctness of each equation in the
definition is easily justified by the equational theory of Henglein (1994).

Height is preserved by composition.
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Proposition 16 (Height). ||s # t|| ≤ max(||s||, ||t||).

A space-efficient coercion contains at most two compositions at its top-level
(check the grammar), so a space-efficient coercion bounded in height is also
bounded in size.

The reduction rules are designed to ensure that reduction is deterministic and
that each reduction has a unique derivation. If a term contains two coercions in
succession, then those coercions are composed into one before other reductions
occur underneath them. For example, in Figure 1 a space leak in λC is avoided
in λS by combining two or more coercions in tail position prior to performing
the underlying recursive function application. In contrast, any single coercion
evaluates the term under the coercion before the coercion is performed; this
order of reduction is necessary to maintaining the correspondence between λS
and λC.

We have three reduction relations,

M −→S N M −→E N M −→F N.

In the last two of these, superscripts E and F are part of the name of the reduc-
tion relation, not metavariables ranging over frames. But the middle relation is
so named because its reductions may occur immediately nested in any frame E ,
while the last relation is so named because its reduction may only occur imme-
diatly nested in a frame F that does not contain a coercion. The first reduction
is simply the union of the other two.

There are four congruence rules. The first states that any reduction may
be nested in an F frame; the resulting reduction may take place in any frame,
hence it is labeled with E . The second states that an E reduction may be nested
underneath a coercion; the resulting reduction can only take place in an F frame
(else it would reduce under two nested coercions), hence it is labeled with F .
The second rule only mentions coercions, and not arbitary E frames, in order
not to overlap with the preceding rule; this guarantees that each reduction has
a unique derivation. The final two congruence rules deal with removing a frame
around a blame term, and are justified similarly to the first two rules.

Note that if the rule with left-hand side M〈s〉〈t〉 were labeled E instead of
F , then it would not enforce that the outermost string of two casts is the one
that is reduced. Similarly, if the rules with left-hand sides U〈idι〉 or U〈⊥GpH〉
were labeled with E in place of F or had M in place of U , then they would
overlap with the rule with left-hand side M〈s〉〈t〉.

Whereas we use single-level frames, prior work uses nested evalution con-
texts. Herman et al. (2010) use outside-in constexts that provide convenient
access to the outermost frame that eases the proof of progress by streamlining
the decomposition lemma. Siek et al. (2015a) use inside-out contexts that pro-
vide convenient access to the innermost frame, making it easier to constrain the
reductions to occur in the correct frame. Here we obtain the best of both worlds
by using frames and labeling our reduction rules to constrain their immediately
enclosing frame.

21



Siek et al. (2015a) also had a slightly different definition of evaluation con-
texts, which only permitted reduction under coercions in a particular syntactic
form (denoted by the meta-variable f) that did not permit identity coercions.
That definition was in error. For example, the following program is stuck.

(1 + 2)〈idnum〉 6−→

Here we fix the problem by permitting reductions underneath arbitrary coer-
cions.

Determinism, type safety, blame safety, and contextual equivalence for λS
are as in λB. Propositions 3, 4, and 6 and Definition 7 apply mutatis mutandis.

4.1 Relating λC to λS

The translation from λC to λS is presented in Figure 7. In this section, we let
M,N range over terms of λC and let M ′, N ′ range over terms of λS.

We write
|c|CS = s

to indicate that the coercion on the left translates to the space-efficient coercion
on the right. The translation extends to terms in the obvious way, replacing
each coercion by the corresponding space-efficient coercion.

The inverse translation
|s|SC = c

is trivial, since each space-efficient coercion is a coercion.
Translating λC to λS preserves type and blame safety.

Proposition 17 (Preservation, λC to λS).

1. Γ `C M : A if and only if Γ `S |M |CS : A.

2. M safeC q if and only if |M |CS safeS q.

The same holds trivially for the reverse translation which is the identity.
The dynamics of λC and λS differ in that the former breaks up compositions,

while the latter combines them. In Figure 7, we define a bisimulation ≈ that
relates λC to λS. Rules in grey make the relation a congruence; rules (i), (ii), (iii)
relate a sequence of zero or more coercion applications to a single space-efficient
coercion application. Consider the sequence of reductions in λC.

(V 〈c1 → d1〉〈c2 → d2〉) W (a)

−→C ((V 〈c1 → d1〉) (W 〈c2〉))〈d2〉 (b)

−→C (V (W 〈c2〉〈c1〉))〈d1〉〈d2〉 (c)

If V ≈ V ′, W ≈ W ′, |ci|CS = si, and |di|CS = ti, these two reductions relate to
a single reduction in λS.

(V 〈(s2 # s1)→ (t1 # t2)〉) W (d)

−→S (V (W 〈s2 # s1〉)〈t1 # t2〉 (e)
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Coercions to space-efficient (λC to λS) |c|CS = s

|id?|CS = id?

|idι|CS = idι

|idA→B |CS = |idA|CS → |idB |CS

|G?p|CS = G?p ; |idG|CS

|G!|CS = |idG|CS ;G!

|c→ d|CS = |c|CS → |d|CS

|c ; d|CS = |c|CS # |d|CS

|⊥GpH |CS = ⊥GpH

Bisimulation between λC and λS M ≈CS M
′

k ≈ k
~M ≈ ~M ′

op( ~M) ≈ op( ~M ′) x ≈ x

M ≈M ′
λx:A.M ≈ λx:A.M ′

L ≈ L′ M ≈M ′
L M ≈ L′ M ′

blame p ≈ blame p

M ≈M ′ `M : A |idA|CS = s

M ≈M ′〈s〉
(i)

M ≈M ′〈s〉 |c|CS = t

M〈c〉 ≈M ′〈s # t〉
(ii)

M ≈ (L′〈r〉) (M ′〈s〉) |d|CS = t

M〈d〉 ≈ (L′〈r # (s→ t)〉) M ′
(iii)

Figure 7: Relating λC to λS

Here (a) ≈ (d) via (i) once and (ii) twice; and (b) ≈ (d) via (i) once, (ii) once,
and (iii) once; and (c) ≈ (e) via (i) once and (ii) twice in both the domain and
the range.

The relation ≈ is a bisimulation. It is not lockstep: a single step in λC
corresponds to zero or more steps in λS, and vice versa.

Proposition 18 (Bisimulation, λC to λS).
Assume `C M : A and `S M ′ : A and M ≈M ′.

1. If M−→CN then M ′−→∗SN ′ and N≈N ′ for some N ′.

2. If M ′−→SN
′ then M−→∗CN and N≈N ′ for some N .

3. If M = V then M ′ −→∗S V ′ and V ≈ V ′ for some V ′.
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4. If M ′ = V ′ then M −→∗C V and V ≈ V ′ for some V .

5. If M = blame p then M ′ = blame p.

6. If M ′ = blame p then M = blame p.

(The full proof is in the supplementary material.)
Terms relate to their translations by ≈.

Proposition 19. M ≈ |M |CS.

The translation from λC to λS is fully abstract.

Proposition 20 (Fully abstract, λC to λS). If M and N are terms of λC then

M
ctx
=C N iff |M |CS ctx

=S |N |CS.

5 Threesomes Without Blame

Siek and Wadler (2009, 2010) use a different development than the one given
here. They first introduce threesomes as a pair of casts,

A
T

=⇒ B = A =⇒ T =⇒ B

from a source type A through a mediating type T to a target type B, where
the three types explain the name. This form does not account for blame, which
they restore by decorating the mediating cast with blame labels. In contrast,
here λC and λS are directly inspired by coercions. We now tie the knot, showing
how canonical coercions in λS relate to threesomes when blame is ignored.

To account for the case where the source and target type are incompatible,
threesomes require introducing the empty type ⊥, which is the lowest type in
the naive ordering. Siek and Wadler (2010) permits every type to include ⊥,
where here we follow Siek and Wadler (2009) in permitting ⊥ to only appear in
the mediating type.

We let R,S, T range over pointed types, which consist of the usual type
constructors together with ⊥. Every ordinary type is a pointed type, but not
conversely (because of ⊥). A threesome coercion is written as

M : A
T

=⇒ B

where M is a term, A and B are ordinary types, and T is a pointed type that
is naively bounded above by A and B.

Pointed types S and T are shallowly incompatible, written S # T , if they
are different base types, if one is a base type and the other is a function, or if
one is the empty type.

The meet of two type S and T is written S & T and defined in Figure 8. It
is the greatest lower bound with regard to naive subtyping.

Lemma 21 (Meet is greatest lower bound).
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1. S & T <:n S and S & T <:n T , and

2. R <:n S and R <:n T iff R <:n S & T .

The reduction rules for threesomes without blame (λT) are in close corre-
spondence to those for space-efficient coercions, save that composition of co-
ercions (s # t) is replaced by meet of pointed types (S & T ). The β, δ, and
congruence rules for λT are the same as those for λS, so we omit them from
Figure 8.

Determinism, type safety and contextual equivalence for λT are as in λB.
Propositions 3 and 4 and Definition 7 apply mutatis mutandis. Blame safety is
not relevant for λT, because there are no blame labels.

5.1 Translation from space-efficient coercions to threesomes

Ignoring blame labels, a space-efficient coercion is determined by its source,
target, and mediating types. The mediating type of a space-efficient coercion t
is written ||t||, and defined in Figure 9. Write t• for the result of replacing each
blame label in t by •, where • is a special blame label satisfying • = •. Write
| − |BS = || − |BC|CS to translate from λB to λS via λC.

Lemma 22 (Mediating type). If t : A =⇒ B and ||t|| = T then T <:n A and
T <:n B and

t• = |A •
=⇒ T |BS # |T •

=⇒ B|BS.

The correspondence between composition of space-efficient coercions and
meet of threesome types is straightforward.

Lemma 23 (Composition and meet). If s and t are space-efficient coercions,
then

||s # t|| = ||s||& ||t||

The above results suggest a simple translation. If t is a space-efficient coer-
cion, t : A =⇒ B, and ||t|| = T , define

|t|ST = A
T

=⇒ B.

The translation extends to terms in the obvious way, replacing each threesome
coercion by the corresponding threesome cast, and replacing blamep by blame•.

Preservation of type safety for the translation of λS to λT is straightforward,
and omitted. Since blame safety is not relevant for λT, neither is preservation
of blame safety.

The translation from λS to λT is a bisimulation.

Proposition 24 (Bisimulation, threesomes without blame).
Assume `S M : A and `T M ′ : A and |M |ST = M ′.

1. If M−→SN then M ′−→TN
′ and |N |ST = N ′ for some N ′.

2. If M ′−→TN
′ then M−→SN and |N |ST = N ′ for some N .
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Syntax

R,S, T ::= ι | S → T | ? | ⊥

L,M,N ::= x | k | op( ~M) | λx:A.N | L M |M : A
T

=⇒ B | blame •
U ::= k | λx:A.N

V,W ::= U | U : A→ B
S→T
=⇒ A′ → B′ | U : A

T
=⇒ ?

E ::= F | � : A
T

=⇒ B

F ::= op(~V ,�, ~M) | �M | V �

Naive subtype S <:n T

ι <:n ι T <:n ?

S <:n S
′ T <:n T

′

S→S′ <:n T→T ′ ⊥ <:n T

Term typing Γ `T M : A

Γ `M : A T <:n A T <:n B

Γ `M : A
T

=⇒ B Γ ` blame • : A

Shallow incompatibility S # T

ι 6= ι′

ι # ι′ ι # S→T S→T # ι ⊥ # T T # ⊥

Meet S & T = R

ι& ι = ι

?& T = T

T & ? = T

(S → T ) & (S′ → T ′) = (S & S′)→ (T & T ′)

S & T = ⊥ if S # T

Reduction −→T = −→E ∪ −→F M −→E N M −→F N

(U : A→ B
S→T
=⇒ A′ → B′) V −→E (U (V : A′

S
=⇒ A)) : B

T
=⇒ B′

U : ι
ι

=⇒ ι −→F U

M : A
S

=⇒ B
T

=⇒ C −→F M : A
S&T
=⇒ C

U : A
⊥

=⇒ B −→F blame •

Figure 8: Threesomes without blame (λT)
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3. If M = V then M ′ = V ′ and |V |ST = V ′ for some V ′.

4. If M ′ = V ′ then M = V and |V |ST = V ′ for some V .

5. If M = blame p then M ′ = blame •.

6. If M ′ = blame • then M = blame p for some p.

The bisimulation is lockstep, in that a single step in λS corresponds to a single
step in λT, and vice versa.

Whereas the translation from λB to λC is an injection, that from λS to λT
is a bijection. Say that a coercion is label-free if the only label appearing in it
is •, and similarly for terms.

Lemma 25 (Bijection, threesomes without blame).
For each label-free space-efficient coercion t there is exactly one threesome A =⇒T

B such that t : A =⇒ B and ||t|| = T , and conversely.

The translation from λS to λT is fully abstract.

Proposition 26 (Fully abstract, threesomes without blame). If M and N are

label-free terms of λS then M
ctx
=S N iff |M |ST ctx

=T |N |ST.

The development in this section is straightforward. Lemmas 22 and 23 are
established by easy inductions, and Propositions 24 and 26 are straightforward.
In contrast, the weaker correctness result of Siek and Wadler (2010) depends
on the Fundamental Property of Casts. Establishing the Fundamental Property
required a new bisimulation relation and three lemmas, and then establishing
the weak correctness result requires a corollary and three further lemmas. The
proof techniques we use here are simpler and yield stronger results.

Although we do not require it here, the Fundamental Property of Casts has
independent interest, and we show in the next section that it follows easily from
the results we have already established.

6 Applications

Full abstraction considerably eases some proofs. In this section, we use it to
demonstrate two useful results, Lemma 11 from Section 3.1, which justifies the
translation | · |CB, and the Fundamental Law of Casts from Siek and Wadler
(2010).

6.1 Lemma 11

Lemma 11 from Section 3.1 is used to justify the design of | · |CB, the mapping
from λC back to λB. We repeat the lemma here, with some additional clauses.

Lemma 27 (Equivalences). The following hold in λC.

1. M〈id〉 ctx
=C M
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Space-efficient coercion to mediating type ||t|| = C

||idι|| = ι

||s→ t|| = ||s|| → ||t||
||id?|| = ?

||g ;G!|| = ||g||
||G?p ; i|| = ||i||
||⊥GpH || = ⊥

Space-efficient coercion to threesome (λS to λT) |M |ST = M ′

|blame p|ST = blame •

|M〈t〉|ST = |M |ST : A
T

=⇒ B if t : A =⇒ B and ||t|| = T

Figure 9: Relating λS to λT

2. M〈c ; d〉 ctx
=C M〈c〉〈d〉

3. M〈c ; id〉 ctx
=C M〈c〉 ctx

=C M〈id ; c〉

4. M〈(c→ d) ; (c′ → d′)〉 ctx
=C M〈(c′ ; c)→ (d ; d′)〉

5. M〈c→ d〉 ctx
=C M〈(c→ id) ; (id→ d)〉

6. M〈c→ d〉 ctx
=C M〈(id→ c) ; (d→ id)〉

Proof. Part 1 follows from M〈id〉 −→C M , part 2 is similar, and part 3 follows
from parts 1 and 2. Part 4 is more interesting. Let |c|CS = s, |d|CS = t, |c′|CS = s′

and |d′|CS = t′. Applying | · |CS to each side of the equation gives

(s→ t) # (s′ → t′)
ctx
=S (s′ # s)→ (t # t′)

which holds immediately from the definition of #. Then part 4 follows because
|·|CS reflects contextual equivalence, the backward part of Proposition 20. Part 5
follows from

c→ d
ctx
=C (id ; c)→ (id ; d)

ctx
=C (c→ id) ; (id→ d)

which follows from parts 3 and 4. Part 6 is similar.

Typically, one might be tempted to prove a result such as Lemma 11 by
introducing a custom bisimulation relation—indeed, that is how we first at-
tempted to demonstrate it. Eventually we realised that we could show terms
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equivalent in λC by mapping them into λS and exploiting full abstraction. In-
stead of introducing a custom bisimulation relation, all of the “heavy lifting” is
done by bisimulation ≈ from Figure 7 and by Proposition 18.

Full abstraction from λC to λS does not depend of full abstraction from λB
to λC, so there is no circularity.

6.2 Fundamental Property of Casts

As a second application, we show how to establish the Fundamental Property
of Casts, Lemma 2 of Siek and Wadler (2010), which asserts that a single cast is
contextually equivalent to a pair of casts. We will do so by mapping two terms
of λB to contextually equivalent terms of λS.

First, we extend naive subtyping to include pointed types by setting⊥ <:n T ,
for all T . Meet of two types is a pointed type, A&B = T , and is defined to be
their greatest lower bound with respect to naive subtyping, <:n.

Take | − |BS to be the composition of | − |BC and | − |CS. We first establish
one simple lemma, which follows immediately by case analysis on A, B, and C.

Lemma 28. If A&B <:n C then

|A p
=⇒ B|BS = |A p

=⇒ C|BS # |C p
=⇒ B|BS

The fundamental property follows immediately by full abstraction from λB
to λC and λC to λS.

Lemma 29 (Fundamental Property of Casts). Let M be a term of λB. If
A&B <:n C then

M : A
p

=⇒ B
ctx
=B M : A

p
=⇒ C

p
=⇒ B

Siek and Wadler (2010) establish the same result with more difficulty: they
require a custom bisimulation and six lemmas.

(Our statement of the fundamental property uses unpointed types, while
Siek and Wadler (2010) uses pointed types throughout. Hence the property
proved here is not identical to the one proved there. This is a minor technical
difference, not one of substance.)

7 Related Work

This section provides an in-depth comparison to the work of Siek and Wadler
(2010), Greenberg (2013), and Garcia (2013), then summarizes systems that use
gradual typing and other relevant work.

7.1 Relation to Siek and Wadler (2010)

Siek and Wadler (2010) use threesomes of the form

〈T P⇐= S〉 s
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where s is a term, S, T are types, and P is a labeled type that indicates how
blame is allocated if the cast fails. Here is the grammar for labeled types:

p, q ::= l | ε
P,Q ::= Bp | P →p Q | ? | ⊥lGp

Their l,m range over blame labels (our p, q), their p, q range over optional blame
labels, their P,Q range over labeled types, their B ranges over base types (our
ι), and their G,H range over ground types (our G,H). The meaning of a
labeled type is subtle as it depends on whether each label is present or not. For
example, their ⊥lGε corresponds to our ⊥GpH , while their ⊥lGm correspond to
our G?q ;⊥GpH (taking their l,m to correspond to our p, q, respectively). Their
paper includes a translation L−M from threesomes to coercions.

If our space-efficient coercions s, t correspond to their labeled types P,Q,
then s # t corresponds to Q ◦ P (note the reversal!), defined as follows.

Bq ◦Bp = Bp

P ◦ ? = P

? ◦ P = P

QHm ◦ PGp = ⊥mGp if G 6= H

Q ◦ ⊥mGp = ⊥mGp

⊥mGq ◦ PGp = ⊥mGp

⊥mHl ◦ PGp = ⊥lGp if G 6= H

(P ′ →q Q′) ◦ (P →p Q) = (P ◦ P ′)→ (Q′ ◦Q)

Here PGp means that labelled type P is compatible with ground type G and that
p is the topmost optional blame label in P . The correctness of these equations
is not immediate. For instance, in the penultimate line why do PGp and ⊥mHl
compose to yield ⊥lGp? Perhaps the easiest way to validate the equations is to
translate to coercions using L−M, then check that the left-hand side normalises to
the right-hand side. In contrast, our definition of # (Figure 6) is easily justified
by the equational theory of Henglein (1994).

7.2 Relation to Greenberg (2013)

Greenberg (2013) considers a sequence of calculi Cast, Naive, and Efficient,
roughly corresponding to our λB, λC, and λS. Unlike us, he includes refinement
types, but omits blame; and he formulates correctness in terms of logical rela-
tions rather than full abstraction.

His Efficient resembles our λS, in that it defines a composition operator
that serves the same purpose as our #. He writes c1 ∗ c2 ⇒ c3 to indicate that
the composition of c1 and c2 is equivalent to c3. The rules to compute c1 ∗ c2
compose the right-most primitive coercion of c1 with the left-most primitive
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coercion of c2, then recursivley compose the result with what is left of c1 and
c2. For example, here is the rule for composing function coercions.

c21 ∗ c11 ⇒ c31
c12 ∗ c22 ⇒ c32

c1 ∗ (c31→c32) ; c2 ⇒ c

c1 ; (c11→c12) ∗ (c21→c22) ; c2 ⇒ c

His definition is recursive but proving it total is challenging, requiring four pages.
In contrast, for our definition totality is straightforward.

7.3 Relation to Garcia (2013)

Garcia (2013) observes that coercions are easier to understand while threesomes
are easier to implement, and shows how to derive threesomes from coercions
through a series of correctness-preserving transformations. To accomplish this,
he defines supercoercions and gives their meaning in terms of a translationN (−)
to coercions.

N (ιP ) = ιP

N (Faill) = Faill

N (Faill1Gl2) = Faill1 ◦G?l2

N (G!) = G!

N (G?l) = G?l

N (G?l!) = G! ◦G?l

N (c̈1 → c̈2) = N (c̈1)→ N (c̈2)

N (c̈1 !→ c̈2) = (?→ ?)! ◦ (N (c̈1)→ N (c̈2))

N (c̈1→?l c̈2) = (N (c̈1)→ N (c̈2)) ◦ (?→ ?)?l

N (c̈1!→?lc̈2) = (?→ ?)! ◦ (N (c̈1)→ N (c̈2)) ◦ (?→ ?)?l

His l ranges over blame labels (our p, q), his ι is the identity coercion (our id),
his P ranges over atomic types (either a base type or the dynamic type), his
Faill is a failure coercions (our ⊥GpH), and his c̈ ranges over supercoercions.
Garcia (2013) derives a recursive composition function for supercoercions but
the definition was too large to publish as there are sixty pairs of compatible
supercoercions. In contrast, our definition fits in ten lines.

7.4 Systems that use Gradual Typing

Racket (formerly Scheme) supports dynamic and static typing and higher-order
contracts with blame (Flatt and PLT, 2014). Racket permits contracts to be
written directly. Typed Racket inserts contracts that allocate blame when dy-
namically typed code fails to conform to the static types declared for it Tobin-
Hochstadt and Felleisen (2008). Racket has an extensive and well-tested imple-
mentation of contracts, but does not support space-efficient contracts. Racket
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is the source, via Findler and Felleisen (2002), of the rule for casting functions
in λB (the fourth reduction rule in Figure 2).

Pyret has limited support for gradual typing (Patterson et al., 2014). Pyret
checks that a first-order value (such as integer) conforms to its declaration, but
only checks that a higer-order value is a function, not that it conforms to its
declared parameter and result types. Pyret does not implement any equivalent
of the rule for casting functions in λB.

Dart provides support for gradual typing with implicit casts to and from
type dynamic (Bracha and Bak, 2011; ECMA, 2014). Dart does not provide
full static type checking; its type checker aims to warn of likely errors rather
than to ensure lack of failures. In checked mode, Dart performs a test at every
place that a value can be assigned to a variable and raises an exception if the
value’s type is not a subtype of the variable’s declared type. Dart does not
implement any equivalent of the rule for casting functions in λB.

C# type dynamic and VB type Object play a role similar to our type ?,
with the compiler introducing first-order casts as needed (Bierman et al., 2010;
Feigenbaum, 2008). These languages do not have higher-order structural types,
only nominal types, so the programmer must manually construct explicit wrap-
pers to accomplish what would amount to a higher-order cast. C# and VB do
not implement any equivalent of the rule for casting functions in λB.

TypeScript provides interface declarations that allow users to specify types
for an imported JavaScript module or library (Hejlsberg, 2012). The Definite-
lyTyped repository contains over 150 such declarations for a variety of popular
JavaScript libraries (Yankov, 2013). TypeScript is not concerned with type
soundness, which it does not provide (Bierman et al., 2014), but instead ex-
ploits types to provide better prompting in Visual Studio, for instance to to
populate a pulldown menu with well-typed methods that might be invoked at
a given point. The information supplied by interface declarations is taken on
faith; failures to conform to the declaration are not reported. Typescript does
not implement any equivalent of the rule for casting functions in λB.

Several systems explore how to modify TypeScript to restore various forms
of type safety.

Safe TypeScript is a refinement of TypeScript that guarantees type safety
by adding run-time type information (RTTI) to values of dynamic type any

(Rastogi et al., 2015). It introduces the notion of erased types that cannot be
coerced to any. Erased types are used to communicate with external libraries
that are unaware of RTTI. Furthermore, subtyping of function types is restricted
to never manipulate RTTI, avoiding the need for wrappers that may change the
object identity. Safe Typescript does not implement any equivalent of the rule
for casting functions in λB.

StrongScript (Richards et al., 2015) extends TypeScript’s optional types
with concrete types. A concrete type is a (nominal) class type which is stat-
ically checked and which is protected by compiler-generated casts against its
less strictly typed context. The main goals of this work are compatibility with
TypeScript and enabling the generation of efficient code for concretely typed
parts of a program. Blame tracking is an optional feature that may be disabled
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to avoid run-time overhead. StrongScript relies upon an equivalent of the rule
for casting functions in λB.

Microsoft has funded Wadler and a PhD student to build a tool, Type-
Script TNG, that uses blame calculus to generate wrappers from TypeScript
interface declarations. The wrappers monitor interactions between a library
and a client, and if a failure occurs then blame will indicate whether it is the
library or the client that has failed to conform to the declared types. Type-
Script TNG relies upon an equivalent of the rule for casting functions in λB.

Initial results on TypeScript TNG appear promising, but there is much to
do. We need to assess how many and what sort of errors are revealed by wrap-
pers, and measure the overhead wrappers introduce. It would be desirable to
ensure that generated wrappers never change the semantics of programs (save
to detect more errors) but aspects of JavaScript (notably, that wrappers affect
pointer equality) make it difficult to guarantee noninterference; we need to de-
termine to what extent these cases are an issue in practice. The current design
of TypeScript TNG is not space-efficient, and implementing a space-efficient
version and measuring its effect would be interesting future work.

7.5 Other Relevant Work

Abadi et al. (1991) study an early notion of type Dynamic. Floyd (1967)
and Hoare (1969) introduce reasoning about programs with pre- and post-
conditions and Meyer (1988) popularises checking them at runtime under the
name contracts. Findler and Felleisen (2002) introduce higher-order contracts
for functional languages.

Tobin-Hochstadt and Felleisen (2006) formalize the interaction between static
and dynamic typing at the granularity of modules and prove a precursor to
blame safety. Matthews and Findler (2007) define an operational semantics for
multi-language programs with static (ML) and dynamic (Scheme) components.
Gronski et al. (2006) present Sage, a gradually-typed language with refinement
types. Dimoulas et al. (2011, 2012) develop criteria for judging blame track-
ing strategies. Disney et al. (2011) extend contracts with temporal properties.
Strickland et al. (2012) study contracts for mutable objects. Thiemann (2014)
takes first steps towards gradual typing for session types.

Hinze et al. (2006) design an embedded DSL for contracts with blame assign-
ment in Haskell. Chitil (2012) develops a lazy version of contracts for Haskell.
Greenberg et al. (2010) study dependent contracts and the translation between
latent and manifest systems. Benton (2008) introduces ‘undoable’ cast opera-
tors, to enable a failed cast to report an error at a more convenient location.
Swamy et al. (2014) present a secure embedding of the gradually typed language
TS? into JavaScript.

Siek et al. (2009) explore design choices for cast checking and blame tracking
in the setting of the coercion calculus. Ahmed et al. (2011) extend the blame
calculus to include parametric polymorphism. Siek and Garcia (2012) define a
space-efficient abstract machine for the gradually-typed lambda calculus based
on coercions. Siek et al. (2015b) propose the gradual guarantee as a new criteria
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for gradual typing, characterizing how changes in the precision of type anno-
tations may change a program’s static and dynamic semantics. Wadler (2015)
surveys work on the blame calculus.

8 Conclusion

Findler and Felleisen (2002) introduced higher-order contracts, setting up a
foundation for gradual typing; but they observed a problem with space efficiency.
Herman et al. (2007, 2010) restored space efficiency; but required an evaluator
to reassociate parentheses. Siek and Wadler (2010) gave a recursive definition
of composition that is easy to compute; but the correctness of their definition
is not transparent. Here we provide composition that is easy to compute and
transparent. At last, we are in a position to implement space-efficient contracts
and test them in practice.

When Siek and Wadler (2010) was published we thought we had discovered
a solution that was easy to implement and easy to understand. Only later did
we realise that it was not quite so easy as we thought! We believe that the
presentation here provides a highly accessible foundation for future work on
advanced topics. For us, the lesson is clear: no matter how simple your theory,
strive to make it simpler still!
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