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A. Positive and negative subtyping

Lemma 1 (Positive and negative subtyping).

1. A<t Biff |A =% B|5C safec p.
2. A <:” Biff |A = B|5¢ safec p.

Proof. A <:* B implies |A =% B|®¢ safec pand A <:~ B implies |A == B|5C safec 7 is proved by mutual induction on the definition
of |[A = BIBC.

Cases for positive subtyping:

Case |t N L|BC = id, satisfies ¢ <:T ¢ and id, safec p.

Case|A — B=% A’ — B'|B¢ = |4’ =& A|B¢ — |B =% B’|BC. From the assumption A — B <:T A’ — B’, we obtain A’ <:~ A
and B <:* B’. By induction, we get that | A’ == A|5C safec p and | B == B’|5C safec p, which proves the claim.

Case |x =L «|B¢ = id, satisfies x <:T % and id, safec p.

Case |G == x|®C = G'!. Immediate because G' <:T .

Case |A =5 «|5¢ = |A =& G|BC; G where A # %, A # G, and A ~ G. Hence, it must be that G = « — xand A = A’ — B’
so that [A =5 G[B¢ = |A" — B’ =& x — (B¢ = |x =& A'|BC — | B’ =& 4|5, Since  <:~ A’ and B’ <:* «, the result holds by
induction.

Case |x == G|BC. Not applicable because » ¢: G.

Case |x =L A|BC where A # %, A # G, and A ~ G. Not applicable because x ¢: A.

Cases for negative subtyping:

Case |1 == 1|BC = iq, satisfies © <:~ ¢ and id, safec .

Case |[A — B = A’ — B'|B¢ = |4’ =& A®¢ — |B =& B’|®. From the assumption A — B <:~ A’ — B’, we obtain A’ <:T A
and B <:~ B’. By induction, we get that |4’ == A|® safec pand |B == B'|?¢

Case [x == «|5¢ = id, satisfies x <:~ % and id, safec p.

Case |G == x|®¢ = G'1. Immediate because G <:™ *.

Case |[A == +|B¢ = |A =& GIBC; G''. If A <:~ «, then it must be that A <:~ G. Hence, the claim holds by induction.

Case [x == G|B° = G7” is safe for pand x <:~ G holds.

Case [x == B|¢ = G77; |G =% B|®¢ (where B # %, B # G, and G ~ B). * <:~ B is satisfied regardless of B. Hence, it must be
that G = x — % so that B = A’ — B’ and we need to examine [ — x == A’ — B'|5¢ = |4’ =5 x[B¢ — |x & B/|BC. As A’ <:F «

and « <:~ B’ we can argue by induction that | A’ == x|BC safec 7 and |« == B’|% safec p.
The reverse implication is proved by similar mutual induction on the definition of the translation. O

‘BC

safec p, which proves the claim.



B. Bisimulation between coercions and threesomes
Here we give the full proof of Proposition 16.

Lemma 2 (Compose Identity Threesomes). s § |ida|“® = s and |ida|“ §s =5
Proof. The proof is a straightforward induction on s and A. O

Lemma 3. If M (s) —* Vi and Vi (t) —* Vs,
then M {sst)y —" Va.

Proof of Proposition 16. Part 1 and 2. We proceed by case analysis on M = M’, in each case proving the two statements:

1. If M —¢ N then M’ —¢ N’ and N ~ N’ for some N'.
2. If M' —ss N’ then M —¢ N and N ~ N’ for some N.

(Here we assume parts 3 and 4, which we later prove independently.)

Case WBoth statements are vacuously true because k cannot reduce.
7 ~ _'l
Case {,V[ ~M

op(M) ~ op(M’)

op(k) ~~ op(M’)
\\\ J/

-

op(k)

i

- -

d(op, k) ~~ 6(op, k)
2 op(M) ~~ op(K)
|

-

op(k)

"

8(op, k) ~~ &(op, k)

Case ————
TR
Both statements are vacuously true because = cannot reduce.
M=~ M
Case

v A M =~ \x:A. M’
Both statements are vacouously true because lambda terms cannot reduce.
My ~ M { My =~ Mé

Case —
My My =~ Ml MQ

1. We proceed by case analysis on M = M; M —c N. So either M; reduces, M5 reduces, or they are both values.
Suppose M; reduces, i.e., My —c Ms. From M; M ~ M’, we have M’ = M/ M} and M; ~ M/ and M> ~ M}. By the induction
hypothesis, M{ —& M} and M3 ~ M}. So M{ M5 —& M5 M5 and Ms My ~ M} M3,

The case for M, reducing is essentialy the same as for M; reducing.
Suppose M and Mo are values. We proceed by cases on M.
e My = k: M cannot reduce;
e My = Ax:A. Mi;: part of beta redex, see (a) below;
e My = V{c — d): part of coercion redex, see (b) below;
e My = V{G"): M cannot reduce.
Let Vo = Mos.
(a) ()\:L‘A M11) V2 —C Mu[x = V] We have

I

Vivs
then proceed by case analysis on (Az:A. M11) ~ V7.



M1 ~ My,

Subcase y
Av:A. My ~ Ax:A. M1,

(Az:A. M11) Vo ~~ (A\z:A. M1,) V3
M11[$ = VQ] ~— M{l[m = ‘/2/]
Az A. Mll ~ Ul
Az A. My ~ U'{|ida_5|®)

()\.’L'A M11) V2

Subcase

U’ (|1da—5|S) V4

i

(U V3({|ida|®))(|id5|=)

(AL Miy) VE{[1d.]%)){|1d5(5)

i

Mu[z = Vo]~~~ My [z = V3(|ida|<)](|id5[<)

(b) (V{c—d)) W —c (VW(c))(d)
We proceed by induction on V(¢ — d) & Mj. There are two cases to consider. (Rule (iii) does not apply because the premise would
relate a value to a function application.)
Subcase rule (i).

V{e—d) ~ M{; F V{c—d): A—B
V{c—d) = M{,{ida—1idp)
We have M{, —* V{; and V(¢ — d) ~ V{; by induction. So we have V{; = U’ {(s1 — s2)§|c — d|°) and V ~ U’ (51 — s2).

(V{c—d)) W

(M{1{ida—idg)) M}

}

U'{(s1 — s2) 3]c — d|®)(ida—idp) V3

)

U'{(s1 — s2) ¢ |c — d|*® 3 (ida—idp)) V4

Lemma 2

c—d|%) V3

(V- W{e))(d)

(U'((s1 — 52) 3

The left is related to the right by rule (iii).
Subcase rule (ii).

(V{e—d)) W ~~ (M{,(s3]c| — |d|)) M3
|
(V W{c))(d)

because
W ~ M,

V a Mi,(s) W (c) ~ Mj(|c|*®)
V W (c) ~ (Mi1(s)) (M5(|c|®))
(V W{e))(d)y ~ (Mi1(s§|c| — |d|°)) M}

2. We proceed by case analysis on M; Mj —ss N’.

(@) Case (A\z:A. M{1) V3 —s Mii[z := V3]

My My ~~—~~ (Az:A. M{,) Vs

-

(Az:A. Myy) Va

L

Mufa := Vo]~ Mgz := V3]



(b) Case (U'(s — t)) W' —s (U’ W' (s))(t)

My M

b

(Vi{en—dn) - - {(c1—dr)) Vo

|

(Vi (Va(er) -+ (en)))(dn) - -+ (dr) ~~ (U" W'(s))(t)

(U'(s — 1)) W'

M1 ~ M{ |C‘CS =8
Mi{c) = Mi(s)

Case

. We proceed by case analysis on M;{c) —c N.
(a) Case Vi(ida) —c V1

Vi(ida) ~~ M (]ida|®®)

i ¢

Vi~ Vi (]1da )
(b) Case V1{G!){G??) —c W1
VI{G1)(G?PY ~~ M{(|ida|®; G 5 G?P;|ide|®)

}

V{{|ide|®®; G § G7P; |ide|®S)

J

Vi %

(c) Case Vi{G')(H?P’) — blame p

Vi(G)(H?") ~~ Mi(|ide|®; G 5 H??; |idn|“)

My <J-iaB>

i

blame p blame p

(d) Case Vi{c;d) —c Vi{c)(d)
Vi{e;d) ~~ Mi(t)
Vi{e)(d)
(e) Case Vi(L%_ z) —c blamep
Vidlisp) ~~ Mi(Lh_ 5)

i )

blame p ~~~~ blame p

. We proceed by case analysis on M7 (t) —s N'.
(a) Case U'(id,) —s U’

My {id,) ~~ U’{id,)

|

Vi(id,)

|

Vi

U/



(b) Case U'(id,) —s U’
M {id,) ~~ U’{id,)

Vi{idy)

|

1

U/
(c) Case My(s')(t) —s My(s' §t)
Mi(c) ~~ M(s")(t)
Mi(c) ~~ Ma(s'5t)
We have M; ~ M;(s') and therefore M (c) ~ M5(s’ 3t).
(d) Case U'{L%_ z) —s blamep

M (J-Z:B> -~ U/<iz;x:>3>
|
% <l§\:>B>

i

blame p ~~~~ blame p

My~ M{(s) |¢|® =t

Case S
Mi{(c) ~ Mi{sst)

1. We proceed by case analysis on M;{c) —c N.
(a) Case Vi(ida) —c Vi

Vi(ida) ~~ Mi(s

VT

\%1

ida|®®)

(b) Case V1 {G'){(G??Y —c W1
Vi{GWY(G?P) ~~ M{(s' 3G §G?P)

l

H
Vi Mi(s')

(c) Case Vi{G!')(H?P’) — blame p

VI(GV)Y(H?P) ~~ My (s' G § H?P; |idu|*)

M <LZ¢B>

L

blame p

blame p
(d) Case Vi{c;d) —c Vi{c)(d)
Vi{c;dy ~~ Mi(ss3t)
Vi (C¢> (d)r/f
(e) Case Vi(L%_ z) —c blamep
Vi(Lh o ) ~~ Mi(s5 15 )

M{ <J—I,74/:>B>

)

blame p ~~~~~ blame p



2. We proceed by case analysis on M1 (s $t) —s N'.
(a) Case U'(id,) —s U".
There are two cases for s § ¢t = id,:

i.s=t=1id,
Mi(id,) ~~ U'(id,)
Vi(id.)
Vi o
iil. s = id,;¢! and t = (?P;id,. In that case, the assumption is My ~ U’(id,;¢!). By inversion, M7 = Mi1{:!) and

M, =~ U’{(id,). By further inversion, M1, =~ U’. Hence:
M11<L!><L?p> ~ U/<idL>

Vo

Vie!)(e?P)

i

%1

Ul
(b) Case U'(id,) —s U’
M (idy) ~~ U’{id,)

e

Vi(id.)

\

Vi

U/
(c) Case M(s')(s3t) —s Ms(s"§s5t)
Mi(c) ~~ Mj(s') (s 5t)

)
H ’

Mi{c) ~~ M;3(s'555t)

We have M, = M3 (s')(s) and therefore My =~ M} (s’ 3 s). With |t|> = c we conclude M;{c) ~ M5{s' §s3t).
(d) Case U'{L%_ z) —s blamep
There are three ways that we could have s ¢t = L%, _ .
i.s=(g;G!),t = (H?P;1%)

M1 (C)

)

Vi(GY) (HPY - -

i

blame p ~~~~~ blamep

U'(Lhsp)

ios=1%_,
We have M1 ~ U’(_L% _ ;) so by the induction hypothesis M1 —"* blame p.

Mi{c) ~~ U(L4_ p)

i }

blame p ~~—~ blame p
iii. t = J_ZQB
M, <J-£1:>B> -~ U/<J-€X:>B>
v
Pad
Vlu—i:B)

i

blame p blame p



My ~ Mi(s) Mj(ta)  1d| =t
M1<d> ~ M{(S H (t1—>t2)> Mé

Case

—

. We proceed by case analysis on M;{(d) —c N, but every case is vacuously true because they require M; to be a value, but M,
corresponds to a function application.

2. We proceed by cases on M7 (s § (t1—t2)) My —s N'.
We have My ~ U'(s1—s2) W {t1).
So My = (M -+ Ms{c){c1)---)---(d1)
where |c—d|® = t,—t»
and |c1—dy; -+ cn—dn | = s1—50.

(MQ..(Ck—)dk> M3<C> <61>)<d1><d) ~— U/<S1—>52 $t1—>t2> w'’

|

(Va..{cro—dy,) Va(c){c1)..)..{d1){d)

|

(Vo W{e)(er)-{en)){dn).{d1){d) ~~~ (U" W'(t1551))(s2 5 t2)

Part 3. We show that the term M’ on the right can become a value V' that corresponds to V. We proceed by induction on V.
Case V = k. We proceed by cases on k = M’, but we only have one case to consider.

Subcase WTake V' =k

Case V = Az:A. N. We proceed by induction on (Az:A. N) ~ M’.
~ !

Subcase N~N

Ax:A. N ~ \x:A. N’
We take V' = Az:A. N'.

Me:A.N =~ M{ |ida_p|® =ida — idp

Az:A. N =~ M{(ids — idg)
By the inner induction hypothesis we have the following.

Subcase

Ax:A. N ~~~ Mj(ida—idp)

|

Vi(ida—idp)
Now suppose V{ = Az:A. N'. Then V{{ida—idg) is a value.
On the other hand, suppose V] = U’ (s’ —t'}.

Ae:A. N ~~~ U'(s'=t') (ida—1idB)

T

U'(s'—t")

Case V = Vi {G''). We proceed by induction on V1 {G') ~ M’. There is one case to consider. (Rule (iii) does not apply because the
premises would relate a value to a function application.)
Subcase rule (i)

Vi(G') ~ M|
Vi(G1) ~ Mj(]id.|®)

Vi{G!) ~~~ Mi(id.)

|

Vi(id.)
Vi(G") %4
Subcase rule (ii)
Vi = Mi(s)

V(G ~ Mi(s51GY)



The inner induction hypothesis gives us 7, ~ M (s)

Vi
Suppose V{ = k. Then k(|G'1|“®) is a value. By Lemma 3 we have

k(G1) ~~ Mi(s5|GY)
K(IGI)
Suppose V{ = Az:A. N'. Then (Az:A. N'){(|G'!|) is a value. By Lemma 3 we have
Vi(G")

Mi(s5G1)

|

(z:A. N'){(|G1 )

Suppose Vi = U’{g; H'). Then V{ has type *, but that contradicts it having type G.
Suppose Vi = U’ (s’ — t'). We have

VI(GY) ~me U'(s" — )(|G1)

RV
L i
~
U((s" = t');GY)
By Lemma 3 we conclude
Vi(G) M (s31G1[5)

|

U'{(s" —t);G)

Case V = Vi{c — d). We proceed by induction on Vi{c — d) ~ M'. There are three cases to consider. (Rule (iii) does not apply
because the premise would relate a value to a function application.)

Subcase rule (i)

Vi{c—dy~M; FVi{c=dy: A—»B  |ida—p|® =t
Vi{c — dy =~ Mi(t)

We have M; —* V{ and Vi {(c — d) =~ V7 by the inner induction hypothesis. We proceed by cases on V7’ with the knowledge that it is of
function type.

Suppose V{ = Az:A.e. Then V{(ida — idp) is a value and we relate the left to the right by rule (i).
Suppose Vi = U{c'—d').

Vife = d) ~~ U(d/—d')(|ida|S—[ida|®)

i

U{(c'—=d) 3 (|ida|®—[ida|®))

Lemma 2

U{(c'—d")

Vi{c — d)

Subcase rule (ii)
Vi M{(s) |c—=d=t
Vi{c— dy ~ Mi(s3t)
We have M{(s) —* V{ and V; =~ V/ by the inner induction hypothesis. Then applying some case analysis on V; we have V{ {|c|®® —
|d|®) — V' and V1 (c — d) ~ V"’ for some V'
Part 4. We show that the term M on the left can become a value that corresponds to V’. We proceed by induction on V.
Case V' = k. By inversion on M =~ k we have M = k, which is already a value, so we take V = M.
Case V' = A\z:A. N. By inversion on M ~ \z:A. N we have M = A\z:A. N' and take V = M.
Case V' = U’ (s — t). Inversion of M =~ U’(s — t) gives us two cases to consider.
Subcase for rule (i)

M~U FM:A |ida|®=s—t
M=U'{s—t)




By the induction hypothesis, M —¢& V where V' a U’. Then the left and right sides are related by rule (i).
Subcase for rule (ii).

]\41 ~ U/<sl> |C|CS — t/
Mi(c) = U'(s"5t')

We have M = M;{c) and (s’ §t') = s — t. By the induction hypothesis, M1 —¢ Vi where Vi = U’(s’). We proceed with a nested
induction on c.
Suppose ¢ = ida.

Vi(ida) ~~ U'(s' 5 |ida|®)

l

Wi

Lemma 2

U'{s")

Suppose ¢ = G'!. Then t' = |G'!|“> = |id¢|“®; G, but that contradicts (s' §t') = s — t.
Suppose ¢ = G?P. Then t' = G7P;|idg|®. With (s’ 3t') = s — t, we have s’ = (s — t); G. Then from Vi = U’ {(s — t); G!) we
have Vi = Vo{G") with Vo ~ U'(s — t) for some V5. So we obtain:

VI{G?P) ~~~ U'{(s — t); G § G?P;]idg|®®)

i

V2<G!><G?p> Lemma 2
Va U'{s —t)

Next suppose ¢ = ¢; — ca, then V3 (¢1 — ¢2) is already a value. From Vi & U’ (s") and |c|® = ¢’ we have Vi {c) ~ U’(s' 3t') by rule
(i).

Suppose ¢ = (c1;¢2). We have t' = |¢1|® § |c2|S. We obtain the following with two uses of the the inner induction hypothesis.

Vi{er; e2) U'(s' 3t')

i H

Vi{er)(c2) ~~U'(s" 5 |e1| 3

mi J}‘ﬂ“

Va{ca)

62|CS>

H
IH\L
\%!

Suppose ¢ = L% ;. Thent' = 1% _ pand (s’ 5t') = L _ 5, but (s’ §t') = s — ¢ so we have a contradiction.

Case V' = U{(g; G"). Considering M =~ U {g; G!), only rule (ii) applies.
Subcase (ii):
My = U(s)y || =t
Mi{c) ~ U(s3t)

By the induction hypothesis, we have M1 —¢ V1 and Vi & U (s). We proceed by nested induction on c.
Suppose ¢ = id,.

Vi(ide) ~~ U(s 3 |id.|®)
i/ Lemma 2
\%4 U{s)
Suppose ¢ = H'!. Then we have Vi (H!) ~ U(s 3 |H!|®).

Suppose ¢ = H?P. Then t = |H?P|“® = H?P;|idg|“®. But that contradicts (s §t) = (g; G!).
Suppose ¢ = ¢1 — ¢2. Thent = |e1 — ¢2| = |e1]|“® — |c2|®. But that contradicts (s §t) = (g; GY).



Suppose ¢ = (c1; c2). We use the same reasoning as for the corresponding case in V' = U(s — t), that is, we obtain the following with
two uses of the the inner induction hypothesis.

Vi{cr;ca) U'(s' 3t')

i H

Vi{er)(c2) ~~ U'(s" 3 |c1|® 5 ]c2|®)

ml

Va{e2) H
[H\L
Vs
Suppose ¢ = L% 5. Thent' = L% _ pand (s’ §t') = LP _ 5, but (s’ §t') = (g; G!) so we have a contradiction.
Part 5 and 6.
Case

blame p =~ blame p



C. Translation is bisimilar
Here we sketch the proof of Proposition 17.

Proposition 17. M ~ | M|,

Proof. (Sketch). By induction on M. The only non-trivial case is for M {c) where we need to apply rules (i) and (ii) to establish =. In all
other cases, the congruence rules are sufficient. O



