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Abstract
Contracts, gradual typing, and hybrid typing all permit less-precisely typed and more-precisely
typed code to interact. Blame calculus encompasses these, and guarantees blame safety: blame
for type errors always lays with less-precisely typed code. This paper serves as a complement to
the literature on blame calculus: it elaborates on motivation, comments on the reception of the
work, critiques some work for not properly attending to blame, and looks forward to applications.
No knowledge of contracts, gradual typing, hybrid typing, or blame calculus is assumed.
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1 Introduction

Findler and Felleisen (2002) introduced two seminal ideas: higher-order contracts to dynam-
ically monitor adherence to a type discipline, and blame to indicate which of two parties is at
fault if the contract is violated. Siek and Taha (2006) introduced gradual types to integrate
untyped and typed code, while Flanagan (2006) introduced hybrid types to integrate simple
types with refinement types. Both used similar source languages, similar target languages
with explicit casts, and similar translations between source and target. Both depended upon
contracts, but neither used blame.

Motivated by the similarities between gradual and hybrid types, Wadler and Findler
(2009) introduced blame calculus, which unifies the two by encompassing untyped, simply-
typed, and refinement-typed code. As the name indicates, it also restores blame, which
enables a proof of blame safety: blame for type errors always lays with less-precisely typed
code—“well-typed programs can’t be blamed”. Blame safety may seem obvious (of course
the blame lies with the less-precisely typed code!), so why bother with a proof? Because
programming language researchers have learned that formal statement and proof help guide
sound language design.

Findler and Felleisen (2002) introduce blame, but give no general results on when blame
can or cannot arise. Tobin-Hochstadt and Felleisen (2006) and Matthews and Findler (2007)
both offer proofs that when integrating untyped and typed code, blame must always lay with
the untyped code; each requires a sophisticated proof based on operational equivalence. Siek
and Taha (2006) and Flanagan (2006) say nothing about blame safety, since they ignore
blame. Wadler and Findler (2009) generalise blame safety to levels of precision (untyped,
simply-typed, and refinement typed), and introduce a new proof technique that avoids oper-
ational equivalence, instead using the standard progress and preservation approach to type
soundness of Wright and Felleisen (1994).
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citations.
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Arguably, gradual and hybrid types can have a stronger foundation if based on blame
calculus (or some other formulation of blame). Subsequent work on gradual typing does
exactly this; Siek is a coauthor of several of the blame papers cited below. However, further
work on hybrid types continues to ignore blame.

Section 2 summarises blame calculus. Section 3 critiques two studies that relate contracts
to hybrid types. Section 4 makes some observations about notation. Section 5 discusses
related work, notably in industry. Section 6 speculates on who might benefit from blame.

2 Blame calculus in a nutshell

Blame calculus is developed in a series of papers. Wadler and Findler (2009) introduces the
calculus, which is based on casts, and applies it to gradual and refinement types. Siek and
Wadler (2010) observes that every cast can be decomposed into an upcast and a downcast,
and applies this to derive a new space-efficient implementation. Ahmed et al. (2011) extends
blame calculus to polymorphic types; remarkably, an untyped program cast to a polymorphic
type is guaranteed to satisfy relational parametricity—“theorems for free” (Reynolds, 1983,
Wadler, 1989). Siek et al. (2014) relates the blame calculus to two new calculi, one inspired
by the coercion calculus of Henglein (1994) and one inspired by the space-efficient calculus
of Herman et al. (2010), and shows that translations between the three are fully abstract.

From untyped to typed The blame calculus provides a framework for integrating
less-precisely and more-precisely typed programs. One scenario is that we begin with a
program in an untyped language that we wish to convert to a typed language.

Here is an untyped program.

dlet x = 2
let f = λy. y + 1 in
let h = λg. g (g x) in
h fe

The term evaluates to d4e : ?.
By default, our programming language is typed, so we indicate untyped code by sur-

rounding it with ceiling brackets, d·e. Untyped code is typed code where every term has the
dynamic type, ?. Dana Scott (Statman, 1991) and Robert Harper (Harper, 2012) summarise
this characterisation with the slogan “untyped is uni-typed”.

As a matter of software engineering, when we add types to our code we may not want
to do so all at once. Of course, it is trivial to rewrite a four-line program. However, the
technique described here is intended to apply also when each one-line definition is replaced
by a thousand-line module. We manage the transition between untyped and typed code by
a new construct with an old name, “cast”.

Here is our program, mostly typed, with one untyped component cast to a type.

let x = 2
let f = dλy. y + 1e : ? =⇒p Int→ Int
let h = λg:Int→ Int. g (g x)
in h f

The term evaluates to 4 : Int.
In general, a cast has the form M : A =⇒p B, where M is a term, A and B are types,

and p is a blame label. Term M has type A, while the type of the cast as a whole is B. The
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blame label p is used to indicate where blame lies in event of a failure. For instance, if we
replace

dλy. y + 1e by dλy. y > 0e

then the term evaluates to blame p, indicating that the party at fault is the term contained
in the cast labeled p. Cast failures may not be immediate: in this case, the cast fails only
when the function contained in the cast is applied and returns a boolean rather than an
integer.

Here is our program, mostly untyped, but with one typed component cast to untyped.

let x = d2e
let f = (λy:Int. y + 1) : Int→ Int =⇒p ?

let h = dλg. g (g x)e
in dh fe

Variables bound to untyped code or appearing in an untyped region must have type ?. The
term evaluates to d4e : ?.

Blame in a cast may lie either with the term contained in the cast or the context con-
taining the cast. For instance, if we replace

d2e by dtruee

then the term evaluates to blame p, indicating that the party at fault is the context con-
taining the cast labeled p. The complement of blame label p is written p. Complementation
is involutive, p = p.

When blame lies with the term contained in the cast (that is, a term with a cast labeled
p evaluates to blame p), we say we have positive blame, and when blame lies with the context
containing the cast (that is, a term with a cast labeled p evaluates to blame p), we say we
have negative blame.

In our examples, positive blame arose when casting from untyped to typed, and negative
blame arose when casting from typed to untyped. In both cases blame lies on the less
precisely typed side of the cast. This is no coincidence, as we will see.

From simply typed to refinement typed Refinement types are base types that
additionally satisfy a predicate. For instance, (x : Int){x ≥ 0} is the type of integers that
are greater than or equal to zero, which we abbreviate Nat. In general, refinement types
have the form (x : ι){M} where ι is a base type, and M is a term of type Bool.

Just as casts take untyped code to typed, they also can take simply-typed code to
refinement-typed. For example

let x = 2 : Int =⇒q Nat
let f = (λy:Int. y + 1) : Int→ Int =⇒p Nat→ Nat
let h = λg:Nat→ Nat. g (g x)
in h f

returns 4 : Nat.
As before, casts can fail. For instance, if we replace λy:Int. y + 1 by λy:Int. y − 2 then

the term evaluates to blame p, indicating that the party at fault is the term contained in the
cast labeled p. In this case, the cast fails when the function contained in the cast returns
−2, which fails the dynamic test applied when casting Int to Nat.

SNAPL
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Analogous to previously, positive blame arises when casting from simply-typed to refinement-
typed, and negative blame arises when casting from refinement-typed to simply-typed. As
before, in both cases blame lies on the less precisely typed side of the cast.

How blame works The blame calculus consists of typed lambda calculus plus casts
M : A =⇒p B and failure blame p. Let L,M,N range over terms, V,W range over values,
A,B range over types, and p, q range over blame labels.

We used the construct d·e to indicate untyped code, but it is easily defined in terms of
the other constructs. For instance, dλg. g 2e translates to

(λg: ? . (g : ? =⇒p1 ?→ ?) (2 : Int =⇒p2 ?)) : ?→ ? =⇒p3 ?

where p1, p2, p3 are fresh blame labels introduced by the translation.
The most important reduction rule of the blame calculus is the (Wrap) rule, which is

inspired by the handling of higher-order contracts in Findler and Felleisen (2002).

(V : A→ B =⇒p A′ → B′)W −→ (V (W : A′ =⇒p A)) : B =⇒p B′ (Wrap)

A cast of a function applied to a value reduces to a term that casts on the domain, applies
the function, and casts on the range. To allocate blame correctly, the blame label on the
cast of the domain is complemented, corresponding to the fact that the argument W is
supplied by the context. In the cast for the domain the types are swapped (A′ to A) and
the blame label is complemented (p), while in the cast for the range the order is retained (B
to B′) and the blame label is unchanged (p), corresponding to the fact that function types
are contravariant in the domain and covariant in the range.

It is straightforward to establish type safety, using preservation and progress as usual.

I Theorem 1 (Type safety).
1. If `M : A and M −→ N then ` N : A.
2. If `M : A then either

a. there exists a term N such that M −→ N , or
b. there exists a value V such that M = V , or
c. there exists a label p such that M = blame p.

Here type safety is a weak result, as it cannot rule out the possibility that a term reduces
to the form blame p, which is akin to a type error. How to guarantee blame cannot arise in
certain circumstances is the subject of the next section.

Blame safety The statement and proof of blame safety is relatively straightforward.
However, it requires four different subtyping relations: <:, <:+, <:−, and <:n, called ordi-
nary, positive, negative, and naive subtyping respectively.

Why do we need four different subtyping relations? Each has a different purpose. Rela-
tion A <: B characterizes when a cast from A to B never yields blame; relations A <:+ B

and A <:− B characterize when a cast from A to B cannot yield positive or negative blame,
respectively; and relation A <:n B characterizes when type A is more precise than type B.

We omit the details of the definitions here; see Wadler and Findler (2009). As is standard,
<:, <:+, and <:− are contravariant in the domain and covariant in the range of function
types, while <:n is (perhaps surprisingly) covariant in both the domain and the range.

These four relations are closely connected: ordinary subtyping decomposes into positive
and negative subtyping, which can be reassembled to yield naive subtyping.

I Lemma 2 (Tangram).
1. A <: B iff A <:+ B and A <:− B.



P. Wadler 313

Figure 1 Tangram as metaphor

2. A <:n B iff A <:+ B and B <:− A.

I named the result by analogy to the well-known tangram puzzle, where a square decomposes
into parts that recombine into a different shape (Figure 1).

We can now characterise under what circumstances reduction of a term can never blame
p.

I Definition 3. Term M is safe for label p, written M safe p, if every cast in M of the form
A =⇒p B satisfies A <:+ B, and every cast of the form A =⇒q B where q = p satisfies
A <:− B.

If M safe p then M 6−→∗ blame p. This is established via a variant of preservation and
progress.

I Theorem 4 (Blame Safety).
1. If M safe p and M −→ N then N safe p.
2. If M safe p then M 6−→ blame p.

The proof is by straightfoward case analysis of each of the reduction rules, and involves
checking that the reduction rules preserve the desired invariants. For instance, for (Wrap),

(V : A→ B =⇒p A′ → B′)W −→ (V (W : A′ =⇒p A)) : B =⇒p B′

we must check that if A → B <:+ A′ → B′ then A′ <:− A and B <:+ B′; and similarly
with <:+ and <:− interchanged. In fact, this easily follows from the definitions of <:+ and
<:−. While the basic proof of blame safety is mine, the formulation in terms of preservation
and progress is due to Robby Findler.

Let C range over contexts, terms containing a hole. Assume p and p do not appear in
context C or term M . Combining the Tangram Lemma with Blame Safety we can charac-
terise casts that never fail, and show that when casting between a less precise type and a
more precise type that the more-precisely-typed side of the cast is never to blame.

I Corollary 5 (Blame Theorem).
1. If A <: B then C[M : A =⇒p B] 6−→∗ blame p and C[M : A =⇒p B] 6−→∗ blame p.
2. If A <:n B then C[M : A =⇒p B] 6−→∗ blame p.
3. If B <:n A then C[M : A =⇒p B] 6−→∗ blame p.

The last two points are summarised by the motto “well-typed programs can’t be blamed”.
For instance, in the earlier examples, the untyped term in a typed context can never

blame the context because ? <:− Int → Int, while the typed term in an untyped context
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can never blame the term because Int → Int <:+ ?, and both of these follow from (and
indeed are equivalent to) Int→ Int <:n ?.

The result for ordinary subtyping is not nearly so useful as the results for naive subtyping.
Cast between ordinary subtypes, such as Int→ Nat <: Nat→ Int, rarely arise, while casts
between naive subtypes, such as Int → Int <:n Nat → Nat arise often. Despite this,
the literature often presents the result for ordinary subtyping, while the results for naive
subtyping are ignored.

An encouraging discovery and a disappointing reception I was amazed and
delighted to discover the Tangram Lemma. When defining the four relations, I had in mind
that <: should imply <:+ and <:−, and that <:n should imply <:+ and the converse of <:−.
But it was a complete surprise to find that the implications I had in mind could be replaced
by equivalences.

The Tangram Lemma convinced me that there must be mathematical substance to the
Blame Calculus. I felt less like I was inventing, and more like I was discovering. Interestingly,
I know of no analogues of the Tangram Lemma in other areas of mathematics, where two
relations refactor into two other relations.

So far as I can tell, I am alone in my enthusiasm for the Tangram Lemma and the Blame
Theorem. Others don’t find them as exciting as I do. Some reviewers found the Trangram
Theorem “unsurprising”. Michael Greenberg complains “blame safety is a trivial syntactic
property when you translate casts to coercions [as in Siek et al. (2014)]”. Perhaps one reason
for lack of enthusiasm is because the Tangram Lemma is stated in terms of four subtyping
relations, which may be three too many to easily absorb.

I’m particularly disturbed that researchers tend to formulate systems without comple-
ment, which renders the Blame Theorem impossible to formulate or prove, and which dis-
cards useful debugging information, as described in the next section.

3 To complement or not to complement?

Gronski and Flanagan (2007) relate the contracts of Findler and Felleisen (2002) to the
hybrid types of Flanagan (2006); and Greenberg et al. (2010) build on these results.

Interestingly, the cited works relate contracts where blame is complemented to casts
where blame is not complemented. This section begins by presenting a variation of their
results, using our casts with complement; and then compares it to their version, where casts
are not complemented.

I’ve translated the notation of the cited papers to the notation used here. Among other
things, “casts with complement” here corresponds to “casts with two blame labels” in those
papers; and “casts without complement” corresponds to “casts with one blame label”; see
“Two against one” in Section 4.

We write contracts of Findler and Felleisen (2002) as M @p A, indicating term M is
subject to contract A with blame label p. The equivalent of the (Wrap) rule is

(V @p A→ B)W −→ (V (W @p A)) @p B.

Observe the blame label p is complemented for the domain but not the range, just as with
(Wrap) in the blame calculus.

Gronski and Flanagan (2007) give a map φ from contracts to casts. It is defined using a
supplementary function that removes refinements to yield ordinary types.

b(x : ι){M}c = ι

bA→ Bc = bAc → bBc
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The key equation of the map from contracts to casts is

φ(M @p A) = φ(M) : bAc =⇒p φ(A) =⇒p bAc

(Here M : A =⇒p B =⇒q C abbreviates (M : A =⇒p B) : B =⇒q C.) The other equations
are homomorphic; and φ(A) applies φ to each termM in a refined type in A. The explanation
of this translation is straightfoward. The type system for contracts requires that a term M

with contract A must have type bAc, and after applying the contract it must have the same
type. Hence the two casts ensure the terms have the proper type, while the application of
φ(A) in the middle enforces the conditions imposed by the contract A.

However, the actual mapping given in Gronski and Flanagan (2007) and Greenberg et al.
(2010) use a variant of casts that does not complement the blame label, which we indicate
by adding a subscript no. The system is essentially identical to ours, save that the equivalent
of (Wrap) does not complement blame labels in the domain.

(V : A→ B =⇒p
no A

′ → B′)W −→ (V (W : A′ =⇒p
no A)) : B =⇒p

no B
′

The key equation of the translation is now

φ(M @p A) = φ(M) : bAc =⇒p
no φ(A) =⇒p

no bAc

The only difference in the equation is that the second cast, which was previously labelled p,
is now labelled p.

The reason why the version without complement works can be easily understood by an
application of the Blame Theorem. It is easy to see that a refinement type A is more precise
than the equivalent simple type bAc. Hence, in φ(M) : bAc =⇒p φ(A) =⇒p bAc the leftmost
cast can only blame p while the rightmost cast can only blame p. This is why using casts
without complement yields the same answer, by simply introducing the complement instead
as part of the translation.

Gronski and Flanagan (2007) observe that contracts with complement are potentially
more expressive than casts without complement. The mapping φ shows that expressiveness
is preserved, and they take this as a justification for limiting themselves to casts without
complement. Note that, ironically, the Blame Theorem, which depends upon casts with com-
plement, provides the easiest explanation why the casts without complement are adequate
for translating contracts with complement.

Greenberg et al. (2010) introduce the name “latent” for the system with contracts and
“manifest” for the system with casts. They note that either system can be formulated with
or without complement, arguing as follows. [I have updated their notation to match this
paper.]

This difference is not fundamental, but rather a question of the pragramatics of as-
signing responsibility: both latent and manifest systems can be given more or less
rich algebras of blame. Informally, a function contract check f @p A → B divides
responsibility for f ’s behaviour between its body and its environment: the program-
ming is saying “If f is ever applied to an argument that doesn’t pass A, I refuse
responsibility (blame p), whereas if f ’s result for good arguments doesn’t satisfy B,
I accept responsibity (blame p).” In a manifest system, the programmer who writes
f : A→ B =⇒p

no A
′ → B′ is saying “Although all I know statically about f is that its

results satisfy B when it is applied to arguments satisfying A, I assert that it’s OK
to use it on arguments satisfying A′ (because I believe that A′ implies A) and that
its results will always satisfy B′ (because I believe that B implies B′).” In the latter
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case, the programmer is taking responsibility for both assertions (so blame p makes
sense in both cases), while the additional responsibility for checking that arguments
satisfy A′ will be discharged elsewhere (by another cast with a different label).

However, this throws away useful information to no benefit. If one uses complement with
manifest casts, then blame p tells us the claim that A′ implies A is incorrect, while blame p
tells us the claim that B implies B′ is incorrect, a huge aid to debugging.

Whether one is interested in systems with complement depends on the the results one
finds of interest. If one has a sophisticated notion of subtyping, where (x : A){M} <: (x :
A){N} if M implies N for all x, then A → B <: A′ → B′ holds exactly when A′ implies
A and B implies B′. The system without complement is adequate if one’s interest is only
in clause 1 of the Blame Theorem (Corollary 5), showing that a cast A =⇒p B never fails
if A <: B, while the system with complement is essential if one’s interest is in clause 2 or
clause 3, showing that a cast A =⇒p B never blames p if A <:n B and never blames p if
B <:n A.

I argue it is better to formulate a system with complement. Complement yields useful
information for debugging; and without complement there is no way to formulate Blame
Safety or the Blame Theorem, and hence to assure that blame never lies with the more-
precisely-typed side of a cast. If for some reason one wishes to ignore the distinction between
p and p (for instance, because we want to assign responsibility to the same programmer in
either case), that is easy to do. But one should make the distinction and then ignore it; if
one fails to make the distinction from the start, then Blame Safety and the Blame Theorem
become impossible to prove. Above I’ve sketched a reformulation of Gronski and Flanagan
(2007) and Greenberg et al. (2010) in a system with complement, and it would be nice to
see this worked out in detail.

4 Notation

As observed by Whitehead (1911, Chapter V), notation can crucially effect our thought. I
expend much effort on choice of notation, yet often find I don’t get it right the first time.
This section reviews changes to notation for blame during a decade.

Two against one Findler and Felleisen (2002) indicate blame using a pair of labels, p
and n, standing for positive and negative blame; their version of (Wrap) swaps p, n so the
contract for the domain is labeled n, p. Wadler and Findler (2009) indicate blame with a
single label p; their (Wrap) complements p so the contract for the domain is labeled p. The
change is at best a small step forward, but nonetheless I am proud of it. Fewer variables is
better, and the abstract notion of complement may open the way to further generalisation.

Casts Siek and Taha (2006) write 〈B〉M to cast term M to type B. The type A of M
is is easily inferred, and is omitted to save space. But a consequence is that their equivalent
of (Wrap) must mix type inference and reduction. They use no blame labels.

Flanagan (2006) writes 〈ABB〉p M to cast term M from type A to type B. For me, the
idea that one might explicitly list both source and target types of the cast was an eye opener.
While too prolix for practice, it clarifies the core calculus by highlighting the contravariant
and covariant treatment of the domain and range in (Wrap). As explained in Section 3,
Flanagan’s interpretation of blame label p differs from ours, in that it lacks complement.

Wadler and Findler (2009) write 〈B ⇐ A〉p M to cast term M from type A to type B, a
variation of Flanagan (2006) that allows reading uniformly from right to left. Blame label
p now supports complement.
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Ahmed et al. (2011) write M : A =⇒p B to cast term M from type A to type B. I
remember the day we introduced the new notation: Amal Ahmed, Robby Findler, and myself
were hosted by Jacob Matthews at Google’s Chicago office, where we had an unused floor to
ourselves. I didn’t think direction of reading was a big deal, but I had underestimated the
extent to which my reading of prose influenced my reading of formulas. When we reversed
right-to-left to left-to-right it was as if a weight lifted from my brow!

The new notation suggests a natural abbreviation, replacing (M : A =⇒p B) : B =⇒q C

byM : A =⇒p B =⇒q C. Again, the abbreviation helped more than I might have imagined,
rendering rules and calculations far easier to read.

Refinement types and dependent function types I also want to draw attention
to an improvement in notation that had nothing to do with me.

In standard notation (found in Flanagan (2006) and many others), refinement types are
written {x : A |M [x]}, where x is a variable of type A, and M [x] is a boolean-valued term
that may refer to x; and dependent function types are written x : A → B[x], where x is a
variable of type A, and B[x] is a type that may refer to x. For instance,

x : {x : Int | x ≥ 0} → {y : Int | y ≥ x}

is the dependent function type that accepts a natural, and returns an integer greater than
its argument. A drawback of this notation is duplication of x, bound once in the refinement
type and again in the dependent function type.

An improved notation is suggested by Swamy et al. (2011) for F?, where refinement
types are written (x : A){M [x]}, and dependent function types are written as before. For
instance,

x : (x : Int){x ≥ 0} → (y : Int){y ≥ x}

is the dependent function type that accepts a natural, and returns an integer greater than
its argument. This notation lends itself naturally to the abbreviation

(x : Int){x ≥ 0} → (y : Int){y ≥ x}

which avoids the annoying duplication of x.
Interplay with implementation The choice between target-alone or source-and-

target casts is not only about concision versus clarity, but also relates to implementa-
tion. Simply-typed lambda calculus is typically written with types in lambda abstractions,
λx:A.N , which ensures each closed term has a unique type. But types play no part in the
reduction rules, and so can be erased before evaluation. As noted above, target-alone casts
must mix type inference and reduction in (Wrap), so erasure is not an option. However,
source-and-target casts need no type inference in (Wrap), and so support erasure. To be
precise, types may be erased in lambda abstractions (and related constructs), but source
and target types cannot be erased from casts.

Hence, a source language should use target-alone casts for concision, and translate to
an intermediate language with source-and-target casts to aid implementation. So far as
I know, this observation has not been written down previously. I think one reason why
is that authors are reluctant to make a claim—even if the point is as obvious as the one
made here—without either writing out the relevant bit of the theory or building an actual
implementation, both of which can be costly.

5 Practice and theory

Nothing is so practical as a good theory.
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C# C# introduces a type dynamic, which plays a role almost identical to our ?
(Bierman et al., 2010). As with gradual typing, a translation introduces casts to and from
dynamic where needed. However, the introduced casts are first-order; higher-order casts
must be written by hand, implementing the equivalent of (Wrap).

TypeScript TypeScript allows the programmer to specify in an interface declaration
types for a JavaScript module or library supplied by another party (Hejlsberg, 2012). The
DefinitelyTyped repository contains over 150 such declarations for a variety of popular
JavaScript libraries (Yankov, 2013). Interestingly, TypeScript is not concerned with type
soundness, which it does not provide, but instead with exploiting types to provide effective
prompts in Visual Studio, for instance to populate a pulldown menu with methods that
might be invoked at a given point.

TS? TS? is a variant of TypeScript which ensures type safety by assigning run-time
type information (RTTI) to some JavaScript objects (Swamy et al., 2014). One desirable
property of gradual typing is a type guarantee: any untyped program can be cast to any
type so long as its semantic properties correspond to that type. The embedding of untyped
programs into blame calculus satisfies the type guarantee, while the use of RTTI violates it.
Assessing the tradeoffs between blame calculus and TS? remains interesting future work.

TypeScript TNG In TypeScript, the information supplied by interface declarations
is taken on faith; failures to conform to the declaration are not reported. Microsoft has
funded myself and a PhD student to build a tool, TypeScript TNG, that uses blame calculus
to generates wrappers from TypeScript interface declarations. The wrappers monitor
interactions between a library and a client, and if a failure occurs then blame will indicate
whether it is the library or the client that has failed to conform to the declared types. Our
design satisfies the type guarantee described above.

Initial results appear promising, but there is much to do. We need to assess how many and
what sort of errors are revealed by wrappers, and measure the overhead wrappers introduce.
It would be desirable to ensure that generated wrappers never change the semantics of
programs (save to detect more errors) but aspects of JavaScript (notably, that wrappers
affect pointer equality) make this difficult in problematic cases; we need to determine to
what extent these cases are an issue in practice.

Wide-spectrum language Programming languages offer a range of type structures.
Here are four of the most important, listed from weakest to strongest:
1. Dynamic types, as in Racket, Python, and JavaScript.
2. Polymorphic types, as in ML, Haskell, and F#.
3. Refinement types, as in Dependent ML and F7.
4. Dependent types, as in Coq, Agda, and F?.
A variant of blame calculus augmented with polymorphic types, refinement types, and de-
pendent types might be used to mediate between each of these systems. Kinds or effects
could delimit where programs may loop and where they are guaranteed to terminate, as
required for the strongest form of dependent types. We hypothesise that a wide-spectrum
language will increase the utility of the different styles of typing, by allowing dynamic checks
to be used as a fallback when static validation is problematic.

6 Who needs gradual types?

I always assumed gradual types were to help those poor schmucks using untyped languages
to migrate to typed languages. I now realise that I am one of the poor schmucks. My recent
research involves session types, a linear type system that declares protocols for sending
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messages along channels. Sending messages along channels is an example of an effect. Haskell
uses monads to track effects (Wadler, 1992), and a few experimental languages such as Links
(Cooper et al., 2007), Eff (Bauer and Pretnar, 2014), and Koka (Leijen, 2014) support effect
typing. But, by and large, every programming language is untyped when it comes to effects.
To encourage migration from legacy code to code with effect types, such as session types,
some form of gradual typing may be essential.

Acknowledgements My thanks to Shriram Krishnamurthi, Sam Lindley, Don Sannella,
Jeremy Siek, and the staff of the Western General Hospital. This work is supported by
EPSRC Programme Grant EP/K034413/1.

References

A. Ahmed, R. B. Findler, J. G. Siek, and P. Wadler. Blame for all. In Principles of
Programming Languages (POPL), pages 201–214, 2011.

A. Bauer and M. Pretnar. An effect system for algebraic effects and handlers. Logical
Methods in Computer Science, 10(4), 2014.

G. Bierman, E. Meijer, and M. Torgersen. Adding dynamic types to C#. In European
Conference on Object-Oriented Programming, ECOOP’10. Springer-Verlag, 2010.

E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web programming without tiers. In
Formal Methods for Components and Objects, pages 266–296. Springer, 2007.

R. B. Findler and M. Felleisen. Contracts for higher-order functions. In International
Conference on Functional Programming (ICFP), pages 48–59, Oct. 2002.

C. Flanagan. Hybrid type checking. In Principles of Programming Languages (POPL), Jan.
2006.

M. Greenberg, B. C. Pierce, and S. Weirich. Contracts made manifest. In Principles of
Programming Languages (POPL), 2010.

J. Gronski and C. Flanagan. Unifying hybrid types and contracts. In Trends in Functional
Programming (TFP), Apr. 2007.

R. Harper. Practical foundations for programming languages. Cambridge University Press,
2012.

A. Hejlsberg. Introducing TypeScript. Microsoft Channel 9 Blog, Oct. 2012.
F. Henglein. Dynamic typing: Syntax and proof theory. Sci. Comput. Programming, 22(3):
197–230, 1994.

D. Herman, A. Tomb, and C. Flanagan. Space-efficient gradual typing. Higher-Order and
Symbolic Computation, 23:167–189, 2010.

D. Leijen. Koka: Programming with row polymorphic effect types. In Mathematically
Structured Functional Programming (MSFP), pages 100–126, 2014.

J. Matthews and R. B. Findler. Operational semantics for multi-language programs. In
Principles of Programming Languages (POPL), pages 3–10, Jan. 2007.

J. Reynolds. Types, abstraction, and parametric polymorphism. In R. E. A. Mason, editor,
Information Processing, pages 513–523. North-Holland, 1983.

J. Siek, P. Thiemann, and P. Wadler. Blame and coercions: Together again for the first
time. Technical report, University of Edinburgh, 2014.

J. G. Siek and W. Taha. Gradual typing for functional languages. In Scheme and Functional
Programming Workshop (Scheme), pages 81–92, Sept. 2006.

J. G. Siek and P. Wadler. Threesomes, with and without blame. In Principles of Program-
ming Languages (POPL), pages 365–376, 2010.

SNAPL



320 REFERENCES

R. Statman. A local translation of untyped [lambda] calculus into simply typed [lambda]
calculus. Technical report, Carnegie-Mellon University, 1991.

N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and J. Yang. Secure distributed
programming with value-dependent types. In International Conference on Functional
Programming (ICFP), Sept. 2011.

N. Swamy, C. Fournet, A. Rastogi, K. Bhargavan, J. Chen, P.-Y. Strub, and G. Bierman.
Gradual typing embedded securely in javascript. In Principles of Programming Languages
(POPL), Jan. 2014.

S. Tobin-Hochstadt and M. Felleisen. Interlanguage migration: From scripts to programs.
In Dynamic Languages Symposium (DLS), pages 964–974, Oct. 2006.

P. Wadler. Theorems for free. In Functional Programming Languages and Computer Archi-
tecture (FPCA), Sept. 1989.

P. Wadler. Comprehending monads. Mathemetical Structures in Computer Science, 2(4):
461–493, 1992.

P. Wadler and R. B. Findler. Well-typed programs can’t be blamed. In European Symposium
on Programming (ESOP), pages 1–16, Mar. 2009.

A. N. Whitehead. An Introduction to Mathematics. Henry Holt and Company, 1911.
A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Information and
Computation, 115(1):38–94, 1994.

B. Yankov. Definitely typed repository, 2013. https://github.com/borisyankov/
DefinitelyTyped.

https://github.com/borisyankov/DefinitelyTyped
https://github.com/borisyankov/DefinitelyTyped

	Introduction
	Blame calculus in a nutshell
	To complement or not to complement?
	Notation
	Practice and theory
	Who needs gradual types?

