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Abstract. We consider the relation of the dual calculus of Wadler
(2003) to the λµ-calculus of Parigot (1992). We give translations from the
λµ-calculus into the dual calculus and back again. The translations form
an equational correspondence as defined by Sabry and Felleisen (1993).
In particular, translating from λµ to dual and then ‘reloading’ from dual
back into λµ yields a term equal to the original term. Composing the
translations with duality on the dual calculus yields an involutive notion
of duality on the λµ-calculus. A previous notion of duality on the λµ-
calculus has been suggested by Selinger (2001), but it is not involutive.

Note This paper uses color to clarify the relation of types and terms,
and of source and target calculi. If the URL below is not in blue please
download the color version from

http://homepages.inf.ed.ac.uk/wadler/

or google ‘wadler dual reloaded’.

1 Introduction

Sometimes less is more. Implication is a key connective of logic, but for some
purposes it is better to define it in terms of other connectives, taking A ⊃ B ≡
¬A∨B. This is helpful if one wishes to understand de Morgan duality. The dual
of & is ∨, and ¬ is self dual, but the dual of an implication A⊃B is the difference
operator, B −A ≡ B & ¬A, which is not particularly familiar.

Church (1932) introduced the call-by-name λ-calculus, and a few years later
Bernays (1936) proposed the call-by-value variant. A line of work, including that
of Filinski (1989), Griffin (1990), Parigot (1992), Danos, Joinet, and Schellinx
(1995), Barbanera and Berardi (1996), Streicher and Reuss (1998), Selinger
(1998,2001), and Curien and Herbelin (2000), has led to a startling conclusion:
call-by-value is the de Morgan dual of call-by-name.

Wadler (2003) presents a dual calculus that corresponds to the classical se-
quent calculus of Gentzen (1935) in the same way that the lambda calculus
of Church (1932,1940) corresponds to the intuitionistic natural deduction of
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Gentzen (1935). The calculus possesses an involutive duality, which takes call-
by-value into call-by-name and vice-versa. A key to achieving this is to not take
implication as primitive, but to define it by taking A ⊃ B ≡ ¬A ∨ B under
call-by-name, or A⊃B ≡ ¬(A & ¬B) under call-by-value.

Wadler (2003) included a discussion of call-by-value and call-by-name CPS
translations from the dual calculus into the λ-calculus. Here we complete the
story by discussing a translation from the λµ-calculus of Parigot (1992) into the
dual calculus, together with an inverse translation. We will show that there is a
translation from the λµ-calculus into the dual calculus which forms an equational
correspondence, as defined by Sabry and Felleisen (1993).

Say we have a source and target calculus with equations defined on them,
writing

M =v N, M =v N

for equality in the source and target respectively, and

M∗, M∗

for translations from source to target and target to source respectively. We have
an equational correspondence if the following four conditions hold.

– The translation from source to target preserves equations,

M =v N implies M∗ =v N∗,

with M,N source terms.
– The translation from target to source preserves equations,

M =v N implies M∗ =v N∗,

with M,N target terms.
– Translating for source to target and then ‘reloading’ from target to source

yields a term equal to the original term,

(M∗)∗ =v M,

with M a source term.
– Translating for target to source and then ‘reloading’ from source to target

yields a term equal to the original term,

(M∗)∗ =v M,

with M a target term.

The existence of an equational correspondence shows in a strong sense that the
translation is both sound and complete with respect to equations. In particular
an equation holds in the source if and only if its translation holds in the target.

Wadler (2003) also presents a CPS translation from the dual calculus into
λ-calculus, again in both call-by-value and call-by-name variants. Composing



the translation from the λµ-calculus to the dual calculus with the CPS transla-
tion for the dual calculus yields the usual call-by-value and call-by-name CPS
translations for λµ, as studied by Hoffman and Streicher (1997) and Selinger
(2001).

Following the technique introduced in Sabry and Wadler (1997), it is shown
that the CPS translation for the dual calculus is a reflection, that is it both
preserves and reflects reductions. Every reflection is trivially an equational cor-
respondence, where equality is the reflexive, symmetric, and transitive closure
of reduction. Since equational correspondences compose, it follows immediately
that the CPS translation for λµ-calculus is also an equational correspondence.

Fujita (2003) also shows that the call-by-value CPS translation for λµ-
calculus is an equational correspondence; but says nothing about call-by-name.
The advantage of the proof here is that the CPS translation for λµ can be
computed by composing other translations, and that its properties follow im-
mediately from its construction by composition rather than requiring separate
proof.

Duality is a translation that takes the call-by-value dual calculus into the
call-by-name dual calculus, and conversely; that is, if two terms are equal in
the call-by-value calculus then their duals are equal call-by-name. Duality is an
involution; that is, the dual of the dual is the identity. It follows immediately
that duality is an equational correspondence.

Our type system corresponds to minimal logic, with types A & B, A ∨ B,
¬A, and A ⊃ B corresponding to ‘and’, ‘or’, ‘not’, and ‘implies’. (We would
have ¬A = A⊃⊥, if we had defined a type ⊥ corresponding to ‘false’.) Duality
exchanges ‘and’ with ‘or’, and ‘not’ is self dual. The dual of implication A⊃B =
¬A ∨ B is difference B − A = B & ¬A. (One can confirm this by checking
B −A = ¬(¬A⊃¬B).) We choose not to include difference in our type system,
because its computational interpretation is not familiar. (For one exploration
of what the computational interpretation of difference might be, see Crolard
(2004).) It follows that before we consider duality, we first must translate away
implications. We use the translation A ⊃ B = ¬(A & ¬B) for call-by-value and
A⊃B = ¬A ∨B for call-by-name.

We may derive a duality transform from λµ-calculus to itself by forming the
threefold composition of (i) the translation from λµ-calculus to dual calculus
with (ii) the duality translation from dual calculus to itself with (iii) the reloading
translation from dual calculus back to λµ-calculus; and follows immediately that
this is an equational correspondence. The same duality transform works for both
call-by-value and call-by-name.

Selinger (2001) also presents a duality transformation for λµ-calculus.
Selinger’s duality required some cleverness to construct — it answered an open
question of Streicher and Reuss (1998).

As one would hope, Selinger’s duality is an involution for the types corre-
sponding to ‘and’ and ‘or’. However, Selinger has no type corresponding directly
to ‘not’, so he is forced to consider what the dual of an implication might be.
Since he has no type corresponding to difference, he is forced to require two



distinct mappings, one from call-by-value into call-by-name and one from call-
by-name into call-by-value. Further, the composition of these maps does not
yield the identity but only the identity up to isomorphism of types. Here we
avoid the problem by adding a negation type to the λµ-calculus, requiring that
one translate implications before computing the dual. The result is that for us
duality on λµ becomes a proper involution.

The advantage of the proof here is that duality for λµ can be computed by
composing other translations, and that its properties follow immediately from
its construction by composition rather than requiring separate proof. Also, the
work here uses purely syntactic techniques, depending only on equations in the
λµ and dual calculi, with no reference to control categories or other semantic
frameworks.

Wadler (2003) considers reductions, while this paper considers equations. One
advantage of considering equations is that it is then easy to add (η) rules, which
are problematic for reductions in the presence of sums (see Balat, di Cosmo,
and Fiore (2004)). An interesting open question is whether one can replace the
equations of this paper by reductions (possibly omitting the (η) rules), and refine
the equational correspondence to a reflection.

This paper contains almost entirely new material as compared with Wadler
(2003). The description of the dual calculus overlaps with that paper, but the
relationship with λµ is entirely new, as is the treatment of η laws.

2 The λµ-calculus

The syntax and type rules of the λµ-calculus are shown in Figure 1. Follow-
ing Parigot (1993), we distinguish two main constructs, terms and statements
(Parigot called these unnamed terms and named terms.)

As usual, we require the body of a µ-abstraction to be a statement. We
provide two variants of λ-abstraction, one where the body is a statement (corre-
sponding to negation), and one where the body is an expressions (corresponding
to implication). Informally, one can think of these as related by the equation
¬A = A⊃⊥.

Let A,B range over types. A type is atomic X; a conjunction A & B; a
disjunction A ∨B; a negation ¬A; or an implication A⊃B.

Let x, y, z range over variables, α, β, γ range over covariables, M,N,O range
over terms, and S, T range over statements. A term is a variable x; a λ-
abstraction λx. S or λx.N ; a negation application O M (where O : ¬A); or a
µ-abstration µα. S. A statement is a function application O M (where O : A⊃B);
or a covariable application [α]M . The computational interpretation of a µ-
abstraction µα. S is to bind the covariable α and then evaluate statment S;
if during evaluation of S the covariable α is applied to a value, then that value
is returned as the value of the µ-abstraction; this is similar to the behaviour of
callcc in Scheme.

We also have products and sums. Products are constructed with pairing
〈M,N〉 and decontstructed with projections fst O and sndO. Following Selinger



Type A, B ::= X | A & B | A ∨B | ¬A | A⊃B

Term M, N, O ::= x | 〈M, N〉 | fst O | snd O | µ[α, β]. S |
λx. S | λx. N | O M | µα. S

Statement S, T ::= [α]M | [α, β]O | O M

Antecedent Γ ::= x1 : A1, . . . , xm : Am

Succedent Θ ::= β1 : B1, . . . , βn : Bn

Right sequent Γ ⇀ Θ | M : A
Center sequent Γ | S |⇀ Θ

Id
Γ , x : A ⇀ Θ | x : A

Γ ⇀ Θ | M : A Γ ⇀ Θ | N : B
&I

Γ ⇀ Θ | 〈M, N〉 : A & B

Γ ⇀ Θ | O : A & B
&E

Γ ⇀ Θ | fst O : A

Γ ⇀ Θ | O : A & B
&E

Γ ⇀ Θ | snd O : B

Γ | S |⇀ Θ, α : A, β : B
∨I

Γ ⇀ Θ | µ[α, β]. S : A ∨B

Γ ⇀ Θ, α : A, β : B | O : A ∨B
∨E

Γ | [α, β]O |⇀ Θ, α : A, β : B

x : A, Γ | S |⇀ Θ
¬I

Γ ⇀ Θ | λx. S : ¬A

Γ ⇀ Θ | O : ¬A Γ ⇀ Θ | M : A
¬E

Γ | O M |⇀ Θ

x : A, Γ ⇀ Θ | N : B
⊃I

Γ ⇀ Θ | λx. B : A⊃B

Γ ⇀ Θ | O : A⊃B Γ ⇀ Θ | M : A
⊃E

Γ ⇀ Θ | O M : B

Γ | S |⇀ Θ, α : A
Activate

Γ ⇀ Θ | µα. S : A

Γ ⇀ Θ, α : A | M : A
Passivate

Γ | [α]M |⇀ Θ, α : A

Fig. 1. Syntax and types of the λµ-calculus



Values V, W ::= x | 〈V, W 〉 | µ[α, β]. [α]V | µ[α, β]. [β]W |
λx. S | λx. N | fst V | fst W

Evaluation context E ::= {−} | 〈E, N〉 | 〈V, E〉 | fst E | snd E | E M | V E
Statement context D ::= [α]E | [α, β]E | E M | V E

(β&) fst 〈V, W 〉 =v V
(β&) snd 〈V, W 〉 =v W
(β∨) [α, β]µ[α′, β′]. S =v S{α/α′, β/β′}
(β¬) (λx. S) V =v S{V/x}
(β⊃) (λx. N) V =v N{V/x}
(βµ) [α]µα′. S =v S{α′/α}

(η&) V : A & B =v 〈fst V, snd V 〉
(η∨) M : A ∨B =v µ[α, β]. [α, β]M
(η¬) V : ¬A =v λx. V x
(η⊃) V : A⊃B =v λx. V x
(ηµ) M =v µα. [α]M

(name) D{M} =v (λx. D{x}) M
(comp) D{(λx. N) M} =v (λx. D{N}) M
(ς) D{µα. S} =v S{D{−}/[α]{−}}

Fig. 2. Equations of the call-by-value λµ-calculus

(β&) fst 〈M, N〉 =n M
(β&) snd 〈M, N〉 =n N
(β∨) [α, β]µ[α′, β′]. S =n S{α/α′, β/β′}
(β¬) (λx. S) M =n S{M/x}
(β⊃) (λx. N) M =n N{M/x}
(βµ) [α]µα′. S =n S{α′/α}

(η&) M : A & B =n 〈fst M, snd M〉
(η∨) M : A ∨B =n µ[α, β]. [α, β]M
(η¬) M : ¬A =n λx. M x
(η⊃) M : A⊃B =n λx. M x
(ηµ) M =n µα. [α]M

(ς∨) [α, β](µγ. S) =n S{[α, β]{−}/[γ]{−}}
(ς&) fst (µγ. S) =n µα. S{[α]fst {−}/[γ]{−}}
(ς&) snd (µγ. S) =n µβ. S{[β]snd {−}/[γ]{−}}
(ς¬) (µγ. S) M =n S{{−}M/[γ]{−}}
(ς⊃) (µγ. S) M =n µβ. S{[β]{−}M/[γ]{−}}

Fig. 3. Equations of the call-by-name λµ-calculus



(2001), we construct sums with a variant of the mu abstraction µ[α, β]. S, and
deconstruct sums with a variant of covariable application [α, β]O. The term
µ[α, β]. S constructs a sum: if α is passed a value of type A then the µ-abstraction
returns a left injection into the sum type A ∨ B, and if β is passed a value of
type B then the µ-abstraction returns a right injection into the sum type A∨B.
Conversely, the statement [α, β]O deconstructs a sum; the term O has a sum
type A ∨ B, and if it returns a left summand then covariable α is passed the
value of type A, while if it returns a right summand then covariable β is passed
the value of type B.

Substitution of a term for a variable is standard, but substitution for a covari-
able is slightly tricky. The notation used here is adapted from Selinger (2001).

Definition 1. (Substitution for a covariable) Let S be a statement, α a covari-
able of type A, and T{−} be a statement context with a hole accepting a term of
type A. We write

S{T{−}/[α]{−}}
for the substitution that makes the recursive replacements

[α]M 7→ T{M},
[α, β]O 7→ T{µα. [α, β]O},
[β, α]O 7→ T{µα. [β, α]O}.

Call-by-value equalities, written =v are shown in Figure 3, and call-by-name
equalities, written =n are shown in Figure 4.

For the call-by-value calculus we need a notion of value, and notions of eval-
uation and statement contexts. Let V,W range over values, E range over evalua-
tion contexts, and D range over statement contexts. A value is a variable, a pair
of values, an injection of a value, a function, or a projection from a value. An
evaluation context is a term with a hole, and a statement context is a statement
with a hole, such that any term substituted into the hole will be the next to be
evaluated. We write {−} for the hole; the result of placing term M into the hole
in an evaluation context E is written E{M}, similarly for statement contexts.

The rules are grouped as (β) rules, which reduce a deconstructor applied to a
contructor; (η) rules, which introduce a constructor applied to a deconstructor;
and some additional rules. In the call-by-value calculus, three rules are stated
with statement contexts. It is easy to prove, using (ηµ), that the rules also hold
when the statement context D is replaced with an evaluation context E. The
(name) rule introduces a name for the next term to be evaluated; it is similar to
the rules (let.1) and (let.2) in the λc-calculus of Moggi (1988) and the various
(let) rules in Selinger (2001). The (comp) rule is similar to the associativity rule
in the the λc-calculus of Moggi (1988), and the (let) rule in Selinger (2001).

(let.1) O M =v let z = O in z N
(let.2) V M =v let x = M in V x
(comp) let y = (let x = M in N) in O =v let x = M in let y = N in O

The (ς) rules of the call-by-value and call-by-name calculi are similar to the (ς)
rules of Selinger (2001).



As noted, implication can be defined in terms of the other connectives, but
different definitions must be used for call-by-value or call-by-name.

Proposition 1. Under call-by-value, implication may be defined by

A⊃B ≡ ¬(A & ¬B)
λx.N ≡ λz. (λx. (snd z) N) (fst z)
O M ≡ µβ.O 〈M,λy. [β]y〉

validating (β⊃), (η⊃), and the other equations for functions, and where the
translation of a function abstraction is a value.

Proposition 2. Under call-by-name, implication may be defined by

A⊃B ≡ ¬A ∨B
λx.N ≡ µ[γ, β]. [γ]λx. [β]N
O M ≡ µβ. (µγ. [γ, β]O) M

validating (β⊃), (η⊃), and (ς⊃).

3 The dual calculus

Figure 2 presents the syntax and inference rules of the dual calculus. Types,
variables, and covariables are the same as the λµ-calculus.

Let M,N range over terms, which yield values. A term is either a variable
x; a pair 〈M,N〉; an injection on the left or right of a sum 〈M〉inl or 〈N〉inr; a
complement of a coterm [K]not; a function abstraction λx.N , with x bound in
N ; or a covariable abstraction (S).α, with α bound in S.

Let K, L range over coterms, which consume values. A coterm is either a
covariable α; a projection from the left or right of a product fst[K] or snd[L]; a
case [K, L]; a complement of a term not〈M〉; a function application M @ L; or
a variable abstraction x.(S), with x bound in S.

Finally, let S, T range over statements. A statement is a cut of a term against
a coterm, M•K. Note that angle brackets always surround terms, square brackets
always surround coterms, and round brackets always surround statements. Curly
brackets are used for substitution and holes in contexts.

The type rules given here differ slightly from Wadler (2003), in that they are
presented in syntax-directed form; so thinning, exchange, and contraction are
built into the form of the rules rather than given as separate structural rules.

A cut of a term against a variable abstraction, or a cut of a covariable abstrac-
tion against a coterm, corresponds to substitution. This suggests the following
reduction rules.

(βL) M • x.(S) = S{M/x}
(βR) (S).α •K = S{K/α}

Here substitution in a statement of a term for a variable is written S{M/x},
and substitution in a statement of a coterm for a covariable is written S{K/α}.



Type A, B ::= X | A & B | A ∨B | ¬A | A⊃B

Term M, N ::= x | 〈M, N〉 | 〈M〉inl | 〈N〉inr | [K]not | λx.N | (S).α
Coterm K, L ::= α | [K, L] | fst[K] | snd[L] | not〈M〉 | M @ L | x.(S)
Statement S, T ::= M •K

Antecedent Γ ::= x1 : A1, . . . , xm : Am

Succedent Θ ::= β1 : B1, . . . , βn : Bn

Right sequent Γ → Θ | M : A
Left sequent K : A | Γ → Θ
Center sequent Γ | S |→ Θ

IdR
x : A, Γ → Θ | x : A

IdL
α : A | Γ → Θ, α : A

Γ → Θ | M : A Γ → Θ | N : B
&R

Γ → Θ | 〈M, N〉 : A & B

K : A | Γ → Θ
&L

fst[K] : A & B | Γ → Θ

L : B | Γ → Θ
&L

snd[L] : A & B | Γ → Θ

Γ → Θ | M : A
∨R

Γ → Θ | 〈M〉inl : A ∨B

Γ → Θ | N : B
∨R

Γ → Θ | 〈N〉inr : A ∨B

K : A | Γ → Θ L : B | Γ → Θ
∨L

[K, L] : A ∨B | Γ → Θ

K : A | Γ → Θ
¬R

Γ → Θ | [K]not : ¬A

Γ → Θ | M : A
¬L

not〈M〉 : ¬A | Γ → Θ

x : A, Γ → Θ | N : B
⊃R

Γ → Θ | λx.N : A⊃B

Γ → Θ | M : A L : B | Γ → Θ
⊃L

M @ L : A⊃B | Γ → Θ

Γ | S |→ Θ, α : A
RI

Γ → Θ | (S).α : A

x : A, Γ | S |→ Θ
LI

x.(S) : A | Γ → Θ

Γ → Θ | M : A K : A | Γ → Θ
Cut

Γ | M •K |→ Θ

Fig. 4. Syntax and types of the dual calculus



Value V, W ::= x | 〈V, W 〉 | 〈V 〉inl | 〈W 〉inr | [K]not |
λx.N | (V • fst[α]).α | (V • snd[β]).β

Evaluation context E ::= {−} | 〈E, N〉 | 〈V, E〉 | 〈E〉inl | 〈E〉inr

(β&) 〈V, W 〉 • fst[K] =v V •K
(β&) 〈V, W 〉 • snd[L] =v W • L
(β∨) 〈V 〉inl • [K, L] =v V •K
(β∨) 〈W 〉inr • [K, L] =v W • L
(β¬) [K]not • not〈M〉 =v M •K
(β⊃) λx.N •M @ L =v M • x.(N • L)
(βL) V • x.(S) =v S{V/x}
(βR) (S).α •K =v S{K/α}

(η&) V : A & B =v 〈(V • fst[α]).α, (V • snd[β]).β〉
(η∨) K : A ∨B =v [x.(〈x〉inl •K), y.(〈y〉inr •K)]
(η¬) V : ¬A =v [x.(V • not〈x〉)]not
(η⊃) V : A⊃B =v λx.((V • x @ β).β)
(ηL) K =v x.(x •K)
(ηR) M =v (M • α).α

(name) E{M} •K =v M • x.(E{x} •K)

Fig. 5. Equations of the call-by-value dual calculus

Covalue P, Q ::= α | [Q, P ] | snd[P ] | fst[Q] | not〈M〉 |
M @ Q | x.(〈x〉inr • P ) | y.(〈y〉inl • P )

Coevaluation context F ::= {−} | [L, F ] | [F, P ] | snd[F ] | fst[F ]

(β∨) 〈M〉inr • [Q, P ] =n M • P
(β∨) 〈N〉inl • [Q, P ] =n N •Q
(β&) 〈N, M〉 • snd[P ] =n M • P
(β&) 〈N, M〉 • fst[Q] =n N •Q
(β¬) [K]not • not〈M〉 =n M •K
(β⊃) λx.N •M @ L =n M • x.(N • L)
(βR) (S).α • P =n S{P/α}
(βL) M • x.(S) =n S{M/x}

(η∨) P : A ∨B =n [y.(〈y〉inl • P ), x.(〈x〉inr • P )]
(η&) M : A & B =n 〈(M • fst[β]).β, (M • snd[α]).α〉
(η¬) P : ¬A =n not〈([α]not • P ).α〉
(η⊃) M : A⊃B =n λx.((M • x @ β).β)
(ηR) M =n (M • α).α
(ηL) K =n x.(x •K)

(name) M • F{K} =n (M • F{α}).α •K

Fig. 6. Equations of the call-by-name dual calculus



A critical pair occurs when a covariable abstraction is cut against a variable
abstraction.

(S).α • x.(T )

Sometimes such reductions are confluent.

(x • α).α • y.(y • β)
↙ ↘

x • y.(y • β) (x • α).α • β
↘ ↙

x • β

But sometimes they are not.

(x • α).β • y.(z • γ)
↙ ↘

x • α z • γ

To restore confluence we must limit reductions, and this is achieved by adopting
call-by-value or call-by-name.

Call-by-value only reduces a cut of a value against a variable abstraction,
but reduces a cut of a covariable abstraction against any coterm.

(βL) V • x.(S) =v S{V/x}
(βR) (S).α •K =v S{K/α}

Value V replaces term M in rule (βL). A value cannot be a covariable abstrac-
tion, so this avoids the critical pair.

Call-by-name only reduces a cut of a covariable abstraction against a covalue,
but reduces a cut of any coterm against a variable abstraction.

(βL) V • x.(S) =v S{V/x}
(βR) (S).α •K =v S{K/α}

Covalue P replaces coterm K in rule (βR). A covalue cannot be a variable
abstraction, so this avoids the critical pair.

In λ-calculus, the move from call-by-value to call-by-name generalizes values
to terms. In dual calculus, the move from call-by-value to call-by-name general-
izes values to terms but restricts coterms to covalues, clarifying the duality.

Call-by-value equalities, written =v, are shown in Figure 5 and call-by-name
equalities, written =n, are shown in Figure 6.

Let V,W range over values. A value is a variable, a pair of values, a left or
right injection of a value, any complement, any function, or a projection from a
value.

Let P,Q range over covalues. A covalue is a covariable, a first or second
projection of a covalue, a case over a pair of covalues, any complement, an
application context where the second component is a covalue, or a left or right
injection into a covalue. Covalues correspond to a strict context, one that is
guaranteed to demand the value passed to it.



As before, the reduction rules are grouped into (β), (η,) (name) and (ς) rules.
The (name) rules correspond to the (ς) rules of Wadler (2003).

As before, implication can be defined in terms of the other connectives, but
different definitions must be used for call-by-value or call-by-name. Under call-
by-value function abstractions must translate to values, while under call-by-name
function applications must translate to covalues, and this is what forces different
definitions for the two reduction disciplines.

Proposition 3. Under call-by-value, implication may be defined by

A⊃B ≡ ¬(A & ¬B)
λx.N ≡ [z.(z • fst[x.(z • snd[not〈N〉])])]not
M @ L ≡ not〈〈M, [L]not〉〉.

validating (β⊃), (η⊃), and the other equations for functions, and where the
translation of a function abstraction is a value.

Proposition 4. Under call-by-name, implication can be defined by

A⊃B ≡ ¬A ∨B
λx.N ≡ (〈[x.(〈N〉inr • γ)]not〉inl • γ).γ
M @ L ≡ [not〈M〉, L].

validating (β⊃), (η⊃), and the other equations for functions, and where the
translation of a function application is a covalue.

4 Translations

We now consider the translation from the λµ-calculus to the dual calculus and
its inverse translation. The results of this section apply to all types, including
implication.

Definition 2. The translation from the λµ-calculus into the dual calculus is
given in Figure 7. It consists of two operations,

M∗, S∗.

– If M is a λµ term of type A, then M∗ is a dual term of type A.

Γ ⇀ Θ | M : A

Γ → Θ | M∗ : A

– If S is a λµ statement, then S∗ is a dual statement.

Γ | S |⇀ Θ

Γ | S∗ |→ Θ



(x)∗ ≡ x
(〈M, N〉)∗ ≡ 〈M∗, N∗〉
(fst O)∗ ≡ (O∗ • fst[α]).α
(snd O)∗ ≡ (O∗ • snd[β]).β
(µ[α, β]. S)∗ ≡ (〈(〈(S∗).β〉inr • γ).α〉inl • γ).γ
(λx. S)∗ ≡ [x.(S∗)]not
(λx. N)∗ ≡ λx.N∗

(O M)∗ ≡ (O∗ •M∗ @ β).β
(µα. S)∗ ≡ (S∗).α

([α, β]O)∗ ≡ O∗ • [α, β]
(O M)∗ ≡ O∗ • not〈M∗〉
([α]M)∗ ≡ M∗ • α

Fig. 7. Translation from λµ-calculus to dual calculus

(x)∗ ≡ x
(〈M, N〉)∗ ≡ 〈M∗, N∗〉
(〈M〉inl)∗ ≡ µ[α, β]. [α]M∗
(〈N〉inr)∗ ≡ µ[α, β]. [β]N∗
([K]not)∗ ≡ λx. K∗{x}
(λx.N)∗ ≡ λx. N∗
((S).α)∗ ≡ µα. S∗

(α)∗{O} ≡ [α]O
([K, L])∗{O} ≡ L∗{µβ. K∗{µα. [α, β]O}}
(fst[K])∗{O} ≡ K∗{fst O}
(snd[L])∗{O} ≡ L∗{snd O}
(not〈M〉)∗{O} ≡ O M∗
(M @ L)∗{O} ≡ L∗{O M∗}
(x.(S))∗{O} ≡ (λx. S∗) O

(M •K)∗ ≡ K∗{M∗}

Fig. 8. Translation from dual calculus to λµ-calculus

Definition 3. The translation from the dual calculus into the λµ-calculus is
given in Figure 8. It consists of three operations,

M∗, K∗{O}, S∗.

– If M is a dual term of type A, then M∗ is a λµ term of type A.

Γ → Θ | M : A

Γ ⇀ Θ | M∗ : A

– If K is a dual coterm of type A, and O is a λµ term of type A, then K∗{O}
is a λµ statement.

K : A | Γ → Θ Γ ⇀ Θ | O : A

Γ | K∗{O} |→ Θ

– If S is a dual statement, then S∗ is a λµ statement.

Γ | S |→ Θ

Γ | S∗ |⇀ Θ



In general, these translations do not preserve reductions, but they do preserve
equalities. We now present the detailed results to show that the translations form
an equational correspondence between the call-by-value λµ calculus and the call-
by-value dual calculus.

Proposition 5. (λµ reloaded) Translating from the λµ-calculus into the dual
calculus and then ‘reloading’ into the λµ-calculus gives a term equal to the orig-
inal under call-by-value,

(M∗)∗ =v M
(S∗)∗ =v S

with M a term and S a statement in λµ.

The two lines are shown by case analysis on terms and statements of λµ.

Proposition 6. (dual reloaded) Translating from the dual calculus into the λµ-
calculus and then ‘reloading’ into the dual calculus gives a term equal to the
original under call-by-value,

(M∗)∗ =v M
(K∗{O})∗ =v O∗ •K
(S∗)∗ =v S,

with M a term, K a coterm, and S a statement in dual, and O a term in λµ.

The three lines are shown by case analysis on terms, coterms, and statements
of dual.

Proposition 7. (λµ to dual preserves equalities) Translating from the λµ-
calculus into the dual calculus preserves call-by-value equalities,

M =v N implies M∗ =v N∗

S =v T implies S∗ =v T ∗,

with M,N terms and S, T statements in λµ.

The two lines are shown by case analysis on the equations of λµ that apply
to terms and statements respectively.

Proposition 8. (dual to λµ preserves equalities) Translating from the dual cal-
culus into the λµ-calculus preserves call-by-value equalities,

M =v N implies M∗ =v N∗
K =v L implies K∗{O} =v L∗{O}
S =v T implies S∗ =v T ∗,

with M,N terms, K, L coterms, and S, T statements in dual, and O a term in
λµ.



(X)◦ ≡ X
(A & B)◦ ≡ B◦ ∨A◦

(A ∨B)◦ ≡ B◦ & A◦

(¬A)◦ ≡ ¬A◦

(x)◦ ≡ x̄
(〈M, N〉)◦ ≡ [N◦, M◦]
(〈M〉inl)◦ ≡ snd[M◦]
(〈N〉inr)◦ ≡ fst[N◦]
([K]not)◦ ≡ not〈K◦〉
((S).α)◦ ≡ ᾱ.(S◦)

(α)◦ ≡ ᾱ
([K, L])◦ ≡ 〈L◦, K◦〉
(fst[K])◦ ≡ 〈K◦〉inr
(snd[L])◦ ≡ 〈L◦〉inl
(not〈M〉)◦ ≡ [M◦]not
(x.(S))◦ ≡ (S◦).x̄

(M •K)◦ ≡ K◦ •M◦

Fig. 9. Duality for the dual calculus

(x)◦{O′} ≡ [x̄]O′

(〈M, N〉)◦{O′} ≡ N◦{µβ. M◦{µα. [β, α]O′}}
(fst O)◦{O′} ≡ (λx. O◦{µ[β, α]. [α]x}) O′

(snd O)◦{O′} ≡ (λy. O◦{µ[β, α]. [β]y}) O′

(µ[α, β]. S)◦{O′} ≡ (λz. (λβ̄. (λᾱ. S◦) (fst z)) (snd z)) O′

(λx. S)◦{O′} ≡ O′ (µx̄. S◦)
(µα. S)◦{O′} ≡ (λᾱ. S◦) O′

([α]M)◦ ≡ M◦{ᾱ}
([α, β]O)◦ ≡ O◦{〈ᾱ, β̄〉}
(O M)◦ ≡ O◦{λx. M◦{x}}

Fig. 10. Duality for the λµ-calculus

The three lines are shown by case analysis on the equations of dual that
apply to terms, coterms, and statements respectively.

The four propositions above also hold for call-by-name. The restatement is
easy, simply replace =v and =v everywhere by =n and =n. However, while the
structure of the proofs is essentially the same, the new sets of reductions require
that one repeat the proofs entirely, since there is no simple, systematic relation
between the call-by-value and call-by-name reductions of λµ.

However, there is a systematic relation between the call-by-value and call-
by-name reductions of dual. We next consider how to characterize and exploit
this regularity.

5 Duality

We now review the results about duality for the dual from Wadler (2003), and
use these to derive similar results concering duality for the λµ-calculus. Since
duality is not defined for implication, before applying the results of this section
any occurrences of implication must be translated away, using the results given
previously.



The dual calculus is designed to exploit duality. Variables are dual to covari-
ables, pairs are duals to sums, complement is self dual, term abstraction is dual
to coterm abstraction, and cut is self dual. This can be captured in a translation
from the dual calculus into itself. The translation is involutive – that is, it is its
own inverse – and it carries call-by-value equations into call-by-name equations,
and vice versa. So it is an equational correspondence.

We assume a one-to-one correspondence between variables and covariables.
Each variable x corresponds to a covariable x̄, and each covariable α corresponds
to a variable ᾱ, such that ¯̄x ≡ x and ¯̄α ≡ α. For instance, we might take
x̄ ≡ α, ȳ ≡ β, z̄ ≡ γ, and hence ᾱ = x, β̄ = y, γ̄ = z.

Definition 4. The duality translation from the dual calculus to itself is given in
Figure 9. It consists of operations on types, terms, coterms, and statements,

A◦, M◦, K◦, S◦.

– If A is a type, then A◦ is the dual type. This extends to environments
and coenvironments. If Γ ≡ x1 : A1, . . . , xm : Am, its dual is Γ ◦ ≡
x̄m : A◦

m, . . . , x̄1 : A◦
1, and similarly for coenvironments.

– If M is a dual term of type A, then M◦ is a dual coterm of type A.

Γ → Θ | M : A

M◦ : A | Θ◦ → Γ ◦

– If K is a dual coterm of type A, and K◦ is a dual term of type A.

K : A | Γ → Θ

Θ◦ → Γ ◦ | K◦ : A

– If S is a dual statement, then S◦ is a dual statement.

Γ | S |→ Θ

Θ◦ | S◦ |→ Γ ◦

It is immediate from the definition that duality is its own inverse.

Proposition 9. (Involution) Duality is an involution up to identity,

(A◦)◦ ≡ A
(M◦)◦ ≡ M
(K◦)◦ ≡ K
(S◦)◦ ≡ S,

with A a type of dual, M a term of dual, K a coterm of dual, and S a statement
of dual.

For the dual calculus, call-by-value is dual to call-by-name. This is easily con-
firmed by inspection of the reduction rules; indeed, it was the principle guiding
their design.



Proposition 10. (Call-by-value is dual to call-by-name) Duality takes call-by-
value equalities into call-by-name equalities, and vice versa.

M =v N iff M◦ =n N◦

K =v L iff K◦ =n L◦

S =v T iff S◦ =n T ◦,

with M,N terms, K, L coterms, and S, T statements of dual.

An immediate consequence is that duality is an equational correspondence
between the call-by-value dual calculus and the call-by-name dual calculus.

We now extend the above results from the dual calculus to the λµ-calculus.
Using the translations of the previous section, we can compute duals for the

λµ-calculus by translating from λµ to dual, taking the dual, and then ‘reloading’
back into λµ.

Definition 5. The duality transformation from the λµ calculus to itself is given
in Figure 10. It consists of operations on types, terms, and statements, defined
as follows,

A◦ ≡ A◦

M◦{O} ≡ ((M∗)◦)∗{O}
S◦ ≡ ((S∗)◦)∗

– If A is a type, then A◦ ≡ A◦ is the dual type.
– If M is a λµ term of type A and O is a λµ term of type A◦, then M◦{O} is

a λµ statement.

Γ ⇀ Θ | M : A Θ◦ ⇀ Γ◦ | O : A◦

Θ◦ | M◦{O} |⇀ Γ◦

– If S is a λµ statement, then S◦ is a λµ statement.

Γ | S |⇀ Θ

Θ◦ | S◦ |⇀ Γ◦

In effect, we compose three equational correspondences (from λµ to dual,
from dual to itself, and from dual to λµ) to yield a new equational correspondence
(from λµ to itself).

It follows immediately that duality on λµ takes call-by-value into call-by-
name.

Proposition 11. (Call-by-value is dual to call-by-name, reloaded) Duality takes
call-by-value equalities on λµ into call-by-name equalities, and vice versa.

M =v N iff M◦{O} =n N◦{O}
S =v T iff S◦ =n T◦

Here M,N are terms and S, T are statements of λµ.



The proof is easy. For the first line, we have

M =v N
iff M∗ =v N∗

iff (M∗)◦ =n (N∗)◦

iff ((M∗)◦)∗{O} =n ((N∗)◦)∗{O}
iff M◦{O} =n N◦{O}

The second line is similar.

Proposition 12. (Involution, reloaded) Duality on λµ is an involution up to
equality,

µα. (M◦{ᾱ})◦ =v M
(M◦{O})◦ =v O◦{M}
(S◦)◦ =v S,

with M,O terms and S a statement of λµ.

This follows from Propositions 4.3, 4.4, and 5.2 We will prove the lines in
inverse order. The third line is easy,

(S◦)◦
≡ (((((S∗)◦)∗)∗)◦)∗
=v (((S∗)◦)◦)∗
≡ (S∗)∗
=v S.

The second line is only slightly harder,

(M◦{O})◦
≡ (((((M∗)◦)∗{O})∗)◦)∗
=v ((O∗ • (M∗)◦)◦)∗
≡ (M∗ • (O∗)◦)∗
≡ ((O∗)◦)∗{(M∗)∗}
=v O◦{M}.

The first line follows from the second,

µα. (M◦{ᾱ})◦
=v µα. ᾱ◦{M}
≡ µα. [α]M
=v M

Since all of the results of the preceding section hold with =v replaced by =n,
the same holds for the above. However, unlike the preceding section, we don’t
need to redo any complex case analyses; the additional results follow immediately
from the work done previously.

Selinger (2001) gives a duality for λµ that takes call-by-value into call-by-
name, but it is not involutive. There are two distinct translations to take call-by-
value into call-by-name and call-by-name into call-by-value. Futher, one trans-
lation followed by the other does not preserve types up to identity, only up



to isomorphism. However, closer inspection shows that the two translations are
identical on all components except function types, and agree with the duality
translation on λµ given here. The key difference is that here we have replaced
implication by negation in λµ, yielding a cleaner version of duality. Sometimes
less is more!
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