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ABSTRACT
This paper introduces a new way of attaching proof terms
to proof trees for classical linear logic, which bears a close
resemblance to the way that pattern matching is used in
programming languages. It equates the same proofs that
are equated by proof nets, in the formulation of proof nets
introduced by Dominic Hughes and Rob van Glabbeek; and
goes beyond that formulation in handling exponentials and
units. It provides a symmetric treatment of all the connec-
tives, and may provide programmers with improved insight
into connectives such as “par” and “why not” that are dif-
ficult to treat in programming languages based on an intu-
itionistic formulation of linear logic.

This paper uses colour to enhance its presentation. If the
URL below is not blue, follow it for the colour version.
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1. INTRODUCTION
Some distinctions are worth making, others are not.
Many proofs in sequent calculus contain inessential differ-

ences, for instance in the order of applying non-interfering
rules. Here are two proofs in classical linear logic which
differ in the order in which the two last rules are applied.

Id
A −→ A

NL
ANB −→ A

⊕R
ANB −→ A ⊕ C

Id
A −→ A

⊕R
A −→ A ⊕ C

NL
ANB −→ A ⊕ C

Jean-Yves Girard refers to inessential differences in proofs
as “the bureaucracy of syntax” [9], and he introduced proof
nets as a way to avoid such bureacracy [8]. The treatment
of the additives N and ⊕ in Girard’s original formulation
of proof nets was not very satisfactory, and an improved
formulation was put forward by Dominic Hughes and Rob
van Glabbeek [13].

This paper introduces a new way of attaching proof terms
to proof trees for classical linear logic, which bears a close
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resemblance to the way that pattern matching is used in
programming languages. It equates the same proofs that
are equated by proof nets, in the formulation of proof nets
introduced by Hughes and van Glabbeek [13]; and goes be-
yond that formulation in handling exponentials and units.
It provides a symmetric treatment of all the connectives,
and may provide programmers with improved insight into
connectives such as “par” (O) and “why not” (?) that are
difficult to treat in programming languages based on an in-
tuitionistic formulation of linear logic.

As is well known, proofs in the intuitionistic natural de-
duction of Gentzen [7] can be labeled with terms of the
simply-typed lambda calculus of Church [4, 5], in such a
way that reduction of terms corresponds to simplification of
proofs [11, 12]. The same idea extends to other logics and
computational calculi. Proofs in the intuitionistic natural
deduction formulation of the linear logic of Girard [8] can
be labelled with terms in calculi devised by Abramsky [1],
Benton, Bierman, Hyland, and de Paiva [2], and Wadler [16];
and proofs in the classical sequent calculus of Gentzen [7]
can be labelled with terms in calculi devised by Curien and
Herbelin [6] and Wadler [17]. This paper proposes proof
terms corresponding to a sequent formulation of classical
linear logic, combining ideas from the works cited above.

This paper presumes some familiarity with linear logic
and the use of the “formulas as types” to relate proofs and
programs. For a tutorial introduction, see [16].

The organization of this paper is as follows. Section 2 re-
views programming languages for intuitionistic linear logic.
Section 3 reviews the sequent formulation of classical linear
logic. Section 4 introduces proof terms for these sequents.
Section 5 introduces reduction and relates it to cut elimina-
tion. Section 6 sketches the relation to proof nets. Section 7
sketches an alternative formulation of proof terms.

2. PATTERN MATCHING
Here we give an intuitive introduction to the use of pattern

matching in proof terms for linear logic, using an intuition-
istic rather than a classical formulation.

Recall that linear logic provides two products. From the
additive product, ANB, one may extract either the first
component or the second component, but not both. We in-
dicate this with pattern matching, using a dash to indicate
which component is ignored.

Γ −→ MA Γ −→ NB
NI

Γ −→ MNNANB



Γ −→ MANB xA, Σ −→ NC
NE

Γ, Σ −→ case M of xN−. NC

Γ −→ MANB yB, Σ −→ NC
NE

Γ, Σ −→ case M of −Ny. NC

(Here the types are formulas of linear logic, which are labeled
with variables x, y, z on the left, and proof terms M, N, O
on the right.) We have the following reduction rules.

case MNN of xN−. O =⇒ O[M/x]
case MNN of −Ny. O =⇒ O[N/y]

From the multiplicative product, A⊗B, one must extract
both components.

Γ −→ MA Σ −→ NB
⊗I

Γ, Σ −→ M⊗NA ⊗ B

Γ −→ MA ⊗ B xA, yB, Σ −→ NC
⊗E

Γ, Σ −→ case M of x⊗y. NC

We have the following reduction rule.

case M ⊗ N of x ⊗ y. O =⇒ O[M/x, N/y]

Finally, for a sum one requires a case analysis.

Γ −→ MA
⊕R

Γ −→ M⊕−A ⊕ B

Γ −→ MB
⊕R

Γ −→ −⊕MA ⊕ B

Γ−→MA ⊕ B xA, Σ −→ NC yB, Σ −→ OC
⊕L

Γ, Σ −→ case M of x⊕−. N/−⊕y. OC

We have the following reduction rules.

case M ⊕− of x ⊕−. N/−⊕ y. O =⇒ N [M/x]
case −⊕ M of x ⊕−. N/−⊕ y. O =⇒ O[M/y]

The two proof trees from the introduction are in se-
quent style, rather than natural deduction style, but roughly
speaking we can assign them proof terms as follows.

Id
xA −→ xA

NL
zANB −→ case z of xN−. xA

⊕R
zANB −→ (case z of xN−. x)⊕−A ⊕ C

Id
xA −→ xA

⊕R
xA −→ x⊕−A ⊕ C

NL
zANB −→ case z of xN−. (x⊕−)A ⊕ C

These proofs do not differ in any essential way. This is
reresented by the following commuting conversion.

(case M of xN−. N) ⊕−
=⇒ case M of xN−. (N ⊕−)

Note that this commuting conversion is valid in a strict lan-
guage, but not a lazy one. This is one reason why this paper
uses a linear language, since linearity implies strictness.

Two proofs may also end in unrelated left rules, the order
of which does not matter.

Id
xA −→ xA

Id
yB −→ yB

⊗R
xA, yB −→ x⊗yA ⊗ B

NL
xA, vBND −→ case v of yN−. x⊗yA ⊗ B

NL
uANC, vBND −→ case u of xN−. (case v of yN−. x⊗y)A ⊗ B

Id
xA −→ xA

Id
yB −→ yB

⊗R
xA, yB −→ x⊗yA ⊗ B

NL
uANC, yB −→ case u of xN−. x⊗yA ⊗ B

NL
uANC, vBND −→ case v of yN−. (case u of xN−. x⊗y)A ⊗ B

This is indicated by a commuting conversion such as the
following.

case M of xN−. (case N of yN−. O)
=⇒ case N of yN−. (case M of xN−. O)

Again, note that this is valid in a strict language, but not a
lazy one.

In what follows, we build the notion of pattern matching
and case analysis into our proof terms, in a way that avoids
the need for commuting conversions. Above we have used
intuitionistic sequents, in which variables appear to the left
of the arrow and a single type labeled with a proof term
appears to the right. In what follows, we use a more sym-
metric classical linear logic, in which any number of types
can appear to either the left or right of the arrow.

3. CLASSICAL LINEAR LOGIC
This section presents classical linear logic with the full

complement of connectives as introduced by Jean-Yves Gi-
rard [8]. As noted by Benton, Bierman, Hyland, and de
Paiva [2] and Wadler [15, 16], some care is required in the
formulation of the rules for exponentials to ensure that sub-
stitution works smoothly. This paper uses a formulation in
which structural boxes delimit the use of weakening and con-
traction, based upon the two-zone “Logic of Unity” formu-
lation by Girard [10], and using ideas taken from Pfenning
[14] and Wadler [16].

The syntax of formulas and sequences appears on the first
three lines of Figure 1. A formula is a literal X, an addi-
tive ANB or A ⊕ B, a multiplicative A ⊗ B or AOB, an
involution A⊥, or an exponential !A or ?A. A formula se-
quence contains zero or more formulas, where each formula
may be unboxed A or boxed [A]; only boxed formulas will
be subject to weakening and contraction. We write Γ, ∆ for
concatenation of sequences and () for the empty sequence.
Concatenation of sequences is associative and and has the
empty sequence as left and right unit.

A sequent formulation of classical linear logic is shown in
Figure 2. Sequents take the form

Γ −→ ∆

where Γ and ∆ are formula sequences. The axiom rule, the
exchange rule, and the rules for additives, multiplicatives,
and involution are entirely standard. The rules for expo-
nentials are expressed using boxes to impose the structural
constraints, and there are weakening, contraction, and dere-
liction rules for boxes. Finally, there are three forms of Cut,



as used by Girard [10] and Pfenning [14]. The notation [Γ]
stands for a formula sequence in which all the formulas are
boxed.

If desired, the number of rules could be halved by elim-
inating rules whose names contain ⊕, 0, O, ⊥, and ?, and
replacing these connectives by their definitions as de Morgan
duals.

A ⊕ B = (A⊥
NB⊥)⊥ 0 = >⊥

AOB = (A⊥ ⊗ B⊥)⊥ ⊥ = 1⊥

?A = (!A⊥)⊥

4. PROOF TERMS
A sequent formulation of classical linear logic with proof

terms is shown in Figure 3. Sequents now take the form

GΓ
S

−→ I∆

Here Γ and ∆ are sequences of (possibly boxed) formulas,
as before; G is a matrix of patterns, I is a matrix of values,
and S is stack of statements. Patterns are deconstructors,
values are constructors, and statements are sequences of zero
or more cuts, where each cut matches a constructor with a
deconstructor.

For the simples sequents, we label each formula on the left
with a pattern pi, the middle with a statement s, and each
formula on the right with a value vj .

p1A1, . . . , pmAm
s

−→ v1B1, . . . , vnBn

A sequent in this form will be called a row sequent. (The
formulas may also be boxed, but for simplicity we don’t show
this.) More generally, we label each formula on the left with
a stack of patterns Pi, the middle with a stack of statements
S, and each formula on the right with a stack of values Vj .

P1A1, . . . , PmAm
S

−→ V1B1, . . . , VnBn

Each of the stacks Pi, S, and Vj has the same height. Hence,
we can regard the left as labeled with a matrix of patterns
G, the middle as labeled with a stack S, and the right as
labeled with a matrix of values I.

GΓ
S

−→ I∆

Here G, S, and I all have the same height, and the width
of G is the same as the length of Γ, and the width of I is
the same as the length of ∆. (The general notation restores
the possibility that formulas are boxed, since Γ and ∆ may
contain both unboxed and boxed formulas.) As we shall
see, this matrix formulation corresponds to a case analysis,
where each row corresponds to one case.

Let p, q range over patterns, v, w range over values, and s, t
range over statements. A pattern is a variable x, an additive
pattern pN− or −Nq (note there are two ways to deconstruct
an additive), a multiplicative pattern p⊗q (note there is just
one way to deconstruct a multiplicative), an involutive pat-
tern v⊥ (note this contains a value, not a pattern!), an expo-
nential pattern !p or ?[p.t] (note how the latter “boxes up”
an enclosed statement) and patterns for contraction p @ q,
weakening −, and dereliction [p]. Values are exactly dual. A
value is a covariable x̄, an additive value vN− or −Nw (note
there are two ways to construct an additive), a multiplica-
tive value v⊗w (note there is just one way to deconstruct a
multiplicative), an involutive pattern p⊥ (note this contains
a pattern, not a value!), an exponential pattern ![s.v] or ?p

(note how the former “boxes up” an enclosed statement) and
values for contraction v @ w, weakening −, and dereliction
[v]. A statement is a sequence of cuts, where cut matches a
value against a pattern, v •p. There are also two variants of
cut, that closely resemble the boxed forms of exponentials,
[s.v] • p and v • [p.t]. The forms ![s.v], [s.v], ?[t.p], [t.p] are
binding forms; the free variables and covariables are the free
variables and covariables of s or t without the free variables
of v or p.

In each row of a sequent, no variable or covariable will
appear free more than once, and a variable x appears if and
only if its matching covariable x̄ appears, hence there are
always an equal number of variables and covariables in each
row.

Sequence concatenation is written with a comma; it is
associative and has () as left and right unit. Stack concate-
nation is written with a slash; it is associative and has ∅ as
a left and right unit.

We extend operations on patterns, values, and statements
to operations on stacks in a natural way. When the two
stacks come from the same sequent (and thus must have the
same height) then the operation is applied pairwise, while
when the two stacks come from different sequents (and thus
may have different heights) then the operation is computed
as a cartesian product. Thus, in rule (⊗L) we have

P ⊗ Q =
p1 ⊗ q1 /
· · · /

pn ⊗ qn

where P and Q are both stacks of height n, while in rule
(⊗R) we have

V ⊗ W =

v1 ⊗ w1 /
· · · /

v1 ⊗ wn /
· · · /

vm ⊗ w1 /
· · · /

vm ⊗ wn

where V is a stack of height m and W is a stack of height n.
The most complex use of this convention is in rule (Cut), in
which we have

S, V • P, T =

s1, v1 • p1, t1 /
· · · /

s1, v1 • pn, tn /
· · · /

sm, vm • p1, t1 /
· · · /

sm, vm • pn, tn

where S and V are stacks of height m and P and T are
stacks of height n. Because of these cartesian products, the
size of the stacks may grow exponentially in the size of the
derivation. (We will discuss possible remedies for this in the
last section.)

Note that in the additive rules (NR) and (⊕L) the height
of the stack in the conclusion is the sum of the heights of
the stacks in the hypotheses, while in the multiplicative rules
(⊗R) and (OL) the height of the stack in the conclusion is
the product of the heights of the stacks in the hypotheses.

Example derivations without cuts are shown in Figure 4.
Part (a) shows two derivations of the sequent ANB −→

A⊕C from the introduction and Section 2, that differ in an



inessential way and yield identically labelled sequents.
Part (b) shows two derivations of the sequent

ANC, BND −→ A ⊗ B from Section 2, that differ in an
inessential way and yield identically labelled sequents.

Part (c) shows a derivation of the distributive law, A ⊗
(BNC) −→ (A ⊗ B)N(A ⊗ C).

Part (d) shows a derivation of the sequent A, B −→
(ANA)⊗(BNB). There are two sub-derivations with a stack
of height two, and the final derivation involves the cartesian
product of these, so has a stack of height four.

Example derivations with cuts are shown in Figure 5.
Part (a) shows derivations of the sequents A ⊗ B −→

B ⊗ A and B ⊗ A −→ A ⊗ B, each of which exchanges the
components of a tensor product. Cutting these against each
other yields a derivation of the sequent A ⊗ B −→ A ⊗ B,
which exchanges the components twice, and hence simplifies
to the identity.

Part (b) shows a similar derivation, where the multiplica-
tive ⊗ is replaced by the additive N. This time each sub-
derivation involves a stack of height two, and the final re-
sult requires a stack of four cuts. Two of these are consis-
tent, −Nȳ •−Nv and x̄N−•uN−, and two are inconsistent,
−Nȳ • uN− and x̄N− • −Nv. Reduction, as described in
the next section, eliminates the inconsistent cuts from the
stack.

Part (c) shows a derivation of !(A⊥
OA) −→ !(A⊥

OA)
that corresponds to the Church numeral two, in that it uses
the left-hand side twice in the proof of the right hand side.
Part (d) shows the result of cutting this derivation against a
copy of itself, which corresponds to two plus two, the Church
numeral four.

5. REDUCTIONS
Reduction rules for the calculus are shown in Figure 6.

Each statement in a stack of statements is reduced sepa-
rately. Because a reduction may replace a single cut by
more or fewer cuts, each statement in a stack of statements
may contain a different number of cuts.

The rule

(v ⊗ w) • (p ⊗ q) =⇒ v • p, w • q

is straightforward. It replaces one cut by a pair of smaller
cuts. An example of the application of this rule is shown in
Figure 5, part (a).

The rule

(vN−) • (−Nq) =⇒ ∅

uses ∅ to indicate that this cut is inconsistent, and the cor-
responding row should be eliminated from the stack of se-
quents. Note that a corresponding consistent cut, such as

(vN−) • (pN−) =⇒ v • p

will occur elsewhere in the same stack. An example of the
application of this rule is shown in Figure 5, part (b).

The rule

[s.v] • p @ q =⇒ X • X̄ ′@X̄ ′′, [s′.v′] • p, [s′′.v′′] • q

performs a contraction. We write X to stand for all the
free variables and covariables in [s.v], that is, all of the
free variables and covariables in s without those in v. If
X is x1, . . . , xm, ȳ, . . . , ȳn, then X • X̄ ′@X̄ ′′ stands for
x1 • x̄′

1@x̄′
1, . . . , xm • x̄′

m@x̄′
m, ȳ1 • y′

1@y′′
1 , . . . , ȳn • y′

n@y′′
n.

Primes indicate a renaming all free variables and covariables
in a pattern, value, or statement. An example of the appli-
cation of this rule is shown in Figure 5, part (d).

Similarly, the rule

[s.v] • − =⇒ X • −

performs weakening. As before, we write X to stand for
all the free variables and covariables in [s.v]. If X is
x1, . . . , xm, ȳ, . . . , ȳn, then X•− stands for x1•−, . . . , xm•
−, ȳ1 • −, . . . , ȳn • −.

Finally, the rule

[s.v] • [p] =⇒ s, v • p

performs dereliction. It removes the box that had sur-
rounded the statement s.

The rule

gΓ
s, x̄•p, t
−→ i∆ =⇒ g[p/x]Γ

s[p/x],t[p/x]
−→ i[p/x]∆

substitutes a pattern for a variable. Here g = p1, . . . , pm

is a row of patterns and i = v1, . . . , vn is a row of values.
We write g[p/x], s[p/x], t[p/x], i[p/x] to indicate substition
of the pattern p for the free occurrence of the variable x
in g, s, t, i; note that because of linearity, the variable will
appear in exactly one of these. Figure 5, parts (a), (b),
and (d) all demonstrate the application of this rule.

Reducing proof terms in this way corresponds precisely to
cut elimination.

Proposition 1. Let π be a proof annotated with proof

terms ending in the sequent

GΓ
S

−→ I∆.

Then there is a reduction of the corresponding proof term to

normal form

GΓ
S

−→ I∆ =⇒ HΓ
()

−→ J∆

if and only if eliminating all cuts in pi yields a proof anno-

tated with proofterms ending in the sequent

HΓ
()

−→ J∆.

6. PROOF NETS
This way of labelling sequents corresponds closely to the

form of proof nets described by Hughes and van Glabbeek
[13].

Hughes and van Glabbeek represent a proof net by a set
of linkings, consisting of axiom links on additive resolutions.
Their axiom links correspond to our pairing of a variable and
a covariable, x and x̄. Their additive resolutions choose one
argument of each additive, and correspond to our patterns
pN− and −Nq and our values vN− and −Nw. Each of their
linkings corresponds to a row in one of our derivations.

Hughes and van Glabbeek restrict their consideration, as
is usual in proof nets, to one-sided sequents where involution
is applied only to literals. More significantly, they do not
handle exponentials or units. In contrast, our formulation
handles all of classical linear logic.

For the subset of linear logic treated by Hughes and van
Glabbeek, our formulation corresponds precisely to theirs.



Proposition 2. Let π and π′ be two proofs in the one-

sided subset of classical linear logic considered by Hughes

and van Glabbeek, ending in the two annotated sequents

S
−→ I∆ and

T
−→ J∆

Then π and π′ are assigned the same proof net if and only if

the annotations are identical up to permutation of rows and

columns.

7. ALTERNATIVE FORMULATION
A drawback of the formulation proposed here is that the

height of the stack can grow exponentially in the size of
the derivation. This is not a problem for multiplicatives
or exponentials, but is a problem for any proof containing
additives. This section introduces an alternative formulation
which avoids that problem; but it introduces another, in that
although there is an initial correspondence between proof
trees and proof terms, it is not clear how to preserve this
correspondence as reduction proceeds.

The alternative formulation uses patterns and values as
before, and a slightly revised definition of statements which
includes not only sequence concatenation and the empty se-
quence as algebraic operations on statements, but also stack
concatentation and the empty stack.

s, t ::= v • p | [s.v] • p | v • [p.t] | s, t | () | s/t | ∅

When we write s/t, both s and t must contain the same free
variables.

Figure 7 shows the new assignment of proof terms to se-
quents. Sequents now have the form

x1A1, . . . , xmAm
s

−→ ȳ1B1, . . . , ȳnBn

where each fomula to the left is labeled with a variable
(rather than a pattern) and each formula to the right is
labeled with a covariable (rather than a value). As before,
formulas may also be boxed.

The reduction rules are as in Figure 6, except the rules
for substitution are simplified so that one only substitutes a
pattern or value into a statement, not into the surrounding
sequent.

s, x̄ • p =⇒ s[p/x] v • x, t =⇒ t[v/x̄]

Here s must contain x and t must contain x̄. In addition,
we now have the following distributive laws.

s, (t/u) =⇒ (s, t)/(s, u)
s, ∅ =⇒ ∅

We also add equivalences to capture the fact that the conca-
tentation of sequences and stacks are associative with units
() and ∅, and that the order of sequences and stacks is now
irrelevant.

s, (t, u) = (s, t), u s/(t/u) = (s/t)/u
s, () = s s/∅ = s
s, t = t, s s/t = t/s

The resulting set of rules is similar in some ways to that of
the Chemical Abstract Machine [3], but with the addition
of a stacking operator to handle additives.

Note that after reduction some cuts may remain, but these
will all be of the form x̄ • p where x labels a formula on the
left of the sequent, or v • x where x̄ labels a formula on the
right of the sequent.

The problem with this alternative formulation is that al-
though it is clear how initally a proof tree may be assigned a
proof term, and it is clear how to reduce the proof terms, it is
not clear how to maintain the correspondence between proof
trees and proof terms as reduction proceeds. It is hoped it
may be possible to remove this difficulty in the near future.
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Statement stack S, T ::= s | S/T | ∅
Pattern matrix G, H ::= P | G, H | ()
Value matrix I, J ::= V | I, J | ()

Figure 1: Syntax
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[17] Philip Wadler, Call-by-value is dual to call-by-name.
8’th ACM International Conference on Functional
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Id
A −→ A

Γ, Σ −→ ∆, Θ
Exch

Σ, Γ −→ Θ, ∆

Γ −→ ∆, A Γ −→ ∆, B
NR

Γ −→ ∆, ANB

A, Γ −→ ∆

ANB, Γ −→ ∆

B, Γ −→ ∆
NL

ANB, Γ −→ ∆

>R
Γ −→ ∆,>

No >L rule

Γ −→ ∆, A

Γ −→ ∆, A ⊕ B

Γ −→ ∆, B
⊕R

Γ −→ ∆, A ⊕ B

A, Γ −→ ∆ B, Γ −→ ∆
⊕L

A ⊕ B, Γ −→ ∆

No 0R rule 0L
0, Γ −→ ∆

Γ −→ ∆, A Σ −→ Θ, B
⊗R

Γ, Σ −→ ∆, Θ, A ⊗ B

A, B, Γ −→ ∆
⊗L

A ⊗ B, Γ −→ ∆

1R
−→ 1

Γ −→ ∆
1L

1, Γ −→ ∆

Γ −→ ∆, A, B
OR

Γ −→ ∆, AOB

A, Γ −→ ∆ B, Σ −→ Θ
OL

AOB, Γ, Σ −→ ∆, Θ

Γ −→ ∆
⊥R

Γ −→ ∆,⊥
⊥L

⊥ −→

A, Γ −→ ∆
⊥R

Γ −→ ∆, A⊥

Γ −→ ∆, A
⊥L

A⊥, Γ −→ ∆

[Γ] −→ [∆], A
!R

[Γ] −→ [∆], !A

[A], Γ −→ ∆
!L

!A, Γ −→ ∆

Γ −→ ∆, [A]
?R

Γ −→ ∆, ?A

A, [Γ] −→ [∆]
?L

?A, [Γ] −→ [∆]

[A], [A], Γ −→ ∆
!C

[A], Γ −→ ∆

Γ −→ ∆
!W

[A], Γ −→ ∆

A, Γ −→ ∆
!D

[A], Γ −→ ∆

Γ −→ ∆, [A], [A]
?C

Γ −→ ∆, [A]

Γ −→ ∆
?W

Γ −→ ∆, [A]

Γ −→ ∆, A
?D

Γ −→ ∆, [A]

Γ −→ ∆, A A, Σ −→ Θ
Cut

Γ, Σ −→ ∆, Θ

[Γ] −→ [∆], A [A], Σ −→ Θ
!Cut

[Γ], Σ −→ [∆], Θ

Γ −→ ∆, [A] A, [Σ] −→ [Θ]
?Cut

Γ, [Σ] −→ ∆, [Θ]

Figure 2: Classical linear logic



Id
xA

()
−→ x̄A

GΓ, HΣ
S

−→ I∆, JΘ

HΣ, GΓ
S

−→ JΘ, I∆

G/HΓ
S/T
−→ I/J∆

Exch
H/GΓ

T/S
−→ J/I∆

GΓ
S

−→ I∆, V A HΓ
T

−→ J∆, W B
NR

G/HΓ
S/T
−→ H/I∆, V N−/−NW ANB

P A, GΓ
S

−→ I∆

PN−ANB, GΓ
S

−→ I∆

QB, GΓ
S

−→ I∆
NL

QN−ANB, GΓ
S

−→ I∆

>R
∅Γ

∅
−→ ∅∆, ∅>

No >L rule

GΓ
S

−→ I∆, V A

GΓ
S

−→ I∆, V ⊕−A ⊕ B

GΓ
S

−→ I∆, W B
⊕L

GΓ
S

−→ I∆, W⊕−A ⊕ B

P A, GΓ
S

−→ I∆ QB, HΓ
T

−→ J∆
⊕R

P⊕−/−NQANB, G/HΓ
S/T
−→ H/I∆

No 0R rule
0L

∅0, ∅Γ
∅

−→ ∅∆

GΓ
S

−→ I∆, V A HΣ
T

−→ JΘ, W B
⊗R

G,HΓ, Σ
S, T
−→ I,J∆, Θ, V ⊗W A ⊗ B

P A, QB, GΓ
S

−→ I∆
⊗L

P⊗QA ⊗ B, GΓ
S

−→ I∆

1R
()

−→ 11

GΓ
S

−→ I∆
1L

11, GΓ
S

−→ I∆

GΓ
S

−→ I∆, V A, W B
OR

GΓ
S

−→ I∆, V OW AOB

P A, GΓ
S

−→ I∆ QB, HΣ
T

−→ JΘ
OL

POQAOB, G,HΓ, Σ
S, T
−→ I,J∆, Θ

GΓ
S

−→ I∆
⊥R

GΓ
S

−→ I∆, ⊥⊥

⊥L
⊥⊥

()
−→

P A, GΓ
S

−→ I∆
⊥R

GΓ
S

−→ I∆, P⊥

A⊥

GΓ
S

−→ I∆, V A
⊥L

V ⊥

A⊥, GΓ
S

−→ I∆

G[Γ]
S

−→ I [∆], V A
!R

G[Γ]
()

−→ I [∆], ![S.V ]!A

P [A], GΓ
S

−→ I∆
!L

!P !A, GΓ
S

−→ I∆

GΓ
S

−→ I∆, V [A]
?R

GΓ
S

−→ I∆, ?V ?A

P A, G[Γ]
T

−→ I [∆]
?L

?[P.T ]?A, G[Γ]
()

−→ I [∆]

P [A], Q[A], GΓ
S

−→ I∆
!C

P@Q[A], GΓ
S

−→ I∆

GΓ
S

−→ I∆
!W

−[A], GΓ
S

−→ I∆

P A, GΓ
S

−→ I∆
!D

[P ][A], GΓ
S

−→ I∆

GΓ
S

−→ I∆, V [A], W [A]
?C

GΓ
S

−→ I∆, V @W [A]

GΓ
S

−→ I∆
?W

GΓ
S

−→ I∆, −[A]

GΓ
S

−→ I∆, V A
?D

GΓ
S

−→ I∆, [V ][A]

GΓ
S

−→ I∆, V A P A, HΣ
T

−→ JΘ
Cut

G,HΓ, Σ
S, V •P, T
−→ I,J∆, Θ

G[Γ]
S

−→ I [∆], V A P [A], HΣ
T

−→ JΘ
!Cut

G,H [Γ], Σ
[S.V ]•P, T

−→ I,J [∆], Θ

GΓ
S

−→ I∆, V [A] P A, H [Σ]
T

−→ J [Θ]
?Cut

G,HΓ, [Σ]
S, V •[P.T ]

−→ I,J∆, [Θ]

Figure 3: Classical linear logic with proof terms



(a)

Id
xA −→ x̄A

NL
xN−ANB −→ x̄A

⊕R
xN−ANB −→ x̄N−A ⊕ C

Id
xA −→ x̄A

⊕R
xA −→ x̄N−A ⊕ C

NL
xN−ANB −→ x̄N−A ⊕ C

(b)

Id
xA −→ xA

Id
yB −→ yB

⊗R
xA, yB −→ x⊗yA ⊗ B

NL
xA, yN−BND −→ x⊗yA ⊗ B

NL
xN−ANC, yN−BND −→ x⊗yA ⊗ B

Id
xA −→ xA

Id
yB −→ yB

⊗R
xA, yB −→ x⊗yA ⊗ B

NL
xN−ANC, yB −→ x⊗yA ⊗ B

NL
xN−ANC, yN−BND −→ x⊗yA ⊗ B

(c)

Id
xA −→ x̄A

Id
yB −→ ȳB

NL
yN−BNC −→ ȳC

⊗R
xA, yN−BNC −→ x̄⊗ȳA ⊗ C

Id
xA −→ x̄A

Id
zC −→ z̄C

NL
−NzBNC −→ z̄C

⊗R
xA, −NzBNC −→ x̄⊗z̄A ⊗ C

NR
x/xA, yN−/−NzBNC −→ (x̄⊗ȳ)N−/−N(x̄⊗z̄)(A ⊗ B)N(A ⊗ C)

⊗L
x⊗(yN−)/x⊗(−Nz)A ⊗ (BNC) −→ (x̄⊗ȳ)N−/−N(x̄⊗z̄)(A ⊗ B)N(A ⊗ C)

(d)

Id
xA −→ xA

Id
xA −→ xA

NR
x/xA −→ xN−/−NxANA

Id
yB −→ yB

Id
yB −→ yB

NR
y/yB −→ yN−/−NyBNB

⊗R
x/x/x/xA, y/y/y/yB −→ (xN−)⊗(yN−)/(xN−)⊗(−Ny)/(−Nx)⊗(yN−)/(−Nx)⊗(−Ny)(ANA) ⊗ (BNB)

Figure 4: Example derivations



(a)

Id
yB −→ ȳB

Id
xA −→ x̄A

⊗R
yB, xA −→ ȳ⊗x̄B ⊗ A

Exch
xA, yB −→ ȳ⊗x̄B ⊗ A

⊗L
x⊗yA ⊗ B −→ ȳ⊗x̄B ⊗ A

Id
uA −→ ūA

Id
vB −→ v̄B

⊗R
uA, vB −→ ū⊗v̄A ⊗ B

Exch
vB, uA −→ ū⊗v̄A ⊗ B

⊗L
v⊗uB ⊗ A −→ ū⊗v̄A ⊗ B

Cut
x⊗yA ⊗ B

ȳ⊗x̄•v⊗u
−→ ū⊗v̄A ⊗ B

=⇒

Id
xA −→ x̄A

Id
yB −→ ȳB

⊗R
xA, yB −→ x̄⊗ȳA ⊗ B

⊗L
x⊗yA ⊗ B −→ x̄⊗ȳA ⊗ B

(b)

Id
yB −→ ȳB

NL
−NyANB −→ ȳB

Id
xA −→ x̄A

NL
xN−ANB −→ x̄A

NR
−Ny/xN−ANB −→ ȳN−/−Nx̄BNA

Id
uA −→ ūA

NL
−NuBNA −→ ūA

Id
vB −→ v̄B

NL
vN−BNA −→ v̄B

NR
−Nu/vN−BNA −→ ūN−/−Nv̄ANB

Cut
−Ny/xN−/−Ny/xN−ANB

ȳN−•−Nu/ȳN−•vN−/−Nx̄•−Nu/−Nx̄•vN−
−→ ūN−/ūN−/−Nv̄/−Nv̄ANB

=⇒

Id
xA −→ x̄A

NL
xN−ANB −→ x̄A

Id
yB −→ ȳB

NL
−NyANB −→ ȳB

NR
xN−/−NyANB −→ xN−/−NyANB

(c)

Id
aA −→ aA

⊥L
ā⊥

A⊥, aA −→
Id

bA −→ b̄A
OL

ā⊥
ObA⊥

OA, aA −→ b̄A
!D

[ā⊥
Ob][A⊥

OA], aA −→ b̄A

Id
cA −→ cA

⊥L
c̄⊥A⊥, cA −→

Id
dA −→ d̄A

OL
c̄⊥OdA⊥

OA, cA −→ d̄A
!D

[c̄⊥Od][A⊥
OA], cA −→ d̄A

Cut
[ā⊥

Ob][A⊥
OA], [c̄⊥Od][A⊥

OA], aA
b̄•c
−→ d̄A

!C
[ā⊥

Ob]@[c̄⊥Od][A⊥
OA], aA

b̄•c
−→ d̄A

⊥R
[ā⊥

Ob]@[c̄⊥Od][A⊥
OA]

b̄•c
−→ a⊥

A⊥, d̄A
OL

[ā⊥
Ob]@[c̄⊥Od][A⊥

OA]
b̄•c
−→ a⊥

Od̄A⊥
OA

!R
[ā⊥

Ob]@[c̄⊥Od][A⊥
OA] −→ ![b̄•c. a⊥

Od̄]!(A⊥
OA)

!L
!([ā⊥

Ob]@[c̄⊥Od])!(A⊥
OA) −→ ![b̄•c. a⊥

Od̄]!(A⊥
OA)

(d)

!([ā⊥
Ob]@[c̄⊥Od])!(A⊥

OA) −→ ![b̄•c. a⊥
Od̄]!(A⊥

OA) !([ē⊥Of ]@[ḡ⊥
Oh])!(A⊥

OA) −→ ![f̄•g. e⊥Oh̄]!(A⊥
OA)

Cut
!([ā⊥

Ob]@[c̄⊥Od])!(A⊥
OA)

![b̄•c. a⊥
Od̄]•!([ē⊥Of ]@[ḡ⊥

Oh])
−→ ![f̄•g. e⊥Oh̄]!(A⊥

OA)

=⇒ !([ā′⊥Ob′]@[ā′′⊥Ob′′]@[c̄′⊥Od′]@[c̄′′⊥Od′′])!(A⊥
OA)

b̄′•c′,a′⊥
Od̄′•ē⊥Of,b̄′′•c′′,a′′⊥

Od̄′′•ḡ⊥
Oh

−→ ![f̄•g. e⊥Oh̄]!(A⊥
OA)

=⇒ !([ā′⊥Ob′]@[ā′′⊥Ob′′]@[b̄′⊥Od′]@[b̄′′⊥Od′′])!(A⊥
OA) −→ ![d̄′•a′′. a′⊥

Od̄′′]!(A⊥
OA)

Figure 5: Example derivations with cut



(vN−) • (pN−) =⇒ v • p (v ⊕−) • (p ⊕−) =⇒ v • p
(vN−) • (−Nq) =⇒ ∅ (v ⊕−) • (−⊕ q) =⇒ ∅
(−Nw) • (pN−) =⇒ ∅ (−⊕ w) • (p ⊕−) =⇒ ∅
(−Nw) • (−Nq) =⇒ w • q (−⊕ w) • (−⊕ q) =⇒ w • q

(v ⊗ w) • (p ⊗ q) =⇒ v • p, w • q (vOw) • (pOq) =⇒ v • p, w • q
1 • 1 =⇒ () ⊥ • ⊥ =⇒ ()

p⊥ • v⊥ =⇒ v • p

![s.v] • !p =⇒ [s.v] • p ?v • ?[p.t] =⇒ v • [p.t]
[s.v] • p @ q =⇒ X • X̄ ′@X̄ ′′, [s′.v′] • p, [s′′.v′′] • q (v @ w) • [p.t] =⇒ X • X̄ ′@X̄ ′′, v • [p′.t′], w • [p′′.t′′]

[s.v] • − =⇒ X • − − • [p.t] =⇒ X • −
[s.v] • [p] =⇒ s, v • p [v] • [p.t] =⇒ v • p, t

gΓ
s, x̄•p, t
−→ i∆ =⇒ g[p/x]Γ

s[p/x],t[p/x]
−→ i[p/x]∆ gΓ

s, v•x, t
−→ i∆ =⇒ g[v/x̄]Γ

s[v/x̄],t[v/x̄]
−→ i[v/x̄]∆

Figure 6: Reductions



Id
xA

()
−→ x̄A

Γ, Σ
s

−→ ∆, Θ
Exch

Σ, Γ
s

−→ Θ, ∆

Γ
s

−→ ∆, x̄A Γ
t

−→ ∆, ȳB
NR

Γ
s, x̄N−•z/t, −Nȳ•z

−→ ∆, z̄ANB

xA, Γ
s

−→ ∆

zANB, Γ
z̄•xN−, s
−→ ∆

yB, Γ
s

−→ ∆
NL

zANB, Γ
z̄•−Ny, s
−→ ∆

>R

Γ
∅

−→ ∆, z̄>
No >L rule

Γ
s

−→ ∆, x̄A

Γ
s, x̄N−•z
−→ ∆, zA ⊕ B

Γ
s

−→ ∆, ȳB
⊕L

Γ
s, −Nȳ•z
−→ ∆, z̄A ⊕ B

xA, Γ
s

−→ ∆ yB, Γ
t

−→ ∆
⊕R

zANB, Γ
z̄•x⊕−, s/z̄•−⊕y, t

−→ ∆

No 0R rule
0L

z0, Γ
∅

−→ ∆

Γ
s

−→ ∆, x̄A Σ
t

−→ Θ, ȳB
⊗R

Γ, Σ
s, t, x̄⊗ȳ•z

−→ ∆, Θ, z̄A ⊗ B

xA, yB, Γ
s

−→ ∆
⊗L

zA ⊗ B, Γ
z̄•x⊗y, s
−→ ∆

1R1•z
−→ z̄1

Γ
s

−→ ∆
1L

z1, Γ
z̄•1, s
−→ ∆

Γ
s

−→ ∆, x̄A, ȳB
OR

Γ
s, x̄Oȳ•z
−→ ∆, z̄AOB

xA, Γ
s

−→ ∆ yB, Σ
t

−→ Θ
OL

zAOB, Γ, Σ
z̄•xOy, s, t

−→ ∆, Θ

Γ
s

−→ ∆
⊥R

Γ
s, ⊥•z
−→ ∆, z̄⊥

⊥L
z⊥

z̄•⊥
−→

xA, Γ
s

−→ ∆
⊥R

Γ
s, x⊥•z
−→ ∆, z̄A⊥

Γ
s

−→ ∆, x̄A
⊥L

zA⊥, Γ
z̄•x̄⊥, s
−→ ∆

[Γ]
s

−→ [∆], x̄A
!R

[Γ]
![s.x̄]•z
−→ [∆], z̄!A

x[A], Γ
s

−→ ∆
!L

z!A, Γ
z̄•!x, s
−→ ∆

Γ
s

−→ ∆, x̄[A]
?R

Γ
s, ?x̄•z
−→ ∆, z̄?A

xA, [Γ]
t

−→ [∆]
?L

z?A, [Γ]
z̄•?[x.t]
−→ [∆]

x[A], y[A], Γ
s

−→ ∆
!C

z[A], Γ
z̄•x@y, s
−→ ∆

Γ
s

−→ ∆
!W

z[A], Γ
z̄•−, s
−→ ∆

xA, Γ
s

−→ ∆
!D

z[A], Γ
z̄•[x], s
−→ ∆

Γ
s

−→ ∆, x̄[A], ȳ[A]
?C

Γ
s, x̄@ȳ•z
−→ ∆, z̄[A]

Γ
s

−→ ∆
?W

Γ
s, −•z
−→ ∆, z̄[A]

Γ
s

−→ ∆, x̄A
?D

Γ
s, [x̄]•z
−→ ∆, z̄[A]

Γ
s

−→ ∆, x̄A xA, Σ
t

−→ Θ
Cut

Γ, Σ
s, x̄•x, t
−→ ∆, Θ

[Γ]
s

−→ [∆], x̄A x[A], Σ
T

−→ Θ
!Cut

[Γ], Σ
[s.x̄]•x, t
−→ [∆], Θ

Γ
s

−→ ∆, x̄[A] xA, [Σ]
t

−→ [Θ]
?Cut

Γ, [Σ]
s, x̄•[x.t]
−→ ∆, [Θ]

Figure 7: Classical linear logic with proof terms, alternative formulation


