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ABSTRACT
The rules of classical logic may be formulated in pairs cor-
responding to De Morgan duals: rules about & are dual to
rules about ∨. A line of work, including that of Filinski
(1989), Griffin (1990), Parigot (1992), Danos, Joinet, and
Schellinx (1995), Selinger (1998,2001), and Curien and Her-
belin (2000), has led to the startling conclusion that call-by-
value is the de Morgan dual of call-by-name.

This paper presents a dual calculus that corresponds to
the classical sequent calculus of Gentzen (1935) in the same
way that the lambda calculus of Church (1932,1940) cor-
responds to the intuitionistic natural deduction of Gentzen
(1935). The paper includes crisp formulations of call-by-
value and call-by-name that are obviously dual; no similar
formulations appear in the literature. The paper gives a
CPS translation and its inverse, and shows that the trans-
lation is both sound and complete, strengthening a result in
Curien and Herbelin (2000).

Note. This paper uses color to clarify the relation of
types and terms, and of source and target calculi. If the
URL below is not in blue, please download the color version,
which can be found in the ACM Digital Library archive for
ICFP 2003, at

http://portal.acm.org/proceedings/icfp/archive,

or by googling ‘wadler dual’.
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1. INTRODUCTION

1.1 Classical logic and duality
Yin and yang, winner and loser, positive and negative,

particle and anti-particle, true and false: notions of duality
pervade philosophy, science, and mathematics. Theoreti-
cians appreciate duality because it reveals deep symmetries.
Practitioners appreciate duality because it offers two-for-
the-price-of-one economy.

A salient instance of duality is that between conjunction
and disjunction in classical logic, sometimes called de Mor-
gan duality. To find the dual of a proposition, one swaps
occurrences of conjunction (&) with occurrences of disjunc-
tion (∨) and occurrences of true (>) with occurrences of
false (⊥), leaving occurrences of negation (¬) unchanged.
Two propositions are equivalent if and only if their duals
are equivalent.

For example, the Law of Contradiction states that a
proposition and its negation are never both true,

A & ¬A = ⊥.

Dually, in classical logic, the Law of the Excluded Middle
states that either a proposition or its negation is always true,

A ∨ ¬A = >.

For a second example, & distributes through ∨,

A & (B ∨ C) = (A & B) ∨ (A & C).

Dually, in classical logic, ∨ distributes through &,

A ∨ (B & C) = (A ∨B) & (A ∨ C).

The formulations of logic introduced by Boole (1847) and
Frege (1879) do not mention duality. It was first introduced
by Schröder (1890), who presented definitions and theorems
in pairs, the duals side-by-side in two columns. Schröder was
inspired by the duality between points and lines in projective
geometry, as introduced by Poncelet (1818) and Gergonne
(1826). (See Nidditch (1962) and Grattan-Guinness (2000).)

1.2 Curry-Howard for classical logic
Some of the most important contributions to computing

occurred just before the computer was invented. In a series
of influential papers, Church (1932,1940) introduced the un-
typed and typed λ-calculus. And in a single landmark pa-
per, Gentzen (1935) introduced the two formulations of logic
most widely used today, natural deduction and sequent cal-
culus, in both intuitionistic and classical variants. (The pa-
per also introduced the use of the symbol ∀ for universal
quantification.)



Gentzen believed that natural deduction corresponded
better to the style of reasoning used in practice (hence
the name), but recognized that sequent calculus better re-
veals the duality of classical logic. Further, Gentzen could
demonstrate the consistency of sequent calculus by a method
of normalizing proofs called Cut elimination, but he could
demonstrate the consistency of natural deduction only by
showing its equivalence to sequent calculus.

Only much later did Prawitz (1965) show how to nor-
malize proofs in natural deduction directly. And only later
still did Howard (1980) publish a direct correspondence be-
tween proofs in intuitionistic natural deduction and terms
in typed λ-calculus, with Prawitz’s normalization of proofs
corresponding to Church’s λ-reduction. Similar correspon-
dences between logic and computation were observed by
Curry and Feys (1958) and de Bruijn (1968).

What came to be called the Curry-Howard correspon-
dence has proven to be a robust technique for relating a
wide range of systems of logic and computation. In par-
ticular, Curry-Howard can be applied to classical as well as
intuitionistic logic, and to sequent calculus as well as natural
deduction.

Sussman and Steele (1975) introduced a call/cc opera-
tor in Scheme to capture computing with continuations,
and Felleisen et al. (1987) introduced the C operator to
model call/cc. (For a fascinating history of continuations
see Reynolds (1993).) Griffin (1990) extended the Curry-
Howard correspondence to classical logic, by observing that
the type of call/cc corresponds to Pierce’s Law, and that
the type of C corresponds to the Law of Double Negation.

A refinement of the correspondence between classical logic
and computation was given by the λµ-calculus of Parigot
(1992,1994). The λµ-calculus corresponds to classical natu-
ral deduction in just the same way that λ-calculus corre-
sponds to intuitionistic natural deduction. Call-by-name
semantics for the λµ-calculus have been investigated by
Ong (1996) and call-by-value semantics by Ong and Stewart
(1997).

1.3 Call-by-value and call-by-name
Filinski (1989) was the first to suggest that call-by-value

might in some sense be dual to call-by-name in the presence
of continuations.

Danos, Joinet, and Schellinx (1995) proposed two dual
embeddings of classical logic into linear logic, LKQ and
LKT, noting that the first corresponded to call-by-value and
the second to call-by-name.

Selinger (1998,2001) modeled the call-by-name semantics
of λµ-calculus in a control category, and the call-by-value
semantics of λµ-calculus in a dual co-control category.

Curien and Herbelin (2000) further explored this duality
using a computational calculus based on sequent calculus,
derived from a similar calculus explored earlier by Herbelin
(1994). Because sequent calculus displays the dualities of
classical logic more clearly than natural deduction, Curien
and Parigot’s formulation offers some improvements over
that of Selinger.

However, in none of these cases is the duality quite as
compelling as one might like. Filinski’s formulation lacks
any connection with logic. Danos, Joinet, and Schellinx’s
formulation is in terms of proof nets and linear logic, with
a less direct connection to computation. Selinger’s formula-
tion of duality is not an involution — the dual of the dual

of a term is not the original term, but only a term that is
equivalent up to isomorphism of types. Curien and Herbe-
lin’s formulation is an involution, but to achieve this they
must introduce a difference operator as the dual to implica-
tion. The computational interpretation of implication A⊃B
is a function, but the computational interpretation of the
difference B −A≡B & ¬A is not particularly intuitive.

Barbanera and Berardi (1996) introduce a symmetric λ-
calculus, with a clear notion of duality. However, they do
not consider either call-by-value or call-by-name reduction,
instead their calculus is non-confluent.

1.4 The dual calculus
This paper presents a dual calculus, which corresponds to

the classical sequent calculus of Gentzen (1935) in the same
way that the λ-calculus of Church (1932,1940) corresponds
to the intuitionistic natural deduction of Gentzen (1935).

The approach taken here is to return to the traditional
formulation of duality in logic, where conjunction, disjunc-
tion, and negation are primitive, and implication is defined
in terms of the other connectives. Conjunction (A & B)
corresponds to a product type (A×B), disjunction (A∨B)
corresponds to a sum type (A+B), and negation (¬A) corre-
sponds to a continuation type (A→R). Implication may be
defined in terms of these connectives, though different def-
initions are required for the call-by-value and call-by-name
calculi; one takes A⊃B ≡ ¬(A & ¬B) for call-by-value and
A⊃B ≡ ¬A ∨B for call-by-name.

The paper includes crisp formulations of call-by-value and
call-by-name that are obviously dual; no similar formula-
tions appear in the literature. The paper gives a CPS trans-
lation and its inverse, and shows that the translation is both
sound and complete.

The paper is organized as follows. Section 2 reviews
Gentzen’s classical sequent calculus. Section 3 introduces
the dual calculus. Section 5 presents call-by-value and
call-by-name reduction rules, and observes that they are
dual. Section 6 describes call-by-value and call-by-name
CPS translations, and shows that they are sound and com-
plete with regard to reductions. Section 7 concludes with a
speculation on the dual of call-by-need.

2. GENTZEN’S SEQUENT CALCULUS
Figure 1 presents the syntax and inference rules of the

sequent calculus. The rules given here are identical to those
in Gentzen (1935), down to the choice of symbols.

Let A, B, C range over formulas, where a formula is either
an atomic formula X; a conjunction A & B; a disjunction
A ∨ B; a negation ¬A; or an implication A ⊃ B. Let Γ, ∆
range over antecedents and Θ, Λ range over succedents, both
of which are sequences of formulas separated by commas. A
sequent has the form Γ ➞ Θ.

The interpretation of a sequent is that the conjunction of
the formulas in the antecedent implies the disjunction of the
formulas in the succedent. So the sequent

A1, . . . , Am ➞ B1, . . . , Bn

corresponds to the formula

(A1 & · · ·& Am)⊃ (B1 ∨ · · · ∨Bn).

A conjunction of zero formulas corresponds to true, and a
disjunction of zero formulas corresponds to false.



Formula A, B, C ::= X | A & B | A ∨B | ¬A | A⊃B
Antecedent Γ, ∆ ::= A1, . . . , Am

Succedent Θ, Λ ::= B1, . . . , Bn

Sequent Γ ➞ Θ

Id
A ➞ A

Γ ➞ Θ, A Γ ➞ Θ, B
&R

Γ ➞ Θ, A & B

A, Γ ➞ Θ

A & B, Γ ➞ Θ

B, Γ ➞ Θ
&L

A & B, Γ ➞ Θ

Γ ➞ Θ, A

Γ ➞ Θ, A ∨B

Γ ➞ Θ, B
∨R

Γ ➞ Θ, A ∨B

A, Γ ➞ Θ B, Γ ➞ Θ
∨L

A ∨B, Γ ➞ Θ

A, Γ ➞ Θ
¬R

Γ ➞ Θ,¬A

Γ ➞ Θ, A
¬L

¬A, Γ ➞ Θ

A, Γ ➞ Θ, B
⊃R

Γ ➞ Θ, A⊃B

Γ ➞ Θ, A B, ∆ ➞ Λ
⊃L

A⊃B, Γ, ∆ ➞ Θ, Λ

Γ ➞ Θ, A A, ∆ ➞ Λ
Cut

Γ, ∆ ➞ Θ, Λ

Γ ➞ Θ

A, Γ ➞ Θ
Thinning

Γ ➞ Θ

Γ ➞ Θ, A

A, A, Γ ➞ Θ

A, Γ ➞ Θ
Contraction

Γ ➞ Θ, A, A

Γ ➞ Θ, A

∆, A, B, Γ ➞ Θ

∆, B, A, Γ ➞ Θ
Interchange

Γ ➞ Θ, B, A, Λ

Γ ➞ Θ, A, B, Λ

Figure 1: Gentzen’s sequent calculus

There are logical rules for each connective, labeled right
or left according as to whether the connective is introduced
in the succedent or antecedent. Right rules serve the same
purpose as introduction rules in natural deduction, while
left rules serve the same purpose as elimination rules.

The remaining rules are structural. Id is the obvious ax-
iom, from A one may infer A. Cut combines a proof with
A in the succedent and a proof with A in the antecedent to
yield a proof with only the other formulas in the antecedents
and succedents. Informally, this is justified as follows: from
Γ one may infer that either A holds or one of Θ holds; if A
holds then from it and ∆ one may infer that one of Λ holds;
else one of Θ holds. Thinning introduces an additional for-
mula, Contraction replaces two identical formulas by one,
and Interchange permutes the order of formulas.

Gentzen proved sequent calculus satisfies a Cut elimina-
tion property: any proof of a sequent can be transformed
to a proof of the same sequent that does not contain Cut.
A corrollary of Cut elimination is consistency of the logic:
the sequent ➞ (which corresponds to true implies false)
cannot be the consequence of any rule other than Cut, and
is therefore not derivable.

The dual of a formula not containing implication is defined

in Figure 2. The dual of conjunction is disjunction and vice
versa, and negation is its own dual. The dual of a sequence
of formulas is the reverse of the sequence of duals.

Proposition 2.1. Duality is an involution,

A◦◦ ≡ A.

Rule &R is dual to ∨L, &L is dual to ∨R, ¬R is dual
to ¬L, Id and Cut are dual to themselves, and Thinning,
Contraction, Interchange come in dual pairs. Hence, we
have the following.

Proposition 2.2. A sequent not containing implication
is derivable if and only if its dual is derivable.

Γ ➞ Θ iff Θ◦ ➞ Γ◦.

Implication can be defined in terms of other connectives.

Proposition 2.3. Implication can be defined by

A⊃B ≡ ¬A ∨B or A⊃B ≡ ¬(A & ¬B).

The inference rules for implication can be derived from the
inference rules for the other connectives.



(X)◦ ≡ X
(A & B)◦ ≡ A◦ ∨B◦

(A ∨B)◦ ≡ A◦ & B◦

(¬A)◦ ≡ ¬A◦

(A1, . . . , Am)◦ ≡ Am
◦, . . . , A1

◦

Figure 2: Duality for the sequent calculus

3. THE DUAL CALCULUS
The dual calculus is a reformulation of Gentzen’s se-

quent calculus. Under Curry-Howard for natural deduc-
tion, terms represent proofs and variables label assumptions.
Here terms, coterms, and statements represent proofs, and
variables and covariables label antecedents and succedents.
Coterms and covariables correspond to what are sometimes
called continuation terms and continuation variables.

Figure 3 presents the syntax and inference rules of the
dual calculus. The types of the calculus are the same as
the formulas of Gentzen’s sequent calculus. Let x, y, z range
over variables, and α, β, γ range over covariables.

Let M, N range over terms, which yield values. A term is
either a variable x; a pair 〈M, N〉; an injection on the left or
right of a sum 〈M〉inl or 〈N〉inr; a complement of a coterm
[K]not; a function abstraction λx. N , with x bound in N ;
or a covariable abstraction (S).α, with α bound in S.

Let K, L range over coterms, which consume values. A
coterm is either a covariable α; a projection from the left or
right of a product fst[K] or snd[L]; a case [K, L]; a comple-
ment of a term not〈M〉; a function application M @ L; or a
variable abstraction x.(S), with x bound in S.

Finally, let S, T range over statements. A statement is a
cut of a term against a coterm, M •K.

Note that angle brackets always surround terms, square
brackets always surround coterms, and round brackets al-
ways surround statements. Curly brackets are used for sub-
stitution and holes in contexts.

There are three kinds of sequents, called right, left, and
center, according to whether the proof of the sequent is rep-
resented by a term, coterm, or statement. A right sequent
has a distinguished formula in the succedent, that is labeled
by a term rather than a covariable. A left sequent has a
distinguished formula in the antecedent, that is labeled by
a coterm rather than a variable. A center sequent has no
distinguished formula, and contains a statement.

As with sequent calculus, there are logical rules for each
connective. Right rules always end with a right sequent and
left rules always end with a left sequent. The & and ∨ rules
begin and end with the same kind of sequent, while the ¬
rules reverse the kind of sequent. For example, &R begins
and ends with right sequents, while ¬L begins with a right
sequent and ends with a left sequent.

The remaining rules are structural rules. Id is split into
two forms, one with a right sequent and one with a left se-
quent. Cut has a right sequent and a left sequent above the
line, and ends in a center sequent. There are two new struc-
tural rules, RI and LI, that convert a center sequent to an
equivalent right or left sequent, by designating a covariable
to yield the value of the term, or a variable to consume the

value passed to the coterm.
Figure 4 also shows three derived rules. Id is a symmetric

form of IdR and IdL that concludes with a center sequent,
which cuts a variable against a covariable. RE is an inverse
of RI that converts a right sequent into an equivalent center
sequent by cutting a term against a covariable. LE is an
inverse of LI that converts a left sequent into an equivalent
center sequent by cutting a variable against a coterm.

RI and LI behave like introduction rules in natural deduc-
tion, and RE and LE behave like elimination rules, hence
their names. They also resemble the Activate and Passivate
rules in some formulations of the λµ-calculus, such as that
presented by Ariola and Herbelin (2003).

Finally, there are eighteen rules for Thinning, Contrac-
tion, and Interchange in the antecedent and succedent for
right, left, and center sequents. Only the six rules for right
sequents are shown, the remaining twelve rules for left and
center sequents are similar. The rules shown are not duals;
instead, the antecedent rules for right sequents are dual to
succedent rules for left sequents, and vice versa, while an-
tecedent and succedent rules for center sequents are dual to
each other. In Contraction, substitution of one variable for
another is written M{x/y}, and substitution of one covari-
able for another is written K{α/β}.

The computational interpretation of a sequent is as fol-
lows: one must supply a value for every variable (and term)
in the antecedent, and the computation will pass a value
to some continuation variable (or coterm) in the succedent;
this corresponds to the fact that the sequent represents the
conjunction of the formulas in the antecedent and the dis-
junction of the formulas in the succedent. Hence, the com-
putational interpretation of a right sequent

x1 : A1, . . . , xm : Am ➞ β1 : B1, . . . , βn : Bn ❙ M : Bn+1

is that if each variable xi is supplied a value of type Ai then
evaluation of the expression M will either return a value
of type Bn+1 or pass to some continuation variable βj a
value of type Bj . The computational interpretation of a left
sequent

K : A0 ❙ x1 : A1, . . . , xm : Am ➞ β1 : B1, . . . , βn : Bn

is that if each variable xi is supplied a value of type Ai and a
value of type A0 is supplied to the coterm K, then evaluation
will return to some continuation variable βj a value of type
Bj . The computational interpretation of a center sequent

x1 : A1, . . . , xm : Am ❙ S ❙➞ β1 : B1, . . . , βn : Bn

is that if each variable xi is supplied a value of type Ai then
execution of the statement S with pass to some continuation
variable βj a value of type Bj .

The two variable rules correspond to trivial computations.
Term x yields the value passed in to variable x. Coterm α
consumes a value and passes it out to covariable α.

Computationally, the formula A & B corresponds to the
product type, where the proof of a conjunction is represented
by a pair of the proofs of its subformulas. The term 〈M, N〉
yields a pair of type A & B consisting of the values yielded
by terms M of type A and N of type B. The coterm fst[K]
consumes a pair of type A&B, projects out the first compo-
nent, and passes it on to be consumed by coterm K of type
A. Similarly for snd[L].

Dually, the formula A ∨ B corresponds to the sum type,
where the proof of a disjunction is represented by a proof of



Type A, B, C ::= X | A & B | A ∨B | ¬A | A⊃B

Term M, N ::= x | 〈M, N〉 | 〈M〉inl | 〈N〉inr | [K]not | λx. N | (S).α
Coterm K, L ::= α | [K, L] | fst[K] | snd[L] | not〈M〉 | M @ L | x.(S)
Statement S, T ::= M •K

Antecedent Γ, ∆ ::= x1 : A1, . . . , xm : Am

Succedent Θ, Λ ::= β1 : B1, . . . , βn : Bn

Right sequent Γ ➞ Θ ❙ M : A
Left sequent K : A ❙ Γ ➞ Θ
Center sequent Γ ❙ S ❙➞ Θ

IdR
x : A ➞ ❙ x : A

IdL
α : A ❙ ➞ α : A

Γ ➞ Θ ❙ M : A Γ ➞ Θ ❙ N : B
&R

Γ ➞ Θ ❙ 〈M, N〉 : A & B

K : A ❙ Γ ➞ Θ

fst[K] : A & B ❙ Γ ➞ Θ

L : B ❙ Γ ➞ Θ
&L

snd[L] : A & B ❙ Γ ➞ Θ

Γ ➞ Θ ❙ M : A

Γ ➞ Θ ❙ 〈M〉inl : A ∨B

Γ ➞ Θ ❙ N : B
∨R

Γ ➞ Θ ❙ 〈N〉inr : A ∨B

K : A ❙ Γ ➞ Θ L : B ❙ Γ ➞ Θ
∨L

[K, L] : A ∨B ❙ Γ ➞ Θ

K : A ❙ Γ ➞ Θ
¬R

Γ ➞ Θ ❙ [K]not : ¬A

Γ ➞ Θ ❙ M : A
¬L

not〈M〉 : ¬A ❙ Γ ➞ Θ

x : A, Γ ➞ Θ ❙ N : B
⊃R

Γ ➞ Θ ❙ λx. N : A⊃B

Γ ➞ Θ ❙ M : A L : B ❙ ∆ ➞ Λ
⊃L

M @ L : A⊃B ❙ Γ, ∆ ➞ Θ, Λ

Γ ❙ S ❙➞ Θ, α : A
RI

Γ ➞ Θ ❙ (S).α : A

x : A, Γ ❙ S ❙➞ Θ
LI

x.(S) : A ❙ Γ ➞ Θ

Γ ➞ Θ ❙ M : A K : A ❙ ∆ ➞ Λ
Cut

Γ, ∆ ❙ M •K ❙➞ Θ, Λ

Γ ➞ Θ ❙ M : C

x : A, Γ ➞ Θ ❙ M : C
Thinning

Γ ➞ Θ ❙ M : C

Θ ➞ Θ, α : A ❙ M : C

x : A, y : A, Γ ➞ Θ ❙ M : C

x : A, Γ ➞ Θ ❙ M{x/y} : C
Contraction

Γ ➞ Θ, β : A, α : A ❙ M : C

Γ ➞ Θ, α : A ❙ M{α/β} : C

∆, x : A, y : B, Γ ➞ Θ ❙ M : C

∆, y : B, x : B, Γ ➞ Θ ❙ M : C
Interchange

Γ ➞ Θ, β : B, α : A, Λ ❙ M : C

Γ ➞ Θ, α : A, β : B, Λ ❙ M : C

(also Thinning, Contraction, Interchange for center and left sequents)

Figure 3: The dual calculus

Id
x : A ❙ x • α ❙➞ α : A

Γ ➞ Θ ❙ M : A
RE

Γ ❙ M • α ❙➞ Θ, α : A

K : A ❙ Γ ➞ Θ
LE

x : A, Γ ❙ x •K ❙➞ Θ

Figure 4: Derived structural rules



(X)◦ ≡ X
(A & B)◦ ≡ A◦ ∨B◦

(A ∨B)◦ ≡ A◦ & B◦

(¬A)◦ ≡ ¬A◦

(x)◦ ≡ x◦

(〈M, N〉)◦ ≡ [M◦, N◦]
(〈M〉inl)◦ ≡ fst[M◦]
(〈N〉inr)◦ ≡ snd[M◦]
([K]not)◦ ≡ not〈K◦〉
((S).α)◦ ≡ α◦.(S◦)

(α)◦ ≡ α◦

([K, L])◦ ≡ 〈K◦, L◦〉
(fst[K])◦ ≡ 〈K◦〉inl
(snd[L])◦ ≡ 〈K◦〉inr
(not〈M〉)◦ ≡ [M◦]not
(x.(S))◦ ≡ (S◦).x◦

(M •K)◦ ≡ K◦ •M◦

(x1 : A1, . . . , xm : Am)◦ ≡ xm
◦ : Am

◦, . . . , x1
◦ : A1

◦

(β1 : B1, . . . , βn : Bn)◦ ≡ βn
◦ : Bn

◦, . . . , β1
◦ : B1

◦

Figure 5: Duality for the dual calculus

either its left or right subformula. The term 〈M〉inl yields a
value of type A∨B consisting of the injection on the left of
the value yielded by term M of type A. Similarly for 〈N〉inr.
The coterm [K, L] is like a case expression: it consumes a
value of type A∨B, and depending on whether it is a left or
right injection, passes on the injected value to be consumed
by coterm K of type A or coterm L of type B.

Logically, the formula ¬A is equivalent to the implication
A⊃⊥. This suggests that computationally the formula ¬A
should correspond to a continuation, where a continuation
is a function that accepts a value and returns nothing. (One
may recall the song about Charlie on the MTA: “And did
he ever return, no he never returned, and his fate is still
unlearned.”) Though it never returns, a continuation may
still yield a value through one of its free covariables, just as
it may consume values other than its argument through its
free variables. The term [K]not yields a continuation of type
¬A that accepts an argument of type A and passes it to be
consumed by the coterm K. The term not〈M〉 consumes a
continuation of type ¬A by passing it as argument the value
of the term M of type A.

The formula A ⊃ B corresponds to a function type. The
term λx. N yields a function of type A ⊃ B that takes an
argument x of type A and yields the value of term N of type
B. The coterm M @L consumes a function of type A⊃B by
passing it as argument the value of the term M of type A,
and then passing the result to be consumed by the coterm
L of type B.

Cut plugs together a term and a coterm. The statement
M •K takes the value yielded by term M and passes it to
be consumed by coterm K.

In RI, the term (S).α executes statement S and yields
the value of type A passed to the covariable α. In LI, the
coterm x.(S) consumes a value of type A which is bound to
the variable x and then executes statement S.

Rules Cut, Id, RE, and LE overlap; we can avoid the over-
lap by using Cut only when the term is not a variable and
the coterm is not a covariable; using RE only when the term
is not a variable, and using LE only when the coterm is not
a covariable. Then every term, coterm, and statement still

IdR
x : A ➞ ❙ x : A

∨R
x : A ➞ ❙ 〈x〉inl : A ∨ ¬A

RE
x : A ❙ 〈x〉inl • γ ❙➞ γ : A ∨ ¬A

LI
x.(〈x〉inl • γ) : A ❙ ➞ γ : A ∨ ¬A

¬R
➞ γ : A ∨ ¬A ❙ [x.(〈x〉inl • γ)]not : ¬A

∨R
➞ γ : A ∨ ¬A ❙ 〈[x.(〈x〉inl • γ)]not〉inr : A ∨ ¬A

RE
❙ 〈[x.(〈x〉inl • γ)]not〉inr • δ ❙➞ γ : A ∨ ¬A, δ : A ∨ ¬A

Cont
❙ 〈[x.(〈x〉inl • γ)]not〉inr • γ ❙➞ γ : A ∨ ¬A

RI
➞ ❙ (〈[x.(〈x〉inl • γ)]not〉inr • γ).γ : A ∨ ¬A

Figure 6: Law of the excluded middle

has a unique proof tree (up to structural rules), and the
correspondence with sequent calculus is more closely pre-
served. A proof in the sequent calculus is mapped into the
dual calculus by adding occurrences of RI, LI, RE, and LE as
needed; and a proof in the dual calculus is mapped into the
sequent calculus by eliding the occurrences of RI, LI, RE,
and LE. (Avoiding overlap in this way resolves the problem
mentioned by Curien and Herbelin (2000) in the paragraph
spanning pages 234–5 that ends “no perfect world”.)

Types, terms, coterms, statements not involving impli-
cation have a dual, as defined in Figure 5. The definition
assumes a bijection mapping each variable x into a covari-
able x◦, with its inverse mapping each covariable α into a
variable α◦, such that x◦◦ ≡ x and α◦◦ ≡ α.

Proposition 3.1. Duality is an involution,

A◦◦ ≡ A
M◦◦ ≡ M
K◦◦ ≡ K
S◦◦ ≡ S.

Proposition 3.2. A sequent not containing implication
is derivable if and only if its dual is derivable,

Γ ➞ Θ ❙ M : A
K : A ❙ Γ ➞ Θ

Γ ❙ S ❙➞ Θ

 iff

 M◦ : A◦ ❙ Θ◦ ➞ Γ◦

Θ◦ ➞ Γ◦ ❙ K◦ : A◦

Θ◦ ❙ S◦ ❙➞ Γ◦.

As with sequent calculus, implication can be defined in
terms of the other connectives. We will return to this point
after considering an extended example, the law of the ex-
cluded middle, and considering the reduction rules for call-
by-value and call-by-name.

4. EXAMPLE: EXCLUDED MIDDLE
Figure 6 shows a proof of the law of the excluded mid-

dle, A∨¬A. The computational interpretation of this proof
exploits the ability of classisal control operators to return
multiple times from a single term. The term of type A∨¬A
first returns an injection into the right of the sum, a contin-
uation that expects a value of type A. If the continuation
is ever passed such a value, then the original term of type
A ∨ ¬A now returns an injection into the left of the sum,
containing the value passed to the continuation.



The following story illustrates this behavior. (With apolo-
gies to Peter Selinger, who tells a similar story about a king,
a wizard, and the Philosopher’s stone.)

Once upon a time, the devil approached a man and made
an offer: “Either (a) I will give you one billion dollars, or (b)
I will grant you any wish if you pay me one billion dollars.
Of course, I get to choose whether I offer (a) or (b).”

The man was wary. Did he need to sign over his soul?
No, said the devil, all the man need do is accept the offer.

The man pondered. If he was offered (b) it was unlikely
that he would ever be able to buy the wish, but what was
the harm in having the opportunity available?

“I accept,” said the man at last. “Do I get (a) or (b)?”
The devil paused. “I choose (b).”
The man was disappointed but not surprised. That was

that, he thought. But the offer gnawed at him. Imagine
what he could do with his wish! Many years passed, and
the man began to accumulate money. To get the money he
sometimes did bad things, and dimly he realized that this
must be what the devil had in mind. Eventually he had his
billion dollars, and the devil appeared again.

“Here is a billion dollars,” said the man, handing over a
valise containing the money. “Grant me my wish!”

The devil took possession of the valise. Then he said,
“Oh, did I say (b) before? I’m so sorry. I meant (a). It is
my great pleasure to give you one billion dollars.”

And the devil handed back to the man the same valise
that the man had just handed to him.

5. REDUCTIONS
A cut of a term against a variable abstraction, or a cut

of a covariable abstraction against a coterm, corresponds to
substitution. This suggests the following reduction rules.

(βL) M • x.(S) −→ S{M/x}
(βR) (S).α •K −→ S{K/α}

Here substitution in a statement of a term for a variable
is written S{M/x}, and substitution in a statement of a
coterm for a covariable is written S{K/α}.

A critical pair occurs when a covariable abstraction is cut
against a variable abstraction.

(S).α • x.(T )

Sometimes such reductions are confluent.

(x • α).α • y.(y • β)
↙ ↘

x • y.(y • β) (x • α).α • β
↘ ↙

x • β

But sometimes they are not.

(x • α).β • y.(z • γ)
↙ ↘

x • α z • γ

To restore confluence we must limit reductions, and this is
achieved by adopting call-by-value or call-by-name.

Call-by-value only reduces a cut of a value against a vari-
able abstraction, but reduces a cut of a covariable abstrac-
tion against any coterm.

(βL) V • x.(S) −→v S{V/x}
(βR) (S).α •K −→v S{K/α}

Value V replaces term M in rule (βL). A value cannot be a
covariable abstraction, so this avoids the critical pair.

Call-by-name only reduces a cut of a covariable abstrac-
tion against a covalue, but reduces a cut of any coterm
against a variable abstraction.

(βL) M • x.(S) −→n S{M/x}
(βR) (S).α • P −→n S{P/α}

Covalue P replaces coterm K in rule (βR). A covalue cannot
be a variable abstraction, so this avoids the critical pair.

In λ-calculus, the move from call-by-value to call-by-name
generalizes values to terms. In dual calculus, the move from
call-by-value to call-by-name generalizes values to terms but
restricts coterms to covalues, clarifying the duality.

Call-by-value reductions are shown in Figure 7. Let V, W
range over values. A value is a variable, a pair of values, a
left or right injection of a value, or any complement. The
fact that any complement is a value is analogous to the fact
that any function is a value in the λv calculus.

A context is a term or coterm that contains a hole which
may be filled with a term. Let E range over term contexts.
The hole is written { }, and the result of filling the hole in
a term context E with a term M is written E{M}.

Reductions (β&), (β∨), (β¬), and (β⊃) are logical reduc-
tions, and correspond to cutting a right rule against a left
rule. For instance, the (β&) reductions correspond to the
following familiar reductions from lambda calculus.

(β&) fst 〈V, W 〉 −→v V
(β&) snd 〈V, W 〉 −→v W

The remaining reductions are structural. Reductions (βL)
and (βR) correspond to following an introduction rule by an
elimination rule. Reductions (ηL) and (ηR) correspond to
following an elimination rule by an introduction rule. Re-
duction (ς) is a commuting rule.

Reductions (ηL), (ηR), and (ς) are in fact expansions.
To avoid infinite regress, expansions (ηL) and (ηR) should
be applied only to a term M or coterm K that is not the
immediate subject of a cut, and expansion (ς) should be
applied only when the term M is not a value.

Unlike (βL), there is no need to restrict to values in (ηL).
Reduction (ς) introduces new bindings for every subterm

that is not a variable. It is similar to the reductions (let.1)
and (let.2) in the λc-calculus of Moggi (1988).

(let.1) M N −→c let x = M in x N
(let.2) V N −→c let y = N in V y

These reductions correspond to the operation of introduc-
ing names for subterms in continuation passing style, as ex-
plained by Sabry and Wadler (1997).

It is claimed without proof that the reductions are con-
fluent. It is also claimed that if reductions (ηL), (ηR), and
(ς) are omitted, then the remaining reductions are strongly
normalizing for typed terms.

Call-by-name reductions are shown in Figure 8. With the
exception of implication, they are dual to call-by-value.

Proposition 5.1. For terms, coterms, and statements
not involving implication, call-by-value is dual to call-by-
name,

M −→v N
K −→v L
S −→v T

 iff

 M◦ −→n N◦

K◦ −→n L◦

S◦ −→n T ◦.



Value V, W ::= x | 〈V, W 〉 | 〈V 〉inl | 〈W 〉inr | [K]not | λx. N
Term context E ::= 〈{ }, M〉 | 〈V, { }〉 | 〈{ }〉inl | 〈{ }〉inr

(β&) 〈V, W 〉 • fst[K] −→v V •K
(β&) 〈V, W 〉 • snd[L] −→v W • L
(β∨) 〈V 〉inl • [K, L] −→v V •K
(β∨) 〈W 〉inr • [K, L] −→v W • L
(β¬) [K]not • not〈M〉 −→v M •K
(β⊃) λx. N • V @ L −→v V • x.(N • L)
(βL) V • x.(S) −→v S{V/x}
(βR) (S).α •K −→v S{K/α}
(ηL) K −→v x.(x •K) if x 6∈ free(K)
(ηR) M −→v (M • α).α if α 6∈ free(M)
(ς) E{M} −→v (M • x.(E{x} • β)).β

Figure 7: Call-by-value reductions

Covalue P, Q ::= α | [P, Q] | fst[P ] | snd[Q] | not〈M〉 | M @ Q
Coterm context F ::= [{ }, K] | [P, { }] | fst[{ }] | snd[{ }]

(β&) 〈M, N〉 • fst[P ] −→n M • P
(β&) 〈M, N〉 • snd[Q] −→n N •Q
(β∨) 〈M〉inl • [P, Q] −→n M • P
(β∨) 〈N〉inr • [P, Q] −→n N •Q
(β¬) [K]not • not〈M〉 −→n M •K
(β⊃) λx. N •M @ Q −→n M • x.(N •Q)
(βL) M • x.(S) −→n S{M/x}
(βR) (S).α • P −→n S{P/α}
(ηL) K −→n x.(x •K) if x 6∈ free(K)
(ηR) M −→n (M • α).α if α 6∈ free(M)
(ς) F{K} −→n y.((y • F{α}).α •K)

Figure 8: Call-by-name reductions

Implication can be defined in terms of the other operators.
Under call-by-value function abstractions must translate to
values, while under call-by-name function applications must
translate to covalues, and this forces different definitions for
the two reduction disciplines.

Proposition 5.2. Under call-by-value, implication can
be defined by

A⊃B ≡ ¬(A & ¬B)
λx. N ≡ [z.(z • fst[x.(z • snd[not〈N〉])])]not
M @ L ≡ not〈〈M, [L]not〉〉.

The translation of a function abstraction is a value, and the
inference and reduction rules for implication can be derived
from the inference rules for the other connectives.

Proposition 5.3. Under call-by-name, implication can
be defined by

A⊃B ≡ ¬A ∨B
λx. N ≡ (〈[x.(〈N〉inr • γ)]not〉inl • γ).γ
M @ L ≡ [not〈M〉, L].

The translation of a function application is a covalue, and
the inference and reduction rules for implication can be de-
rived from the inference rules for the other connectives.

6. CONTINUATION-PASSING STYLE
Plotkin (1975) formalized the call-by-value λv-calculus

and its corresponding continuation-passing style (CPS)
translation. He showed that the CPS translation is sound
in that it preserves reductions, but not complete in that
it does not reflect equalities. Sabry and Felleisen (1993)
sharpened Plotkin’s result by taking as their source the λc-
calculus of Moggi (1988). They showed that the CPS trans-
lation from λc is both sound and complete, in that it is an
equational correspondence that both preserves and reflects
equalities. Sabry and Wadler (1997) sharpened this result
further. They showed that the CPS translation is a Galois
connection that both preserves and reflects reductions. Here
we give an analogous result for the CPS translation from the
dual calculus, strengthening a result of Curien and Herbelin
(2000).

The call-by-value CPS translation is shown in Figure 9,
and the call-by-name CPS translation is shown in Figure 10.
We write (A)V , (V )V , (M)v, (K)v, (S)v for the call-by-value
translation of types, values, terms, coterms, and statements,
and similarly for call-by-name.

The call-by-value CPS translation resembles that for the
λv-calculus in Plotkin (1975), and the call-by-name CPS
translation resembles that for the λµ-calculus in Hofmann



(X)V ≡ X
(A & B)V ≡ (A)V × (B)V

(A ∨B)V ≡ (A)V + (B)V

(¬A)V ≡ (A)V →R

(x)V ≡ x
(〈V, W 〉)V ≡ 〈(V )V , (W )V 〉
(〈V 〉inl)V ≡ inl (V )V

(〈W 〉inr)V ≡ inr (W )V

([K]not)V ≡ (K)v

(x)v ≡ λγ. γ x
(〈M, N〉)v ≡ λγ. (M)v (λx. (N)v (λy. γ 〈x, y〉))
(〈M〉inl)v ≡ λγ. (M)v (λx. γ (inl x))
(〈N〉inr)v ≡ λγ. (N)v (λy. γ (inr y))
([K]not)v ≡ λγ. γ (λz. (K)v z)
((S).α)v ≡ λα. (S)v

(α)v ≡ λz. α z
([K, L])v ≡ λz. case z of inl x ⇒ (K)v x, inr y ⇒ (L)v y
(fst[K])v ≡ λz. case z of 〈x,−〉 ⇒ (K)v x
(snd[L])v ≡ λz. case z of 〈−, y〉 ⇒ (L)v y
(not〈M〉)v ≡ λz. (λγ. (M)v γ) z
(x.(S))v ≡ λx. (S)v

(M •K)v ≡ (M)v (K)v

Figure 9: Call-by-value CPS translation

(X)N ≡ X
(A & B)N ≡ (A)N + (B)N

(A ∨B)N ≡ (A)N × (B)N

(¬A)N ≡ (A)N →R

(α)N ≡ α
([P, Q])N ≡ 〈(P )N , (Q)N 〉
(fst[P ])N ≡ inl (P )N

(snd[Q])N ≡ inr (Q)N

(not〈M〉)N ≡ (M)n

(x)n ≡ λγ. x γ
(〈M, N〉)n ≡ λγ. case γ of inl α ⇒ (M)n α, inr β ⇒ (N)n β
(〈M〉inl)n ≡ λγ. case γ of 〈α,−〉 ⇒ (M)n α
(〈N〉inr)n ≡ λγ. case γ of 〈−, β〉 ⇒ (N)n β
([K]not)n ≡ λγ. (λz. (K)n z) γ
((S).α)n ≡ λα. (S)n

(α)n ≡ λz. z α
([K, L])n ≡ λz. (K)n (λα. (L)n (λβ. z 〈α, β〉))
(fst[K])n ≡ λz. (K)n (λα. z (inl α))
(snd[L])n ≡ λz. (L)n (λβ. z (inr β))
(not〈M〉)n ≡ λz. z (λγ. (M)n γ)
(x.(S))n ≡ λx. (S)n

(M •K)n ≡ (K)n (M)n

Figure 10: Call-by-name CPS translation

and Streicher (1997). Similar translations are presented by
Curien and Herbelin (2000) and Selinger (2001).

The source of the translations is the dual calculus without
implications, and the target is a restriction of the simply
typed λ-calculus. The syntax and reductions of the target
are shown in Figure 11. The typing rules for the target
are not shown, as they are standard. The target calculus
is indifferent, in the sense of Plotkin (1975), in that the
arguments of all reductions are values, so the reductions are
equally valid under both call-by-value and call-by-name.

Proposition 6.1. The call-by-value CPS translation pre-
serves types.

Γ ➞ Θ ❙ V : A
Γ ➞ Θ ❙ M : A
K : A ❙ Γ ➞ Θ

Γ ❙ S ❙➞ Θ

 iff


(Γ)V , (¬Θ)V ➞ (V )V : (A)V

(Γ)V , (¬Θ)V ➞ (M)v : (¬¬A)V

(Γ)V , (¬Θ)V ➞ (K)v : (¬A)V

(Γ)V , (¬Θ)V ➞ (S)v : R

Proposition 6.2. The call-by-name CPS translation
preserves types.

P : A ❙ Γ ➞ Θ
Γ ➞ Θ ❙ M : A
K : A ❙ Γ ➞ Θ

Γ ❙ S ❙➞ Θ

 iff


(¬Γ)N , (Θ)N ➞ (P )N : (A)N

(¬Γ)N , (Θ)N ➞ (M)n : (¬A)N

(¬Γ)N , (Θ)N ➞ (K)n : (¬¬A)N

(¬Γ)N , (Θ)N ➞ (S)n : R

Proposition 6.3. The call-by-value and call-by-name
CPS translations are dual.

(A)V ≡ (A◦)N

(V )V ≡ (V ◦)N

(M)v ≡ (M◦)n

(K)v ≡ (K◦)n

(S)v ≡ (S◦)n

There is an intuitive explanation of the duality between
the CPS translations, derived directly from de Morgan’s
laws relating conjunction and disjunction. Consider the
continuation of a term of pair type A & B. Depending on
whether the term is deconstructed using fst[] or snd[], either
the continuation will select the first component of type A or
the second component of type B, and then continue evalu-
ation. Thus, the continuation for a pair ¬(A & B) is a sum
of continuations ¬A ∨ ¬B. Now consider the continuation
of a term of sum type A ∨ B. Since the term may be con-
structed using either 〈〉inl or 〈〉inr, the continuation must
be prepared to accept both a left injection of type A and a
right injection of type B. Thus, the continuation for a sum
¬(A ∨B) is a pair of continuations ¬A & ¬B.

The CPS translations preserve and reflect reductions. We
consider only the call-by-value case, as the call-by-name case



Type A, B ::= X | A×B | A + B | A→R

Value V, W ::= x | 〈V, W 〉 | inl V | inr W | K
Term M, N ::= λα. S
Coterm K, L ::= λx. S
Statement S, T ::= α V |

case V of 〈x,−〉 ⇒ S |
case V of 〈−, y〉 ⇒ T |
case V of inl x ⇒ S, inr y ⇒ T |
M V

(β×) case 〈V, W 〉 of 〈x,−〉 ⇒ S −→ S{V/x}
(β×) case 〈V, W 〉 of 〈−, y〉 ⇒ T −→ T{W/y}
(β+) case inl V of inl x ⇒ S, inr y ⇒ T −→ S{V/x}
(β+) case inr W of inl x ⇒ S, inr y ⇒ T −→ T{W/y}
(β→) (λα. S) (λx. T ) −→ S{T{−/x}/α−}

Figure 11: CPS target calculus

Value V, W ::= x | 〈V, W 〉 | 〈V 〉inl | 〈W 〉inr | [K]not
Term M, N ::= (S).α
Coterm K, L ::= x.(S)
Statement S, T ::= V • α |

V • fst[K] |
V • snd[L] |
V • [K, L] |
V • not〈M〉

Figure 12: Kernel of the call-by-value dual calculus

(X)V ≡ X
(A×B)V ≡ (A)V & (B)V

(A + B)V ≡ (A)V ∨ (B)V

(A→R)V ≡ ¬(A)V

(x)V ≡ x
(〈V, W 〉)V ≡ 〈(V )V , (W )V 〉
(inl V )V ≡ 〈(V )V 〉inl
(inr W )V ≡ 〈(W )V 〉inr
(K)V ≡ [(K)v]not

(λα. S)v ≡ ((S)v).α (λx. S)v ≡ x.((S)v)

(α V )v ≡ (V )V • α
(case V of 〈x,−〉 ⇒ S)v ≡ (V )V • fst[x.((S)v)]
(case V of 〈−, y〉 ⇒ T )v ≡ (V )V • snd[y.((T )v)]
(case V of inl x ⇒ S, inr y ⇒ T )v ≡ (V )V • [x.((S)v), y.((T )v)]
(M V )v ≡ (V )V • not〈(M)v〉

Figure 13: Inverse call-by-value CPS translation

is entirely dual. The proof given here is based on that of
Sabry and Wadler (1997).

In the CPS translations, λ-abstractions in boldface are
administrative, that is, they are reduced at the time the
translation is performed. Figure 14 presents five examples,
showing the translation before and after performing the ad-
ministrative reductions.

The target syntax in Figure 11 is closed with respect to
substitutions. The notation S{V/x} stands for statement S
with all occurrences of variable x replaced by value V , and
is again a valid statement in the target. Note it may not be

valid to substitute a term that is not a value for a variable.
The notation S{T{−/x}/α−} stands for statement S with
all occurrences of the form α V replaced by T{V/x}. Note
that all occurrences of α in a valid statement in the target
have the form α V for some value V , and the result is again
a legal statement in the target. The target is also closed
with respect to reductions, in that reduction of a term in
the target syntax always yields a term in the target syntax.

The key intuition behind the proofs is to note that there is
a kernel of the dual calculus that is in one-to-one correspon-
dence with the CPS target calculus. This kernel is shown in



(〈x, y〉)v

≡ λγ. (λγ. γ x) (λx′. (λγ. γ y) (λy′. γ 〈x′, y′〉))
≡ λγ. γ 〈x, y〉

((z • fst[α]).α)v

≡ λα. (λγ. γ z) (λz′. case z′ of 〈x,−〉 ⇒ (λz′′. α z′′) x)
≡ λα. case z of 〈x,−〉 ⇒ α x

(〈(z • fst[α]).α, (z • snd[β]).β〉)v

≡ λγ. (λα. case z of 〈x,−〉 ⇒ α x)
(λx′. (λβ. case z of 〈−, y〉 ⇒ β y)

(λy′. γ 〈x′, y′〉))
≡ λγ. case z of 〈x,−〉 ⇒ case z of 〈−, y〉 ⇒ γ 〈x, y〉

(x • α)v

≡ (λγ. γ x) (λz. α z)
≡ α x

([α]not • not〈x〉)v

≡ (λγ. γ (λz. (λz. α z)z)) (λz. (λγ. (λγ. x γ) γ) z)
≡ (λγ. x γ) (λz. α z)

Figure 14: Examples of CPS translation

((〈x, y〉)v)v

≡ 〈x, y〉

(((z • fst[α]).α)v)v

≡ (z • fst[x.(α • x)]).α

((〈(z • fst[α]).α, (z • snd[β]).β〉)v)v

≡ (z • fst[x.(z • snd[y.(〈x, y〉 • γ)])]).γ

((x • α)v)v

≡ x • α

(([α]not • not〈x〉)v)v

≡ [z.(z • α)]not • not〈(x • γ).γ〉

Figure 15: Examples of kernel terms

Figure 12. Like the CPS target calculus, the kernel is closed
with respect to substitutions and reductions.

The CPS translation has a right inverse, as defined in
Figure 13, which maps each term in the CPS target to the
corresponding term in the kernel. Translating a term of
the dual calculus into CPS and then applying the inverse
CPS translation yields a corresponding term in the kernel.
Figure 15 presents the five kernel terms corresponding to
the five translations in Figure 14.

A term in the kernel has no (βL) or (βR) redexes. Note,
however, that such redexes may be created after reduction
(β¬) is applied. In the CPS target, there is no reduction
corresponding to (β¬), but the reductions corresponding to
(βL) and (βR) play a similar role.

The CPS translation on values relates in the usual way to
the CPS translation on terms.

Proposition 6.4. Let V be a value of the dual calculus.
Then

(V )v ≡ λγ. γ (V )V .

The CPS translation preserves substitution of a value for
a variable, and of a coterm for a covariable.

Proposition 6.5. Let S, V , x, K, α be in the dual cal-
culus. Then

(S{V/x})v ≡ (S)v{(V )V /x}
(S{K/α})v ≡ (S)v{(K)v/α}.

Applying the CPS translation followed by its inverse
amounts to putting a term, coterm, or statement of the dual
calculus into a normal form with regard to the reductions
(βL), (βR), (ηL), (ηR), and (ς) of the source calculus.

Proposition 6.6. Let M , K, S be terms of the dual cal-
culus. Then

M −→v ((M)v)v

K −→v ((K)v)v

S −→v ((S)v)v.

In the above reductions, only the rules (βL), (βR), (ηL),
(ηR), and (ς) are applied, and they are applied until they
can be applied no further. (As usual, one must be careful
not to apply (ηL) and (ηR) within a cut, and not to apply
(ς) when the term is a variable.)

The inverse CPS translation followed by the CPS trans-
lation is the identity.

Proposition 6.7. Let N , L, and T be in the CPS target
calculus. Then

((N)v)v ≡ N
((L)v)v ≡ L
((T )v)v ≡ T .

The CPS translation preserves reductions.

Proposition 6.8. Let M , N , K, L, S, T be in the dual
calculus. Then

M −→v N
K −→v L
S −→v T

 implies

 (M)v −→ (N)v

(K)v −→ (L)v

(S)v −→ (T )v.

Each reduction in the dual calculus translates to zero or
more reduction steps in the CPS target. In particular, re-
ductions (ηL), (ηR), and (ς) translate to zero steps, as their
left and right sides have identical CPS translations after ad-
ministrative reductions have been applied.

The inverse CPS translation preserves reductions.

Proposition 6.9. Let M , N , K, L, S, T be in the CPS
target calculus. Then

M −→N
K −→ L
S −→ T

 implies

 (M)v −→v (N)v

(K)v −→v (L)v

(S)v −→v (T )v.

We can summarize our results as follows. The CPS trans-
lation is a Galois connection; furthermore, the CPS trans-
lation followed by its inverse is the identity, so we have the
stronger form of Galois connection called a reflection. The
following is equivalent to Propositions 6.6–6.9.

Proposition 6.10. Let M , K, S be in the dual calculus,
and N , L, T be in the CPS target calculus. Then

M −→v (N)v

K −→v (L)v

S −→v (T )v

 iff

 (M)v −→N
(K)v −→ L
(S)v −→ T ,

and
((N)v)v ≡N
((L)v)v ≡L
((T )v)v ≡T .



7. CONCLUSIONS
Here is a speculation about one possible application of

these ideas. Call-by-name can be inefficient because a single
term may be evaluated many times. Call-by-need avoids
this inefficiency by overwriting a term with its value the
first time it is evaluated.

Similarly, in the dual calculus it becomes clear that call-
by-value can be inefficient because a single coterm may be
evaluated many times. A strategy dual to call-by-need could
avoid this inefficiency by overwriting a coterm with its cov-
alue the first time it is evaluated.

Terms in the dual calculus are not always easy to read.
Compare, for instance, the λ-calculus term

〈fst V, snd M〉

with a corresponding dual calculus term,

(V • fst[x.(V • snd[y.(γ • 〈x, y〉)])]).γ

The latter is reminiscent of continuation-passing style — like
the Pompidou Center in Paris, the plumbing is exposed on
the outside. While this can make the expression harder on
the eyes, it also — like CPS, and like the Pompidou Center
— has the advantage of revealing structure that previously
was hidden.

Call-by-name was introduced in the seminal work of
Church (1932), and call-by-value was introduced in a review
a few years later by Bernays (1936). Almost a half century
passed between the initial publications of Church (1932) and
Gentzen (1935) and their linkage in a publication by Howard
(1980). After a further quarter of a century, an underlying
duality between the two fundamental forms of evaluation
has been revealed. What more will we discover before the
centenary of the birth of λ-calculus, natural deduction, and
sequent calculus?
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