
A Practical Subtyping System For Erlang

Simon Marlow Philip Wadler
simonm@dcs.gla.ac.uk wadler@research.bell-labs.com
University of Glasgow Bell Labs, Lucent Technologies

Abstract

We present a type system for the programming language Er-
lang. The type system supports subtyping and declaration-
free recursive types, using subtyping constraints. Our sys-
tem is similar to one explored by Aiken and Wimmers,
though it sacrifices expressive power in favour of simplicity.
We cover our techniques for type inference, type simplifi-
cation, and checking when an inferred type conforms to a
user-supplied type signature, and report on early experience
with our prototype.

1 Introduction

We can stop waiting for functional languages to be used in
practice—that day is here! Erlang is a strict, untyped func-
tional language with support for concurrency, communica-
tion, distribution, fault-tolerance, on-the-fly code reloading,
and multiple platforms [AVW93]. Applications exist that
consist of upwards of half a million lines of code.

This paper documents our experience in designing and
building a type system for Erlang. Our type system pro-
vides type inference with subtyping, declaration-free recur-
sive types, type signature checking, and data abstraction. So
far we have successfully applied our prototype to about 5000
of the 13000 lines of code in the Erlang standard library, and
anticipate no difficulties in applying it to the remainder.

We expect that adding a type system to Erlang will
improve documentation, maintenance, and reliability. Our
type system had two goals. First, it should type existing Er-
lang code with little or no modification. Second, it should
be easy to comprehend. Whereas many type systems strive
to maximise expressive power, our aim is to maximise sim-
plicity, consistent with having sufficient power to describe
Erlang as it is typically used in practice.

Our first goal rules out the popular type system devised
by Hindley and Milner [Hin79, Mil78, DM82]. The difficulty
is that with Hindley-Milner each type must involve a set of
constructors distinct from those used in any other types, a
convention not adhered to by Erlang programmers.

So we need a type system that allows one constructor
to belong to several different types. One possibility is types

Appears in the International Conference on Functional
Programming, Amsterdam, June 1997

based on row variables, as introduced by Wand [Wan87],
and used as the basis of the soft type system for Scheme
by Cartwright, Fagan, and Wright [CF91, WC94]. It turns
out that the row variable system rejects some programs that
seem quite natural to us, and the circumlocutions we had
to go through to construct an equivalent program that was
well typed struck us as hard to explain. This isn’t a problem
for soft typing systems, where the goal is to improve perfor-
mance by removing run-time type checking, and therefore
maximum information is of greater benefit than a natural
notion of typing.

The alternative that we adopted is to build a type system
based on subtyping. Type systems with subtyping have been
studied by several researchers [Mit91, FM88, MR85, Rey85],
and are based on solving systems of typing constraints of the
form U ⊆ V , where U and V are types. Hindley-Milner
systems, by contrast, are based around equality constraints
of the form U = V , which can be solved by unification.
Subtyping systems are strictly more general than Hindley-
Milner systems: each program that can be typed by Hindley-
Milner has a typing in a subtyping system, but not vice
versa.

Our type system is based around the system developed
by Aiken and Wimmers [AW93], except sacrifice expres-
sive power in favour of simplicity. We chose the smallest
type language consistent with describing typical Erlang pro-
grams: we support disjoint unions, a limited form of com-
plement, and recursive types; but not general unions or in-
tersections, or conditional types [AWL94]. Our expectation
was that these additional features would not help program-
mers, but would make inferred types less readable. We have
succeeded in that our simplified inferred types are usually
readable. On the other hand, we have encountered at least
one situation where conditional types would be useful, as
discussed in Section 9.3).

The type system presented here does not include func-
tion types, since first-class functions are not a feature of the
current version of Erlang. However, the soon-to-be-released
Erlang 4.4 supports first-class functions and we have suc-
cessfully extended our prototype implementation to include
function types. While we conjecture that our type check-
ing algorithm without function types is complete, the work
of Trifonov and Smith [TS96] shows a similar system with
function types is incomplete, although they claim this is not
a serious problem in practice. We discuss this in Section 8.1.

We demonstrate our system with a small program to
manipulate sorted binary trees of keys and values. Figure
1 shows a type declaration and three Erlang functions with

-deftype tree(A,B) =
T when T = empty | branch{A,B,T,T}.

-type new() -> tree(0,0).
new() -> empty.

-type insert(A,B,tree(A,B)) -> tree(A,B).
insert(K0,V0,empty) ->

{branch,K0,V0,empty,empty};
insert(K0,V0,{branch,K,V,L,R}) ->

if K0 < K ->
{branch,K,V,insert(K0,V0,L),R};

K0 == K ->
{branch,K0,V0,L,R};

true ->
{branch,K,V,L,insert(K0,V0,R)}

end.

-type lookup(A,tree(A,B)) -> B | error
when B \ error.

lookup(K0,empty) -> error;
lookup(K0,{branch,K,V,L,R}) ->

if K0 < K -> lookup(K0,L);
K0 == K -> V;
true -> lookup(K0,R)

end.

Figure 1: Binary Tree Example

type signatures. All type information is treated as annota-
tions, which in Erlang are prefaced with a dash (-).

The basic data structures in Erlang are integers,
floats, atoms (such as empty) and tuples (such as
{branch,K,V,L,R}, where branch is an atom and K, V,
L, R are structures). In our system, the types of these
are respectively written integer(), float(), empty, and
branch{A,B,T,T} (where K has type A, V has type B, and
L and R have type T). (Why we write branch{A,B,T,T} in-
stead of {branch,A,B,T,T} will be explained in Section 2.)
The empty type, containing no values, is written 0 and the
universal type, containing all values, is written 1.

In Erlang, atoms and functions begin with a small letter
while variables begin with a capital letter; functions may
be distinguished from atoms because they are followed by
parentheses. The same thing works at the type level, where
empty is the type of an atom, integer() is a built-in type
returning the type of all integers, and A is a type variable.

The deftype annotation defines the type tree(A,B),
while the three type annotations specify type signatures for
the functions new, insert, and lookup. These annotations
allow the user to document the program, and the type tool
checks that the program conforms to that documentation.
When multiple modules are processed, one may specify that
the name of a type is exported without exporting its defini-
tion, thereby supporting type abstraction. For instance, if
this module exports the type tree without exporting its def-
inition, then the type system will ensure that only the three
functions defined in it have access to the representation of
trees.

The function empty takes no arguments and returns a
tree; the function insert takes a key, a value, and a tree

new() -> A when empty <= A

insert(B, C, D) -> A
when
branch{E,F,G,A} <= A; branch{B,C,G,H} <= A;
branch{E,F,A,H} <= A;
branch{B,C,empty,empty} <= A;
D <= empty | branch{E,F,G,H};
G <= empty | branch{E,F,G,H};
H <= empty | branch{E,F,G,H};
H <= D; G <= D.

lookup(B, C) -> A
when
error <= A
C <= empty | branch{D,E,F,G};
F <= empty | branch{D,E,F,G};
G <= empty | branch{D,E,F,G};
E <= A; F <= C; G <= C.

Figure 2: Inferred Types

new() -> empty.

insert(D, E, F) -> A
when
empty | branch{D,E,A,A} <= A;
F <= empty | branch{D,E,F,F}.

lookup(1, B) -> error | A
when
B <= empty | branch{1, error | A, B, B};
A \ error.

Figure 3: Simplified Types

and returns a new tree with the key and value inserted; and
the function lookup takes a tree and a key, and returns the
value corresponding to that key or the atom error if the
key is not found. To avoid any possibility of confusing a
success and failure, the type specified for lookup adds the
constraint that the value type B cannot include the atom
error, written B \ error. In general, the form of a type
signature is U when C , where U is a type and C is a set
of constraints.

One problem with using a type system built around sub-
typing is that the set of constraints can be arbitrarily large,
and inferred types can be difficult to read if they are not
simplified. This is one reason for favouring simplicity over
expressiveness: the more expressive the type language, the
more difficult it is to simplify types. Experiments with our
prototype have been promising, as for most functions we can
derive a natural and readable version of its inferred type.

Figure 2 shows the types derived by our inference algo-
rithm for the three tree operations, and Figure 3 shows the
same types after simplification. The user-provided type sig-
natures differ considerably from the inferred and simplified
types. First, user-provided types may refer to type defini-
tions, which do not appear in inferred or simplified types.

2

For instance, signature for new declares the function to have
type tree(0,0), where 0 is the empty type; whereas the sim-
plified inferred type is simply empty, the empty tree. Second,
the user-provided types may be more specific than the in-
ferred type. For instance, the signature for lookup restricts
the type A of the lookup key to be the same as the key fields
in the tree, and the type B of the value fields in the tree not
to contain error; whereas in the simplified inferred type B
is the type of the tree, and A is the type of non-error value
fields, but value fields may specifically include error.

Inferred types are principal, in that the inferred type
of a function has all other possible types of that function
as instances. However, as simplification demonstrates, the
same type may be written in many forms. Simplified types
are equivalent to the original, in that they represent the
same set of values in the semantic domain.

To check user-supplied type signatures, we need to deter-
mine when a one type is an instance of another type. This
problem turns out to be surprisingly tricky. The problem
has been analysed by Trifonov and Smith [TS96] for a type
language containing function types but no type union (con-
versely, ours contains type union but no function types), and
they provide an algorithm which is sound but not complete,
and leave the question of decidability open. In this paper,
we give an algorithm which we believe is both sound and
complete for our type language, but so far we have been
unable to find a proof.

The paper is organised as follows. Section 2 introduces
the syntax of expressions and types. Section 3 describes the
typing rules for expressions. Section 4 presents a type recon-
struction algorithm. Section 5 shows how to solve systems
of typing constraints. Section 6 explains how to simplify
types. Section 7 describes our algorithm for type signature
matching. Section 8 sketches extensions to the type system
for processes and higher-order functions. Section 9 relates
our experience with the prototype implementation. Section
10 concludes.

2 Expressions and Types

The syntax of expressions we will be using is given in Figure
4. The language is a small subset of Erlang, containing
variables, constructor applications (called tagged tuples in
Erlang), function calls and simple case expressions.

We use the overbar to indicate a sequence of objects,
for example E = E1, . . . ,En . The length of the sequence
is normally discernable from the context. Each constructor
has a fixed arity, so in c{E} the length of the sequence

of expressions E is equal to the arity of the constructor c.
When there is no length-fixing context, the length of the
sequence is arbitrary.

Standard Erlang doesn’t have constructor applications.
It has atoms, which we represent as nullary constructor ap-
plications, and it has arbitrary tuples, written {E1, . . . ,En}.
In our type system we use the convention that if the first
element of a tuple in an Erlang program is an atom, then
we convert the tuple to a tagged tuple, using the atom name
as the constructor. If the first element is some other expres-
sion, then the tuple is an anonymous tuple, and we assign
the constructor tuplen , where n is its arity.

There are several other differences between Erlang and
our small subset:

• All pattern matching is compiled into simple case

f , g function names

c, d constructors

X ,Y ,Z variables

E ::= X expression
| c{E1, . . . ,En}
| f (E1, . . . ,En)
| case E0 of

c1{X1} → E1;
...
cn{Xn} → En ;
X → En+1

end

prog ::= f1(X1) → E1;
...
fn(Xn) → En

program

Figure 4: Expressions

c, d constructors

α, β type variables

U ,V ::= P | U union type
| R

P ,Q ::= c{U } prime type

R ::= αcs remainder
| 1cs

| 0

Figure 5: Types

expressions. Algorithms to do this are well known
[Aug85, Wad87].

• Case expressions always have a default alternative, of
the form X → E . A special form of this is used to
indicate that the alternative should never be taken:
X → empty(X), where empty is a built-in function
which always fails.

• Interprocess communication is omitted for now. We
discuss an extension to handle this in Section 8.2.

Programs consist of a set of top-level function declara-
tions, which may be recursive. Our type system will assign
polymorphic types to these function declarations.

The semantics of our language is strict i.e. function argu-
ments are always evaluated before the function is called, and
constructor arguments are evaluated before the structure is
built.

The syntax of types is given in Figure 5.
Prime types are written c{U1, . . . ,Un}, and represent

the type of a tagged tuple with tag c, arity n, and field
types U1 . . .Un .

The general form of a union type, U , is

3

c1{U1} | . . . | cn{Un} | R

where R represents a remainder. A remainder is either a
type variable αcs , the universal type 1cs , or the empty type
0.

The syntax αcs for a type variable means that α
ranges over all types not containing elements with the tags
c1, . . . , cn (= cs). The tags cs are called the excluded tags on
the type variable α. Similarly, the syntax 1cs represents the
universal type excluding types with tags c1, . . . , cn . If the
list cs is empty, it is normally omitted. When the remainder
is 0 or 1cs , the type is called a monotype.

The operator ‘|’ is a disjoint union. This means that in
the type expression P |U , the types P and U cannot overlap
under any legal substitution for the free variables of either
type. This implies two further restrictions on the form of
the general union type c1{U1} | . . . | cn{Un} | R: the tags
cs must be distinct, and if R is of the form αds or 1ds then
cs ⊆ ds, where cs is c1, . . . , cn .

This syntax of types provides exactly the level of gener-
ality we require for typing Erlang. The main differences be-
tween this system and that of Aiken and Wimmers [AW93]
are:

• the lack of a general intersection, instead we only al-
low excluded tags (which would be represented with
intersection in the Aiken-Wimmers system).

• the lack of function types. As mentioned in the in-
troduction, we leave out function types because the
current version of Erlang doesn’t support them.

Our union operator is equivalent to that used in the
Aiken-Wimmers system except that we do not allow gen-
eral (non-disjoint) union on the left of a constraint. How-
ever, general union on the left of a constraint can always be
replaced by several constraints without union operators.

The presence of the universal type is interesting: in fact,
we never infer types containing the universal type, although
some types are simplified by replacing type variables in nega-
tive positions1 by the universal type. Experimentation with
the prototype persuaded us that the universal type in a pos-
itive position is useful for expressing the type of certain Er-
lang built-in functions for which our type system cannot
provide precise types. For example, the function element
selects the nth element of an arbitrary tuple. The best type
for this function in our system is (int(), tuple()) → 1, where
int() and tuple() are built-in types representing integers and
tuples respectively. Without the universal type, it would not
be possible to give a sound type to this function.

2.1 Subtyping Constraints
Subtyping constraints are written U ⊆ V . A constraint is
valid if all values of the type U are also values of the type V .
We use the identifiers C and D to refer to sets of subtyping
constraints, where a constraint set is valid if and only if all
the individual constraints are valid.

If the types in a constraint set contain type variables,
the validity of the set depends on a substitution σ from type

1A type is in a negative position if it appears in an argument posi-
tion of a function type or on the right hand side of a constraint. Result
types and the left hand sides of constraints are positive positions.

variables to type values. A type value is a certain portion
of the semantic domain, for example: ‘integer’, ‘list of char-
acters’, and ‘tree of integer pairs’ are all type values (a set
of values is another way of thinking of it). An ideal model
similar to that in [MPS86] or recursive type equations as
used by Trifonov and Smith [TS96] would provide a suitable
framework for defining type values.

A substitution σ is a solution of a constraint set iff its
application renders the constraint set valid.

We use some shorthand forms for sequences of similar
subtyping constraints:

U ⊆ V ⇒ U1 ⊆ V1, . . . ,Un ⊆ Vn

U ⊆ V ⇒ U ⊆ V1, . . . ,U ⊆ Vn

U ⊆ V ⇒ U1 ⊆ V , . . . ,Un ⊆ V

2.2 Entailment
We also introduce an entailment operator over constraint
sets, written as follows:

C D

which is true if all solutions of C are also solutions of D .
Entailment is reflexive and transitive.

We will also use another form of entailment:

∀α.∃β.C D

which is true if every substitution mapping α to type values
that solves C can be extended to a solution of D by adding
mappings for β. It follows from this definition that α must
contain at least the free type variables of C . If the free
type variables of D are a subset of those of C , then the two
operators above are equivalent.

The latter operator is used to define type instance, in
Section 7.

2.3 Function Types
Although our type language does not have a general func-
tion space operator (→), we assign type schemes to top-level
functions in the source program. Top-level function type
schemes are polymorphic and constrained. They take the
following form:

∀α.(U) → V when C

Function type schemes cannot have any free type variables
(that is, FTV((U) → V when C) ⊆ α).

3 Typing Rules

We give the typing rules for expressions in two forms. This
section describes a traditional set of typing rules for subtyp-
ing, and the following two sections describe our algorithm
to determine the most general typing of an expression.

The typing rules in traditional format are given in Figure
6. The form of a judgement is

F ; A; C ` E : U

Elements of F have the form f : ∀α.(U) → V when C .
Elements of A have the form x : U . The judgement asserts
that under function assumption F and variable assumption

4

Var
F ; A,X : U ; C ` X : U

Sub
F ; A; C ` E : U C U ⊆ V

F ; A; C ` E : V

Fun F , f : ∀α.(U) → V when D ; A; C ,D [V /α] ` f : ((U) → V)[V /α]

Con
F ; A; C ` E : U

F ; A; C ` c{E} : c{U } Call
F ; A; C ` f : (U) → V F ; A; C ` E : U

F ; A; C ` f (E) : V

Case

F ; A; C ` E0 : c1{U1} | . . . | cn{Un} | U
F ; A,X1 : U1; C ` E1 : V . . . F ; A,Xn : Un ; C ` En : V

F ; A,X : U ; C ` En+1 : V

F ; A; C ` (case E0 of c1{X1} → E1; . . . cn{Xn} → En ;X → En+1 end) : V

Multi
F ; A; C ` E1 : U1 . . . F ; A; C ` En : Un

F ; A; C ` E : U

Def
F , f : ((U) → V when C); X : U ; C ` E : V FTV((U) → V when C) = α

F ; ∅; C ` f (X) → E : (∀α.(U) → V when C)

Figure 6: Typing Rules

A, expression E has type U whenever the constraint set C
is satisfied.

The typing rule for function names (Fun) instantiates the
quantified variables with arbitrary types. It also copies the
constraints D from the function type into the current con-
straint set C , ensuring that the constraints on the function
type are satisfied each time the function is called.

As mentioned in Section 2 we assume one built-in func-
tion empty , with type

empty : (0) → 0

The empty function is the only means by which a func-
tion may fail: if empty is ever called at runtime, the program
exits.

The rules allow any expression to be assigned a typing,
but only typings in which C has at least one solution are
useful (these are called valid typings). If any valid typing
exists, then it is guaranteed that the program will never call
empty at runtime.

Subtyping is introduced with the subsumption rule
(Sub), which allows the type U of an expression to be re-
placed with any larger type V provided the entailment re-
lation C U ⊆ V holds (the entailment operator was de-
scribed in Section 2.1). The simplest way for this relation
to hold is if C contains U ⊆ V .

For case expressions, the type of the selector E0 is re-
quired to be smaller than the union of the types of the pat-
tern alternatives and the type of the variable X bound in
the default alternative (c1{U1} | . . . | cn{Un} | U , where each

type ci{Ui} is the type of a pattern, and U is the type of
X). By the rules of the disjoint union operator, this implies
that the type U cannot contain any elements with the tags
c1, . . . , cn . Compare this with traditional Hindley-Milner
type checking, where there is no way of representing or ex-
ploiting the fact that the type of the default variable may
exclude types handled by earlier case branches.

In order to type an arbitrary expression we need to know
two things: whether a valid typing exists, and the most
general form of that typing.

Note that in general there is no unique most-general type
for a given function in this system. Indeed, the type simplifi-
cation process that we will describe in Section 6 attempts to
replace a type with an equivalent simpler type. Two types
are equivalent if they are instances of each other; we will
discuss subtype instance in Section 7.

In our implementation, typings are derived in two stages:

• Firstly, type reconstruction derives a type and a set of
typing constraints for the expression. This is the most
general typing of the expression if the constraints are
satisfiable.

• The second stage, constraint set reduction, determines
the solvability of the constraint set. If the set is solv-
able, then we have a type for the expression.

These two stages are described in the next two sections.

4 Type reconstruction

The typing rules can be used in a syntax-directed way to
generate a constrained type as follows:

• Assign a fresh type variable to each new bound vari-
able. Thus the assumption A binds variables to unique
type variables.

• Assign a fresh type variable for the type of each case
expression.

• Use subsumption in the following places: to promote
the type of each function argument in a function call,
to promote the type of each branch in a case expres-
sion to a common supertype (which is a fresh type
variable), and to promote the type of the selector in
a case expression to the union of the pattern types.
For each use of subsumption place the required con-
straint in C , so that the entailment relation is trivially
satisfied.

5

P | U ⊆ V ⇒ P ⊆ V ,U ⊆ V

0 ⊆ U ⇒ none

1cs ⊆ 0 ⇒ fail

1cs ⊆ c{U } | U ⇒ 1 ⊆ U , 1cs ⊆ U if c /∈ cs
1cs ⊆ U otherwise

1cs ⊆ 1ds ⇒ none if ds ⊆ cs
fail otherwise

1cs ⊆ αds ⇒ 1cs ⊆ αds if ds ⊆ cs
fail otherwise

c{U } ⊆ 0 ⇒ fail

c{U } ⊆ c′{U ′} | U ⇒ U ⊆ U
′

if c = c′

c{U } ⊆ U otherwise

c{U } ⊆ 1cs ⇒ none if c /∈ cs
fail otherwise

c{U } ⊆ αcs ⇒ c{U } ⊆ αcs if c /∈ cs
fail otherwise

U ⊆ αcs , αcs ⊆ V ⇒ U ⊆ V ,U ⊆ αcs , αcs ⊆ V

Figure 7: Reduction Rules

Proposition 1 (principal type property) Every type deriv-
able for a function using the typing rules is an instance of
the type derived by the type reconstruction algorithm.

The proof of this proposition is similar to Mitchell’s proof
of principal types for his subtyping system [Mit91].

5 Constraint Set Reduction

Constraint Reduction is the process of determining whether
a system of constraints is solvable. If a constraint system
generated by the type reconstruction algorithm is not solv-
able, it indicates that the program has a type error.

We do not have to discover an actual solution to the
set, merely prove that one or more solutions exist. This is
done by repeatedly transforming the constraint system while
maintaining transitive closure and checking for type errors.
The transformation system is given in Figure 7. Each rule
applies to one or more constraints from the current set, and
yields one of the following results:

• ‘fail’, indicating that the constraint system has no so-
lutions, and the original function therefore contains a
type error,

• ‘none’, indicating that the constraint should be re-
moved from the system,

• one or more transformed constraints. The original con-
straints are to be removed from the set.

A constraint set is only fully reduced when both of the
following conditions apply:

1. Each constraint in the set is of the form αcs ⊆ U or
U ⊆ αcs , and

2. Any rule that can be applied would take the constraint
set into a state that has occurred before.

If the reduction process terminates without failure, the
resulting constraint set is said to be consistent.

For reasons of efficiency, we ignore the strictness of con-
structors for type inference purposes. In other words, the
type of c{⊥} in our system is c{0}, not 0. A similar situation
is found in [AW93] where some solutions to the constraint
set are discarded for efficiency.

Proposition 2 When applied to an arbitrary constraint
set, the reduction process either fails or terminates yield-
ing a consistent constraint set.

Proof sketch. Observe that all rules in the transforma-
tion algorithm, except the last (transitivity), either fail or
split a constraint into zero or more constraints on subterms
of the originals, until all the constraints have a variable on
one side or the other. All the cases are covered; so any con-
straint set can be reduced to a state where all constraints
are of the form αcs ⊆ U or U ⊆ αcs .

The transitivity rule forms a new constraint from exist-
ing types. This rule cannot be applied indefinitely without
reaching a fixed point because there are only a finite number
of possible constraints to add. We must therefore reach a
state where (1) all constraints are on variables, and (2) the
only rule which can be applied to change the set is transi-
tivity, and all possible constraints have already been added
to the set. �

Proposition 3 A consistent constraint set is solvable.

Proof sketch. We prove this property by relation
with the inductive constraint system of Aiken and Wim-
mers [AW93]. A consistent constraint set in our system can
be transformed into an inductive constraint set, and the pro-
cess cannot fail. Inductive constraint sets were shown to be
solvable by Aiken and Wimmers.

The subject of inductive form and the algorithm for con-
verting a consistent constraint set into an inductive con-
straint set are discussed in Section 7.

6 Type Simplification

The type assigned to a function by the type inference al-
gorithm can be large and unwieldy, making it difficult for
a user to interpret, and expensive for an implementation to
deal with. Therefore we apply a number of simplifying trans-
formations to the type, in an attempt to derive an equivalent
type that contains fewer typing constraints.

Our simplification transformations are similar to those
of Fähndrich and Aiken [FA96], who use type simplification
amongst other techniques to show that set-constraint-based
analyses are scalable to large examples.

We have not found a suitable ‘normal form’ for a con-
strained type, nor have other researchers in this area. We
cannot therefore hope for a simplification procedure that
is complete. There are sometimes typing constraints which
cannot be eliminated; one example is when the constraints
are being used to represent a recursive type. However, the
transformations given in this section are based on heuris-
tics that we have found to be effective. In many cases, the
derived type can be simplified to the type that one would
normally assign to the function.

6

The constraint set generated by the type inference algo-
rithm satisfies three important properties that we can make
use of during simplification.

• Each constraint in the system is of the form αcs ⊆ U
or U ⊆ αcs , termed upper and lower bounds on α
respectively. For an implementation, this means that
we can represent the constraint set as a mapping from
variables to sets of upper and lower bounds. This prop-
erty will hold throughout simplification.

• Separate occurrences of the same variable will have
identical excluded tag lists. This property will hold
throughout simplification.

• The constraint set is transitively closed. That is, for
each constraint pair αcs ⊆ βds and βds ⊆ U , the set
contains the constraint αcs ⊆ U , and for each pair
U ⊆ βds and βds ⊆ αcs , the set contains U ⊆ αcs .
We will not retain this property during simplification,
although the transitive closure can always be recovered
by adding the necessary constraints to the system.

6.1 General Simplifications
The following transformations are applied whenever the op-
portunity arises during the simplification process.

αcs ⊆ αcs ⇒ none
0 ⊆ αcs ⇒ none
αcs ⊆ 1ds ⇒ none if ds ⊆ cs

6.2 Eliminating Cycles
Our implementation eliminates cycles in the constraint set
as a first step, since it has a dramatic effect on the effi-
ciency of the rest of the simplification process and is rela-
tively cheap to perform.

The idea is to first identify all cycles between variables.
Since in any solution of this constraint set the values of these
variables must be identical, we can replace all occurrences
of the variables with a new variable. The transformation is
given in Figure 8a.

If the constraint set is treated as a graph with the vari-
ables as nodes, then cycles can be found in linear time using
standard algorithms, and removed in linear time using the
above substitution. The result is a directed acyclic graph.
A constraint set in this form is called contractive [TS96].

6.3 Combining Upper and Lower Bounds
In general, a variable may have several upper and lower
bounds. The purpose of this simplification stage is to reduce
the number of upper and lower bounds on each variable by
combining them where possible.

6.3.1 Combining Lower Bounds
It is always possible to combine the lower bounds on a vari-
able such that we achieve a normal form:

β1 ⊆ αds

...
βn ⊆ αds

c1{U1} | . . . | cn{Un} | 0 ⊆ αds

After combination, the lower bounds on a variable will
consist of zero or more variable-only lower bounds, and at
most one constructed lower bound (a union type where the
remainder is 0). This is achieved by applying the transfor-
mation rules of Figure 8b, and collecting the (now distinct)
prime type lower bounds on each variable into a singe union
type.

For example, if we have the following constraint set:

c{U } ⊆ α, c{V } ⊆ α

then we can replace this with

c{β} ⊆ α, U ⊆ β, V ⊆ β

where there is now only a single lower bound on the variable
α. There are now two lower bounds on the variable β, which
can be combined in the same way.

6.3.2 Combining Upper Bounds
Unlike lower bounds, we have found no useful normal form
for upper bounds because we cannot compute the intersec-
tion of several union types and represent the result in our
type syntax. Instead, we use some heuristics to combine
upper bounds where possible.

An example of one of the transformations used is given
in Figure 8c, where two upper bounds are combined if they
are monotypes. This is an important transformation for our
type checking algorithm, in Section 7.

6.4 Transitive Kernel
During the simplification process, we work with the transi-
tive kernel of the constraint set. The transitive kernel of a
transitively closed constraint set C is defined as the small-
est constraint set D such that the transitive closure of D is
C . If C is contractive (Section 6.2), then there is a single
unique D , computed by applying the transformation rule in
Figure 8d as many times as possible to the constraint set.

The advantages of working with the transitive kernel are:

• The set is smaller, but contains the same information.
The original constraint set can be recovered by forming
the transitive closure.

• Our simplifying transformations are equally valid
when applied to the transitive kernel. In fact, remov-
ing the transitive constraints can enable some trans-
formations that were not previously possible.

As an example of the second point, the variable elimina-
tion transformation is only applicable when a variable has
a single upper or lower bound; if there are other constraints
on the variable that are present due to transitivity then the
transformation cannot be applied. We could take into ac-
count these transitive constraints during the transformation,
but it is simpler to compute the transitive kernel once and
maintain it throughout simplification.

6.5 Eliminating Variables
The transformation described in this section is simple, and
yet remarkably effective in simplifying types. The basic idea
is to find a variable with a single upper bound or a single

7

αcs1
1 ⊆ αcs2

2 , . . . , αcsn
n ⊆ αcs1

1 ,C ⇒ C [βds/αcsn
1 , . . . , βds/αcsn

n]
where β fresh, ds = cs1 ∪ . . . ∪ csn

a. Eliminating Cycles

c{U } | U ⊆ αcs ⇒ c{U } ⊆ αcs , U ⊆ αcs

c{U } ⊆ αcs , c{U ′} ⊆ αcs ⇒ c{α} ⊆ αcs , U ⊆ α, U
′ ⊆ α where α fresh

b. Combining Lower Bounds

αcs ⊆ c1{U1} | . . . | cn{Un} | a1{V1} | . . . | am{Vm} | R1

αcs ⊆ c1{U ′
1} | . . . | cn{U ′

n} | b1{V ′
1} | . . . | bl{V ′

l } | R2

⇒ αcs ⊆ c1{α1} | . . . | cn{αn} | {ai{Vi} | in(ai ,R2)} | {bi{V ′
i } | in(bi ,R1)}

Ui ⊆ αi 1 ≤ i ≤ n

U ′
i ⊆ αi 1 ≤ i ≤ n

where αi fresh 1 ≤ i ≤ n
in(c, 1cs) = c /∈ cs
in(c, 0) = false

c. Combining Upper Bounds

U1 ⊆ U2, . . . ,Un−1 ⊆ Un ,U1 ⊆ Un ⇒ U1 ⊆ U2, . . . ,Un−1 ⊆ Un

d. Transitive Kernel

Figure 8: Simplifying Transformations

lower bound and replace it with this bound when it is legal
to do so. For example, the type α when c{} ⊆ α is equiv-
alent to simply c{}, and the first type can be simplified to
the second by replacing the variable α with its single lower
bound c{}.

The first transformation applies to variables with a single
upper bound:

U when αcs ⊆ V ,C ⇒ (U when C)[V /(αcs)]

There are some restrictions on this transformation:

• There are no cycles in the constraint set involving αcs ,

• αcs appears only negatively in U and C ,

• αcs must have variable-only lower bounds, unless V
is a variable. This is to retain the invariant that all
constraints are on variables.

• The substitution (U when C)[V /αcs] must be legal
with respect to the disjoint union operator.

The first restriction is to prevent the transformation from
being applied indefinitely, as would be the case if the variable
αcs were part of the definition of a recursive type in the
constraint set.

The dual of this transformation applies to single lower
bounds:

U when V ⊆ αcs ,C ⇒ (U when C)[V /(αcs)]

The restrictions are similar to the upper-bound case:

• There are no cycles in the constraint set involving αcs ,

• αcs appears only positively in U and C ,

• αcs must have variable-only upper bounds, unless V
is a variable.

There is no need for a restriction equivalent to the fourth
restriction for upper bounds, since it would always be satis-
fied.

There are two subsidiary transformations, which apply
to variables with no upper bounds or no lower bounds:

If αcs has no upper bounds and appears only negatively
in U and C :

U when C ⇒ (U when C)[(1cs)/(αcs)]

And the dual case, when αcs has no lower bounds and
appears only positively in U and C :

U when C ⇒ (U when C)[0/(αcs)]

6.6 Eliminating lower bounds
The following transformation has less restrictions than the
variable elimination transformation, but it is less beneficial
in general since it doesn’t eliminate any type variables, only
constraints. We generally use this transformation as the last
stage of simplification.

U when c1{U1} | . . . | cn{Un} | 0 ⊆ αds ,C ⇒
(U when C)[(c1{U1} | . . . | cn{Un} | α(ds∪cs))/αds]

• αcs must have no constructed upper bounds (this is to
retain the property that constraints are on variables).

• There must be no cycles in the constraint set involving
αcs .

8

7 Type Checking

Type inference systems normally provide a way for the user
to supply a type for a function and have that type checked
against the inferred one. This serves two purposes:

• The user-supplied types serve as documentation for the
function, and the documentation is always guaranteed
to be correct because it is checked by the type system.

• The user-supplied type may be more restrictive than
the inferred type. This is useful in cases where the
user wishes to place additional restrictions on the use
of a function over those provided by the inferred type,
or to use a more general definition of a function when
this would be more efficient.

A user-supplied type is valid if it is an instance of the in-
ferred type. In Hindley-Milner type systems, an instance of
a type is formed by replacing one or more of its universally-
quantified type variables by more specific types, and it is
straightforward to check whether one type is an instance of
another.

When subtyping constraints are involved, however, the
problem is somewhat more difficult. Determining when one
constrained type is an instance of another has so far received
little attention in the literature [TS96, FF96]. In this sec-
tion, we outline an algorithm for determining this relation.
We do not have proofs of soundness or completeness, but we
also have not found any counter examples to either property.
There doesn’t seem to be a straightforward extension of our
algorithm to handle function types, since the obvious exten-
sion suffers from incompleteness (Section 8.1).

In a subtyping system, the instance relation is really a
subtype relation: we are determining whether one type rep-
resents a smaller portion of the semantic domain than an-
other. The term instance makes sense in Hindley-Milner
style systems where the problem reduces to an instance re-
lation, but in a subtyping system we must be more general.

The subtyping relation over quantified constrained types
can be defined using the entailment operator. For two types
(∀α.U when C) and (∀β.V when D) where the quantified

variables α and β are distinct,

(∀α.U when C) ⊆ (∀β.V when D) iff
∀β.∃α.D U ⊆ V ,C

In the context of type checking, the term on the left of
the subtype relation is the inferred type, and the type on
the right is the user-supplied type.

In brief, the algorithm works as follows. The constraint
sets on either side of the entailment relation are converted
to inductive form [AW93], and canonical lower and upper
bounds are computed for each type variable in the set D .
The algorithm then proceeds in a similar way to that pro-
posed by Trifonov/Smith [TS96], the main difference being
that canonical upper bounds are more complicated to com-
pute since we cannot form the intersection of several types
in general.

7.1 Inductive Form
Our entailment algorithm makes use of an inductive form
for constraint sets [AW93]. An inductive constraint set can
be formed from a consistent constraint set (i.e. one that

has been reduced, Section 5), by first choosing an ordering
on variable names and then applying the transformations in
Figure 9.

The transformation makes use of a function TLV (U),
which returns the top-level variable (the variable remainder)
of the type U if it exists. Thus α > TLV (U) iff TLV (U)
exists and is smaller than α in the chosen variable ordering.

Two other operations are used in the transformation.
The first, ⊕, forms the union of a type and a set of con-
structor applications whose elements are all 1:

U ⊕ cs ⇒ c1{1} | . . . | cn{1} | (U \cs)

The second operator is \, which excludes certain tags
from a type:

(c{U }|U)\cs ⇒ U \cs if c ∈ cs
c{U }|(U \cs) otherwise

(αds)\cs ⇒ α(ds∪cs)

(1ds)\cs ⇒ 1(ds∪cs)

0cs ⇒ 0

Once the transformations have been fully applied, each
constraint in the set will be of the form α ⊆ U or U ⊆
α, where α > TLV (U). In other words, each constraint
is expressed as a bound on a variable α that only refers
to variables lower than α at the top level. In the Aiken-
Wimmers system this allows the constraint set to be solved,
whereas we use this form to calculate upper bounds for our
entailment algorithm.

One problem with using constraints in inductive form is
that we no longer have the invariant that separate occur-
rences of the same variable have identical sets of excluded
tags. Our entailment algorithm needs to reduce constraints
which do not satisfy this property, so we must alter the
reduction algorithm accordingly. The new reduction algo-
rithm is identical to Figure 7 except that we remove the
transitivity rule (the last rule in the figure) and add the
following two rules:

αcs ⊆ αds ⇒ αcs ⊆ 1ds

U ⊆ αcs , αds ⊆ V ⇒ U ⊆ V ⊕ ds,U ⊆ αcs , αds ⊆ V

The second of the two new rules is a new transitivity
rule that takes into account the differing excluded tags on
the variable α.

In the following discussion of the entailment algorithm,
we will use the functions reduce(C) and induct(C) to refer
to the new reduction and inductive transformations respec-
tively.

7.2 Computing Canonical Upper and
Lower Bounds

We have already presented a canonicalisation of lower
bounds, as part of type simplification in Section 6.3.1. We
use that transformation again here. If C is an inductive
constraint set that has had the lower-bound transformation
applied, then the function lowers(C , α) returns a pair con-
sisting of a set of variables (all less than α in the inductive
ordering) and a union type with a remainder of zero.

Canonicalising upper bounds is somewhat more difficult,
as we cannot form the intersection of several union types

9

c{U } ⊆ αcs ⇒ c{U } ⊆ α
1ds ⊆ αcs ⇒ 1cs ⊆ α
αcs ⊆ U ⇒ α ⊆ U ⊕ cs α > TLV (U)
αas ⊆ c1{U1} | . . . | cn{Un} | βds ⇒ αas ⊆ c1{U1} | . . . | cn{Un} | 1ds ,

α(as∪cs) ⊆ β

α < β

αcs ⊆ β, β ⊆ U ⇒ αcs ⊆ U

Figure 9: Inductive Form

in our type language. However, the following two sections
describe a method that allows us to combine several upper
bounds into a single type for the purposes of our entailment
algorithm. The problem is to determine entailments of the
following form:

α ⊆ V1, . . . , α ⊆ Vn ,C α ⊆ U

which is true if and only if

α ⊆ V1, . . . , α ⊆ Vn ,C V1 ∩ . . . ∩Vn ⊆ U

The problem is that we cannot compute the value of
the intersection in general. However, for the purposes of
entailment, there are two methods that can be used to prove
this entailment relation.

7.2.1 U is a monotype
When U is a monotype, we can calculate the largest type
that each top-level variable in the intersection can take, re-
ducing the intersection to an intersection between mono-
types which we can reduce to a single type.

Definition 1 If V1 . . .Vn are the upper bounds of α in the
inductive constraint set C , then the absolute upper bound of
the type variable α is calculated as follows: for each top level
variable βcs in V1 . . .Vn , replace βcs with V \cs where V is
the absolute upper bound of β. Then form the intersection
of the remaining monotypes using the transformations from
Section 6.3.2.

This definition is recursive, but it is guaranteed to termi-
nate because we are working with inductive constraints. The
lowest variable in the ordering cannot refer to any top-level
variables in its upper bounds, so its absolute upper bound
can be calculated, the second variable in the ordering can
only refer to the first, and so on.

Using the absolute upper bound we can form the correct
constraint if U is a monotype: for the entailment to hold,

upper(C , α) ⊆ U

where upper(C , α) is the absolute upper bound of the
type variable α in the inductive constraint set C . Absolute
upper bounds can be pre-calculated for any given constraint
set.

7.2.2 U is not a monotype
When the type U is not a monotype, using the absolute
upper bound is not good enough: it doesn’t allow us to
prove the following entailment:

γ ⊆ c{} | α{c,d}, γ ⊆ d{} | β{c,d} γ ⊆ α{c,d}

The absolute upper bound for γ is 1{c,d}, and it is not
true that 1{c,d} ⊆ α{c,d} for all α. We need to calculate the
absolute upper bound with respect to a particular variable,
α in this case. In general, the problem is how to prove the
entailment relation:

C V1 ∩ . . . ∩Vn ⊆ P1 | . . . | Pn | βcs

Firstly, we can split the inequation on the right as fol-
lows:

V1 ∩ . . . ∩Vn ⊆ P1 | . . . | Pn | 1cs

(V1 ∩ . . . ∩Vn)\ds ⊆ β

where ds are the tags of P1 . . .Pn . The first inequation
has a monotype on the right, so we can solve it using the
method above. For the second inequation, we can form the
absolute upper bound with respect to β for the type on the
left:

Definition 2 If V1 . . .Vn are the upper bounds of α in the
inductive constraint set C , then the absolute upper bound
of α with respect to β is calculated as follows: for each top-
level variable γcs in V1 . . .Vn where γ 6= β, replace γcs with
V \cs where V is the absolute upper bound of γ with respect
to β. Express the result as an intersection of unions by
distributing ‘|’ where necessary. Combine all intersections of
monotypes into a single monotype using the transformations
of Section 6.3.2.

The absolute upper bound of α with respect to β looks
like this:

(U1 | βcs1) ∩ . . . ∩ (Un | βcsn) ∩M

where M is a monotype. If we multiply out the intersec-
tion, we get

((U1 | 0) ∩ . . . ∩ (Un | 0) ∩M) ∪ . . .

where the final ‘. . .’ represents the rest of the terms, all
of which are intersections involving β. Now, back to our
original problem, we have

(((U1 | 0) ∩ . . . ∩ (Un | 0) ∩M) ∪ . . .)\ds ⊆ β

10

We can discount all the terms represented by ‘. . .’ since
they are all smaller than β by virtue of being intersections
involving β. The intersection on the left can be normalised
to a single union type, and the problem is solved.

To recap, the entailment

C α ⊆ P1 | . . . | Pn | βcs

holds, if and only if

C upper(α,C) ⊆ P1 | . . . | Pn | 1cs

and

C upper(α, β,C)\ds ⊆ β

where upper(α, β,C) is the absolute upper bound of α with
respect to β in the constraint set C , and ds are the tags of
P1 . . .Pn .

7.3 Algorithm to determine entailment
The following algorithm determines whether the entailment
relation

∀β.∃α.D U ⊆ V ,C

holds. We express the algorithm in an imperative manner,
using global variables C ′, D ′ and Q , where C ′ is an evolving
constraint set initialised from the inductive reduced form
of C , D ′ is an evolving constraint set initialised from the
inductive reduced form of D , and Q is a queue of inequations
left to prove.

The general strategy used is to attempt to prove that
each constraint on the right of the relation is implied by
D . The proof process generates new constraints which must
also be shown to be implied by D , along with any constraints
which are required for the transitive closure of the constraint
set on the right.

1. Let D ′ = induct(reduce(D)). If this fails, then the en-
tailment is trivially satisfied since D has no solutions.

2. Compute lower and upper bounds for D ′.

3. Initialise C ′ = induct(reduce({U ⊆ V } ∪ C)). If the
reduction fails, then fail.

4. Initialise queue Q = C ′.

5. Remove a constraint from Q , and analyse it using the
following table, where ‘continue’ means repeat step 5
until Q is empty:

α ⊆ U continue
U ⊆ α continue

U ⊆ β let(β,V) = lowers(β,D ′)
if U ∈ (V ∪ {β}), continue
else new(V ⊆ U), continue

β ⊆ U analyse U :
P1 | . . . | Pn | β′cs

V = upper(β,D ′)
new(V ⊆ P1 | . . . | Pn | 1cs)
V = upper(β, β′,D ′)
new(V ⊆ β), continue

otherwise
V = upper(β,D ′)
new(V ⊆ U), continue

where

new(U ⊆ V) = F = induct(reduce(U ⊆ V))
F ′ = F − F ∩ C ′

T = induct(reduce(trans(F ′,C ′)))
T ′ = T − T ∩ C ′

C ′ := C ′ ∪ F ′ ∪ T ′

Q := Q ++ F ′ ++ T ′

where trans(C ,D) represents the set of constraints required
to retain transitive closure of the set D when the constraints
from set C are added. The operator ++ stands for list ap-
pend.

If the algorithm completes, then the specified entailment
relation holds. If any of the reduce operations fail, the the
entailment relation is false.

8 Extensions

8.1 First-class Functions
Plans are afoot to extend Erlang to include first-class func-
tions, by including lambda expressions and application in
the syntax. Our type inference system extends in a straight-
forward way to include function types, as follows. Add a new
prime type (U1, . . . ,Un) → V and a new tag → to the type
syntax, and add lambda expressions λ(U1, . . . ,Un) → V ,
application E(E1, . . . ,En), and references to top-level func-
tions f /n (where n is the arity of f) to the expression syntax.
Add the following rules to the type system

Lam
F ; A,X : U ; C ` E : V

F ; A; C ` (λ(X) → E) : (U) → V

App
F ; A; C ` E : (U) → V F ; A; C ` E : U

F ; A; C ` E(E) : V

The reduction algorithm can be extended to function
types with the addition of two rules:

(U) → V ⊆ ((U ′) → V ′)|U ⇒ U ′ ⊆ U ,V ⊆ V ′

(U) → V ⊆ c{U ′}|U ⇒ (U) → V

Our algorithm for determining entailment can be ex-
tended to support function types, but the resulting algo-
rithm is known to be incomplete [TS96]. Decidability of
entailment in the presence of function types is not known.

8.2 Interprocess Communication
One of the most important features of Erlang is its support
for concurrency and transparent distribution. With some
straightforward extensions, we can extend our type system
to check the types of messages passing between processes.
Erlang provides primitives for sending and receiving mes-
sages, and spawning new processes.

To type check message passing, it is necessary to keep
track of the types of messages received by a given expression.
Therefore, we propose extending the typing rules to provide
two types for an expression: the type of values it returns,
and the type of messages it accepts. Typing judgements
now have the form F ;X ;C ` E : U receives R, where R is
the type of messages received by the expression. Similarly,

11

function types should be written (U)
R→ V , where R is the

type of messages received by the function body.
In addition, we need to provide a new primitive data

type, of the form pid(U) which is the type of a process
that accepts messages of type U . We can then support type
checking of message sending with a primitive

send : (pid(U),V) → 0 when V ⊆ U

and process spawning with a primitive

spawn : ((U)
R→ V ,U) → pid(R)

This extension is a special case of effect type systems
[TJ94]. It would allow the construction of polymorphic
server applications, but it doesn’t support checking of pro-
tocols or detection of possible deadlocks.

9 Practical Experience

The original goal of designing a type system for Erlang was
for the resulting system to be usable in a production envi-
ronment by Erlang programmers.

We have so far constructed a proof-of-concept prototype
implementation in Haskell. While lacking in performance
in certain areas, the prototype has provided valuable in-
sight into how our type system will co-exist with the Erlang
environment and what changes are required to typecheck
existing Erlang code.

The prototype supports the following features:

• Type inference for the whole Erlang 4.4 language.

• Type simplification for derived types.

• Type signature checking.

• Type abbreviations for use in type signatures (for ex-
ample, see the tree datatype in Figure 1).

• Separate compilation through the use of interface files
which record the types of exported functions in a mod-
ule.

• Type abstraction. By default, type abbreviations are
exported abstractly, so the definition of a type is hid-
den from external modules. The programmer may op-
tionally request that certain type definitions be ex-
ported in full. The type checker detects abstraction
violations and reports these to the programmer.

• Partial type checking. On a function-by-function ba-
sis, the programmer may provide types that the type
system will assume without type checking the function
definition. This is implemented with an unchecked di-
rective in the code.

This prototype has been used to typecheck a large por-
tion of the Erlang standard library, and we are currently us-
ing it to construct a production version of the type checker
in Erlang. The production version consists of 3500 lines of
typed Erlang.

9.1 Performance
We have found performance of the type inference engine to
be adequate in most cases, although due to the quadratic
complexity of constraint reduction it can blow up on large
constraint sets. Programs that cause most problems are
those involving large groups of mutually recursive functions,
which must be typechecked together. It is not unusual to
find types with upwards of ten thousand constraints.

Performance of the type simplification process is poor
for large examples. This is due to two factors: simplifi-
cation usually has to be performed several times before a
fixed-point is reached, and our prototype implementation
uses algorithms with worse complexity than is achievable
for some of the simplification transformations. We expect
performance of the simplifier to improve with the production
version of the type checker.

There is a tradeoff involving type simplification and type
checking: if the user supplies a type signature, should the
inferred type be simplified before checking against the signa-
ture, or should the original inferred type be used? If the type
is simplified, type checking should be faster, but we would
pay for simplification time instead. By experimentation we
have found that type checking is a relatively cheap operation
compared to simplification, so we opt not to simplify types
if the user has supplied a signature.

In practice, we have found it convenient to use type sig-
natures almost everywhere, for two reasons:

• supplying a type signature avoids the poor perfor-
mance of the type simplifier, and

• type signatures may use abbreviations making them
more readable than inferred types.

To provide some concrete numbers, here are some of the
timings for typechecking some modules from the production
version of the type checker:

Module Lines Time(s)
tc_types.terl 526 2.7
tc_typeutils.terl 274 5.1
tc_reduce.terl 288 101.2
tc_syn.terl 250 60.0

These times were produced by the prototype type checker
(written in Haskell) on a 200Mhz Pentium Pro. The mod-
ule tc_types.terl contains a large number of small unre-
lated functions and type definitions, whereas the module
tc_reduce.terl contains a small number of complicated
mutually recursive functions, hence the large typechecking
time.

9.2 Diagnostics
The usability of a type system is directly affected by the
quality of error messages generated for untypable expres-
sions. It is possible to generate type errors which include
function and line number information in our type system us-
ing the following technique: instead of generating the whole
constrained type for a function before reducing it, we can re-
duce constraints as they are generated and maintain a fully
reduced constraint set.

Using this method it is possible to identify the program
construct that generated the constraint that led to an incon-
sistent typing. This technique is not perfect: for example,

12

it is not possible to identify whether a type error is caused
by an error in a function definition or in an application of
that function. In our system the error is always reported at
the application site.

Errors in type signatures are another matter: when a
signature is found not to be an instance of the inferred type,
we simply report the inferred type and the constraint that
failed during the entailment algorithm. In most cases, this
information is insufficient to identify the cause of the error,
and matters are worse when the inferred type is large and
complicated. We intend to explore this problem as future
work.

9.3 Pattern Matching
In order to typecheck the full Erlang language, we must
compile the pattern matching into simple case expressions.
Standard algorithms exist to perform this transformation
[Aug85, Wad87]. In most cases, the use of pattern matching
compilation in our type checker is transparent to the pro-
grammer, but there are cases where unexpected types are
derived.

For example, one possible way to write the boolean and
function is as follows:

and(true,true) -> true;
and(false,X) -> false;
and(X,false) -> false.

Given the type declaration bool() = true | false, we
would expect to be able to assign the type

-type and(bool(),bool()) -> bool().

as an instance of the inferred type. However, in our system
this is not the case. Pattern matching compilation trans-
forms the function as follows:

and(X,Y) ->
let Z = (case Y of false -> false end) in
case X of

true ->
case Y of

true -> true;
X -> Z

end;
false -> false;
X -> Z

end.

which yields the type (1, false) -> false | true. The
second argument is restricted to being false, due to
the first case expression on Y in the transformed code.
The type is unexpected, since it does not have the type
(bool(),bool()) -> bool() as an instance.

This example displays a difference between our system
and Hindley-Milner, since in that system the declaration of
bool() would enable the type system to derive the expected
type. Our system does not require a type declaration and
assumes the worst, namely that in order to ensure that the
function can never fail it is necessary to restrict the second
argument to being false only.

A generalisation of our type system, such as con-
ditional types [AWL94], would be necessary to de-
rive a more accurate type which would have the type
(bool(),bool()) -> bool() as an instance. However, such
an extension would also increase the complexity of type
checking, and decrease the readability of types.

9.4 Changes to existing code
We were pleasantly surprised that very little existing code
needed to be changed to get through the typechecker. The
changes we have had to make fall into the following cate-
gories:

• Actual programming errors, or (more commonly) cases
where the original programmer had deliberately left
out a failure case. Our type system guarantees that
typechecked code will never fail except where the pro-
grammer has used an explicit exit call. This means
that all failure cases must be explicitly checked for in
typed code.

• Clashes between tagged tuples and anonymous tuples.
In our type system, it is not the case that (for instance)
{a,1} <= {1,1}, although some Erlang code assumes
this.

• Pattern matching oddities, as described in Section
9.3).

10 Conclusion

While much has been achieved in our Typed Erlang project,
several areas remain to be explored. Our principle achieve-
ments to date are the type system itself, several heuristics
for simplifying inferred types, the entailment algorithm for
determining type instance, and our experience with a pro-
totype implementation which supports many of the features
one would expect from a typed programming language.

Several gaps remain in the theory; most notably is a
proof of completeness for our entailment algorithm (without
function types). Once this proof is complete we intend to
use the entailment algorithm to prove the correctness of our
type simplifications.

The production version of our type checker is currently
under construction, and will be distributed along with a
future version of the Erlang system. We expect the final
version to improve on the prototype in areas of performance,
robustness and the quality of diagnostics.

References

[Aug85] L. Augustsson. Compiling pattern matching. In
Functional Programming Languages and Computer
Architecture, number 201 in Lecture Notes in Com-
puting Science, pages 368 – 381, Nancy, September
1985. Springer-Verlag.

[AVW93] J. Armstrong, R. Virding, and M. Williams. Con-
current Programming with Erlang. Prentice Hall,
1993.

[AW93] A. Aiken and E. L. Wimmers. Type inclusion con-
straints and type inference. In Functional Program-
ming Languages and Computer Architecture, pages
31–41, 1993.

[AWL94] A. Aiken, E.L. Wimmers, and T.K. Lakshman.
Soft typing with conditional types. In Symposium
on Principles of Programming Languages, pages
163–173, 1994.

13

[CF91] R. Cartwright and M. Fagan. Soft typing. In ACM
SIGPLAN Conference on Programming Language
Design and Implementation, pages 278–292, June
1991.

[DM82] L. Damas and R. Milner. Principal type schemes for
functional programs. In Symposium on Principles
of Programming Languages, 1982.

[FA96] M. Fähndrich and A. Aiken. Making set-constraint-
based program analyses scale. Technical Report
CSD-96-917, UC Berkeley, 1996. Also Workshop
on Set Constraints, Cambridge, MA, August 1996.

[FF96] C. Flanagan and M. Felleisen. Modular and poly-
morphic set-based analysis: Theory and practice.
Technical Report TR96-266, Rice University, 1996.

[FM88] Y.-C. Fuh and P. Mishra. Type inference with sub-
types. In European Symposium on Programming,
1988.

[Hin79] R. Hindley. The principal type scheme of am object
in combinatory logic. Transactions of the American
Mathematics Society, 146:26–60, 1979.

[Mil78] R. Milner. A theory of type polymorphism in pro-
gramming. Journal of Computer and System Sci-
ences, 17(3):348–375, December 1978.

[Mit91] J. C. Mitchell. Type inference with simple sub-
types. Journal of Functional Programming, 1:245–
285, 1991.

[MPS86] D. B. MacQueen, G. Plotkin, and R. Sethi. An
ideal model for recursive polymorphic types. In In-
formation and Control, volume 71, pages 95–130,
1986.

[MR85] P. Mishra and U. Reddy. Declaration-free type
checking. In Symposium on Principles of Program-
ming Languages, pages 7–21, 1985.

[Pey87] S. L. Peyton Jones. The Implementation of Func-
tional Programming Languages. Prentice Hall, 1987.

[Rey85] J. C. Reynolds. Three approaches to type struc-
ture. In Proc. TAPSOFT Advanced Seminar on the
Role of Semantics in Software Development, Lec-
ture Notes in Computing Science. Springer-Verlag,
1985.

[TJ94] Jean-Pierre Talpin and Pierre Jouvelot. The type
and effect discipline. Information and Computation,
111(2):245–296, 1994.

[TS96] V. Trifonov and S. Smith. Subtyping constrained
types. In Third International Static Analysis Sym-
posium, September 1996. To Appear.

[Wad87] P. Wadler. Efficient compilation of pattern-
matching. In [Pey87], 1987.

[Wan87] M. Wand. Complete type inference for simple ob-
jects. In Proc. 2nd IEEE Symposium on Logic in
Computer Science, pages 37–44, 1987.

[WC94] A. K. Wright and R. Cartwright. A practical soft
type system for scheme. In ACM Symposium on
Lisp and Functional Programming, 1994.

14

