
The Essence of
Language Integrated Query

James Cheney, Sam Lindley, Philip Wadler
University of Edinburgh

DDFP, Rome, 9am Tuesday 22 January 2013

Database programming languages

Kleisli
Buneman, Libkin, Suciu, Tannen, Wong (Penn)

Ferry
Grust, Mayr, Rittinger, Schreiber (Tübingen)

Links
Cooper, Lindley, Wadler, Yallop (Edinburgh)

SML#
Ohori, Ueno (Tohoku)

Ur/Web
Chlipala (Harvard/MIT)

LINQ for C#, VB, F#
Helsbjorg, Meijer, Syme (Microsoft Redmond & Cambridge)

Our goals:
Abstraction over values (first-order)

Abstraction over predicates (higher-order)
Composition of queries

Dynamic generation of queries
Type-safety

Goldilocks:
Exactly one query per run

Not too few (failure)
Not too many (avalanche)

Our restrictions:

We consider only select-from-where queries,
with exists and union.

We equate bags and lists.

Future work to extend to group-by and sort-by.

Part I

A first example

A database

people

name age

“Alex” 60

“Bert” 56

“Cora” 33

“Drew” 31

“Edna” 21

“Fred” 60

couples

her him

“Alex” “Bert”

“Cora” “Drew”

“Edna” “Fred”

A query in SQL

select w.name as name, w.age−m.age as diff

from couples as c,

people as w,

people as m

where c.her = w.name and c.him = m.name and

w.age > m.age

name diff

“Alex” 4

“Cora” 2

A database as data

{people =

[{name = “Alex” ; age = 60};
{name = “Bert” ; age = 56};
{name = “Cora” ; age = 33};
{name = “Drew”; age = 31};
{name = “Edna”; age = 21};
{name = “Fred” ; age = 60}];

couples =

[{her = “Alex” ; him = “Bert” };
{her = “Cora” ; him = “Drew”};
{her = “Edna”; him = “Fred” }]}

Importing the database (naive)

type DB =

{people :

{name : string; age : int} list;

couples :

{her : string; him : string} list}
let db′ : DB = database(“People”)

A query as a comprehension (naive)

let differences′ : {name : string; diff : int} list =

for c in db′.couples do

for w in db′.people do

for m in db′.people do

if c.her = w.name && c.him = m.name && w.age > m.age then

yield {name : w.name; diff : w.age−m.age}

differences’

[{name = “Alex” ; diff = 4}
{name = “Cora”; diff = 2}]

Importing the database (quoted)

type DB =

{people :

{name : string; age : int} list;

couples :

{her : string; him : string} list}
let db : Expr<DB> = <@ database(“People”) @>

A query as a comprehension (quoted)

let differences : Expr< {name : string; diff : int} list> =

<@ for c in (%db).couples do

for w in (%db).people do

for m in (%db).people do

if c.her = w.name && c.him = m.name && w.age > m.age then

yield {name : w.name; diff : w.age−m.age} @>

run(differences)

[{name = “Alex” ; diff = 4}
{name = “Cora”; diff = 2}]

Execute run as follows:
1. compute quoted expression
2. simplify quoted expression

3. translate query to SQL
4. execute SQL

5. translate answer to host language

Each run generates one query if:
A. answer type is flat (bag-of-record-of-scalars)
B. only permitted operations (e.g., no recursion)

C. consistent use of database (all same)

Part II

Abstraction, composition, dynamic generation

Abstracting over values

type Names = {name : string} list

let range : Expr< (int, int)→ Names> =

<@ fun(a, b)→ for w in (%db).people do

if a ≤ w.age && w.age < b then

yield {name : w.name} @>

run(<@ (%range)(30, 40) @>)

[{name = “Cora”}; {name = “Drew”}]

Abstracting over a predicate

let satisfies : Expr< (int→ bool)→ Names> =

<@ fun(p)→ for w in (%db).people do

if p(w.age) then

yield {name : w.name} @>

run(<@ (%satisfies)(fun(x)→ 30 ≤ x && x < 40) @>)

[{name = “Cora”}; {name = “Drew”}]

run(<@ (%satisfies)(fun(x)→ x mod 2 = 0) @>)

[{name = “Alex”}; {name = “Bert”}; {name = “Fred”}]

Composing queries

let ageFromName : Expr<string→ int list> =

<@ fun(s)→ for u in (%db).people do

if u.name = s then

yield u.age @>

let rangeFromNames : Expr< (string, string)→ Names> =

<@ fun(s, t)→ for a in (%ageFromName)(s) do

for b in (%ageFromName)(t) do

(%range)(a, b) @>

run(<@ (%nameRange)(“Edna”, “Bert”) @>)

[{name = “Cora”}; {name = “Drew”}; {name = “Edna”}]

Dynamically generated queries (1)

type Predicate =

| Above of int

| Below of int

| And of Predicate× Predicate

| Or of Predicate× Predicate

| Not of Predicate

let t0 : Predicate = And(Above(30), Below(40))

let t1 : Predicate = Not(Or(Below(30), Above(40)))

Dynamically generated queries (2)

let rec P(t : Predicate) : Expr< int→ bool> =

match t with

| Above(a)→ <@ fun(x)→ (%lift(a)) ≤ x @>

| Below(a)→ <@ fun(x)→ x < (%lift(a)) @>

| And(t, u)→ <@ fun(x)→ (%P(t))(x) && (%P(u))(x) @>

| Or(t, u) → <@ fun(x)→ (%P(t))(x) || (%P(u))(x) @>

| Not(t) → <@ fun(x)→ not((%P(t))(x)) @>

Dynamically generated queries (3)

P(t0)

<@ fun(x)→ (fun(x)→ 30 ≤ x)(x) && (fun(x)→ x < 40)(x) @>

<@ fun(x)→ 30 ≤ x && x < 40 @>

run(<@ (%satisfies)(%P(t0)) @>)

[{name = “Cora”}; {name = “Drew”}]

run(<@ (%satisfies)(%P(t1)) @>)

[{name = “Cora”}; {name = “Drew”}]

Part III

Nesting

Flat data
{departments =

[{dpt = “Product”};
{dpt = “Quality”};
{dpt = “Research”};
{dpt = “Sales”}];

employees =

[{dpt = “Product”; emp = “Alex”};
{dpt = “Product”; emp = “Bert”};
{dpt = “Research”; emp = “Cora”};
{dpt = “Research”; emp = “Drew”};
{dpt = “Research”; emp = “Edna”};
{dpt = “Sales”; emp = “Fred”}];

Flat data (continued)

tasks =

[{emp = “Alex”; tsk = “build”};
{emp = “Bert”; tsk = “build”};
{emp = “Cora”; tsk = “abstract”};
{emp = “Cora”; tsk = “build”};
{emp = “Cora”; tsk = “design”};
{emp = “Drew”; tsk = “abstract”};
{emp = “Drew”; tsk = “design”};
{emp = “Edna”; tsk = “abstract”};
{emp = “Edna”; tsk = “call”};
{emp = “Edna”; tsk = “design”};
{emp = “Fred”; tsk = “call”}]}

Importing the database

type Org = {departments : {dpt : string} list;

employees : {dpt : string; emp : string} list;

tasks : {emp : string; tsk : string} list }
let org : Expr<Org> = <@ database(“Org”) @>

Departments where every employee can do a given task

let expertise′ : Expr<string→ {dpt : string} list> =

<@ fun(u)→ for d in (%org).departments do

if not(exists(

for e in (%org).employees do

if d.dpt = e.dpt && not(exists(

for t in (%org).tasks do

if e.emp = t.emp && t.tsk = u then yield { })
)) then yield { })

)) then yield {dpt = d.dpt} @>

run(<@ (%expertise’)(“abstract”) @>)

[{dpt = “Quality”}; {dpt = “Research”}]

Nested data

[{dpt = “Product”; employees =

[{emp = “Alex”; tasks = [“build”]}
{emp = “Bert”; tasks = [“build”]}]};

{dpt = “Quality”; employees = []};
{dpt = “Research”; employees =

[{emp = “Cora”; tasks = [“abstract”; “build”; “design”]};
{emp = “Drew”; tasks = [“abstract”; “design”]};
{emp = “Edna”; tasks = [“abstract”; “call”; “design”]}]};

{dpt = “Sales”; employees =

[{emp = “Fred”; tasks = [“call”]}]}]

Nested data from flat data

type NestedOrg = [{dpt : string; employees :

[{emp : string; tasks : [string]}]}]
let nestedOrg : Expr<NestedOrg> =

<@ for d in (%org).departments do

yield {dpt = d.dpt; employees =

for e in (%org).employees do

if d.dpt = e.dpt then

yield {emp = e.emp; tasks =

for t in (%org).tasks do

if e.emp = t.emp then

yield t.tsk}}} @>

Higher-order queries

let any : Expr< (A list, A→ bool)→ bool> =

<@ fun(xs, p)→
exists(for x in xs do

if p(x) then

yield { }) @>
let all : Expr< (A list, A→ bool)→ bool> =

<@ fun(xs, p)→
not((%any)(xs, fun(x)→ not(p(x)))) @>

let contains : Expr< (A list, A)→ bool> =

<@ fun(xs, u)→
(%any)(xs, fun(x)→ x = u) @>

Departments where every employee can do a given task

let expertise : Expr<string→ {dpt : string} list> =

<@ fun(u)→ for d in (%nestedOrg)

if (%all)(d.employees,

fun(e)→ (%contains)(e.tasks, u) then

yield {dpt = d.dpt} @>

run(<@ (%expertise)(“abstract”) @>)

[{dpt = “Quality”}; {dpt = “Research”}]

Part IV

Quotations vs. functions

Abstracting over values

let range : Expr< (int, int)→ Names> =

<@ fun(a, b)→ for w in (%db).people do

if a ≤ w.age && w.age < b then

yield {name : w.name} @>
run(<@ (%range)(30, 40) @>)

vs.

let range′(a : Expr< int>, b : Expr< int>) : Names =

<@ for w in (%db).people do

if (%a) ≤ w.age && w.age < (%b) then

yield {name : w.name} @>
run(range′(<@ 30 @>,<@ 40 @>))

Composing queries

let rangeFromNames : Expr< (string, string)→ Names> =

<@ fun(s, t)→ for a in (%ageFromName)(s) do

for b in (%ageFromName)(t) do

(%range)(a, b) @>

vs.

let rangeFromNames′ : Expr< (string, string)→ Names> =

<@ fun(s, t)→ for a in (%ageFromName)(s) do

for b in (%ageFromName)(t) do

(%range′(<@ a @>, <@ b @>)) @>

Prefer
closed quotations

to
open quotations.

Prefer
quotations of functions

to
functions of quotations.

Part V

From XPath to SQL

Part VI

Idealised LINQ

Terms
VAR

Γ, x : A ` x : A

FUN

Γ, x : A ` N : B

Γ ` fun(x)→ N : A→ B

APP

Γ ` L : A→ B Γ `M : A

Γ ` L M : B

SINGLETON

Γ `M : A

Γ ` yield M : A list

FOR

Γ `M : A list Γ, x : A ` N : B list

Γ ` for x in M do N : B list

REC

Γ, f : A→ B, x : A ` N : B

Γ ` rec f (x)→ N : A→ B

Quoted terms

VARQ

Γ; ∆, x : A ` x : A

FUNQ
Γ; ∆, x : A ` N : B

Γ; ∆ ` fun(x)→ N : A→ B

APPQ
Γ; ∆ ` L : A→ B Γ; ∆ `M : A

Γ; ∆ ` L M : B

SINGLETONQ
Γ; ∆ `M : A

Γ; ∆ ` yield M : A list

FORQ
Γ; ∆ `M : A list Γ; ∆, x : A ` N : B list

Γ; ∆ ` for x in M do N : B list

DATABASE

Σ(db) = {` : T}
Γ; ∆ ` database(db) : {` : T}

Quotation and anti-quotation

QUOTE

Γ; · `M : A

Γ ` <@ M @> : Expr<A>

ANTIQUOTE

Γ `M : Expr<A>

Γ; ∆ ` (%M) : A

RUN

Γ `M : Expr<T >

Γ ` run(M) : T

LIFT

Γ `M : O

Γ ` lift(M) : Expr<O >

Normalisation: symbolic evaluation

(fun(x)→ N) M N [x := M]

{` = M}.`i Mi

for x in (yield M) do N N [x := M]

for y in (for x in L do M) do N for x in L do (for y in M do N)

for x in (if L then M) do N if L then (for x in M do N)

for x in [] do N []

for x in (L @M) do N (for x in L do N) @ (for x in M do N)

if true then M M

if false then M []

Normalisation: ad hoc rewriting

for x in L do (M @N) ↪→ (for x in L do M) @ (for x in L do N)

for x in L do [] ↪→ []

if L then (M @N) ↪→ (if L then M) @ (if L then N)

if L then[] ↪→ []

if L then (for x in M do N) ↪→ for x in M do (if L then N)

if L then (if M then N) ↪→ if (L && M) then N

yield x ↪→ yield {` = x.`}
database(db).` ↪→ for x in database(db).` do yield x

Properties of reduction

On well-typed terms, the relations and ↪→

• preserve typing,

• are stongly normalising, and

• are confluent.

Example (1): query

run(<@ (%nameRange)(“Edna”, “Bert”) @>)

Example (2): after splicing

(fun(s, t)→
for a in (fun(s)→

for u in database(“People”).people do

if u.name = s then yield u.age)(s) do

for b in (fun(s)→
for u in database(“People”).people do

if u.name = s then yield u.age)(t) do

(fun(a, b)→
for w in database(“People”).people do

if a ≤ w.age && w.age < b then

yield {name : w.name})(a, b))

(“Edna”, “Bert”)

Example (3): beta reduction

for a in (for u in database(“People”).people do

if u.name = “Edna” then yield u.age) do

for b in (for u in database(“People”).people do

if u.name = “Bert” then yield u.age) do

for w in database(“People”).people do

if a ≤ w.age && w.age < b then

yield {name : w.name}

Example (4): other rewriting

for u in database(“People”).people do

if u.name = “Edna” then

for v in database(“People”).people do

if v.name = “Bert” then

for w in database(“People”).people do

if u.age ≤ w.age && w.age < v.age then

yield {name : w.name}

Example (5): ad hoc reductions ↪→

for u in database(“People”).people do

for v in database(“People”).people do

for w in database(“People”).people do

if u.name = “Edna” && v.name = “Bert” &&

u.age ≤ w.age && w.age < v.age then

yield {name : w.name}

Example (6): SQL

select w.name as name

from people as u,

people as v,

people as w

where u.name = “Edna” and v.name = “Bert” and

u.age ≤ w.age and w.age < v.age

Part VII

Results

Example F# 2.0 F# 3.0 Our system

differences 4 4 4

range 6 4 4

satisfies 4 6 4

satisfies 4 6 4

rangeFromNames 6 6 4

P(t0) 4 6 4

P(t1) 4 6 4

expertise′ 4 4 4

expertise 6 avalanche 4

xp0 6 4 4

xp1 6 4 4

xp2 6 6 4

xp3 6 6 4

Our goals:
Abstraction over values (first-order)

Abstraction over predicates (higher-order)
Composition of queries

Dynamic generation of queries
Type-safety

Goldilocks:
Exactly one query per run

Not too few (failure)
Not too many (avalanche)

Appendix A7

Problems with F#

Problems with F# PowerPack

(Notes from James Cheney)

Problems fixed in F# PowerPack code:

• F# 2.0/PowerPack lacked support for singletons in nonstandard places (i.e.
other than in a comprehension body).

• F# 2.0/PowerPack also lacked support for Seq.exists in certain places because
it was assuming that expressions of base types (eg. booleans) did not need to
be further translated.

F# 3.0:

• Did not exhibit the above problems

• But did exhibit translation bug where something like

query if 1 = 2 then yield 3

leads to a run-time type error.

Appendix A7

From XPath to SQL

Representing XML

a

b

c

#doc

d

e f

0

1

2

3 4

5 6 11

7 8 9 10

12

13

xml

id parent name pre post

0 -1 #doc 0 13

1 0 a 1 12

2 1 b 2 5

3 2 c 3 4

4 1 d 6 11

5 4 e 7 8

6 4 f 9 10

type Node =

{id : int, parent : int, name : string, pre : int, post : int}

Abstract syntax of XPath

type Axis =

| Self

| Child

| Descendant

| DescendantOrSelf

| Following

| FollowingSibling

| Rev of Axis

type Path =

| Seq of Path× Path

| Axis of Axis

| NameTest of string

| Filter of Path

An evaluator for XPath: axis

let rec axis(ax : Axis) : Expr< (Node, Node)→ bool> =

match ax with

| Self→ <@ fun(s, t)→ s.id = t.id @>

| Child→ <@ fun(s, t)→ s.id = t.parent @>

| Descendant→ <@ fun(s, t)→
s.pre < t.pre && t.post < s.post @>

| DescendantOrSelf→ <@ fun(s, t)→
s.pre ≤ t.pre && t.post ≤ s.post @>

| Following→ <@ fun(s, t)→ s.pre < t.pre @>

| FollowingSibling→ <@ fun(s, t)→
s.post < t.pre && s.parent = t.parent @>

| Rev(axis)→ <@ fun(s, t)→ (%axis(ax))(t, s) @>

An evaluator for XPath: path

let rec path(p : Path) : Expr< (Node, Node)→ bool> =

match p with

| Seq(p, q)→ <@ fun(s, u)→ (%any)((%db).xml,

fun(t)→ (%path(p))(s, t) && (%path(q))(t, u)) @>

| Axis(ax)→ axis(ax)

| NameTest(name)→ <@ fun(s, t)→
s.id = t.id && s.name = name @>

| Filter(p)→ <@ fun(s, t)→ s.id = t.id &&

(%any)((%db).xml, fun(u)→ (%path(p))(s, u)) @>

An evaluator for XPath: xpath

let xpath(p : Path) : Expr<Node list> =

<@ for root in (%db).xml do

for s in (%db).xml do

if root.parent = −1 && (%path(p))(root, s) then

yield s @>

Examples

a

b

c

#doc

d

e f

0

1

2

3 4

5 6 11

7 8 9 10

12

13

/*/*

run(xpath(Seq(Axis(Child), Axis(Child))))

[2; 4]

//*[following-sibling::d]

run(xpath(Seq(Axis(Descendant),

Filter(Seq(Axis(FollowingSibling),

NameTest(“d”))))))

[2]

