
The essence of language-integrated query

James Cheney
The University of Edinburgh

jcheney@inf.ed.ac.uk

Sam Lindley
The University of Strathclyde

sam.lindley@strath.ac.uk

Philip Wadler
The University of Edinburgh

wadler@inf.ed.ac.uk

ABSTRACT
Language-integrated query is receiving renewed attention, in
part because of its support through Microsoft’s LINQ frame-
work. We present a simple theory of language-integrated
query based on quotation and normalisation of quoted
terms. Our technique supports abstraction over queries, dy-
namic generation of queries, and queries with nested inter-
mediate data. Higher-order features prove useful even for
dynamic generation of first-order queries. We prove that
normalisation always succeeds in translating any query of
flat relation type to SQL. We present experimental results
confirming our technique works, even in situations where
Microsoft’s LINQ framework either fails to produce an SQL
query or, in one case, produces an avalanche of SQL queries.

1. INTRODUCTION
A quarter-century ago, Copeland and Maier (1984) de-

cried the “impedance mismatch” between database and con-
ventional programming models, and Atkinson and Bune-
man (1987) spoke of “The need for a uniform language”
(their emphasis), and observed that “Databases and pro-
gramming languages have developed almost independently
of one another for the past twenty years.” Smooth inte-
gration of database queries with programming languages,
also known as language-integrated query, remains an open
problem. Language-integrated query is receiving renewed
attention, in part because of its support through Microsoft’s
LINQ framework (Meijer et al. 2006, Syme 2006).

The problem is simple: two languages are more than twice
as difficult to use as one language. Most programming lan-
guages support nested data and data abstraction, while most
relational databases only support flat tables over concrete
data. Any task involving both requires that the program-
mer keep in mind two representations of the same underlying
data, converting between them and synchronising updates to
either. This pervasive bookkeeping adds to the mental bur-
den on the programmer and leads to complex code, bugs,
and security holes such as SQL injection attacks.

Most database developers work in two languages. Wrap-
per libraries, such as JDBC, provide raw access to high-
performance SQL, but the resulting code is difficult to main-
tain. Object-Relational Mapping (ORM) frameworks, such
as Hibernate, provide an object-oriented view of the data
that makes code easier to maintain but sacrifices perfor-
mance (Goldschmidt et al. 2008). Workarounds to recover
performance, such as framework-specific query languages,
reintroduce the drawbacks of the two-language approach.

We present a simple theory of language-integrated query
based on quotation and normalisation of quoted terms,
called Idealised LINQ. Our technique supports abstraction
over queries, dynamic generation of queries, and queries with
nested intermediate data. Higher-order features prove use-
ful even for dynamic generation of first-order queries. We
prove that normalisation always succeeds in translating any
query of flat relation type to a single SQL query, avoiding
query avalanches in the sense of Grust et al. (2010), where
the number of queries depends on the database size.

Microsoft LINQ was released as a part of .NET Frame-
work 3.5 in November 2007, and LINQ continues to evolve
with new releases. LINQ translates query expressions in the
source language into queries in a target language such as
SQL or XQuery. In this paper, we focus on SQL, though we
believe the ideas may adapt to other targets. We often write
Microsoft LINQ as shorthand to stand for Microsoft’s LINQ
to SQL provider, which targets Microsoft SQL Server.

There are variants of LINQ for C#, Visual Basic, and F#,
among others. Idealised LINQ corresponds most closely to
LINQ for F#. We choose F# as a basis because it supports
the features we require: records and lists, comprehension no-
tation for list processing, and quotation and anti-quotation.
Idealised LINQ can easily be adapted to any language with
these features. For instance, we believe similar ideas could
be adapted to C#, though more clumsily. C# supports a
form of quotation (a lambda-term is treated as quoted in
some contexts), but has poor support for anti-quotation, so
one may be forced to manipulate the C# Expression type
directly (Petricek 2007b).

Our concern is not with the myriad details of a spe-
cific framework, but with presenting a simple theory of the
key underlying ideas. Nonetheless, our theory can be ap-
plied directly to Microsoft LINQ, as we demonstrate by
implementing our normalisation algorithm in F# as a pre-
processing step to the F# PowerPack LINQ implementation.
We present experimental results confirming our technique
works, even in situations where Microsoft’s LINQ frame-
work either fails to produce an SQL query or, in one case,

1

people
name age
“Alex” 60
“Bert” 55
“Cora” 33
“Drew” 31
“Edna” 21
“Fred” 60

couples
her him
“Alex” “Bert”
“Cora” “Drew”
“Edna” “Fred”

Figure 1: People as a database

produces an avalanche of SQL queries. Our experiments re-
vealed bugs and limitations in the F# LINQ library, which
we have communicated to the F# team.

SQL corresponds closely to the comprehension notation
found in many functional languages, as noted by Trinder
and Wadler (1989) and Buneman et al. (1994). Conserva-
tivity results for nested relational algebra prove that if a
comprehension term has a flat type, then it has a normal
form that corresponds directly to SQL, as shown by Wong
(1996). The normalisation rules we present are based on
those formulated for our web programming language, Links
(Cooper 2009, Lindley and Cheney 2012).

While Microsoft’s LINQ is best explained in terms of quo-
tation, our own Links system is better explained in terms of
an effect-based theory. Both depend on normalisation. One
motivation behind this paper is to better establish the the-
ory of quotation-based language-integrated query, as a pre-
liminary to describing the relation between the quotation-
based and effect-based approaches.

To focus on the central ideas, we limit our attention to
conjunctive queries. We ignore features such as grouping
and aggregation, and we only run flat queries, those that
return a list of records of scalars. Related results for group-
ing and aggregation have been studied by Libkin and Wong
(1997) and Grust et al. (2009), and queries with nested re-
sults have been studied by (Grust et al. 2010).

The title of this paper and the name Idealised LINQ tip
a hat to Reynolds (1981).

The remainder of this paper is organised as follows. Sec-
tion 2 introduces our approach to language-integrated query.
Section 3 considers nesting. Section 4 applies the approach
to a relational representation of XML trees. Section 5 for-
malises our work, giving a complete description of the neces-
sary reduction rules. Section 6 compares Idealised LINQ to
Microsoft’s LINQ. Section 7 describes our implementation
and gives our results. Section 8 explains why it is preferable
to express queries as quotations rather than as functions.
Section 9 discusses related work. Section 10 concludes.

2. FUNDAMENTALS
We consider a simplified programming language, based

loosely on F# (Syme et al. 2012), featuring lists and records
and sequence comprehensions. We review the relationship
between comprehensions and database queries and then in-
troduce the use of quotation to construct queries.

2.1 Comprehensions and queries
For purposes of illustration, we consider a simple database

containing two tables, shown in Figure 1. The first table,
people, has columns for name and age, and the second table,

{people =
[{name = “Alex” ; age = 60};
{name = “Bert” ; age = 55};
{name = “Cora” ; age = 33};
{name = “Drew”; age = 31};
{name = “Edna”; age = 21};
{name = “Fred” ; age = 60}];

couples =
[{her = “Alex” ; him = “Bert” };
{her = “Cora” ; him = “Drew”};
{her = “Edna”; him = “Fred” }]}

Figure 2: People as data

couples, has columns for her and him. Here is an SQL query
that finds the name of every woman that is older than her
mate, paired with the difference in ages.

select w.name as name,w.age−m.age as diff
from couples as c, people as w, people as m
where c.her = w.name and c.him = m.name and

w.age > m.age

It returns the following table:

name diff
“Alex” 5
“Cora” 2

Assuming the people table is indexed with name as a key,
this query can be answered in time O(|couples|).

The database may be represented in Idealised LINQ as a
record of tables, each table is represented as a list of rows,
and each row is represented as a record of scalars.

type DB = {people : {name : string; age : int} list;
couples : {her : string; him : string} list}

We use lists to represent tables, and will not consider the
order of their elements as significant. We follow the nota-
tional conventions of F#, writing lists in square brackets
and records in curly braces.

We imagine augmenting our language with a construct
that takes the name of the database and returns its content
as the corresponding structure.

let db′ : DB = database(“People”)

If “People” is the name of the database in Figure 1, then db′

is bound to the value shown in Figure 2. We stick a prime
on the name to warn that this is too naive: typically, the
database will be too large to read into main memory. We
consider a feasible alternative in the next section.

Many programming languages provide a comprehension
notation over lists offering operations analogous to those
provided by SQL over tables (Trinder and Wadler 1989,
Buneman et al. 1994). In Idealised LINQ the analogue of
the previous SQL query is written as follows.

let differences′ : {name : string; diff : int} list =
for c in db′.couples do
for w in db′.people do
for m in db′.people do
if c.her = w.name && c.him = m.name &&

w.age > m.age then
yield {name : w.name; diff : w.age−m.age}

2

Evaluating differences′ returns the value

[{name = “Alex”; diff = 5}; {name = “Cora”; diff = 2}]

which corresponds to the table returned by the previous
SQL query. Again, we stick a prime on the name to warn
that this technique is too naive. In-memory evaluation of a
comprehension may not take advantage of indexing, so may
require Θ(|couples| · |people|2) time. We consider a feasible
alternative in the next section.

Here we use three constructs, similar to those supported in
the sequence expressions of F#. The term for x in M do N
binds x to each value in the list M and computes the list
N , concatenating the results; in mathematical notation, we
write

U
{N | x ∈M}; note that x is free in M but bound in

N . The term if L then M evaluates boolean L and returns
list M if it is true and the empty list otherwise. The term
yield M returns a singleton list containing the value of M .

Many languages support similar notation, including
Haskell, Python, C# and F#. The Idealised LINQ term

for x in L do for y in M do if P then yield N

is equivalent to the mathematical notation

{N | x ∈ L, y ∈M, P}

or the F# sequence expression

seq {for x in L do for y in M do if P then yield N}.

The last is identical to Idealised LINQ, save it is preceded
by the keyword seq and surrounded by braces.

2.2 Query via quotation
Idealised LINQ allows programmers to access databases

using a notation almost identical to the naive approach of
the previous section, but generating efficient queries in an
appropriate query language such as SQL. The recipe for con-
version is as follows. First, we wrap the reference to the
database inside quotation brackets, <@ · · · @>.

let db : Expr<DB > = <@ database(“People”) @>

Next, we wrap the query inside quotation brackets <@ · · · @>,
and wrap occurrences of any externally bound variable in
anti-quotation brackets; in this case the only externally
bound variable is db.

let differences : Expr< {name : string; diff : int} list > =
<@ for c in (%db).couples do

for w in (%db).people do
for m in (%db).people do
if c.her = w.name && c.him = m.name &&

w.age > m.age then
yield {name : w.name; diff : w.age−m.age} @>

Finally, to get the answer we evaluate the term

run(differences) (1)

This takes the quoted expression, normalises it, translates
the normalised expression to SQL, evaluates the SQL query
on the database, and imports the resulting table as data. In
this case, the quoted expression is already in normal form,
and it translates into the SQL in the previous section, and so
returns the table and answer seen previously. We may now
drop the warning primes, because the answer is computed
feasibly by access to the database.

The notation <@ · · · @> indicates quotation, which con-
verts an expression of type A into a data structure of type
Expr<A > that represents the expression as an abstract syn-
tax tree. The notation (% · · ·) indicates anti-quotation,
which splices a quoted expression of type Expr<A > inside
a quoted expression at a point expecting a value of type A.
Database access, indicated by the keyword database, de-
notes the value of the database viewed as a record of tables,
where each table is a list of rows, and each row is a record of
scalars. Database access is only permitted within quotation,
as its use outside quotation would require reading the en-
tire database into main memory, which is infeasible for very
large databases. Query evaluation, indicated by the key-
word run, takes an expression of type Expr<A >, normalises
the expression, translates the normalised expression to SQL,
evaluates the SQL, and imports the result as a value of type
A. The type A must correspond to an SQL table type, that
is, a list of rows, where each row is a record of scalars.

Some restrictions are required on the abstract syntax tree
in a run expression in order to ensure that it may be success-
fully translated to SQL. First, all database literals within a
given query must refer to a single database on which the
query is to be evaluated. Second, the return type must be
a flat relation type, that is, a list of records with fields of
scalar type. Third, the expression must not contain oper-
ations that cannot be converted to SQL, such as file I/O
or recursion. (Technically SQL does support some forms of
recursion, such as transitive closure, but current LINQ sys-
tems do not.) In Idealised LINQ, the first condition is dy-
namically checked, and the other two are statically checked.
In Microsoft LINQ, all checks are dynamic.

Idealised LINQ captures the essence of query processing in
Microsoft LINQ, particularly as it is expressed in F#. How-
ever, the details of Microsoft LINQ are more complicated,
involving three types Expression<A>, IEnumerable<A> and
IQueryable<A> that play overlapping roles, together with im-
plicit type-based coercions including a type-based approach
to quotation in C# and Visual Basic, plus special additional
query notations in C#, Visual Basic, and F# 3.0. We relate
our model to the specifics of LINQ in Section 7.

2.3 Abstracting over values
An advantage of language-integrated query is that one

may exploit the abstraction mechanisms of the host language
to formulate queries. Let’s begin with a query that finds the
names of all people with ages in a given range, inclusive of
the lower bound but exclusive of the upper bound.

type Names = {name : string} list
let range : Expr< (int, int)→ Names > =
<@ fun(a, b)→ for w in (%db).people do

if a ≤ w.age && w.age < b then
yield {name : w.name} @>

To keep things simple, we insist that the answer type always
corresponds to a table, so here we return a list of records
with a name field, rather than just a list of strings.

As before, we have defined the query as a quoted term,
this time one that contains a function abstraction. We shall
see that this is essential to being able to reuse queries flexibly
in constructing other queries.

Here we use the usual F# notation for function abstrac-
tion. Function applications normalise by substitution:

(fun(x̄)→ N)(M̄) ; N [x := M],

3

where N [x := M] denotes the capture-avoiding substitution
of terms M̄ for variables x̄ in term N . Theorists write
fun(x̄) → N as λx̄.N , and call it a lambda-abstraction,
and they call the rewriting rule above beta-reduction.

We form a specific query by instantiating the parameters:

run(<@ (%range)(30, 40) @>) (2)

Evaluating (2) finds everyone in their thirties:

[{name = “Cora”}; {name = “Drew”}]

In this case, the term passed to run is not quite in normal
form, it requires one step of beta-reduction, substituting the
actuals 30 and 40 for the formals a and b.

2.4 Abstracting over a predicate
In general, we may abstract over an arbitrary predicate.

let satisfies : Expr< (int→ bool)→ Names > =
<@ fun(p)→ for w in (%db).people do

if p(w.age) then
yield {name : w.name} @>

Predicates over ages are denoted by functions from integers
to booleans. We form a specific query by instantiating the
predicate. Evaluating

run(<@ (%satisfies)(fun(x)→ 30 ≤ x && x < 40) @>) (3)

is equivalent to the previous example, (2). In this case, the
term passed to run requires two steps of beta-reduction to
normalise. The first replaces p by the function, and enables
the second, which replaces x by w.age.

We can instantiate the query with any predicate, so long
as it only contains operators available in SQL. For example,

run(<@ (%satisfies)(fun(x)→ x mod 2 = 0) @>) (4)

finds everyone whose age is even. It would not work if,
say, the predicate invoked recursion. For Idealised LINQ,
we statically check that quoted terms can be translated to
SQL; in Microsoft LINQ, query translation fails at run-time
on quotations containing operations with no SQL equivalent.

2.5 Composing queries
Uniformly defining queries as quotations makes it easy to

compose queries. Say that given two names, we wish to find
the names of everyone at least as old as the first but no
older than the second. To express this concisely, we define
an auxiliary query that finds a person’s age.

let ageFromName : Expr< string→ int> =
<@ fun(s)→ for u in (%db).people do

if u.name = s then yield u.age @>

If names are keys, this will return at most one age. It returns
a list of integers, not a list of records, so it is not suitable
for use as a query on its own, but may be used inside other
queries. We may now form our query by composing two uses
of the auxiliary ageFromName with the query range.

let rangeFromNames : Expr< (string, string)→ Names > =
<@ fun(s, t)→ for a in (%ageFromName)(s) do

for b in (%ageFromName)(t) do
(%range)(a, b) @>

We form a specific query by instantiating the parameter.

run(<@ (%nameRange)(“Edna”, “Bert”) @>) (5)

This yields the value

[{name = “Cora”}; {name = “Drew”}; {name = “Edna”}]

Unlike the previous examples, normalisation of this query
requires rules other than beta-reduction; it is described in
detail in Section 5.4.

2.6 Dynamically generated queries
We now consider dynamically generated queries. Assume

our program declares the following algebraic type, the values
of which are trees representing predicates over integers.

type Predicate =
| Above of int
| Below of int
| And of Predicate× Predicate
| Or of Predicate× Predicate
| Not of Predicate

We take Above(a) to denote all ages greater than or equal
to a, and Below(a) to denote all ages strictly less than a, so
each is the negation of the other.

For instance, the following trees both specify predicates
that select everyone in their thirties:

let t0 : Predicate = And(Above(30),Below(40))
let t1 : Predicate = Not(Or(Below(30),Above(40)))

We can write a function that given a tree representing a
predicate returns the quotation of a function representing
the predicate. We will make use of the lift operator, which
lifts a value of some base type O into a quoted expression
of type Expr<O >. The definition is straightforward.

let rec P(t : Predicate) : Expr< int→ bool > =
match t with
| Above(a)→ <@ fun(x)→ (%lift(a)) ≤ x @>

| Below(a)→ <@ fun(x)→ x < (%lift(a)) @>

| And(t, u)→ <@ fun(x)→ (%P(t))(x) && (%P(u))(x) @>

| Or(t, u) → <@ fun(x)→ (%P(t))(x) || (%P(u))(x) @>

| Not(t) → <@ fun(x)→ not((%P(t))(x)) @>

For instance, P(t0) returns

<@ fun(x)→ (fun(x)→ 30 ≤ x)(x) &&

(fun(x)→ x < 40)(x) @>

Applying normalisation to the above simplifies it to

<@ fun(x)→ 30 ≤ x && x < 40 @>.

Again, notice how normalisation is necessary if we are to
write P using closed rather than open quotation.

We can combine P with the previously defined satisfies to
find all people that satisfy a given predicate. For example,

run(<@ (%satisfies)(%P(t0)) @>) (6)

is equivalent to the previous examples, (2) and (3). It gener-
ates the same SQL and yields the same answer. Evaluating

run(<@ (%satisfies)(%P(t1)) @>) (7)

yields the same answer as (6), but normalises to a slightly
different term. In it, the test 30 ≤ w.age && w.age < 40 is
replaced by not(w.age < 30 || 40 ≤ w.age).

An important point of this paper is that incorporating a
normalisation step means it is straightforward to generate
dynamic queries.

4

{departments =
[{dpt = “Product”}; {dpt = “Quality”};
{dpt = “Research”}; {dpt = “Sales”}];

employees =
[{dpt = “Product”; emp = “Alex”};
{dpt = “Product”; emp = “Bert”};
{dpt = “Research”; emp = “Cora”};
{dpt = “Research”; emp = “Drew”};
{dpt = “Research”; emp = “Edna”};
{dpt = “Sales”; emp = “Fred”}];

tasks =
[{emp = “Alex”; tsk = “build”};
{emp = “Bert”; tsk = “build”};
{emp = “Cora”; tsk = “abstract”};
{emp = “Cora”; tsk = “build”};
{emp = “Cora”; tsk = “design”};
{emp = “Drew”; tsk = “abstract”};
{emp = “Drew”; tsk = “design”};
{emp = “Edna”; tsk = “abstract”};
{emp = “Edna”; tsk = “call”};
{emp = “Edna”; tsk = “design”};
{emp = “Fred”; tsk = “call”}]}

Figure 3: Organisation as flat data

3. NESTING
In this section, we consider the application of language-

integrated query to nested data, and show further advan-
tages of the use of normalisation before execution of a query.

For purposes of illustration, we consider a simplified
database representing an organisation, with tables for de-
partments, employees, and tasks. Its type is Org, defined as
follows.

type Org = {departments : {dpt : string} list;
employees : {dpt : string; emp : string} list;
tasks : {emp : string; tsk : string} list }

We bind a variable to a reference to the relevant database,
called “Org”.

let org : Expr<Org > = <@ database(“Org”) @>

The corresponding data is shown in Figure 3.
The following parameterised query finds departments

where every employee can perform a given task u.

let expertise′ : Expr< string→ {dpt : string} list > =
<@ fun(u)→

for d in (%org).departments do
if not(exists(

for e in (%org).employees do
if d.dpt = e.dpt && not(exists(

for t in (%org).tasks do
if e.emp = t.emp && t.tsk = u then yield { })

)) then yield { })
)) then yield {dpt = d.dpt} @>

Evaluating

run(<@ (%expertise’)(“abstract”) @>) (8)

finds departments where every employee can abstract:

[{dpt = “Quality”}; {dpt = “Research”}]

[{dpt = “Product”; employees =
[{emp = “Alex”; tasks = [“build”]}
{emp = “Bert”; tasks = [“build”]}]};

{dpt = “Quality”; employees = []};
{dpt = “Research”; employees =
[{emp = “Cora”; tasks = [“abstract”; “build”; “design”]};
{emp = “Drew”; tasks = [“abstract”; “design”]};
{emp = “Edna”; tasks = [“abstract”; “call”; “design”]}]};

{dpt = “Sales”; employees =
[{emp = “Fred”; tasks = [“call”]}]}]

Figure 4: Organisation as nested data

There are no employees in the Quality department, so it will
always be contained in the result of this query regardless of
the task specified.

Query expertise′ works as follows. The innermost for re-
turns an (empty) record for each task t performed by em-
ployee e that is equal to u; it will contain no elements if
employee e cannot perform task u. The middle for returns
an (empty) record for each employee e in department d that
cannot perform task u; it will contain no elements if every
employee in department d can perform task u. Therefore,
the outermost for returns departments where every employee
can perform task u.

We stick a prime on the name to warn that this query
is hard to read. Using nested data structures will help us
formulate a more readable equivalent.

3.1 Nested structures
An alternative way to represent an organisation uses nest-

ing, where each department record contains a list of employ-
ees and each employee record contains a list of tasks.

type NestedOrg = [{dpt : string; employees :
[{emp : string; tasks : [string]}]}]

We compute the latter from the former as follows:

let nestedOrg : Expr<NestedOrg > =
<@ for d in (%org).departments do

yield {dpt = d.dpt; employees =
for e in (%org).employees do
if d.dpt = e.dpt then
yield {emp = e.emp; tasks =

for t in (%org).tasks do
if e.emp = t.emp then
yield t.tsk}}} @>

If org is bound to the data in Figure 3, then the above
binds nestedOrg to the data in Figure 4. We cannot write
run(nestedOrg) to compute this value directly, because run
requires an argument of type Expr<A >, where A is a list
of records of scalars, and the type of nestedOrg is a list of
records of lists of records of scalars. However, it can be con-
venient to use nestedOrg to formulate other queries, as we
show in the next section.

3.2 Higher-order queries
For convenience, we define several higher-order queries.

The first takes a predicate and a list and returns true if the

5

a

b

c

#doc

d

e f

0

1

2

3 4

5 6 11

7 8 9 10

12

13

xml
id parent name pre post
0 -1 #doc 0 13
1 0 a 1 12
2 1 b 2 5
3 2 c 3 4
4 1 d 6 11
5 4 e 7 8
6 4 f 9 10

Figure 5: XML tree and tabular representation

predicate holds for any item in the list.

let any : Expr< (A list, A→ bool)→ bool > =
<@ fun(xs, p)→

exists(for x in xs do if p(x) then yield { }) @>

The second takes a predicate and a list and returns true if
the predicate holds for all items in the list. It is defined in
terms of any using De Morgan duality.

let all : Expr< (A list, A→ bool)→ bool > =
<@ fun(xs, p)→

not((%any)(xs, fun(x)→ not(p(x)))) @>

The third takes a value and a list and returns true if the
value appears in the list. It is also defined in terms of any.

let contains : Expr< (A list, A)→ bool > =
<@ fun(xs, u)→ (%any)(xs, fun(x)→ x = u) @>

Here we have used the trick of currying, standard from func-
tional programming, where a function from two arguments
to a result is expressed as a function from the first argument
to a function from the second argument to the result. All
three of these resemble well-known operators from functional
programming, and similar operators with the same names
are provided in Microsoft’s LINQ framework. We define all
three as quotations, so that they may be used in queries.

We define a query equivalent to expertise′ as follows:

let expertise : Expr< string→ {dpt : string} list > =
<@ fun(u)→

for d in (%nestedOrg)
if (%all)(d.employees,

fun(e)→ (%contains)(e.tasks, u) then
yield {dpt = d.dpt} @>

Evaluating

run(<@ (%expertise)(“abstract”) @>) (9)

is equivalent to the previous example, (8). It generates the
same SQL and yields the same answer.

In order for this to work, normalisation must not only per-
form beta-reduction, but also perform various reductions on
sequence expressions that are well known from the literature
on conservativity results. The complete set of reductions
that we require is discussed in Section 5.

4. FROM XPATH TO SQL
As a final example of the power of our approach to

type-safe dynamic query generation, we consider an imple-
mentation of tree-structured XML data in a relation using

let rec axis(ax : Axis) : Expr< (Node,Node)→ bool > =
match ax with
| Self→ <@ fun(s, t)→ s.id = t.id @>

| Child→ <@ fun(s, t)→ s.id = t.parent @>
| Descendant→ <@ fun(s, t)→

s.pre < t.pre && t.post < s.post @>
| DescendantOrSelf→ <@ fun(s, t)→

s.pre ≤ t.pre && t.post ≤ s.post @>
| Following→ <@ fun(s, t)→ s.pre < t.pre @>

| FollowingSibling→ <@ fun(s, t)→
s.post < t.pre && s.parent = t.parent @>

| Rev(axis)→ <@ fun(s, t)→ (%axis(ax))(t, s) @>

let rec path(p : Path) : Expr< (Node,Node)→ bool > =
match p with
| Seq(p, q)→ <@ fun(s, u)→ (%any)((%db).xml,

fun(t)→ (%path(p))(s, t) && (%path(q))(t, u)) @>

| Axis(ax)→ axis(ax)
| NameTest(name)→ <@ fun(s, t)→

s.id = t.id && s.name = name @>

| Filter(p)→ <@ fun(s, t)→ s.id = t.id &&

(%any)((%db).xml, fun(u)→ (%path(p))(s, u)) @>

let xpath(p : Path) : Expr<Node list > =
<@ for root in (%db).xml do

for s in (%db).xml do
if root.parent = −1 && (%path(p))(root, s) then
yield s @>

Figure 6: An evaluator for XPath

“stretched” pre-order and post-order indexes; see, for exam-
ple, Grust et al. (2004; sec. 4.2). Range indexing on the pre
and post fields ensures efficient execution of a wide range of
XPath queries (Grust et al. 2004). Each node of the tree
corresponds to a row in a table db.xml with schema:

type Node =
{id : int, parent : int, name : string, pre : int, post : int}

The id field uniquely identifies each node; the parent field
refers to the identifier of the node’s parent (or -1 if root
node); the name field stores the element tag name; and the
pre and post fields store the position of the opening and
closing brackets of the node in its serialisation. For example,
Figure 5 shows an XML tree and its tabular representation.

The datatypes Axis and Path, defined below, represent the
abstract syntax of a fragment of XPath.

type Axis =
| Self
| Child
| Descendant
| DescendantOrSelf
| Following
| FollowingSibling
| Rev of Axis

type Path =
| Seq of Path× Path
| Axis of Axis
| NameTest of string
| Filter of Path

In the Axis datatype, we define the primitive forward axes
and the Rev case handles the reverse steps (parent, ancestor,
ancestor-or-self, preceding, and preceding-sibling). In the
Path datatype, Seq concatenates two paths, Axis defines an
axis step, NameTest tests whether an element’s name is equal
to a given string, and Filter tests whether a path expression
is satisfiable from a given node.

6

Γ `M : A

Const
Σ(c) = A

Γ ` c : A

Op

Σ(op) = (O)→ O Γ `M : O

Γ ` op(M) : O

Lift
Γ `M : O

Γ ` lift(M) : Expr<O >

Var

Γ, x : A ` x : A

Fun
Γ, x : A ` N : B

Γ ` fun(x)→ N : A→ B

App
Γ ` L : A→ B Γ `M : A

Γ ` L M : B

Record

Γ `M : A

Γ ` {` = M} : {` : A}

Project

Γ `M : {` : A}
Γ `M.`i : Ai

Singleton
Γ `M : A

Γ ` yield M : A list

For
Γ `M : A list Γ, x : A ` N : B list

Γ ` for x in M doN : B list

If
Γ ` L : bool Γ `M : A list

Γ ` if L thenM : A list

Exists
Γ `M : A list

Γ ` existsM : bool

Empty

Γ ` [] : A list

Union
Γ `M : A list Γ ` N : A list

Γ `M @N : A list

Rec
Γ, f : A→ B, x : A ` N : B

Γ ` rec f(x)→ N : A→ B

Run
Γ `M : Expr<T >

Γ ` runM : T

Quote

Γ; · `M : A

Γ ` <@ M @> : Expr<A >

Γ; ∆ `M : A

ConstQ

Σ(c) = A

Γ; ∆ ` c : A

OpQ

Σ(op) = (O)→ O Γ; ∆ `M : O

Γ; ∆ ` op(M) : O

VarQ

Γ; ∆, x : A ` x : A

FunQ

Γ; ∆, x : A ` N : B

Γ; ∆ ` fun(x)→ N : A→ B

AppQ

Γ; ∆ ` L : A→ B Γ; ∆ `M : A

Γ; ∆ ` L M : B

RecordQ

Γ; ∆ `M : A

Γ; ∆ ` {` = M} : {` : A}

ProjectQ

Γ; ∆ `M : {` : A}
Γ; ∆ `M.`i : Ai

SingletonQ

Γ; ∆ `M : A

Γ; ∆ ` yield M : A list

ForQ

Γ; ∆ `M : A list Γ; ∆, x : A ` N : B list

Γ; ∆ ` for x in M doN : B list

IfQ

Γ; ∆ ` L : bool Γ; ∆ `M : A list

Γ; ∆ ` if L thenM : A list

ExistsQ

Γ; ∆ `M : A list

Γ; ∆ ` existsM : bool

EmptyQ

Γ; ∆ ` [] : A list

UnionQ

Γ; ∆ `M : A list Γ; ∆ ` N : A list

Γ; ∆ `M @N : A list

Database
Σ(db) = {` : T}

Γ; ∆ ` database(db) : {` : T}

Antiquote

Γ `M : Expr<A >

Γ; ∆ ` (%M) : A

Figure 7: Typing rules for Idealised LINQ

Figure 6 gives the complete code of an evaluator for this
fragment of XPath, which generates one SQL query per
XPath query. For each axis step, the predicate axis matches
pairs of rows in the data table if and only if the correspond-
ing rows are related by the axis. It is then straightforward
to define the translation path from path expressions to pred-
icates.

Finally, the xpath function evaluates a given path expres-
sion starting from the root. It is straightforward to translate
conventional XPath strings to Path expressions, so that we
can run the following queries:

xp0 = /*/* (10)

xp1 = //*/parent::* (11)

xp2 = //*[following-sibling::d] (12)

xp3 = //f[ancestor::*/preceding::b] (13)

yielding results {2, 4}, {1, 2, 4}, {2} and {6} respectively.
While this is a small fragment of XPath, there is no ob-

stacle to adding other standard features such as attributes,
Boolean operations on filters, or other tests on text data.

5. CORE LANGUAGE
In this section we give a formal account of Idealised LINQ

as a higher-order nested relational calculus over bags aug-
mented with a quotation mechanism for issuing flat rela-
tional queries to an SQL database.

The types of Idealised LINQ are as follows:

(base type) O ::= int | bool | string
(type) A,B ::= O | A→ B | {` : A} | A list | Expr<A >

(table type) T ::= {` : O} list

The terms of Idealised LINQ are as follows:

L,M,N ::= c | op(M) | lift(M) | x | fun(x)→ N | L M

| {` = M} |M.` | yield M | for x in M doN
| if L thenM | exists M | [] |M @N
| rec f(x)→ N
| run M | <@ M @> | database(db) | (%M)

For convenience, we use F# list-notation, but we are not
concerned with the order of elements. For instance, we treat
@ as bag union. In F# values of base type are implicitly co-
erced to quoted terms when referenced inside quoted terms.

7

For our core language we make this coercion explicit, writ-
ing lift(M) for the operation that lifts a host term M of
base type to a quoted term of type Expr<M >. We write
rec f(x) → N for a recursive function definition. This is
equivalent to writing let rec f(x) = N in f in F#.

For simplicity, we assume that all queries are on a single
database db. In practice, one can check either dynamically
or statically (Ohori and Ueno 2011) to ensure that a given
query only refers to a single database. We do not include
a general if then else construct, as doing so slightly com-
plicates the normalisation procedure (Lindley and Cheney
2012). Nevertheless, it is straightforward to implement, and
is supported in our implementation. Similarly, we do not in-
clude polymorphism in the formalisation as it is an orthog-
onal feature, but we get it for free in our implementation.

Type environments are as follows:

Γ,∆ ::= · | Γ, x : A

The typing rules are given in Figure 7. There are two typing
judgements: one for host terms, and the other for query
terms. The judgement Γ ` M : A states that host term M
has type A in type environment Γ. The judgement Γ; ∆ `
M : A states that query term M has type A in host type
environment Γ and query type environment ∆.

Most of the typing rules are standard and mirrored across
both judgements. The core rules for the query judgement
do not use the Γ environment. The interesting rules are
those that involve quotation. A query term can be quoted
(Quote). A quoted term of flat relation type can be evalu-
ated as a query (Run). A database term can be used inside a
query term (Database). A quoted term can be spliced into
a query term (Antiquote). A term of base type O can be
lifted to a quoted term of type Expr<O > (Lift). Recursion
is only available in a host term (Rec).

We assume a signature Σ that maps each constant c to its
underlying type, each primitive operator op to its type (e.g.
Σ(&&) = (bool, bool) → bool and Σ(+) = (int, int) → int),
and the database db to its type, a record of flat relation
types with a field for the type of each table.

5.1 Operational semantics
We now present a small-step operational semantics for

Idealised LINQ. The values are as follows:

V,W ::= c | fun(x)→M | rec f(x)→M

| {` = V } | [V1, . . . , Vn] | <@ U @>

U ::= c | op(U) | x | fun(x)→ U | U U ′

| {` = U} | U.` | yield U | for x in U doU ′

| if U thenU ′ | [] | U @ U ′ | database(db).`

They are mostly standard, except for quotation values
<@ U @>, which depend on an auxiliary class of query values
ranged over by U . These are just quoted terms in which all
anti-quoting has been resolved.

We quotient bag values by bag equivalence, writ-
ing [V1, . . . , Vn] for any term equivalent to [] @

yield V1 @ , . . . , @ yield Vn modulo identity, associativity and
commutativity on bag union (@).

The semantics is parameterised by an interpretation DB
that maps each database db in the schema Σ to its underlying
data of type Σ(db) and an interpretation δ that defines the

op(V) −→ δ(op, V)
(fun(x)→ N) V −→ N [x := V]

(rec f(x)→ N) V −→ M [f := rec f(x)→ N, x := V]

{` = V }.`i −→ Vi

if true thenM −→ M
if false thenM −→ []

for x in yield V doM −→ M [x := V]
for x in [] doN −→ []

for x in L @M doN −→
(for x in L doN) @ (for x in M doN)

exists [] −→ false
exists [V] −→ true, |V | > 0

run <@ U @> −→ evalDB (norm(U)) (run)
lift(c) −→ <@ c @> (lift)

<@ Q[(%<@ M @>)] @> −→ <@ Q[M] @> (splice)

M −→ N

E [M] −→ E [N]

Figure 8: Operational semantics for Idealised LINQ

semantics of each primitive operation op, such that:

Σ(op) = (O)→ O ` V : O

` δ(op, V) : O

The rules are given in Figure 8.
The semantics is standard apart from the rules for quota-

tion and query evaluation.
Evaluation can take place at the top-level or inside eval-

uation contexts (E), which enforce left-to-right call-by-value
evaluation, except inside quoted terms.

E ::= [] | op(V , E ,M) | E M | V E | E .`
| for x in E doN | if E thenM | E @M | V @ E
| run E | <@ Q[(%E)] @> | lift([])

Q ::= [] | op(M,Q, N) | fun(x)→ Q | Q N |M Q
| {`′ = M, ` = Q, `′′ = N} | Q.`
| yield Q | for x in Q doN | for x in M doQ
| if Q thenM | if L thenQ | Q @M | N @Q
| existsQ

Query contexts (Q), are one-hole contexts over query terms
that are free from anti-quotation. They allow evaluation
to proceed inside anti-quotes. The (splice) rule resolves an
anti-quote once its body has been evaluated to a quotation.
The (lift) rule converts a constant into a quoted constant.

The idea underlying the (run) rule is that a query M of
flat relation type is evaluated by first normalising M to yield
an equivalent query Q, and then evaluating Q with respect
to the database. The important feature of the language of
normal forms is that it is isomorphic to a subset of SQL.
Thus Q is evaluated simply by issuing an SQL query to the
database, which we model abstractly by evalDB (Q). The
only assumptions we make here are that evalDB is total on
normalised queries and for any <@ Q @> of type Expr<T >,
evalDB (Q) returns a result V of type T .

The property that guarantees that M can be normalised
to a flat query is that M has flat relation type. The key idea
of using normalisation to convert higher-order queries into
SQL was formalised by Cooper (2009) building on ideas of

8

(fun(x)→ N) M ; N [x := M]

{` = M}.`i ; Mi

for x in (yield M) doN ; N [x := M] (for-yld)
for y in (for x in L doM) doN ;

for x in L do (for y in M doN) (for-for)
for x in (if L thenM) doN ;

if L then (for x in M doN) (for-if)
for x in [] doN ; []

for x in (L @M) doN ;

(for x in L doN) @ (for x in M doN)
if true thenM ; M
if false thenM ; []

M ; N

Q[M] ; Q[N]

Figure 9: Normalisation stage 1: symbolic reduction

for x in L do (M @N) ↪→
(for x in L doM) @ (for x in L doN)

for x in L do [] ↪→ []

if L then (M @N) ↪→
(if L thenM) @ (if L thenN)

if L then [] ↪→ []

if L then (for x in M doN) ↪→
for x in M do (if L thenN) (if-for)

if L then (if M thenN) ↪→
if (L && M) thenN (if-if)

yield x ↪→ yield {` = x.`}
database(db).` ↪→

for x in database(db).` do yield x

Figure 10: Normalisation stage 2: ad hoc reduction

Wong (1996). The particular algorithm we present here is
based on our earlier work (Lindley and Cheney 2012).

An important property from the latter paper is that the
semantics is invariant with respect to normalisation, that is,
if we replace evalDB by a function that loads all of the DB
database into memory before running the query in memory,
then the observable behaviour is unchanged.

5.2 Query normalisation
We define the query normalisation function norm in two

stages. The first stage normalises M with respect to the
rewrite relation ; defined in Figure 9, which performs stan-
dard symbolic reduction. Note the similarity with the eval-
uation relation −→ of Figure 8. The effect of the first stage
is to eliminate all higher-order and nested sub-terms. This
is guaranteed by M having flat relation type (Cooper 2009).

The second stage translates a flat query returned by the
first stage into a form isomorphic to a subset of SQL. The
relation ↪→ is defined by taking the compatible closure of all
of the rules in Figure 10 but the last, which must only be
applied at the top level or immediately inside an @ operation.
The second stage can be viewed as a way of accounting for
flaws in the syntax of SQL. The first rule, which hoists a
union out of a comprehension body, is the only rule that
is not sound for a list semantics. It is unsound precisely
because it changes the order of the generated elements.

To define norm, we combine both reduction relations: if
L is a closed term of flat relation type, L ;-normalises to
M , and M ↪→-normalises to N , then norm(L) = N . Termi-
nation of normalisation can be proved as in Cooper (2009)
or Lindley and Cheney (2012). The resulting normal forms
are given by the following grammar:

(normal form) Q ::= [] | C | C @D
(clause) C,D ::= yield R | if X then yield R

| for x in database(db).` doC
(record) R ::= {` = X}
(base term) X ::= c | x.` | op(X) | existsQ

Strictly speaking, this is not quite isomorphic to a subset of
SQL as SQL cannot handle rows with no fields, or empty
unions. These idiosyncrasies are easy to work around in
practice.

5.3 Type soundness
Type soundness consists of two properties: preservation

states that the evaluation relation preserves well-typing; and
progress states that if a term is well-typed, then either it is
a value or an evaluation rule applies.

Proposition 1 (Preservation).
• If Γ `M : A and M −→ N then Γ ` N : A.
• If Γ; ∆ `M : A and M −→ N then Γ; ∆ ` N : A.

Proposition 2 (Progress). If ` M : A, then either
M is a value, or there exists a term N such that M −→ N .

The main result is that Idealised LINQ programs never
encounter run-time errors while generating queries: each run
expression generates a single, type-safe SQL query, avoiding
query avalanches where the number of queries depends on
the database size.

5.4 An example
As an example of normalisation, we consider evaluation

of query (5) from Section 2.5.

run(<@ (%nameRange)(“Edna”, “Bert”) @>)

After splicing, the quotation becomes:

(fun(s, t)→
for a in (fun(s)→

for u in database(“People”).people do
if u.name = s then yield u.age)(s) do

for b in (fun(s)→
for u in database(“People”).people do
if u.name = s then yield u.age)(t) do

(fun(a, b)→
for w in database(“People”).people do
if a ≤ w.age && w.age < b then
yield {name : w.name})(a, b))

(“Edna”, “Bert”)

For stage 1 (Figure 9), applying four beta-reductions yields:

for a in (for u in database(“People”).people do
if u.name = “Edna” then yield u.age) do

for b in (for u in database(“People”).people do
if u.name = “Bert” then yield u.age) do

for w in database(“People”).people do
if a ≤ w.age && w.age < b then
yield {name : w.name}

9

Continuing stage 1, applying each of rules (for-for), (for-if),
and (for-yld) twice, and renaming to avoid capture, yields:

for u in database(“People”).people do
if u.name = “Edna” then
for v in database(“People”).people do
if v.name = “Bert” then
for w in database(“People”).people do
if u.age ≤ w.age && w.age < v.age then
yield {name : w.name}

For stage 2 (Figure 10), applying rule (if-for) thrice and rule
(if-if) twice yields:

for u in database(“People”).people do
for v in database(“People”).people do
for w in database(“People”).people do
if u.name = “Edna” && v.name = “Bert” &&

u.age ≤ w.age && w.age < v.age then
yield {name : w.name}

This is in normal form, and easily converted to SQL. Run-
ning it yields the answer given previously.

6. COMPARISON TO MICROSOFT LINQ
Our model abstracts from several distracting issues in the

LINQ implementation. In this section we compare Idealised
LINQ to Microsoft’s LINQ features in C# and F#, sup-
ported by the LINQ to SQL query provider library.

Microsoft’s LINQ library includes interfaces
IEnumerable<A> and IQueryable<A> that provide stan-
dard query operators including selection, join, filtering,
grouping, sorting, and aggregation. These query operators
are defined to act both on sequences and on quotations that
yield sequences. LINQ query expressions in C# or Visual
Basic are translated to code that calls the methods in these
interfaces. For example, a C# LINQ query

from x in e where p(x) select f(x)

translates to the sequence of calls

e.Where(x⇒ p(x)).Select(x⇒ f(x))

Depending on the context, lambda-abstractions are treated
either as functions or as quoted functions.

Any external data source that can implement some of
the query operations can be connected to LINQ using a
query provider. Implementing a query provider can be dif-
ficult, in part because of the overhead of dealing with C#’s
Expression<A> type. Eini (2011) characterises writing a cus-
tom query provider as “doom, gloom with just a tad of de-
spair”.

Microsoft supplies a LINQ to SQL query provider that
maps to SQL Server syntax. Microsoft’s query provider is
proprietary, so its behaviour is a black box, but it does ap-
pear to perform some normalisation. If the query expression
involves nesting, however, Microsoft’s provider can suffer
from what Grust et al. (2010) call a “query avalanche”—
where the number of queries generated is proportional to
the size of the data. As we shall see, this can happen even
for queries such as expertise whose result is flat.

As we have already described, F# supports LINQ using
syntactic sugar for comprehensions (called “computation ex-
pressions”), quotations, and reflection. In the F# Power-
Pack library made available for F# 2.0, some LINQ capa-
bilities are supported by a translator from the F# Expr<A >

Example F# 2.0 F# 3.0 Our system
differences (1) Success Success Success

range (2) Failure Success Success
satisfies (3) Success Failure Success
satisfies (4) Success Failure Success

rangeFromNames (5) Failure Failure Success
P(t0) (6) Success Failure Success
P(t1) (7) Success Failure Success

expertise′ (8) Success? Success Success?

expertise (9) Failure Avalanche Success?

xp0 (10) Failure Success Success
xp1 (11) Failure Success Success
xp2 (12) Failure Failure Success?

xp3 (13) Failure Failure Success?

?marks the cases where our modifications to the F# 2.0
PowerPack library were required.

Table 1: Experimental results.

type to the LINQ Expression<A> type. This translation also
performs some beta-reduction, but it is complex and incom-
plete. In particular, it fails to translate occurrences of exists
in the test of a conditional, or occurrences of yield outside
of a for expression.

F# 3.0 supports LINQ through an improved transla-
tion based on computation expressions (Petricek and Syme
2012). In F# 3.0, one can simply write query{ · · · } to indi-
cate that a computation expression should be interpreted as
a query. Unfortunately, although it is more mature, this im-
plementation also has some bugs and limitations: it forbids
some uses of splicing, and does not correctly process some
queries that start with a conditional.

7. IMPLEMENTATION AND RESULTS
To validate our design, we implemented a pre-processor

norm : Expr<A > → Expr<A > that takes any quoted F#
sequence expression over the standard query operators and
normalises it following the strategy defined in Section 5. Al-
though it is possible to implement normalisation directly on
the Expr<A > type, and this may be more efficient, we elected
to introduce a simpler type Exp that corresponds exactly to
the query expressions of Idealised LINQ. We first traverse
the F# Expr<A > data structure and translate it into an
Exp. Type information available through the F# reflection
mechanism is used to annotate parts of the query appropri-
ately. These expressions are normalised using an algorithm
based on the query normalisation reductions of Section 5,
using the type annotations to perform type-directed normal-
isation. The Idealised LINQ query expression is translated
back to an F# Expr<A > data structure. This data structure
is passed to the F# 2.0 PowerPack library which translates
it to a LINQ Expression<A>. In turn Microsoft’s LINQ to
SQL query provider translates this to SQL and executes the
query in SQL Server.

Table 1 summarises our experimental results. We wrote
each example in the paper using the F# 2.0 and F# 3.0
LINQ libraries and our library. Each entry in the table
lists whether the result was failure, success by generating
a single query, or a “query avalanche” of multiple queries.
In the course of running the experiments we encountered
the bugs described in the previous section. We modified the

10

source code of the F# 2.0 PowerPack library to fix some of
these problems. The modified source code is available online,
along with the source code of all examples (Cheney et al.
2012). The experiments that rely upon our modifications
are marked with an asterisk (?) in Table 1.

Each of F# 2.0 and F# 3.0 failed on seven examples,
though not the same seven. In one case, F# 2.0 required
our modified PowerPack library. Also, F# 3.0 generated
an avalanche of SQL queries for query (9), which uses an
intermediate nested structure. Our normaliser (using the
modified PowerPack library) succeeded on all our examples.

In all cases where more than one technique succeeded by
generating a single query, the queries generated are equiv-
alent. Incidentally, we note that since all three approaches
ultimately generate C# Expression<A> terms, all of the ex-
amples can be implemented directly in C# or F# by writ-
ing programs that construct the appropriate Expression<A>
terms using reflection. However, this typically involves a
code size increase of a factor of at least 2, and can be diffi-
cult to debug because the dynamic expression construction
is not typechecked until run-time.

8. QUOTATIONS VS. FUNCTIONS
We have adopted a style where all queries are represented

as quotations. Another style which might at first appear
appealing is to represent queries as functions, which take
quotations as arguments and return quotations as results.
For instance, one might redefine range from Section 2.3 as
follows.

let range′(a : Expr< int >, b : Expr< int >) : Names =
<@ for w in (%db).people do

if (%a) ≤ w.age && w.age < (%b) then
yield {name : w.name} @>

Before, we wrote an invocation like this:

run(<@ (%range)(30, 40) @>).

Now, we write an invocation like this:

run(range′
(<@ 30 @>, <@ 40 @>)).

The latter is slightly more efficient, as the application di-
rectly yields a quotation in normal form, and no beta-
reduction is required.

However, the price paid for saving a few beta-reductions
is high, because the variant form hinders composition. In
Section 2.5 we used range to define rangeFromNames. At-
tempting a revision using range′ yields the following.

let rangeFromNames′ : Expr< (string, string)→ Names > =
<@ fun(s, t)→

for a in (%ageFromName)(s) do
for b in (%ageFromName)(t) do
(%range′(<@ a @>, <@ b @>)) @>

Something odd happens here! The two quotations <@ a @>

and <@ b @> passed to range′ are open, since they contain
free quoted variables. In this case, the variables become
bound after splicing into the surrounding quotation, but in
general open quotations come with no guarantee that vari-
ables will ever meet their binding occurrences. In contrast,
all the other quotations we have seen are closed, since all
quoted variables are bound within the quotation. While
closed quotations are well understood, open quotations are

more subtle, and a subject of active research (see e.g. Rhiger
(2012)). In particular, open quotations are illegal in F#, so
there is no easy way to use range′ to define rangeFromNames′.

The one advantage of the style described is that by splic-
ing in directly it can avoid the need for beta-reductions in
normalising quotations. However it does not avoid the need
for all the other normalisation rules discussed in Section 5.2,
and it hinders composition. As a guideline, we recommend
that whenever possible, queries should be defined queries as
quotations of functions, not functions over quotations.

9. RELATED WORK
LINQ (Meijer et al. 2006) has attracted considerable

commercial interest, but has not been extensively docu-
mented in the research literature. Bierman et al. (2007)
present a formalisation of several extensions to C#, includ-
ing LINQ. Meijer (2011) gives an overview of the foundations
of LINQ, while Beckman (2012) advocates LINQ as an in-
terface to cloud computing platforms and Eini (2011) identi-
fies obstacles to implementing LINQ providers for non-SQL
databases. The problem of abstracting over parts of queries
or constructing dynamic queries has been discussed widely
on blogs and online forums but to our knowledge has not
previously been formally modelled.

Syme (2006) presents an early version of F#’s quotation
and reflection capabilities, illustrating via applications to
LINQ, GPU code generation, and runtime F# code genera-
tion. Petricek (2007b;a) discusses early techniques for sup-
porting some dynamic queries in C# and F#, including a
clever technique for simulating certain forms antiquoting in
C# LINQ expressions. F# 3.0’s computation builder mech-
anism is presented by Petricek and Syme (2012) and covered
further by Syme et al. (2012).

Type-safe quotation and metaprogramming is an active
research area, with most work focusing on homogeneous
multistage programming, where the embedded language is
the same as the host language. Davies and Pfenning (2001)
introduce a calculus λ� for closed homogeneous multistage
programming based on a modal logic. Idealised LINQ can
be viewed as a heterogeneous variant of λ� restricted to
one level of embedding. Rhiger (2012) presents a calculus
for homogeneous multistage programming with open quo-
tations. Rhiger notes that closed quotation leads to less
efficient code due to administrative redexes. In our hetero-
geneous setting such administrative redexes have negligible
cost because we normalise quoted terms, and normalisation
time is dominated by query execution time. Van den Buss-
che et al. (2005) present a meta-querying system for SQL;
however, they do not consider type-safety or language inte-
gration issues.

Our quotation-based theory abstracts the practice of
language-integrated query as found in Microsoft’s LINQ.
Other examples of type-safe language-integrated query in-
clude SML# (Ohori and Ueno 2011), Ur/Web (Chlipala
2010), and our own work on the Web programming lan-
guage Links (Cooper et al. 2007, Lindley and Cheney 2012).
SML# and Ur/Web do not perform normalisation, while
Links supports it via a type-and-effect system (Cooper 2009,
Lindley and Cheney 2012). Although Links’ treatment
avoids the need for explicit quotation and antiquotation, its
type system would be nontrivial to incorporate into F#.

Ferry (Grust et al. 2009; 2010) is a functional query lan-
guage that provides both higher-order functions and nested

11

data, and the Ferry team have implemented several LINQ
query providers, as well as interfacing Ferry with Links (Ul-
rich 2011). Combining our results with Ferry’s handling of
nested queries is another topic for future work.

10. CONCLUSION
We presented a simple theory of language-integrated

query based on quotation and normalisation. Through a
series of examples, we demonstrated that our technique
supports abstraction over queries, dynamic generation of
queries, and queries with nested intermediate data; and that
higher-order features proved useful even for dynamic gener-
ation of first-order queries. We developed a formal theory,
and proved that normalisation always succeeds in translat-
ing any query of flat relation type to SQL. We presented
experimental results confirming our technique works in prac-
tice as predicted. We observed that for several of our exam-
ples, Microsoft’s LINQ framework either fails to produce an
SQL query or produces an avalanche of SQL queries.

We believe future LINQ providers could and should incor-
porate our normalisation technique, supporting many useful
forms of abstraction in manner that is predictable and prac-
tical. We hope this paper will spur wider appreciation of
the value of normalisation, and wider application of these
techniques in practice.

Code supplement. Our implementation, and the source
code of all examples, is available online (Cheney et al. 2012).

References
M. P. Atkinson and O. P. Buneman. Types and persis-

tence in database programming languages. ACM Comput.
Surv., 19(2), 1987.

B. Beckman. Why LINQ matters: cloud composability guar-
anteed. Commun. ACM, 55(4):38–44, Apr. 2012.

G. M. Bierman, E. Meijer, and M. Torgersen. Lost in trans-
lation: formalizing proposed extensions to C#. In OOP-
SLA, New York, NY, USA, 2007. ACM.

P. Buneman, L. Libkin, D. Suciu, V. Tannen, and L. Wong.
Comprehension syntax. SIGMOD Record, 23, 1994.

J. Cheney, S. Lindley, and P. Wadler. The essence
of language-integrated query (code supplement), 2012.
http://homepages.inf.ed.ac.uk/jcheney/linq.

A. J. Chlipala. Ur: statically-typed metaprogramming with
type-level record computation. In PLDI, 2010.

E. Cooper. The script-writer’s dream: How to write great
SQL in your own language, and be sure it will succeed. In
DBPL, 2009.

E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: web
programming without tiers. In FMCO, 2007.

G. Copeland and D. Maier. Making Smalltalk a database
system. SIGMOD Rec., 14(2), 1984.

R. Davies and F. Pfenning. A modal analysis of staged
computation. J. ACM, 48(3):555–604, 2001.

O. Eini. The pain of implementing LINQ providers. Com-
mun. ACM, 54(8):55–61, 2011.

T. Goldschmidt, R. Reussner, and J. Winzen. A case study
evaluation of maintainability and performance of persis-
tency techniques. In ICSE, 2008.

T. Grust, M. van Keulen, and J. Teubner. Accelerating
XPath evaluation in any RDBMS. ACM Trans. Database
Syst., 29:91–131, 2004.

T. Grust, M. Mayr, J. Rittinger, and T. Schreiber. Ferry:
Database-supported program execution. In SIGMOD,
June 2009.

T. Grust, J. Rittinger, and T. Schreiber. Avalanche-safe
LINQ compilation. PVLDB, 3(1), 2010.

L. Libkin and L. Wong. Query languages for bags and ag-
gregate functions. J. Comput. Syst. Sci., 55(2), 1997.

S. Lindley and J. Cheney. Row-based effect types for
database integration. In TLDI, 2012.

E. Meijer. The world according to LINQ. Commun. ACM,
54(10):45–51, Oct. 2011.

E. Meijer, B. Beckman, and G. M. Bierman. LINQ: recon-
ciling object, relations and XML in the .NET framework.
In SIGMOD, 2006.

A. Ohori and K. Ueno. Making Standard ML a practical
database programming language. In ICFP, pages 307–
319, 2011.

T. Petricek. Building LINQ queries at runtime in (F#),
2007a. http://tomasp.net/blog/dynamic-flinq.aspx.

T. Petricek. Building LINQ queries at runtime in (C#),
2007b.
http://tomasp.net/blog/dynamic-linq-queries.aspx.

T. Petricek and D. Syme. Syntax Matters: Writing abstract
computations in F#. Pre-proceedings of TFP, 2012. URL
http://www.cl.cam.ac.uk/~tp322/drafts/notations.pdf.

J. C. Reynolds. The essence of Algol. In J. W. de Bakker
and J. C. van Vliet, editors, Algorithmic Languages, pages
345–372. North Holland, October 1981.

M. Rhiger. Staged computation with staged lexical scope.
In ESOP, pages 559–578, 2012.

D. Syme. Leveraging .NET meta-programming components
from F#: integrated queries and interoperable heteroge-
neous execution. In ML, 2006.

D. Syme, A. Granicz, and A. Cisternino. Expert F# 3.0.
Apress, 2012. ISBN 978-1-4302-4650-3.

P. Trinder and P. Wadler. Improving list comprehension
database queries. In TENCON ’89., 1989.

A. Ulrich. A Ferry-based query backend for the Links
programming language. Master’s thesis, University of
Tübingen, 2011.

J. Van den Bussche, S. Vansummeren, and G. Vossen. To-
wards practical meta-querying. Inf. Syst., 30(4):317–332,
2005.

L. Wong. Normal forms and conservative extension proper-
ties for query languages over collection types. J. Comput.
Syst. Sci., 52(3), 1996.

12

