
The Girard-Reynolds Isomorphism

Philip Wadler, University of Edinburgh

wadler@inf.ed.ac.uk

Coincidences

Curry-Howard

Hindley-Milner

Girard-Reynolds

John Reynolds (1974)

Jean-Yves Girard (1972)

John Reynolds (1983)

Types, Abstraction and Parametric Polymorphism
Once upon a time, there was a university with a peculiar tenure policy. All faculty

were tenured, and could only be dismissed for moral turpitude. What was peculiar

was the definition of moral turpitude: making a false statement in class. Needless to

say, the university did not teach computer science. However, it had a renowned

department of mathematics.

One semester, there was such a large enrollment in complex variables that two

sections were scheduled. In one section, Professor Descartes announced that a

complex number was an ordered pair of reals, and that two complex numbers were

equal when their corresponding components were equal. He went on to explain how

to convert reals into complex numbers, what “i” was, how to add, multiply, and

conjugate complex numbers, and how to find their magnitude.

John Reynolds (1983), continued

In the other section, Professor Bessel announced that a complex number was an

ordered pair of reals the first of which was nonnegative, and that two complex

numbers were equal if their first components were equal and either the first

components were zero or the second components differed by a multiple of 2. He then

told an entirely different story about converting reals, “i”, addition, multiplication,

conjugation, and magnitude.

Then, after their first classes, an unfortunate mistake in the registrar’s office caused

the two sections to be interchanged. Despite this, neither Descartes nor Bessel ever

committed moral turpitude, even though each was judged by the other’s definitions.

The reason was that they both had an intuitive understanding of type. Having

defined complex numbers and the primitive operations upon them, thereafter they

spoke at a level of abstraction that encompassed both of their definitions.

The moral of this fable is that: Type structure is a syntactic discipline for enforcing

levels of abstraction.

A tale of Two Theorems

Girard’s Representation Theorem
Every function that can be proved total in

second-order Peano arithmetic can be represented in
second-order lambda calculus.
projection : proofs → terms

Reynolds’s Abstraction Theorem
Terms in second-order lambda calculus take

related arguments to related results,
for a suitable notion of logical relation.

embedding : terms → proofs

A tale of Two Theorems

Girard’s Representation Theorem
Every function that can be proved total in

second-order Peano arithmetic can be represented in
second-order lambda calculus.
projection : proofs → terms

Reynolds’s Abstraction Theorem
Terms in second-order lambda calculus take

related arguments to related results,
for a suitable notion of logical relation.

embedding : terms → proofs

The Curry-Howard homeomorphismLC'90

The Curry-Howard Isomorphism

∀ ⊃ ∧ ∨ F

Π → × + ⊥

The Girard-Reynolds Isomorphism

∀ ∀2 ∀1 →

∀ →

The Curry-Howard Isomorphism

∀ ⊃ ∧ ∨ F

Π → × + ⊥

The Girard-Reynolds Isomorphism

∀ ∀2 ∀1 →

∀ →
Rather than enriching the type systems to match logic,
we impoverish logic to match the type structure.

— Daniel Leivant

Part I

The Girard Projection

— from Logic to Lambda

Naturals

A sort and two operations

N, sN→N, zN

Define operations by equations

(+)N→N→N

(s m) + n = s (m + n)

z + n = n

Induction

Naturals satisfy induction

N ≡ {nN | ∀X N. (∀mN.m ∈ X → s m ∈ X) → z ∈ X → n ∈ X}

Three theorems

∀nN. n ∈ N → s n ∈ N

z ∈ N

∀mN.∀nN.m ∈ N → n ∈ N → m + n ∈ N

Girard projection — from predicates to types

N ≡ {nN | ∀X N. (∀mN.m ∈ X → s m ∈ X) → z ∈ X → n ∈ X}
↓

N ≡ ∀X. (X → X) → (X → X)

Girard projection — from proofs to terms

∀nN. n ∈ N → s n ∈ N

↓
sN→N ≡ λnN.ΛX. λsX→X . λzX . s (n X s z)

z ∈ N

↓
zN ≡ ΛX. λsX→X . λzX . z

∀mN.∀nN.m ∈ N → n ∈ N → m + n ∈ N

↓
(+)N→N→N ≡ λmN. λnN.m N s n

As ≡ ∀mN.m ∈ X → s m ∈ X Az ≡ z ∈ X

[As]s
∀1-E

n ∈ X → s n ∈ X

[n ∈ N]n
β

∀X N. As → Az → n ∈ X
∀-E

As → Az → n ∈ X [As]s
→-E

Az → n ∈ X [Az]z
→-E

n ∈ X
→-E

s n ∈ X
→-Iz

Az → s n ∈ X
→-Is

As → Az → s n ∈ X
∀-I

∀X N. As → Az → s n ∈ X
β

s n ∈ N
→-In

n ∈ N → s n ∈ N
∀1-I

∀nN. n ∈ N → s n ∈ N

[sX→X]

[nN]
∀-E

(n X)(X→X)→X→X [sX→X]
→-E

(n X s)X→X [zX]
→-E

(n X s z)X

→-E
(s (n X s z))X

→-Iz
(λzX . s (n X s z))X→X

→-Is
(λsX→X . λzX . s (n X s z))(X→X)→X→X

∀-I
(ΛX. λsX→X . λzX . s (n X s z))N

→-In
(λnN.ΛX. λsX→X . λzX . s (n X s z))N→N

Part II

The Reynolds Embedding

— from Lambda to Logic

The Reynolds embedding — from types to predicates

N ≡ ∀X. (X → X) → (X → X)

↓
N∗ ≡ {nN | ∀X. ∀X X .

∀sX→X . (∀mX .m ∈ X → s m ∈ X) →
∀zX . z ∈ X → n X s z ∈ X}

The Reynolds embedding — from terms to proofs

sN→N

↓
∀nN. n ∈ N∗ → s n ∈ N∗

zN

↓
z ∈ N∗

(+)N→N→N

↓
∀mN.∀nN.m ∈ N∗ → n ∈ N∗ → m + n ∈ N∗

Doubling — from predicates to predicates

N∗ ≡
{nN |
∀X. ∀X X .

∀sX→X . (∀mX .m ∈ X → s m ∈ X) →
∀zX . z ∈ X → n X s z ∈ X}
↓

N∗‡ ≡
{(nN, n′N) |
∀X.∀X ′.∀X X×X′

.

∀sX→X .∀s′X′→X′
. (∀mX .∀m′X′

. (m,m′) ∈ X → (s m, s′ m′) ∈ X) →
∀zX .∀z′X′

. (z, z′) ∈ X → (n X s z, n′ X ′ s′ z′) ∈ X}

Doubling — from proofs to proofs

∀nN. n ∈ N∗ → s n ∈ N∗

↓
∀nN, n′N. (n, n′) ∈ N∗‡ → (s n, s n′) ∈ N∗‡

z ∈ N∗

↓
(z, z) ∈ N∗‡

∀mN.∀nN.m ∈ N∗ → n ∈ N∗ → m + n ∈ N∗

↓
∀mN,m′N.∀nN, n′N. (m,m′) ∈ N∗‡ → (n, n′) ∈ N∗‡ → (m + n, m′ + n′) ∈ N∗‡

The Abstraction Theorem — Reynolds then doubling

sN→N

↓
∀nN, n′N. (n, n′) ∈ N∗‡ → (s n, s n′) ∈ N∗‡

zN

↓
(z, z) ∈ N∗‡

(+)N→N→N

↓
∀mN,m′N.∀nN, n′N. (m,m′) ∈ N∗‡ → (n, n′) ∈ N∗‡ → (m + n, m′ + n′) ∈ N∗‡

Parametricity and weak parametricity

Halving lemma (binary implies unary)

∀nN, n′N. (n, n′) ∈ N∗‡ → n ∈ N∗

Extensiveness

∀nN, n′N. (n, n′) ∈ N∗‡ → n = n′

Parametricity

∀nN. (n, n) ∈ N∗‡

Weak parametricity (unary implies binary)

∀nN. n ∈ N∗ → (n, n) ∈ N∗‡

Part III

The Girard-Reynolds Isomorphism

Girard followed by Reynolds

N ≡ {nN | ∀X N. (∀mN.m ∈ X → s m ∈ X) → z ∈ X → n ∈ X}
↓

N◦ ≡ N ≡ ∀X. (X → X) → (X → X)

↓
N◦∗ ≡ N∗ ≡
{nN |
∀X. ∀X X .

∀sX→X . (∀mX .m ∈ X → s m ∈ X) →
∀zX . z ∈ X → n X s z ∈ X}

Girard-Reynolds isomorphism

Induction implies unary parametricity

∀n. n ∈ N → n ∈ N∗

Binary parametricity is equivalent to induction

∀n, n′. (n, n′) ∈ N∗‡ ↔ n = n′ ∧ n ∈ N

Weak parametricity holds iff
Girard followed by Reynolds is an isomorphism

(∀n. n ∈ N∗ → (n, n) ∈ N∗‡) ↔ (∀n. n ∈ N∗ ↔ n ∈ N)

Part IV

Conclusion

Related work

Girard 1972

Reynolds 1974, 1983

Böhm and Beararducci 1985

Leivant 1990

Krivine and Parigot 1990

Mairson 1991

Plotkin and Abadi 1993

Hasegawa 1994

Takeuti 1998

Related work: Models

Moggi 1986

Breazu-Tannen and Coquand 1988

Freyd 1989

Hyland, Robinson, and Rosolini 1990

Rummelhoff 2003

Møgelberg 2004

Conclusion

The Girard-Reynolds type system is

the basis for generics in Java 1.5.

Conclusion

The Girard-Reynolds type system is

the basis for generics in Java 1.5.

Girard and Reynolds will be remembered

long after Java is forgotten.

Part V

Details

Second-order lambda calculus (F2)

Type variables X,Y , Z

Types A,B,C ::= X

| A → B

| ∀X. B

Individual variables x, y, z

Terms s, t, u ::= xA

| λxA. u

| s t

| ΛX. u

| s A

Second-order lambda calculus (F2)

[xA]
···

uB

→-Ix
(λxA. u)A→B

sA→B tA

→-E
(s t)B

uB

∀-I X does not escape
(ΛX. u)∀X. B

s∀X. B

∀-E
(s A)B[A/X]

Second-order propositional logic (P2)

Predicate variables X ,Y ,Z
Propositions A,B,C ::= tC ∈ AC

| A → B

| ∀X C . B

| ∀xC .B

| ∀X. B

Predicates A,B,C ::= X C

| {xC | A}
Hypothesis labels x,y,z

Proofs s, t,u

Second-order propositional logic (P2)

[A]x
···
B

→-Ix

A → B

A → B A
→-E

B

B
∀-I X does not escape

∀X C . B

∀X C . B
∀-E

B[AC/X]

B
∀1-I x does not escape

∀xC .B

∀xC .B
∀1-E

B[tC/x]

B
∀2-I X does not escape

∀X. B

∀X. B
∀2-E

B[A/X]

β rules

(λxT . u) t =β u[t/x]

(ΛX. u) A =β u[A/X]

tC ∈ {xC | A} =β A[t/x]

A
β A =β B

B

Part VI

Girard projection

Girard projection

Propositions

(tC ∈ AC)◦ ≡ A◦

(A → B)◦ ≡ A◦ → B◦

(∀X C . B)◦ ≡ ∀X. B◦

(∀xC .B)◦ ≡ B◦

(∀X. B)◦ ≡ B◦

Predicates
(X C)◦ ≡ X

({xC | A})◦ ≡ A◦

Girard projection


[A]x
··· u

B
→-Ix

A → B


◦

≡

[xA◦
]

···
u◦B◦

→-Ix
(λxA◦

.u◦)A◦→B◦

 ··· s

A → B

··· t

A
→-E

B


◦

≡

···
s◦A◦→B◦

···
t◦A◦

→-E
(s◦ t◦)B◦

Girard projection

 ··· u

B
∀-I

∀X C . B


◦

≡

···
u◦B◦

∀-I
(ΛX. u◦)∀X. B◦


··· s

∀X C . B
∀-E

B[AC/X]


◦

≡

···
s◦∀X. B◦

∀-E
(s◦ A◦)B◦[A◦/X]

Girard projection

 ··· u

B
∀1-I

∀xC .B


◦

≡
···

u◦B◦


··· s

∀xC .B
∀1-E

B[tC/x]


◦

≡
···

s◦B◦

 ··· u

B
∀2-I

∀X. B


◦

≡
···

u◦B◦


··· s

∀X. B
∀2-E

B[A/X]


◦

≡
···

s◦B◦

 ··· t

A
β

B


◦

≡
···

t◦A◦

Part VII

Reynolds embedding

Reynolds embedding

Types

(X)∗ ≡ X X

(A → B)∗ ≡ {zA→B | ∀xA. x ∈ A∗ → z x ∈ B∗}
(∀X. B)∗ ≡ {z∀X. B | ∀X. ∀X X . z X ∈ B∗}

Reynolds embedding


[xA]
···

uB

→-Ix
(λxA. u)A→B


∗

≡

[x ∈ A∗]x
··· u∗

u ∈ B∗

β
(λxA. u) x ∈ B∗

→-Ix

x ∈ A∗ → (λxA. u) x ∈ B∗

∀1-I
∀xA. x ∈ A∗ → (λxA. u) x ∈ B∗


···

sA→B

···
tA

→-E
(s t)B


∗

≡

··· s∗

∀xA. x ∈ A∗ → s x ∈ B∗

∀1-E
t ∈ A∗ → s t ∈ B∗

··· t∗

t ∈ A∗

→-E
s t ∈ B∗

Reynolds embedding


···

uB

∀-I
(ΛX. u)∀X. B


∗

≡

··· u∗

u ∈ B∗

β
(ΛX. u) X ∈ B∗

∀-I
∀X X . (ΛX. u) X ∈ B∗

∀2-I
∀X. ∀X X . (ΛX. u) X ∈ B∗


···

s∀X. B

∀-E
(s A)B[A/X]


∗

≡

··· s∗

∀X. ∀X X . s X ∈ B∗

∀2-E
∀X A. s A ∈ B∗[A/X]

∀-E
s A ∈ B∗[A/X, A∗/X]

Part VIII

Doubling

Doubling

Propositions

(tC ∈ AC)‡ ≡ (tC , t′
C′

) ∈ A‡C×C′

(A → B)‡ ≡ A‡ → B‡

(∀X C . B)‡ ≡ ∀X C×C′
. B‡

(∀xC .B)‡ ≡ ∀xC , x′
C′

.B‡

(∀X. B)‡ ≡ ∀X, X ′.B‡

Predicates
(X C)‡ ≡ X C×C′

({xC | A})‡ ≡ {(xC , x′
C′

) | A‡}

Doubling


[A]x
··· u

B
→-Ix

A → B


‡

≡

[A‡]x
··· u‡

B‡

→-Ix

A‡ → B‡

 ··· s

A → B

··· t

A
→-E

B


‡

≡

··· s‡

A‡ → B‡

··· t‡

A‡

→-E
B‡

Doubling

 ··· u

B
∀-I

∀X C . B


‡

≡

··· u‡

B‡

∀-I
∀X C×C′

. B‡


··· s

∀X C . B
∀-E

B[AC/X]


‡

≡

··· s‡

∀X C×C′
. B‡

∀-E
B‡[A‡C×C′

/X]

Doubling

 ··· u

B
∀1-I

∀xC .B


‡

≡

··· u‡

B‡

∀1-I twice
∀xC , x′

C′

.B‡


··· s

∀xC .B
∀1-E

B[tC/x]


‡

≡

··· s‡

∀xC , x′C
′
.B‡

∀1-E twice
B‡[tC/x, t′C

′
/x′]

Doubling

 ··· u

B
∀2-I

∀X. B


‡

≡

··· u‡

B‡

∀2-I twice
∀X, X ′.B‡


··· s

∀X. B
∀2-E

B[A/X]


‡

≡

··· s‡

∀X, X ′.B‡

∀2-E twice
B‡[A/X, A′/X ′]

Doubling

 ··· t

A
β

B


‡

≡

··· t‡

A‡

β twice
B‡

