/&y The Girard-Reynolds Isomorphism

Philip Wadler, University of Edinburgh

wadler@inf.ed.ac.uk

Coincidences

Curry-Howard

Hindley-Milner

Girard-Reynolds

John Reynolds (1974)

TOWARDS A THEORY OF TYPE STRUCTURE

John C. Reynolds
Syracuse University

Syracuse, New York 13210, U.S.A.

Introduction

The type structure of programming languages has been the subject of an

active development characterized by continued controversy over basic

principles.(l_7) In this paper, we formalize a view of these principles

(5)

somewhat similar to that of J. H. Morris. We introduce an extension of
the typed lambda calculus which permits user-defined types and polymorphic
functions, and show that the semantics of this language satisfies a

representation theorem which embodies our notion of a "correct" type structure.

Jean-Yves Girard (1972)

UNE EXTENSION DE L’INTERPRETATION
DE GODEL A L’ANALYSE, ET SON APPLICATION
A L’ELIMINATION DES COUPURES DANS
L’ANALYSE ET LA THEORIE DES TYPES

Jean-Yves GIRARD
(8, Rue du Moulin d’Amboile, 94-Sucy en Brie, France)

Ce travail comprend (Ch. 1—5) une interprétation de I’Analyse, exprimée
dans la logique intuitionniste, dans un systéme de fonctionnelles Y, décrit
Ch. 1, et qui est une extension du syst¢tme connu de Godel [Gd]. En gros, Ie
systéme est obtenu par ’adjonction de deux sortes de types (respectivement
existentiels et universels, si les types construits avec — sont considérés comme
implicationnels) et de quatre schémas de construction de fonctionelles corres-
pondant 4 'introduction et & I’élimination de chacun de ces types, ainsi que
par la donnée des régles de calcul (réductions) correspondantes.

B —

John Reynolds (1983)

Types, Abstraction and Parametric Polymorphism

Once upon a time, there was a university with a peculiar tenure policy. All faculty
were tenured, and could only be dismissed for moral turpitude. What was peculiar
was the definition of moral turpitude: making a false statement in class. Needless to
say, the university did not teach computer science. However, it had a renowned

department of mathematics.

One semester, there was such a large enrollment in complex variables that two
sections were scheduled. In one section, Professor Descartes announced that a
complex number was an ordered pair of reals, and that two complex numbers were
equal when their corresponding components were equal. He went on to explain how

3%
1

to convert reals into complex numbers, what was, how to add, multiply, and

conjugate complex numbers, and how to find their magnitude.

John Reynolds (1983), continued

In the other section, Professor Bessel announced that a complex number was an
ordered pair of reals the first of which was nonnegative, and that two complex
numbers were equal if their first components were equal and either the first
components were zero or the second components differed by a multiple of 2. He then

753)
1

told an entirely different story about converting reals, , addition, multiplication,

conjugation, and magnitude.

Then, after their first classes, an unfortunate mistake in the registrar’s office caused
the two sections to be interchanged. Despite this, neither Descartes nor Bessel ever
committed moral turpitude, even though each was judged by the other’s definitions.
The reason was that they both had an intuitive understanding of type. Having
defined complex numbers and the primitive operations upon them, thereafter they

spoke at a level of abstraction that encompassed both of their definitions.

The moral of this fable is that: Type structure is a syntactic discipline for enforcing

levels of abstraction.

A tale of Two Theorems

Girard’s Representation Theorem
Every function that can be proved total in
second-order Peano arithmetic can be represented in
second-order lambda calculus.

Reynolds’s Abstraction Theorem
Terms in second-order lambda calculus take
related arguments to related results,
for a suitable notion of logical relation.

A tale of Two Theorems

Girard’s Representation Theorem
Every function that can be proved total in
second-order Peano arithmetic can be represented in
second-order lambda calculus.

projection : proofs — terms

Reynolds’s Abstraction Theorem
Terms in second-order lambda calculus take
related arguments to related results,
for a suitable notion of logical relation.

embedding : terms — proofs

The Curry-Howard Isomorphism

V. D NV F

II - x + 1
The Girard-Reynolds Isomorphism
vV V¢ vl —
\ —

The Curry-Howard Isomorphism

V. D NV F

I - x 4+ 1
The Girard-Reynolds Isomorphism
vV V¢ vl —
\ —

Rather than enriching the type systems to match logic,
we impoverish logic to match the type structure.

— Daniel Leivant

Part 1

The Girard Projection
— from Logic to Lambda

Naturals

A sort and two operations

Define operations by equations

(+)N—>N—>N

(sm)+n = s(m+n)

Z+Nn = n

Induction

Naturals satisfy induction

N = V| vAN. vmN.meX 5smeX)—»ze X -ne X}

Three theorems

viN.ne N —-snecN
ze N

vmN.vynNmeN—-o-neN-—-m+necN

Girard projection — from predicates to types

N = V| VAN vmN.meX 5smeX) —>ze X -ne X}

l
N = VX. (X - X) = (X > X)

Girard projection — from proofs to terms

ViN.neN —-sneN

l
sN=N = AN AX AsX =X A2 X s (n X s2)
zc N
l
N = AX A7 2% 2

vmNvnNmeN—-o-neN-—-m+necN

l
(F)N=N=N = AN AN . m Nsn

A =VmN.me X -sme X A,=ze X
in € N|™ 5
VAN A, - A, —-ne X
V-E
A.— A, —-nec X [Ag]°® o
(A A, —>neX A,
Vi-E
neX —-sneX nexX -

sn e X -

A, —snec X
A.— A, —-sne X
VAN A, — A, —sne X
sneN

néEN-—ssné&N

VviN.-neN —-snecN

i

[n
V-E
(nX S)X—>X [ZX]
—-B
[s%] (n X s2)* .
—_——
(s(n X sz))* -
(AzX.s(n X s2))* 7% / s
(AX. A 7% A2% s (n X s 2))N -

(AN AX AsT X A2t s (n X s 2))NN

Part 11

The Reynolds Embedding
— from Lambda to Logic

The Reynolds embedding — from types to predicates

N =VX.(X—->X)— (X —X)
l
N* = {nN|VX.VX*.
Vst =X (Vm*.meX —-sme X) —

Vet ze€X -nXszec X}

The Reynolds embedding — from terms to proots
SN—>N
l

vnN.n e N* —sn e N*

zc N*

<_|_)N—>N—>N

l

vmN.vnN.m e N* —-ne N —-m+ne N*

Doubling — from predicates to predicates

N* =
{n" |
VX. VX,
VsX =X (VmX*.meX —-sme X) —
Vet z€e X -nXsze X}
l
N* =
{(n™,n™) |
VX VX VAKX
Vs X=X VX =X (vmX /X (m,m/) € X — (sm, s’ m) € X) —

VX VX (2,2 e X > (nXszn X's2) e X}

Doubling — from proots to proofs

vnN.n e N* —sn e N*

l

vnN N (n,n') € N** — (sn,sn/) € N*

z € N*

l
(z,z) € N*

vmN. VN m e N* - n e N* —m+n e N*

l

VN, m/N.vnN 2N (m,m') € N — (n,n) e Nt — (m +n,m’ +n') € N*

The Abstraction Theorem — Reynolds then doubling

SN—>N
l
vnN N (n,n') € N** — (sn,sn/) € N*

ZN

l
(z,z) € N*

<_|_)N—>N—>N

l

VN, m/N.vnN 2N (m,m') € N — (n,n) e Nt — (m +n,m’ +n') € N*

Parametricity and weak parametricity

Halving lemma (binary implies unary)

vaN, ™. (n,n/) € Nt — n e N*

Extensiveness
vaN, /N (n,n/) e N = n =n'
Parametricity

vaN. (n,n) € N*

Weak parametricity (unary implies binary)

vnN.n e N* — (n,n) € N*

Part 111

The Girard-Reynolds Isomorphism

Girard followed by Reynolds

N = V| VAN. vmN.meX -smeX) —-ze X —-ne X}

l
N°=N=VVX.(X—-X)— (X —X)
l
No* = N* =
{n" |
VX. VX,

VsX =X (YmA* meX —-sme X)—

Vet zeX —-nXsze X}

Girard-Reynolds isomorphism

Induction implies unary parametricity

Vn.n € N —n e N*
Binary parametricity is equivalent to induction
vn,n'. (n,n') e N*" s n=n"AneN

Weak parametricity holds iff

Girard followed by Reynolds is an isomorphism

(Vn.n € N* — (n,n) € N¥) « (Vn.n € N < n € N)

Part 1V

Conclusion

Related work

Girard 1972
Reynolds 1974, 1983
Bohm and Beararducci 1985
Leivant 1990
Krivine and Parigot 1990
Mairson 1991
Plotkin and Abadi 1993

Hasegawa 1994
Takeuti 1998

Related work: Models

Moggi 1986
Breazu-Tannen and Coquand 1988
Freyd 1989
Hyland, Robinson, and Rosolini 1990
Rummelhoft 2003
Mggelberg 2004

Conclusion

The Girard-Reynolds type system is
the basis for generics in Java 1.5.

Conclusion

The Girard-Reynolds type system is
the basis for generics in Java 1.5.

Girard and Reynolds will be remembered
long after Java is forgotten.

Part V

Details

Second-order lambda calculus (F2)

Type variables X, Y./
Types A B,C = X
| A— B
| VX.B
Individual variables x,Y, 2
Terms S, t,u = g4
Axdu
st
AX. u
s A

Second-order lambda calculus (F2)

[
. SA—>B tA
: R
“ . (51)"
()\ZC’A. U)A—>B
B . JVX.B
AX. u)vx = V- oes not escape 2 A)B[A/X] V-E

Second-order propositional logic (P2)

Predicate variables

Propositions

Predicates

Hypothesis labels

Proofs

X,V Z
A, B.C

A, B,C

m7y7z

s, t,u

t¢ e A©
A— B
vX©.B
Vz¢. B
vVX.B

{z¢ | A}

Second-order propositional logic (P2)

[A]”
B .
. B
A— B
B vX©.B
= V-1 X does not escape 5 V-E
vx°.B B[A” /X]
B vz¢. B
c V-1 2 does not escape o VI-E
Vx~. B Bt" /x]
B vVX.B ,
—— V2.1 X does not escape Ve-E

vX. B B[A/X]

5 rules

Azt u)t =3 ult/x]
(AX.u) A =5 ulA/X]
t¢e{xv| A} =5 Alt/x]

AﬁA B
B —pB

Part VI

Girard projection

Girard projection

Propositions
(¢ e A%)>° = A°
(A—B)° = A°— B°
(VXC.B)?° = VX.B°
(vz¢.B)° = B°
(VX.B)° = B°
Predicates
(x°)° = X
({z¢ 1A} = A°

Girard projection

4]
uo.BO
(AzA” u°)A —B —-17
0A°—>B° 0A°

Girard projection

kR
]

<
Do
L
&
1l

Girard projection

vX.B

O

(@)

o B°

Part VII

Reynolds embedding

Reynolds embedding

Types
(X)* xX
(A — B)* {2478 |Vt .z € A* — 22 € B*}
(VX.B)* = {"XB|VX.VX*.2X € B*}

Reynolds embedding

lx e A*]”
: u € B* 3

uB = Azt vw) z € B* :
- =
\(AazA. u>A—>B) r e AT — ()\:CA.u) x € B” i

Vot z € A* — (\z?. u)z € B?
' Vol o e A* c B* x
—-K te A*¥ -ste B* te A”

Reynolds embedding

*

U

Z u E. B* 5
V-1 = V-1
(AX.u)"* P VX, (AX.u) X € B y
VX.VXX. (AX.u) X € B*
. X *
VX B _ VX:L‘VX .s X eB v
(s A FAA] V-E VX4 s Ae B*[A/X] E

sAc B*A/X, A"/ X]

Part VIII

Doubling

Doubling

Propositions

Predicates

(t9, 1Y) e ALCxC
Af 5 Bt
vxCx¢ Bt
\V/ZEC,ZE/C/.Bi

VX, X' B*

XCXC/

{(2€,2/) | A%}

Doubling

ok b jare
- u _
B - Bt
>=]% .
A— B Af — Bt
. : i : :
S : t : Si : ti
A—B A o = A'—> BY Al
B , B

Doubling

Doubling

Lt
Bi
/ V1T twice
vzl /¢ . Bt
o
vzC 2'¢". B!
VI_E twice

Doubling

Y u?

B = B
— V21 V2-1 twice
VX.B VX, X' B*

I .
5 8t
VX.B = VX, X Bt
V4-E V2-E twice

Doubling

