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1 Introduction

Double-barrelled names in science indicate cooperation or coincidence: they
may label ideas refined by two collaborators or ideas revealed by two discov-
erers. Curry-Howard is a name of the first sort that guarantees the existence
of names of the second sort, such as Hindley-Milner and Girard-Reynolds.

The Curry-Howard isomorphism consists of a correspondence between logic
and computation. Propositions correspond to types and proofs correspond to
terms. Further, reduction of proofs corresponds to reduction of terms, hence
we have no mere bijection but a true isomorphism.

Curry formulated this principle for combinatory logic and combinator terms
[7], and Howard observed that it applies to intuitionistic logic and typed
lambda calculus [19]. The correspondence extends to a logic with propositional
variables and a calculus with type variables, which explains why the logician
Roger Hindley and the computer scientist Robin Milner independently discov-
ered the type system underlying ML and Haskell [18,27,11]. It also extends to
a logic with quantifiers over propositions and a calculus with quantifiers over
types, which explains why the logician Jean-Yves Girard and the computer
scientist John Reynolds independently discovered the polymorphic lambda
calculus [15,35,36].

Girard and Reynolds each made additional discoveries about the calculus that
bears their name, here referred to as F2. Girard proved a Representation The-
orem: every function on natural numbers that can be proved total in second-
order predicate calculus P2 can be represented in F2. Reynolds proved an
Abstraction Theorem: every term in F2 satisfies a suitable notion of logical
relation; and formulated a notion of parametricity satisfied by well-behaved
models. (The presentation of P2 in this paper is similar in spirit but different
in detail to that used by Girard; in particular, the version used here is typed,
as discussed below.)

The calculus P2 is larger than the image under the Curry-Howard isomorphism
of F2: the former has three quantifiers (over individuals, types, and predicates),
while the latter has only one (over types). Nonetheless, the essence of Girard’s
result is a projection from P2 onto F2 that is similar to the Curry-Howard
isomorphism, in that it takes propositions to types and proofs to terms, but
differs in that it erases information about individuals. This mapping preserves
reductions, hence it is no mere surjection but a true epimorphism.

Reynolds’s result traditionally concerns binary relations, but it extends to
other notions of relation, including a degenerate unary case. In the unary ver-
sion, the essence of Reynolds’s result is an embedding from F2 into P2 that is
similar to the Curry-Howard isomorphism, in that it takes types to predicates
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and terms to proofs, but differs in that it adds information about individuals.
This mapping too preserves reductions, hence it is no mere injection but a
true monomorphism.

Furthermore, the result on binary relations can be recovered from the result
on unary relations by a doubling operation, an embedding from P2 into P2
that takes formulas into formulas, proofs into proofs, and preserves reductions.
Reynolds’s Abstraction Theorem is an immediate consequence of the Reynolds
embedding followed by doubling.

Christopher Strachey distinguished two types of polymorphism, where the
meaning of a term depends upon a type [43]. In parametric polymorphism, the
meaning of the term varies uniformly with the type (an example is the length
function), while in ad hoc polymorphism, the meaning of the term at different
types may not be related (an example is plus, which may have quite different
meanings on integers, floats, and strings). Reynolds introduced a parametricity
condition to capture a semantic notion corresponding to Strachey’s parametric
polymorphism.

The Reynolds embedding followed by the Girard projection is the identity.
Remarkably, I can find no place in the literature where this is remarked!
While reading between the lines suggests that some researchers have intu-
itively grasped that there is a connection between the constructs underlying
Reynolds’s and Girard’s proofs, its precise description seems to have been
more elusive.

Going the other way, it is unreasonable to expect that the Girard projection
followed by the Reynolds embedding should also yield the identity, because
the projection discards all information about individuals.

We will demonstrate the above by considering two different approaches to
defining the naturals. Here is the standard inductive definition of the naturals
in P2.

N ≡ {nN | ∀X N. (∀mN. m ∈ X → s m ∈ X ) → z ∈ X → n ∈ X}

Here N is the type of naturals (an uninterpreted sort), and s denotes successor
(an uninterpreted term of sort N → N) and z denotes zero (an uninterpreted
term of sort N). The above statement gives the usual induction principle for
the naturals—if a property X holds for zero, and if whenever property X
holds for m then it also holds for the successor of m, then the property holds
for every natural number n—and then defines N to be the predicate that holds
exactly for such n. It is not hard to prove the following.

n ∈ N → s n ∈ N z ∈ N
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(The formal proofs appear in Figures 6 and 7.) Hence, the terms satisfying N
must include z, s z, s (s z), and so on. We name terms satisfying this predicate
the inductive naturals.

By definition, a term can only satisfy predicate N if it has type N, but we
make no assumption in the opposite direction. In some models there may be
terms of type N that do not satisfy N. For example, in a model that supports
fixpoints at all types, bottom would be such a term.

So far, we have taken N, s, and z to be unintepreted: the definition of N makes
sense for any type N whatsoever, and for any terms s and z whatsoever, so
long as they have the given types.

Now, however, we apply the Girard projection to derive particular definitions
of these. In particular, applying the Girard projection to the predicate N in
P2 yields a type in F2, which we take to be N.

N ≡ N◦ ≡ ∀X. (X → X) → (X → X)

And applying the Girard projection to the two proofs of the statements in P2
above yields two terms in F2, which we take to be z and s. (The precise terms
appear in Figures 6 and 7.) The type derived for N is the usual type of the
Church numerals, and the terms derived for z and s are the usual definitions
of zero and successor on the Church numerals.

Having used the Girard projection to go from P2 to F2, we now use the
Reynolds embedding to go back the other way. Applying the Reynolds em-
bedding to the type s in F2 yields the following predicate in P2.

N∗ ≡ {nN | ∀X. ∀X X. ∀sX→X . (∀mX . m ∈ X → s m ∈ X ) → ∀zX . z ∈ X → n X s z ∈ X}

This predicate does not look much like N. Unlike before, it makes sense only if
N is the type of the Church numerals, since it applies n to specific arguments;
and it does not mention s or z. We name terms satisfying this predicate the
deductive naturals.

In short, we can use arbitrary definitions of N, s, and z, for the inductive nat-
urals, but we must fix these definitions to correspond to the Church numerals
in order to define the deductive naturals. Having done so, it is easy to show
that every inductive natural is also a deductive natural. The converse does
not hold in general. However, we will show the inductive naturals are exactly
the deductive naturals that satisfy Reynolds’s notion of binary parametricity.

Thus, in the important case where binary parametricity holds for the Church
numerals, not only does the Girard projection take N to N, but also the
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Reynolds embedding takes N to N, and we have no mere embedding-projection
pair but a true isomorphism.

Given a proof m that a term n is an inductive natural, the Girard projection
yields a lambda term m◦, and then the Reynolds embedding yields a proof
that this new term is a deductive natural. Using a realizability technique due
to Krivine and Parigot [21], we will further show that m◦ = n, strengthening
the sense in which the Girard projection and the Reynolds embedding are
inverses. From this result we will derive Girard’s Representation Theorem.

Girard attributes the representation of the natural numbers in polymorphic
lambda calculus to Per Martin-Löf [26] (the original paper was written in 1970,
but only published recently). The natural numbers are a special case of an
algebraic type. The representation of algebraic types in polymorphic lambda
calculus was first proposed by Böhm and Berarducci [5], who characterized
the algebraic types as equivalent to polymorphic types of rank two with all
qualifiers on the outside. A closely related treatment of algebraic types as data
systems has been explored by Leivant [22,23] and Krivine and Parigot [21].
All of the results given here for naturals extend straighforwardly to any data
system.

Proofs of Reynolds’s Abstraction Theorem and Girard’s Representation The-
orem will emerge naturally from our development, almost as corollaries. These
are not so much new proofs, as old proofs clarified. Setting Girard’s and
Reynolds’s proofs in a common framework highlights the relationship between
them.

1.1 Relation to other work

Both Girard’s and Reynolds’s results have spawned large bodies of related
work. Girard’s Representation Theorem has been further explored by Leivant
[22,23] and by Krivine and Parigot [21], among others. Reynolds’s Abstraction
Theorem and parametricity has been further explored by Reynolds [37,38,29],
Reynolds and Plotkin [40], Pitts [30–32], Bainbridge, Freyd, Scedrov and Scott
[4], Robinson and Rosolini [41], Hasegawa [17], and Wadler [45,46], among
others. Formulations of the Abstraction Theorem and parametricity in terms
of logics have been examined by Mairson [24], in various combinations by
Abadi, Cardelli, Curien, and Plotkin [1,33,34], and by Takeuti [44]. Tutorials
have been written by Girard, Taylor, and Lafont [16] and Reynolds [39].

Moggi [28], Breazu-Tannen and Coquand [6], Freyd [13] and Hyland, Robin-
son, and Rosolini [20] give models where the type of Boolean has just two
elements or the type of N contains just the Church numerals. Ivar Rummelhoff
[42] shows that there are PER models where the interpretation of N contains
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a “nonstandard” value that is not a Church numeral, and hence does not
satisfy binary parametricity. Rasmus Møgelberg [Møg04] claims that in every
PER model every value of N does satisfy unary parametricity. This shows that
unary parametricity does not imply binary parametricity.

In addition to the work of Girard and Reynolds, particularly strong influ-
ences on this work include: Böhm and Berarducci [5], who first showed how to
represent algebraic types in polymorphic lambda calculus; Leivant [23], who
presents Girard’s result as a projection from a logic into F2; Mairson [24], who
presents Reynolds’s result as an embedding form F2 into a logic; Krivine and
Parigot [21], who present a realizability result similar to the one given here;
and Plotkin and Abadi [33] and Takeuti [44], who relate parametricity to a
logic of typed terms essentially the same as P2.

The basic structure of the proofs in Section 5 was suggested, independently,
by Wadler [46] and Hasegawa [17]. Wadler’s proof was not published, but it
circulated informally, and influenced the work of Abadi, Cardelli, and Curien
[1] and the subsequent work of Plotkin and Abadi [33]. The notion that para-
metricity implies that algebraic types have the usual universal propties goes
back to Reynolds [37], while the converse seems to have first been suggested by
Hasegawa [17]. This paper is the first (so far as I know) to observe that the in-
ductive naturals are exactly those values of type N that satisfy parametricity,
even when not all values of that type are parametric.

Mairson [24] appears to have grasped the inverse relation between the
Reynolds embedding and the Girard projection, though he does not quite
manage to state it. However, Mairson does seem to have missed the power
of parametricity. He mislabels as “parametricity” the analogue of Reynolds’s
Abstraction Theorem, and he never states an analogue of Reynolds’s para-
metricity condition or the Identity Extension Lemma. Thus when he writes
“proofs of these equivalences still seem to require structural induction, as well
as stronger assumptions than parametricity” [24], I believe this is misleading:
the equivalences he refers to cannot be proved using the Abstraction Theorem
alone, but can indeed be proved in the presence of parametricity.

The Curry-Howard isomorphism has informed the development of powerful
lambda calculi with dependent types, such as de Bruijn’s Automath [10],
Howard’s constructions [19], Martin-Löf’s type theory [25], Constable’s Nuprl
[9], Coquand and Huet’s calculus of constructions [8], and Barendregt’s lambda
cube [3]. Each of these calculi introduces dependent types to map quantifiers
over individuals into the type system. In contrast, the Girard projection dis-
cards all information about individuals. To quote Leivant [23],

we pursue a dual approach: rather than enriching the type systems to match
logic, we impoverish logic to match the type structure.
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What is remarkable is that even after this impoverishment enough power re-
mains to capture the naturals and other algebraic types.

1.2 Introduction to the second edition

This paper has previously appeared twice, in a conference and a journal [47,48].
What justifies a third outing? The earlier versions used a logic over untyped
lambda terms, similar to that considered by Mairson [24] and Krivine and
Parigot [21]. This “second edition” uses a logic over polymorphically typed
lambda terms, similar to that considered by Plotkin and Abadi [33] and by
Takeuti [44]. In the previous paper, I claimed it “appears straightforward” to
transpose the results from an untyped to a typed logic. Having now performed
the exercise, I can say it was straightforward but not trivial — getting the
formulation right required some care. This new version differs in many details
of presentation, and clarifies the structure of the proofs. In particular, this
paper gives a sharper characterization of the connection between the inductive
naturals and binary parametricity.

Previously, I observed:

Girard’s Representation Theorem requires a logic with untyped terms, since
the whole point of the theorem is to demonstrate that functions defined in
a language without types may be represented in a language with types.

I no longer believe that is correct. In the definition of the naturals given above,
N, s, and z are uninterpreted symbols, requiring only that s have type N → N
and z have type N – in short, the types impose no constraints other than
those one finds in an algebraic specification with sorts. From this algebraic
definition, one can then derive the representation, in which N, s, and z are as
usual for Church numerals.

So there is no serious disadvantage in moving to a typed version, and some
advantages. In the untyped setting, extensionality is problematic and the only
model known to satisfy parametricity is a term model; while in the typed
setting, extensionality is unproblematic and there are many models satisfying
parametricity. The untyped model is inconsistent if one assumes parametricity
at all types (as shown in the first edition [47,48]), while the typed model is
consistent if one assumes parametricity at all types (as shown by Takeuti [44]).

This version is an extensive rewrite of the previous versions. Two changes are
worth particular note. First, previous versions use a sequent presentation of
natural deduction, where all the hypotheses of a formula are written to the
left of a turnstyle; while this version reverts to the original format of Gentzen
[14], where only new hypotheses are written, eliminating much repetition. (I
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am grateful to Clemens Szyperski for inspiring this step, by asking “How can
one get to the meat in inference rules?”) Second, this version is in colour.

The remainder of this paper is organized as follows. Section 2 introduces the
second-order lambda calculus F2 and the second-order logic P2. Section 3 de-
scribes the Girard projection and the Reynolds embedding. Section 4 explains
doubling and parametricity. Section 5 explores the relation between induction
and parametricity. Section 6 applies a realizability interpretation to prove Gi-
rard’s Representation Theorem.

2 Systems F2 and P2

The second-order lambda calculus F2 is summarized in Figure 1, and second-
order intuitionistic logic P2 is summarized in Figure 2.

Derivations of typings in F2 and proofs of propositions in P2 are written
in the natural deduction style of Gentzen [14], with hypotheses in square
brackets. Write ≡ for syntactic equivalence of terms, propositions, predicates,
derivations, or proofs, and write⇒ for reductions between terms, propositions,
derivations, or proofs.

Related concepts are denoted with the same letters, using fonts to distinguish
syntactic categories. Let x, y, z range over individual variables in F2 and P2
and bold x, y, z range over labels of hypotheses in P2. Let t, u, v range over
terms in F2 and P2 and bold s, t, u range over proofs in P2. Let X, Y, Z
range over type variables in F2 and P2, and caligraphic X , Y , Z range over
predicate variables in P2. Let A, B, C range over types in F2 and P2, bold
A, B, C range over propositions in P2, and caligraphic A, B, C range over
predicates in P2.

We write u[t/x] for term u with term t substituted for individual variable
x; and B[A/X] for type B with type A substituted for type variable X; and
B[A/X ] for proposition B with predicate A substituted for predicate variable
X . All substitutions rename bound variables as necessary to avoid capture.

We superscript individual variables, terms, predicate variables, and predi-
cates with their types. The grammar requires these superscripts to always be
present, but in what follows they will be dropped when no confusion results.

Types are formed from type variables X, functions A → B, and quantification
over types ∀X. B. Terms are formed from individual variables xA, abstraction
λxA. u, application s t, type abstraction ΛX. u, and type application s A.
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Each well-typed term t uniquely determines its typing derivation. We write

···
tA

to indicate that there is a derivation of term t of type A. Derivations have
hypotheses of the form

[xA]

to indicate that individual variable x has type A.

There are introduction and elimination rules for functions and quantification
over types. In the introduction rule for functions, each instance of the rule is
superscripted with the name x of the variable hypothesis that is discharged
by that rule. In the introduction rule for quantifiers, the phrase “X does not
escape” means that the type variable does not appear free in any undischarged
hypothesis of the derivation.

A derivation reduces when an introduction rule is followed by an elimination
rule for the same connective, corresponding to the usual β rules for term and
type applications. We write t =β u if t and u can be shown equivalent by β
reduction.

Propositions are formed from tests that a term satisfies a predicate tC ∈ AC ,
implication A → B, quantification over individuals ∀xC . B, quantification
over types ∀X. B, and quantification over predicates ∀X C. B. Predicates are
formed from predicate variables X C and comprehensions {xC | A}; both
of these are over individuals of type C. Here C is any type of F2, possibly
including free type variables.

Unlike with typing derivations, proofs are not uniquely determined by their
conclusions. We let s, t, u range over proofs, and write

··· t
A

to indicate that proof t concludes with proposition A. Proofs have hypotheses
of the form

[A]x

where A is a proposition and x is a hypothesis label.
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There are introduction and elimination rules for implication and quantification
over individuals, types, and predicates. In the introduction rule for implication,
each instance of the rule is superscripted with the label x of the hypothesis
that is discharged by that rule. In the introduction rules for quantifiers, the
phrase “x/X/X does not escape” means that the individual/type/predicate
variable does not appear free in any undischarged hypothesis of the derivation.

Beta equality on terms corresponds to the equivalent reductions for F2.

(λxT . u) t =β u[t/x]

(ΛX. u) A =β u[A/X]

Take =β to be the smallest congruence on propositions that respects the two
equations above and one additional equation below.

Notationally, predicates are treated as sets, so tC ∈ AC indicates that term
t of type C satisfies predicate A over individuals of type C, and {xC | A}
stands for the predicate over individual variable x of type C that holds when
proposition A is satisfied. This gives us an additional notion of β equality
between propositions.

tC ∈ {xC | A} =β A[t/x]

(Some authors write A t instead of t ∈ A, and λx.A instead of {x | A}.)

A proof reduces when an introduction rule is followed by an elimination rule
for the same connective. We write u[t/x] to stand for the proof u with each
occurrence of a hypothesis with label x is replaced by proof t. We also write
u[t/x], u[A/X], and u[A/X ] to stand for proofs with substitution of a term
for an individual variable, a types for a type variables, or a predicate for a
predicate variable.

In addition to the listed reductions, we also have commuting conversions for
(β). Here is a commuting conversion that pushes a use of (β) from the principle
formula in (→-E) down to the conclusion. Assume B =β B′.

···
A → B

β
A → B′

···
A

→-E
B′

⇒

···
A → B

···
A

→-E
B

β
B′

There are similar conversions for each introduction and elimination rule. These
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commuting conversions are required if the Reynolds embedding is to preserves
reductions, and they will be referred to in Proposition 1.

We can simulate proposition variables (nullary predicates) and relation vari-
ables (binary predicates) by defining unit types and pair types in the term
calculus.

1 ≡ ∀X. X → X

∗ ≡ ΛX. λxX . x

{∗ | C} ≡ {z1 | C}

A×B ≡ ∀X. (A → B → X) → X

(tA, uB) ≡ ΛX. λkA→B→X . k t u

fst(sA×B) ≡ s A (λxA. λyB. x)

snd(sA×B) ≡ s B (λxA. λyB. y)

{(xA, yB) | C} ≡ {zA×B | C[fst(z)/x, snd(z)/y]}

(Here z should not appear free in A.) As required, we have

∗ ∈ {∗ | A} =β A

(t, u) ∈ {(xA, yB) | A} =β A[t/x, u/y]

True, false, conjunction, disjunction, and equivalence can be defined in terms
of the connectives already given.

> ≡ ∀X 1. ∗ ∈ X → ∗ ∈ X

⊥ ≡ ∀X 1. ∗ ∈ X

A ∧ B ≡ ∀X 1. (A → B → ∗ ∈ X ) → ∗ ∈ X

A ∨ B ≡ ∀X 1. (A → ∗ ∈ X ) → (B → ∗ ∈ X ) → ∗ ∈ X

A ↔ B ≡ (A → B) ∧ (B → A)

(Here X should not appear free in A or B.)

Implication and equivalence of predicates are written with the usual set-
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theoretic notations.

A ⊆ B ≡ ∀x. x ∈ A → x ∈ B

A = B ≡ (A ⊆ B) ∧ (B ⊆ A)

Remarkably, P2 is powerful enough to express equality between terms. Fol-
lowing Leibniz, two terms are equal if every predicate that holds of the first
also holds of the second.

tA = uA ≡ ∀X A. t ∈ X → u ∈ X

It is easy to see that equality is reflexive.

t = t

≡ defn

∀X . t ∈ X → t ∈ X

It is more subtle to see that it is symmetric.

t = u

≡ defn

∀X . t ∈ X → u ∈ X

→ instantiate {x | x = t}/X

t = t → u = t

≡ equality is reflexive

u = t

One may similarly show transitivity, and that t =β u implies t = u.

Extensionality is given by two families of axioms.

∀fA→B, gA→B. (∀xA. f x = g x) → f = g

∀f∀X. B, g∀X. B. (∀X. f X = g X) → f = g
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3 The Girard projection and the Reynolds embedding

The Girard projection takes a proposition A into a type A◦ and a proof t into
a term t◦ such that( ··· t

A

)◦
≡

···
t◦A◦

.

The Girard projection is defined in Figure 3. It maps implication in P2 into
function types in F2, quantification over predicates in P2 into quantification
over types in F2, and discards quantification over inviduals and types in P2.
The Girard projection also takes a predicate AC into a type A◦. It maps a
predicate variable into the corresponding type variable, and a comprehension
into the Girard projection of the corresponding proposition.

The Reynolds embedding takes a type A into a predicate A∗A, and a term t
into a proof t∗ such that( ···

tA

)∗
≡

··· t
∗

t ∈ A∗.

The Reynolds embedding is defined in Figure 4. It expands functions in F2 into
quantification over individuals and into implication in P2, and quantification
over types in F2 into quantification over types and predicates in P2.

It is easy to check that the Girard projection and Reynolds embedding preserve
substitution, (B[A/X ])◦ ≡ B◦[A◦/X] and (B[A/X])∗ ≡ B∗[A∗/X ], and that
the Girard projection is invariant under β reduction, if A =β B then A◦ ≡ B◦.

Proposition 1 (The Girard projection and Reynolds embedding preserve re-
duction)

( ··· t
A

⇒
··· u
A

)◦
≡

···
t◦A◦

⇒
···

u◦A◦

( ···
tA

⇒
···

uB

)∗
≡

··· t
∗

t ∈ A∗
⇒

··· u
∗

u ∈ A∗

β
t ∈ A∗

(An earlier version of this paper [47] failed to note the role of β rules in the
preservation of reductions for the Reynolds embedding.)

Proof The Girard projection takes reduction of an implication into reduction
of a function; takes reduction of quantification over predicates into reduction
of quantification over types; and removes reduction of quantification over in-
dividuals or types. The Reynolds embedding takes reduction of a function

13



into reduction of a quantification over individuals followed by reduction of an
implication, with a β rule remaining; and takes reduction of quantification
over types into reduction of quantification over types followed by reduction of
quantification over predicates, with a β rule remaining. The commuting rules
for β described in the previous section may be used to push remaining β rules
down to the conclusion of the proof. 2

It is easy to see that the Reynolds embedding followed by the Girard projection
is the identity.

Proposition 2 (Girard inverts Reynolds)

A∗◦ ≡ A

( ···
tA

)∗◦
≡

···
tA

For example, here is the type of the Church numerals in F2.

N ≡ ∀X. (X → X) → X → X

Applying the Reynolds embedding yields the following predicate in P2.

N∗ ≡ {nN | ∀X. ∀X X. ∀sX→X . (∀mX . m ∈ X → s m ∈ X ) → ∀zX . z ∈ X → n X s z ∈ X}

Applying the Girard projection then yields the original type.

N∗◦ ≡ ∀X. (X → X) → X → X

Define 2N = ΛX. λsX→X . λzX . s (s z). Then 2 ∈ N∗ and 2∗◦ ≡ 2.

( ···
2N

)∗◦
≡

( ··· 2∗

2 ∈ N∗

)◦
≡

···
2N

Note that the Girard projection takes equality into the unit type.

(t = u)◦ ≡ (∀X . t ∈ X → u ∈ X )◦ ≡ ∀X. X → X ≡ 1

Hence, the Girard projection erases any information content in the proof of an
equality judgement. Similarly, one may extend the Girard projection so that
it maps the extensionality axioms into the identity function at the unit type,
(λx1. x)

1→1
.
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4 Doubling and Parametricity

4.1 Doubling

The Reynolds embedding corresponds to a unary version of Reynolds’s Ab-
straction Theorem. We can recover the binary version by means of a doubling
mapping from P2 to P2.

Doubling is defined with the aid of operations that rename variables. For each
individual variable x there is a renaming x′, and for each type variable X there
is a renaming X ′. We write t′ for the term that results from renaming all the
free individual and type variables in t.

Doubling takes a proposition A into a proposition A‡, a predicate AC into a

predicate A‡C×C′

, and a proof t into a proof t‡ such that( ··· u
B

)‡
≡

··· u
‡

B‡.

Doubling is defined in Figure 5. It maps implication into itself, quantification
over unary predicates into quantification over binary predicates, and quantifi-
cations over individuals and types into pairs of quantifications.

Doubling preserves substitution and β equality, (B[AC/X C ])‡ ≡
B‡[A‡C×C′

/X C×C′
], and if A =β B then A‡ ≡ B‡.

Like the Girard projection and the Reynolds embedding, doubling is a homo-
morphism.

Proposition 3 (Doubling preserves reductions)

( ··· t
A

⇒
··· u
A

)‡
≡

··· t
‡

A‡
⇒

··· u
‡

A‡

What Reynolds calls the Abstraction Theorem [36] and what Plotkin and
Abadi call the Logical Relations Lemma [33] arises as the composition of
Reynolds embedding with doubling.

Proposition 4 (Abstraction Theorem)

( ···
tA

)∗‡
≡

··· t∗‡

(t, t′) ∈ A∗‡
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In other places, the statement of the Abstraction Theorem must explicitly
mention that the free variables of term t must satisfy logical relations cor-
responding to their types; this is implicit in the notation adopted here. The
proof of the theorem is implicit in its statement, as it follows immediately
from the definitions of the Reynolds embedding and doubling.

Here again is the type of the Church numerals in F2.

N ≡ ∀X. (X → X) → X → X

Applying the Reynolds embedding followed by doubling yields the following
predicate in P2.

N∗‡ ≡ {(nN, n′N) | ∀X.∀X ′. ∀X X×X′
.

∀sX→X .∀s′X′→X′
. (∀mX .∀m′X′

. (m, m′) ∈ X → (s m, s′ m′) ∈ X ) →

∀zX .∀z′X′
. (z, z′) ∈ X → (n X s z, n′ X ′ s′ z′) ∈ X}

Define 2N = ΛX. λsX→X . λzX . s (s z). Then (2, 2) ∈ N∗‡.

( ···
2N

)∗‡
≡

( ··· 2∗

2 ∈ N∗

)‡
≡

··· 2∗‡

(2, 2) ∈ N∗‡

4.2 Parametricity

It is convenient to introduce the notion of an identity relation at a type and
at a predicate.

Definition 5 The identity relation at type A is defined by

A= ≡ {(xA, x′A) | x = x′}.

Definition 6 The identity relation at a predicate AA is defined by

A= ≡ {(xA, x′A) | x = x′ ∧ x ∈ A}.

The parametric closure of a type is the doubling of the Reynolds embedding
of that type, with the relation corresponding to each free type variable taken
to be the identity relation at that type.

Definition 7 The parametric closure on type A is defined by

A≈ ≡ A∗‡[X1/X
′
1, X1

=/X 1, . . . , Xn/X
′
n, Xn

=/X n]

16



where X1, . . . , Xn are the free type variables in A.

It is easy to verify that A≈ is symmetric and transitive. If A is a closed type,
then A≈ ≡ A∗‡, for example, N≈ ≡ N∗‡.

A type is parametric when all values of that type belong to the parametric
closure, and is extensive when values are related by the parametric closure
only if they are equal.

Definition 8 Type A is parametric when A= ⊆ A≈ and extensive when
A≈ ⊆ A=.

Equivalently, A is parametric when ∀xA. (x, x) ∈ A≈ and extensive when
∀xA, x′A. (x, x′) ∈ A≈ → x = x′. Note that we distinguish extensiveness as
given here from extensionality as given at the end of Section 2.

Reynolds’s Parametricity Postulate assumes that every quantified type is para-
metric. An immediate consequence is the following.

Proposition 9 (Identity Extension Lemma) If every quantified type ∀X. B is
parametric, then every type is both parametric and extensive, A≈ = A=.

Proof The proof is by induction on the structure of types, and has five
parts.

(i) Every type variable X is parametric and extensive. Immediate.

(ii) If A is parametric and B is extensive then A → B is extensive.

(z, z′) ∈ (A → B)≈

≡ definition parametric closure

∀x, x′. (x, x′) ∈ (A)≈ → (z x, z′ x′) ∈ (B)≈

→ induction hypothesis

∀x, x′. x = x′ → z x = z′ x′

≡ extensionality

z = z′

(iii) If A is extensive and B is parametric then A → B is parametric. Similar
to (ii).

(iv) If B is extensive then ∀X. B is extensive. Let X, Ȳ be the free variables
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of B.

(z, z′) ∈ (∀X. B)≈

≡ definition parametric closure

∀X, X ′. ∀X . (z X, z′ X ′) ∈ B∗‡[Ȳ /Ȳ ′, Ȳ =/Ȳ ]

→ instantiate X/X ′, X=/X

∀X. (z X, z′ X) ∈ B∗‡[X/X ′, X=/X , Ȳ /Ȳ ′, Ȳ =/Ȳ ]

→ induction hypothesis

∀X. z X = z′ X

≡ extensionality

z = z′

(v) ∀X. B is parametric. Given. 2

Plotkin and Abadi [33] take parametricity at every quantified type and exten-
sionality as axioms of their logic. Takeuti [44] takes parametricity and exten-
siveness at every type as axioms of his logic. It is not difficult to show these
two sets of axioms are equivalent. Takeuti also shows that these assumptions
are consistent, in that adding them to the logic does not permit derivation of
the proposition false.

However, we will make no use of the Parametricity Postulate or the Identity
Extension Lemma in what follows. We assume extensionality, but not para-
metricity or extensiveness.

5 Parametricity is inductive

In this section we consider relations between parametricity and inductive def-
initions for the natural numbers. The results extend to any data system of the
style considered by Böhm and Berarducci [5], Leivant [23], and Krivine and
Parigot [21].

We consider two interpretations of the natural numbers, an inductive inter-
pretation, N, and a deductive interpretation N. The inductive interpretation
N corresponds to the induction principle for natural numbers.

N ≡ {n | ∀X. ∀X . (∀m. m ∈ X → s m ∈ X ) → z ∈ X → n ∈ X}

18



To prove a property of natural numbers by induction, one must show that for
all m, if m has the property then its successor s m has the property, and one
must show that z has the property. The above definition states that a value
is a natural number if one can prove a property of it by induction. The idea
of classifying induction principles using second-order propositional variables,
and of defining a type via its induction principle, goes back to Frege [12].

One immediate consequence of the definition is that s and z do indeed con-
struct natural numbers.

Proposition 10 (Constructor Lemma) The following are provable in P2.

n ∈ N → s n ∈ N z ∈ N

Proof Straightforward. The proofs appear in the top parts of Figures 6
and 7. 2

The inductive interpretation and the Constructor Lemma do not depend in any
way on the structure of N, s, and z, and they may be chosen to be uninterpreted
constants. However, we will see there is good reason to choose choose N, s,
and z to be their usual representations under the Church numerals, which we
call the deductive interpretation.

N ≡ ∀X. (X → X) → (X → X)

sN→N ≡ λmN. ΛX. λsX→X . λzX . s (m s z)

zN ≡ ΛX. λsX→X . λzX . z

The deductive interpretation is the Girard projection of the inductive inter-
pretation.

Proposition 11 (Deduction Lemma) Let N be the inductive interpretation of
the naturals, and s and z be the proofs in the Constructor Lemma; in which
N, s, and z may be taken to be uninterpreted constants. The definitions of N, s,
and z given above may be derived from these by applying the Girard projection.

N◦ ≡ N

( ··· s

n ∈ N → s n ∈ N

)◦
≡ sN→N

( ··· z

z ∈ N

)◦
≡ zN

Proof Straightforward. The Girard projection for zero and successor appears
in Figures 6 and 7. 2

In what follows, we assume N, s, and z have their deductive definitions. With
this assumption, we will be able to demonstrate a close relation between para-
metricity and inductivity. We will show that the naturals satisfying para-
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metricity are exactly the same as the naturals satisfying induction,

N∗‡ = N=.

Equivalently, ∀n, n′. (n, n′) ∈ N∗‡ ↔ n = n′ ∧ n ∈ N.

Reynolds and Plotkin [40] were the first to suggest that parametricity implies
inductivity, and Hasegawa [17] was the first to suggest the converse. What
we show here is that the values of type N satisfying induction are exactly the
same as the values satisfying binary parametricity. This is a stronger result
— Reynolds and Plotkin and Hasegawa (and, in earlier work, myself), only
consider the case where all values satisfy binary parametricity, and hence N
contains exactly the inductive naturals. The result above holds even if some
values fail to satisfy binary parametricity. In particular, the result given here
applies to models that include ⊥ as a value of type N, though ⊥ is not an
inductive natural and fails to satisfy parametricity. (The earlier versions of
this paper contain essentially the same proofs, but did not extract the stronger
conclusion.)

We begin with some useful lemmas. Binary parametricity implies equality, and
binary parametricity implies unary parametricity.

Proposition 12 (Extensive Lemma) ∀n, n′. (n, n′) ∈ N∗‡ → n = n′

Proof

(n, n′) ∈ N∗‡

≡ definition

∀X, X ′. ∀X X×X′
. ∀s, s′. (∀m, m′. (m, m′) ∈ X → (s m, s′ m′) ∈ X ) →

∀z, z′. (z, z′) ∈ X → (n X s z, n′ X ′ s′ z′) ∈ X

→ instantiate {(n, n′) | n = n′}/X

∀X.∀s, s′. (∀m, m′. m = m′ → s m = s′ m′) → ∀z, z′. z = z′ → n X s z = n′ X ′ s′ z′

→ simplify

∀X.∀s. ∀z. n X s z = n′ X s z

→ extensionality

n = n′

2

Proposition 13 (Halving Lemma) ∀n, n′. (n, n′) ∈ N∗‡ → n ∈ N∗
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Proof

(n, n′) ∈ N∗‡

≡ definition

∀X, X ′. ∀X X×X′
. ∀s, s′. (∀m, m′. (m, m′) ∈ X → (s m, s′ m′) ∈ X ) →

∀z, z′. (z, z′) ∈ X → (n X s z, n′ X ′ s′ z′) ∈ X

→ instantiate X/X, X ′/X ′, {(x, x′) | x ∈ X X}/X X×X′
, generalize over X,X X

∀X. ∀X X. ∀s. (∀m. m ∈ X → s m ∈ X ) → ∀z. z ∈ X → n X s z ∈ X

→ definition

n ∈ N∗

2

Böhm and Berarducci [5, Theorem 7.3] observe every term n of type N in F2
satisfies n N s z = n, where equality is βη equality. Here we show a similar
result for any terms satisfying binary parametricity.

Proposition 14 (Böhm and Berarducci’s Lemma) ∀n. (n, n) ∈ N∗‡→nNsz =
n

Proof

(n, n) ∈ N∗‡

≡ definition

∀X, X ′. ∀X X×X′
. ∀s, s′. (∀m, m′. (m, m′) ∈ X → (s m, s′ m′) ∈ X ) →

∀z, z′. (z, z′) ∈ X → (n X s z, n X ′ s′ z′) ∈ X

→ instantiate N/X, X/X ′, {(n, x) | n X s z = x}/X , s/s, s/s′, z/z, z/z′

(∀m, m′. m X s z = m′ → (s m) X s z = s m′) →

z X s z = z → (n N s z) X s z = n X s z

→ simplify

(∀m, m′. (s m) X s z = s (m X s z)) → z X s z = z → (n N s z) X s z = n X s z

→ definition s, z

(n N s z) X s z = n X s z

→ extensionality

n N s z = n
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2

Next, we show that every natural that satisfies induction satisfies unary and
binary parametricity. The two proofs are quite similar.

Proposition 15 (Inductive implies deductive) ∀n. n ∈ N → n ∈ N∗

Proof

n ∈ N

≡ definition inductive naturals

∀X N. (∀m. m ∈ X → s m ∈ X ) → z ∈ X → n ∈ X

→ instantiate N∗/X

(∀m. m ∈ N∗ → s m ∈ N∗) → z ∈ N∗ → n ∈ N∗

→ Reynolds embedding applied to s and z

n ∈ N∗

2

Proposition 16 (Inductive implies parametric) ∀n. n ∈ N → (n, n) ∈ N∗‡

Proof

n ∈ N

≡ definition

∀X N. (∀m. m ∈ X → s m ∈ X ) → z ∈ X → n ∈ X

→ instantiate {n | (n, n) ∈ N∗‡}/X

(∀m. (m, m) ∈ N∗‡ → (s m, s m) ∈ N∗‡) → (z, z) ∈ N∗‡ → (n, n) ∈ N∗‡

→ Abstraction Theorem applied to s and z

(n, n) ∈ N∗‡

2

Finally, we show that the values satisfying parametricity are the inductive
naturals.

Proposition 17 (Parametric implies inductive) ∀n. (n, n) ∈ N∗‡ → n ∈ N
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Proof

(n, n) ∈ N∗‡

→ Halving lemma

n ∈ N∗

≡ definition

∀X. ∀X . ∀s. (∀m. m ∈ X → s m ∈ X ) → ∀z. z ∈ X → n X s z ∈ X

→ instantiate N/X,N/X , s/s, z/z

(∀m. m ∈ N → s m ∈ N) → z ∈ N → n N s z ∈ N

→ Constructor Lemma

n N s z ∈ N

→ Böhm and Berarducci’s Lemma

n ∈ N

2

Combining the above gives the desired result.

Proposition 18 (Parametricity is inductive)

N∗‡ = N=

An immediate consequence is that N = N∗ if and only if N∗‡ = N∗=. Hence, the
Girard projection followed by the Reynolds embedding is the identity for the
induction over the naturals exactly when binary parametricity is equivalent
to unary parametricity.

6 Realizability and Girard’s Representation Theorem

Apply the Girard projection followed by the Reynolds embedding to the as-
sertion that a given term is a natural number.( ··· m

n ∈ N

)◦∗
≡

( ···
m◦N

)∗
≡

··· m
◦∗

m◦ ∈ N∗

In the previous section, we saw that N = N∗ exactly when N∗= = N∗‡. In this
section, we will show that in the above situation that m◦ = n is provable
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in P2, further strengthening the sense in which the Girard projection and
the Reynolds embedding are inverses. From this result we will derive Girard’s
Representation Theorem [15,16,23].

The key to the proof is a realizability interpretation, similar to those studied by
Krivine and Parigot [21] and Takeuti [44]. Krivine and Parigot’s interpretation
is for a logic in which terms are untyped, and is presented in terms of a
particular term model of that logic, but it is the direct inspiration for the
translation presented here. Takeuti’s interpretation is for a logic essentially the
same as the one described here, but the interpretation itself differ in several
particulars. As we shall see, the realizability interpretation given here is related
to both the Girard projection and the Reynolds embedding.

Recall that the Girard projection takes a proposition A into a type A◦, and
a proof t into a term t◦, such that( ··· t

A

)◦
≡

···
t◦A◦

.

The realizability interpretation takes a proposition A into a predicate A� over
terms of type A◦, and a proof t into a proof t�, such that( ··· t

A

)�

≡
··· t

�

t◦ ∈ A�.

The Realizability interpretation is defined in Figures 8 and 9. It maps impli-
cation into a predicate over terms of function type, and quantification over
predicates into a predicate over terms of quantified type. The realizability
interpretation also takes a predicate A over individuals of type C into a pred-
icate A� over pairs of type C ×A◦.

The existence of the realizability interpretation corresponds to Krivine and
Parigot’s Conservation Lemma, and the mapping from proofs to proofs shown
in Figure 9 amounts to a diagramatic display of their proof of that lemma.

The realizability interpretation preserves substitution for terms and predi-
cates, (B[t/x])� ≡ B�[t/x] and (B[A/X C ])� ≡ B�[A�/X C×A◦

].

As we have seen, the realizability interpretation is closely related to the Girard
projection. Surprisingly, it is also closely related to the Reynolds embedding
and doubling.

Proposition 19 (Realizability and the Reynolds embedding) For all types A,

A∗� = A∗‡
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Equivalently, ∀z, z′. z′ ∈ (z ∈ A∗)� ≡ (z, z′) ∈ A∗‡.

Proof By induction over the structure of types. Below is the case for A → B,
the cases for X and ∀X. B are similar.

z′ ∈ (z ∈ (A → B)∗)�

≡ definition Reynolds embedding

z′ ∈ (∀x. x ∈ A∗ → z x ∈ B∗)�

≡ definition realizability interpretation

∀x. ∀x′. x′ ∈ (x ∈ A∗)� → z′ x′ ∈ (z x ∈ B∗)�

≡ induction hypothesis

∀x. ∀x′. (x, x′) ∈ A∗‡ → (z x, z′ x′) ∈ B∗‡

≡ definition Reynolds embedding, doubling

(z, z′) ∈ (A → B)∗‡

2

Combining the above with the results of the previous section, we see that
N∗� = N∗‡ = N=. Next we give a similar result, where N∗ is replaced by N.

Proposition 20 (Krivine and Parigot’s Lemma)

N� = N=

Equivalently, ∀n, n′. n′ ∈ (n ∈ N)� ↔ n = n′ ∧ n ∈ N.

Proof The proof has three parts.

(i) n′ ∈ (n ∈ N)� → n = n′. The proof is similar to that of Böhm and Berar-
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ducci’s Lemma.

n′ ∈ (n ∈ N)�

≡ definition

n′ ∈ (∀X N. (∀m. m ∈ X → s m ∈ X ) → z ∈ X → n ∈ X )�

≡ definition

∀X.∀X N×X .∀s. (∀m. ∀m′. (m, m′) ∈ X → (s m, s m′) ∈ X ) → ∀z. (z, z) ∈ X → (n, n′ X s z) ∈ X

→ instantiate X/X, {(n, n′) | n X s z = n′}/X , s/s, z/z

(∀m. ∀m′. m s z = m′ → (s m) X s z = s m′) → z X s z = z → n X s z = n′ X s z

→ definition s, z

n X s z = n′ X s z

→ extensionality

n = n′

(ii) n′ ∈ (n ∈ N)� → n ∈ N. This is straightforward.

n′ ∈ (n ∈ N)�

≡ definition

∀X.∀X N×X .∀s. (∀m. ∀m′. (m, m′) ∈ X → (s m, s m′) ∈ X ) → ∀z. (z, z) ∈ X → (n, n′ X s z) ∈ X

→ instantiate X/X, {(n, x) | n ∈ X}/X , s/s, z/z, generalize on X

∀X N. (∀m. m ∈ X → s m ∈ X ) → z ∈ X → n ∈ X

≡ definition

n ∈ N

(iii) n ∈ N→ n ∈ (n ∈ N)�. We use the fact that n ∈ N implies (n, n) ∈ N∗‡.
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The proof exploits Böhm and Berarducci’s Lemma.

(n, n) ∈ N∗‡

≡ definition

∀X, X ′. ∀X X×X′
. ∀s, s′. (∀m, m′. (m, m′) ∈ X → (s m, s′ m′) ∈ X ) →

∀z, z′. (z, z′) ∈ X → (n X s z, n X ′ s′ z′) ∈ X

→ instantiate N/X, X/X ′, s/s, s/s′, z/z, z/z′

∀X. ∀X N×X. ∀s. (∀m, m′. (m, m′) ∈ X → (s m, s m′) ∈ X ) →

∀z. (z, z) ∈ X → (n N s z, n X s z) ∈ X

→ Böhm and Berarducci’s Lemma

∀X. ∀X N×X. ∀s. (∀m, m′. (m, m′) ∈ X → (s m, s m′) ∈ X ) →

∀z. (z, z) ∈ X → (n, n X s z) ∈ X

≡ definition

n ∈ (n ∈ N)�

2

As a corollary, we have that the Girard projection takes a proof that a term
belongs to the inductive naturals into the same term in the deductive naturals.

Proposition 21 (Value representation) Let m be a proof that some term n
satisfies N. Then( ··· m

n ∈ N

)◦
≡

···
m◦N◦

and m◦ = n is provable in P2.

Proof The realizability interpretation gives us( ··· m
n ∈ N

)�

≡
··· m

�

m◦ ∈ (n ∈ N)�

from which Krivine and Parigot’s Lemma deduces m◦ = n. 2

For example, let 2 = s (s z), and say we have a proof m in P2 that 2 ∈ N.
It is easy to find a proof such that its Girard projection m◦ is the second
Church numeral, but can we be sure that this is true for any such proof? This
is ensured by value representation, which guarantees m◦ = n.
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A similar result holds for functions. We give the result here for unary functions,
but it extends easily to any number of arguments.

Proposition 22 (Representation Theorem) Let f be a proof that ∀x. x ∈
N→g x ∈ N, in which g may be an uninterpreted constant known only to sat-
isfy some equations. Then the Girard projection f ◦ is a term of polymorphic
lambda calculus that represents g, in that f ◦ n = g n for all n ∈ N.

Proof Let m be a proof that n ∈ N for some term n. Then

··· f
∀x. x ∈ N → g x ∈ N

∀1-E
n ∈ N → g n ∈ N

··· m
n ∈ N

→-E
g n ∈ N



◦

≡

···
f ◦N→N

···
m◦N

→-E
(f ◦ m◦)N

We have m◦ = n and f ◦ m◦ = g n by Krivine and Parigot’s lemma. 2

For example, let pN→N→N be an uninterpreted symbol satisfying the following
equations, where we write m + n for p m n.

z + n = n

(s m) + n = s (m + n)

Say there is a proof p in P2 that the sum of two naturals is a natural. Applying
the Girard projection to that proof yields a term p◦ in F2 that takes two
naturals into a natural.( ··· p

∀m, n.m ∈ N → n ∈ N → m + n ∈ N

)◦
≡

···
p◦N→N→N

It follows from the Representation Theorem that p◦ m n = m + n, so from
a proof in P2 that sum takes naturals to naturals we have derived a term in
F2 that computes sums. An example of such a proof p and the corresponding
term p◦ is displayed in Figure 10. In this figure, the two rules labelled β+ are
appeals to the equations given above, the proof s the term s ≡ s◦ are as in
Figure 7.

This is remarkable. We start with a proof in which p is an uninterpreted
symbol. The Girard projection throws away all occurrences of p, indeed it
throws away all terms in the proof, as well as all quantifiers over individuals
and types. Yet it is guaranteed that the constructed lambda term represents
the original function! It almost seems like magic, and, as with the best of
magic tricks, knowing how it is done makes it more magical still.
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l’arithmétique d’ordre supérieure, Ph.D. thesis, Université Paris VII, 1972.
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Syntax

Type variables X, Y , Z

Types A, B, C ::= X | A → B | ∀X. B

Individual variables x, y, z

Terms s, t, u ::= xA | λxA. u | s t | ΛX. u | s A

Rules

[xA]
···

uB

→-Ix
(λxA. u)A→B

sA→B tA

→-E
(s t)B

uB

∀-I X does not escape
(ΛX. u)∀X. B

s∀X. B

∀-E
(s A)B[A/X]

Reductions

[xA]
···

uB

→-Ix
(λxA. u)A→B

···
tA

→-E
((λxA. u) t)B

⇒
···

u[t/x]B

···
uB

∀-I
(ΛX. u)∀X. B

∀-E
((ΛX. u) A)B[A/X]

⇒
···

u[A/X]B[A/X]

Fig. 1. Second-order lambda calculus, F2
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Syntax

Hypothesis labels x, y, z

Proofs s, t, u

Predicate variables X , Y

Propositions A, B ::= tC ∈ AC | A → B | ∀X C. B | ∀xC . B | ∀X.B

Predicates A, B ::= X C | {xC | A}

Rules

[A]x
···
B

→-Ix

A → B

A → B A
→-E

B

B
∀-I X does not escape

∀X C. B

∀X C. B
∀-E

B[AC/X ]

B
∀1-I x does not escape

∀xC . B

∀xC . B
∀1-E

B[tC/x]

B
∀2-I X does not escape

∀X. B

∀X. B
∀2-E

B[A/X]

A
β A =β B

B

Reductions

[A]x
··· u
B

→-Ix

A → B

··· t
A

→-E
B

⇒
··· u[t/x]

B

··· u
B

∀-I
∀X C. B

∀-E
B[AC/X ]

⇒
··· u[AC/X ]

B[AC/X ]

··· u
B

∀1-I
∀xC . B

∀1-E
B[tC/x]

⇒
··· u[tC/x]

B[tC/x]

··· u
B

∀2-I
∀X. B

∀2-E
B[A/X]

⇒
··· u[A/X]

B[A/X]

Fig. 2. Second-order propositional logic, P2
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Propositions

(tC ∈ AC)◦ ≡ A◦

(A → B)◦ ≡ A◦ → B◦

(∀X C. B)◦ ≡ ∀X. B◦

(∀xC . B)◦ ≡ B◦

(∀X. B)◦ ≡ B◦

Predicates

(X C)◦ ≡ X

({xC | A})◦ ≡ A◦

Proofs
[A]x
··· u
B

→-Ix

A → B


◦

≡

[xA◦
]

···
u◦B◦

→-Ix
(λxA◦

. u◦)A◦→B◦


··· s

A → B

··· t
A

→-E
B


◦

≡

···
s◦A◦→B◦

···
t◦A◦

→-E
(s◦ t◦)B◦


··· u
B

∀-I
∀X C. B


◦

≡

···
u◦B◦

∀-I
(ΛX. u◦)∀X. B◦


··· s

∀X C. B
∀-E

B[AC/X ]


◦

≡

···
s◦∀X. B◦

∀-E
(s◦ A◦)B◦[A◦/X]


··· u
B

∀1-I
∀xC . B


◦

≡
···

u◦B◦


··· s

∀xC . B
∀1-E

B[tC/x]


◦

≡
···

s◦B◦


··· u
B

∀2-I
∀X. B


◦

≡
···

u◦B◦


··· s

∀X. B
∀2-E

B[A/X]


◦

≡
···

s◦B◦


··· t
A

β
B


◦

≡
···

t◦A◦

Fig. 3. The Girard projection
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Types

(X)∗ ≡ X X

(A → B)∗ ≡ {zA→B | ∀xA. x ∈ A∗ → z x ∈ B∗}

(∀X. B)∗ ≡ {z∀X. B | ∀X. ∀X X. z X ∈ B∗}

Proofs


[xA]
···

uB

→-Ix
(λxA. u)A→B



∗

≡

[x ∈ A∗]x
··· u

∗

u ∈ B∗

β
(λxA. u) x ∈ B∗

→-Ix

x ∈ A∗ → (λxA. u) x ∈ B∗

∀1-I
∀xA. x ∈ A∗ → (λxA. u) x ∈ B∗


···

sA→B

···
tA

→-E
(s t)B


∗

≡

··· s
∗

∀xA. x ∈ A∗ → s x ∈ B∗

∀1-E
t ∈ A∗ → s t ∈ B∗

··· t
∗

t ∈ A∗

→-E
s t ∈ B∗


···

uB

∀-I
(ΛX. u)∀X. B


∗

≡

··· u
∗

u ∈ B∗

β
(ΛX. u) X ∈ B∗

∀-I
∀X X. (ΛX. u) X ∈ B∗

∀2-I
∀X. ∀X X. (ΛX. u) X ∈ B∗


···

s∀X. B

∀-E
(s A)B[A/X]


∗

≡

··· s
∗

∀X. ∀X X. s X ∈ B∗

∀2-E
∀X A. s A ∈ B∗[A/X]

∀-E
s A ∈ B∗[A/X, A∗/X ]

Fig. 4. The Reynolds embedding
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Propositions

(tC ∈ AC)‡ ≡ (tC , t′C
′
) ∈ A‡C×C′

(A → B)‡ ≡ A‡ → B‡

(∀X C. B)‡ ≡ ∀X C×C′
. B‡

(∀xC . B)‡ ≡ ∀xC , x′C
′
. B‡

(∀X. B)‡ ≡ ∀X, X ′. B‡

Predicates

(X C)‡ ≡ X C×C′

({xC | A})‡ ≡ {(xC , x′C
′
) | A‡}

Proofs
[A]x
··· u
B

→-Ix

A → B


‡

≡

[A‡]x
··· u

‡

B‡

→-Ix

A‡ → B‡


··· s

A → B

··· t
A

→-E
B


‡

≡

··· s
‡

A‡ → B‡

··· t
‡

A‡

→-E
B‡


··· u
B

∀-I
∀X C. B


‡

≡

··· u
‡

B‡

∀-I
∀X C×C′

. B‡


··· s

∀X C. B
∀-E

B[AC/X ]


‡

≡

··· s
‡

∀X C×C′
. B‡

∀-E
B‡[A‡C×C′

/X ]


··· u
B

∀1-I
∀xC . B


‡

≡

··· u
‡

B‡

∀1-I twice
∀xC , x′

C′
. B‡


··· s

∀xC . B
∀1-E

B[tC/x]


‡

≡

··· s
‡

∀xC , x′C
′
. B‡

∀1-E twice
B‡[tC/x, t′C

′
/x′]


··· u
B

∀2-I
∀X. B


‡

≡

··· u
‡

B‡

∀2-I twice
∀X, X ′. B‡


··· s

∀X. B
∀2-E

B[A/X]


‡

≡

··· s
‡

∀X, X ′. B‡

∀2-E twice
B‡[A/X, A′/X ′]


··· t
A

β
B


‡

≡

··· t
‡

A‡

β twice
B‡

Fig. 5. The doubling embedding
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          

[z
∈

X
]z

→
-I

z

z
∈

X
→

z
∈

X
→

-I
s

(∀
m

N
.m

∈
X

→
s
m
∈

X
)
→

z
∈

X
→

z
∈

X
∀-

I
∀X

N
.(
∀m

N
.m

∈
X

→
s
m
∈

X
)
→

z
∈

X
→

z
∈

X
β

z
∈

N

          ◦

≡

[ z
X

]
→

-I
z

λ
zX

.z
X
→

X

→
-I

s

λ
sX

→
X

.λ
zX

.z
(X

→
X

)→
X
→

X

∀-
I

Λ
X

.λ
sX

→
X

.λ
zX

.z
N

F
ig

.
6.

Z
er

o
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m

N
.m

∈
X

→
s
m
∈

X
]s

∀1
-E

n
∈

X
→

s
n
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X
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N
]n

β
∀X

N
.(
∀m

N
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X
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→
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n
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n
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z
∈
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n
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X
β
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n
∈

N
→

-I
n

n
∈

N
→

s
n
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N
∀1

-I
∀n

N
.n

∈
N

→
s
n
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N

                                  ◦

≡
[s

X
→

X
]

[n
N
]

∀-
E

(n
X

)(X
→

X
)→

X
→

X
[s

X
→

X
]
→

-E
(n

X
s)

X
→

X
[z

X
]
→

-E
(n

X
s

z)
X

→
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(s
(n

X
s
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→
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z

(λ
zX

.s
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X
s
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)X
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X

→
-I

s
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sX
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X
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zX

.s
(n

X
s

z)
)(X

→
X

)→
X
→

X

∀-
I

(Λ
X

.λ
sX

→
X

.λ
zX

.s
(n

X
s

z)
)N

→
-I

n

(λ
n

N
.Λ

X
.λ

sX
→

X
.λ

zX
.s

(n
X

s
z)

)N
→

N
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Propositions

(tC ∈ AC)� ≡ {zA | (tC , zA) ∈ A�C×A◦}

(A → B)� ≡ {zA→B | ∀xA. x ∈ A� → z x ∈ B�}

(∀X C. B)� ≡ {z∀X. B | ∀X. ∀X C×X. z X ∈ B�}

(∀xC . B)� ≡ {zB | ∀xC . z ∈ B�}

(∀X. B)� ≡ {zB | ∀X. z ∈ B�}

Predicates

(X C)� ≡ X C×X

({xC | A})� ≡ {(xC , zA
◦
) | z ∈ A�}

Fig. 8. The realizability interpretation (Part 1)
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Proofs


[A]x
··· u
B

→-Ix

A → B


�

≡

[x ∈ A�]x
··· u

�

u◦ ∈ B�

β
(λxA. u◦) x ∈ B�

→-Ix

x ∈ A� → (λxA. u◦) x ∈ B�

∀1-I
∀xA. x ∈ A� → (λxA. u◦) x ∈ B�


··· s

A → B

··· t
A

→-E
B


�

≡

··· s
�

∀xA. x ∈ A� → s◦ x ∈ B�

∀1-E
t◦ ∈ A� → s◦ t◦ ∈ B�

··· t
�

t◦ ∈ A�

→-E
s◦ t◦ ∈ B�


··· u
B

∀-I
∀X C. B


�

≡

··· u
�

u◦ ∈ B�

β
(ΛX. u◦) X ∈ B�

∀-I
∀X C×X. (ΛX. u◦) X ∈ B�

∀2-I
∀X. ∀X C×X. (ΛX. u◦) X ∈ B�


··· s

∀X C. B
∀-E

B[AC/X ]


�

≡

··· s
�

∀X. ∀X C×X. s◦ X ∈ B�

∀2-E
∀X C×A. s◦ A ∈ B�[A/X]

∀-E
s◦ A ∈ B�[A/X, A�C×A/X ]


··· u
B

∀1-I
∀xC . B


�

≡

··· u
�

u◦ ∈ B�

∀1-I
∀xC . u◦ ∈ B�


··· s

∀xC . B
∀1-E

B[tC/x]


�

≡

··· s
�

∀xC . s◦ ∈ B�

∀1-E
s◦ ∈ B�[tC/x]


··· u
B

∀2-I
∀X. B


�

≡

··· u
�

u◦ ∈ B�

∀2-I
∀X. u◦ ∈ B�


··· s

∀X. B
∀2-E

B[A/X]


�

≡

··· s
�

∀X. s◦ ∈ B�

∀2-E
s◦ ∈ B�[A/X]


··· t
A

β
B


�

≡

··· t
�

t◦ ∈ A�

β
t◦ ∈ B�

Fig. 9. The realizability interpretation (Part 2)

41



                        

[m
∈

N
]m

β
∀X

N
.(
∀m

N
.m

∈
X

→
s
m
∈

X
)
→

z
∈

X
→

m
∈

X
∀-

E
(∀

m
N
.m

+
n
∈

N
→

(s
m

)
+

n
∈

N
)
→

z
+

n
∈

N
→

m
+

n
∈

N

· · ·s
∀n

N
.n

∈
N

→
s
n
∈

N
∀1

-E
m

+
n
∈

N
→

s
(m

+
n
)
∈

N
β

+

m
+

n
∈

N
→

(s
m

)
+

n
∈

N
∀1

-I
∀m

N
.m

+
n
∈

N
→

(s
m

)
+

n
∈

N
→

-E
z
+

n
∈

N
→

m
+

n
∈

N

[n
∈

N
]n

β
+

z
+

n
∈

N
→

-E
m

+
n
∈

N
→

-I
n

n
∈

N
→

m
+

n
∈

N
→

-I
m

m
∈

N
→

n
∈

N
→

m
+

n
∈

N

                        ◦

≡

[m
N
]

∀-
E

(m
N

)(N
→

N
)→

N
→

N

· · ·
sN
→

N

→
-E

(m
N

s)
N
→

N
[n

N
]
→

-E
(m

N
s
n
)N

→
-I

n

(λ
n

N
.m

N
s
n
)N
→

N

→
-I

m

(λ
m

N
.λ

n
N
.m

N
s
n
)N
→

N

F
ig

.
10

.
P

lu
s

42


