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Logic programming and functional programming row in the same boat. Meth-
ods used to achieve success with one often transpose to the other, and both face
similar obstacles. Here I offer a compendium of success stories for functional
programs, followed by a list of obstacles to more widespread use of functional
programming, in the belief that much of this experience is relevant to logic pro-
grammers. This material first appeared as columns in ACM SIGPLAN Notices
[29, 30]. The final section contains a few remarks specific to the relations between
functional and logic programming.

1 An angry half dozen

“Have you used it in anger yet?”
The time is a dozen years ago, the place is Oxford, and my fellow postdoc has

just scrutinized my new bike. He’s admired the chrome, checked the gears, noted
the Kryptonite lock. Now he wants to know if I’ve used it to serious purpose.
Gleaming chrome is well and good, but will it run you through the woods?

“Have you used it in anger yet?”
Seeing that my topic is functional languages, you may have just asked the

same question, though perhaps in different words. You’ve scrutinized functional
languages. You’ve admired the elegance of lambda calculus, checked the bench-
marks from the compilers, noted the security provided by strong typing. Now you
want to know if they have been used to serious purpose. Mathematical elegance
is well and good, but will it run that mission-critical system?

Here are a half-dozen examplars of functional programs used in anger.

1.0 Compilers

This one’s a freebie. I won’t count it toward the six, as it is obvious and inces-
tuous.

Most compilers for functional languages are implemented in the language
they compile. The Standard ML of New Jersey compiler (SML/NJ) is about
130K lines of Standard ML. The Glasgow Haskell compiler is about 90K lines
of Haskell. Caml, another dialect of ML, is implemented in Caml. Erlang is
implemented in Erlang, and some versions of Scheme in Scheme.

In some corners, functional languages bear a reputation for gross inefficiency,
but this reputation is out of date. Code quality ranges from a shade better than C
to an order of magnitude worse, with the typical case hovering at a factor of two



or so slower. One example is the Pseudoknot benchmark, based on an application
that uses backtracking search to determine three-dimensional protein structure.
A large number of functional languages were benchmarked against this program,
the best running two to three times slower than the equivalent C [15].

The functional community splits into two camps. Lazy languages evaluate
arguments on demand, and so require highly disciplined use of side effects; strict
languages evaluate arguments eagerly, but make it easier to exploit side effects.
Haskell, Miranda, and Clean are lazy; Standard ML, Caml, Erlang, and Scheme
are strict. Over the past few years there has been remarkable convergence be-
tween the two communities, and the Pseudoknot tests show lazy and strict lan-
guages have comparable performance.

Most functional languages now provide some means of interworking with
programs written in C or other imperative languages. Interworking is straight-
forward for a strict language, but trickier for a lazy language. A key advance of
recent years, achieved by a pleasing interplay of theory and practice, is to obtain
interworking for lazy languages via such abstract concepts as monads and lin-
ear logic [28, 23]. Profiling systems for functional languages have also improved
vastly, and the usual code-measure-improve cycle is now routinely applied to im-
prove the time and space behaviour of functional programs [26]. However, there
are still few good debuggers for functional languages.

1.1 HOL and Isabelle

Hewlett-Packard’s Runway multiprocessor bus underlies the architecture of the
HP 9000 line of servers and multiprocessors. Hewlett-Packard applied the HOL
(Higher-Order Logic) theorem prover to verify liveness properties of the arbi-
tration protocols in Runway. Verification was achieved by a hybrid of theorem-
proving in HOL and model-checking in SMV. This approach uncovered errors
that had not been revealed by several months of simulation [6].

The Defence Science and Technology Organization, a branch of the Depart-
ment of Defence in Salisbury, South Australia, is applying the Isabelle theo-
rem prover to verify arming conditions for missile decoys. A graphical front-end
has been added to Isabelle for this purpose, humorously called DOVE (Design-
Oriented Verification and Evaluation) [21].

Both HOL and Isabelle are implemented in Standard ML. Standard ML is
a descendant of ML, the metalanguage of the ground-breaking LCF theorem
prover. LCF in turn is an ancestor of both HOL and Isabelle. This circle reflects
the intertwined history of theorem provers and functional languages [12, 22, 13].

ML/LCF exploited two central features of functional languages, higher-order
functions and types. A proof tactic was a function taking a goal formula to be
proved and returning a list of subgoals paired with a justification. A justifica-
tion, in turn, was a function from proofs of the subgoals to a proof of the goal.
A tactical was a function that combined small tactics into larger tactics. The
type system was a great boon in managing the resulting tangle of functions,
where some functions accept functions as arguments, and some of these return
functions as results. Further, the type discipline ensured soundness, since values



of the abstract data type “theorem” could only be created by a specified set
of functions, each one of which corresponded to an inference rule of the logic.
The type system Robin Milner devised for ML remains a cornerstone of work in
functional languages.

HOL and Isabelle are just two of the many theorem provers that draw on the
ideas developed in LCF, just as Standard ML is only one of the many languages
that draw on the ideas developed in ML. Among others, Coq is implemented in
Caml, Veritas in Miranda, Yarrow in Haskell, and Alf, Elf, and Lego in Standard
ML again. An upcoming issue of the Journal of Functional Programming is
devoted to the interplay between functional languages and theorem provers.
Most theorem provers are written in functional languages, with the exception of
a few systems written in Lisp (the granddaddy of functional languages).

1.2 Erlang

Ericsson’s Mobility Server is marketed in twelve countries. Among other things,
it controls some mobile phones for the European Parliament in Strasbourg. The
Mobility Server is one of a range of Ericsson products implemented using Erlang,
a functional language designed by Ericsson for telecommunications applications.
At last count, Ericsson marketed eight products based on Erlang [1].

Ericsson has a separate division, Erlang Systems, that handles marketing,
training, and consulting for Erlang. Over one thousand Ericsson employees have
attended Erlang course and over five hundred are currently involved in product
development using Erlang. The Mobility Server contains hundreds of thousands
of lines of Erlang code, and products written in Erlang have earned Ericsson
millions of kronor.

You might guess Erlang stands for “Ericsson Language”, but actually it is
named for A. K. Erlang, a Danish mathematician who also lent his name to a
unit of bandwidth. (A phone system designed to bear 0.33 erlang will work even
if one-third of its phones are in use at the same time.)

Erlang is dynamically typed in the same sense as Lisp, Scheme, or Smalltalk,
which makes it one of the few modern languages to eschew ML’s heritage of static
typing. The basic data types are integers (with arbitrary precision, so overflow
is not a problem), floats, atoms, tuples, lists, and process identifiers.

Primitives allow one to spawn a process, send a message to a process, or
receive a message. Any data value may be sent as a message, and processes may
be located on any machine. Erlang uses compression techniques to minimize the
bandwidth required to transmit a value. Thus it is both trivial and efficient
to send, say, a tree from one machine to another. Compare this with the work
required in a language such as C, C++, or Java, where one must separately
establish a connection, serialize the tree for transmission, and apply compression.
To support robust systems, one process can register to receive a message if
another process fails.

Ever since Guy Steele’s pioneering work on Scheme, tail-recursion has been
a mainstay of functional languages, and it is put to good use in Erlang. A server



in Erlang is typically written as a small function, with arguments represent-
ing the state of the server. The function body receives a message, performs the
computation it requests, sends back the result, and makes a tail-call with param-
eters representing the new state. Finite state machines are easily represented:
just have one function for each state, with state transitions represented by tail
calls. The daunting tasks of changing running code on the fly is solved by a
surprisingly simple use of higher-order functions and tail-calls: design the server
to receive a message containing a new function for the server, which is applied
with a tail-call; a new variable can be added to the server state by a tail-call to
a function with an added parameter.

Functional programmers often claim that the use of higher-order functions
promotes reuse. The classic examples are the map and fold functions, which
encapsulate common forms of list traversal, and just need to be instantiated with
an action to perform for each element. Most, but not quite all, list processing can
be easily expressed in terms of these functions. The Erlang experience suggests
this notion of reuse scales up to support concurrent client-server architectures.
A set of libraries encapsulate common server requirements, and just need to be
instantiated with the action to be performed for each request. Most, but not
quite all, required servers can be easily expressed in terms of these libraries.

Erlang bears a striking resemblance to another modern phenomenon, Java.
Like Java, Erlang (along with all other functional languages) uses heap allocation
and garbage collection, and ensures safe execution that never corrupts memory.
Like Java, Erlang comes with a library that provides functionality independent of
a particular operating system. Like Java, Erlang compiles to a virtual machine,
ensuring portability across a wide range of architectures. And like Java, Erlang
achieved its first success based on interpreters for the virtual machine, with faster
compilers an afterthought.

Erlang succeeded not just because it was a good language design, but be-
cause its designers took the right steps to promote its growth. They evolved the
language in tandem with its applications, worked closely with developers, and
provided documentation, courses, hot-lines, and consultants. A foreign-language
interface was essential to allow interworking with existing software in C. Users
were often attracted to Erlang by the availability of tools and packages, such as
an interface compiler for the ASN.1 exchange standard, and a real-time highly-
reliable distributed database system called Mnesia, both implemented entirely
in Erlang.

1.3 Pdiff

If you’ve ever made a long-distance phone call in the US, you’ve probably
used a Lucent 5ESS phone switch. Each 5ESS contains an embedded, relational
database to maintain information about customers, network topology, rates, fea-
tures such as call waiting, and so on. The database is complex, containing nearly
a thousand relations, and there are tens of thousands of consistency constraints
(also called population rules) that the data must satisfy [11, 7].



As new features are added to the switch, new transactions are required;
for instance, one may need a new transaction to register a customer for call
waiting. Each transaction should be safe in that it should leave the database
in a consistent state. Ensuring safety was difficult and error prone, especially
since the constraints were embedded in C programs that audit the database for
consistency, and transactions were performed by other C programs.

The first step was to introduce PRL (Population Rule Language) to describe
constraints and transactions. This marked a vast improvement over the use of C,
but left the problem of determining for each transaction what conditions must
be satisfied to ensure safety.

The next step was to introduce Pdiff (PRL differentiator). The input to
Pdiff is the safety constraint for the database and an unsafe transaction, both
written in PRL. Pdiff computes what condition must hold in advance of the
transaction to ensure the database is consistent afterward. (This is similar to
Dijkstra’s computation of the weakest precondition that must hold in advance
of a command to ensure a given predicate holds afterward.) Additional steps
simplify this condition on the assumption that the database is consistent before
the transaction. The output is a safe transaction in PRL, which checks all the
necessary constraints for validity before allowing any change to the database.

Pdiff consists of about 30K lines of code written in Standard ML, written by
researchers at Bell Labs. Pdiff improves the quality and reliability of switches,
reduces the time to deploy new features, and has saved Lucent millions of dollars
in development costs.

The Pdiff history reveals some problems of using a functional language in
practice. When the time came to hand off maintenance of Pdiff to the 5ESS
staff, no internal candidate could be found for the role. Developers prefer to
have C++ or Java on their resume, and balk at languages perceived as “weird”.
Eventually a physicist looking to change fields was hired for the purpose. An
opportunity was missed when the 5ESS team considered using Standard ML to
write the PRL compiler. Since Standard ML wasn’t available for their machine
(an Amdahl), they used C++ instead.

1.4 CPL/Kleisli

In April 1993, a workshop organized by the US Department of Energy consid-
ered the database requirements of the Human Genome Project. An appendix
of the workshop report listed twelve queries that would be difficult or impos-
sible to answer with current database systems, because they require combining
information from two or more databases in disparate formats [8].

All twelve of these queries have been answered using CPL/Kleisli. CPL (Col-
lection Programming Language) is a high-level language for formulating queries.
Kleisli, the system that implements CPL, translates CPL into SQL for querying
relational databases, or runs the queries against data in ASN.1, ACE, or other
formats. CPL/Kleisli is in active use at the Philadelphia Center for Chromo-
some 22 and at the BioInformatics Centre of the Institute for Systems Science
in Singapore [4].



Functional programming plays two roles here: CPL is a functional language,
and Kleisli is written in Standard ML. The basic data types of CPL are sets,
bags, lists, and records. The first three of these may be processed using a com-
prehension notation familiar to mathematicians and functional programmers.
For instance, a mathematician may write {x2 | x ∈ Nat, x < 10} for the set of
squares of natural numbers less than ten. Similarly, the CPL query

{ [ Name = p.Name, Mgr = d.Mgr ] |
\p <- Emp, \d <- Dept,
p.DNum = d.DNum }

returns a set of records pairing employees with their managers. The comprehen-
sion notation is reminiscent of SQL, where one may write

SELECT Name = p.Name, Mgr = d.Mgr
FROM Emp p, Dept d
WHERE p.DNum = d.DNum

for the same query. But CPL allows sets, bags, lists, and records to be arbi-
trarily nested, whereas SQL can only process “flat” relations, consisting of sets
of records. The extra nesting in CPL helps one formulate queries for databases
that don’t fit the relational model. CPL also allows sums (similar to variant
records in Pascal, and the datatypes used in most functional languages), making
it easy to process data with alternative formats, such as books and journals in
a bibliographic database.

A standard technique in functional programming is to apply mathematical
laws to transform an elegant but slow program into an efficient equivalent. This
technique is applied to good effect in CPL/Kleisli. The standard laws for trans-
forming comprehensions can be viewed as generalizing well-known optimizations
for relational algebra. For instance, a CPL query may depend on two relational
databases held on different servers. The Kleisli optimizer will transform this into
two SQL queries to be sent to the servers (performing as much work as possi-
ble locally at the server), and a remaining CPL program at the query site to
combine the results. Lazy evaluation and concurrency allow SQL computation
at the database sites and CPL processing at the query site to overlap.

CPL/Kleisli also exploits record subtyping. In the example above, Emp repre-
sents employees by a set of records. Each record must contain a Name and DNum
field, but may contain other fields as well. The type system that permits this
flexibility and the technique for implementing it efficiently were both adopted
directly from research in the functional community.

1.5 Natural Expert

Every flight through Orly and Roissy airports in Paris is processed by an expert
system called Ivanhoe, which generates invoices and explanations for the services
used. Ivanhoe is written in Natural Expert, an expert system shell, formerly
marketed by the German firm Software AG [18].



Polygram in France controls about one-third of the European market for CDs
and cassettes. The Colisage expert system plans packing schedules to minimize
empty space and routes to minimize numbers of stops (somewhat like simul-
taneously solving the Bin Packing and Traveling Salesman problems). Colisage
was originally written in a production rule system called GURU, but was ported
to Natural Expert when the GURU version proved hard to maintain. Polygram
praised the Natural Expert system as shorter and easier to maintain.

Dozens of other applications have been programmed in Natural Expert, in-
cluding a management support system, a system for assessing bank loans, a tool
to plan hospital menus, and a natural-language front end to a database.

Natural Expert integrates an entity-attribute database management system
with NEL (Natural Expert Language), a higher-order, statically typed, lazy
functional language, roughly similar to Haskell.

One of the selling points of Natural Expert is its user environment. The
database is used not only to manipulate user data, but also to store the NEL
program itself, which is structured as a number of rules. The database records
what rules refer to what other rules, aiding program maintenance. A simple
hypertext facility lets the reader jump from use of a rule or attribute to its
definition.

The result returned from a database access is typically a list of entity indexes.
Lazy evaluation processes entities one at a time, reducing the amount of store
required. This is important, because Natural Expert runs on mainframes. Sur-
prisingly, mainframes often provide fewer resources than a personal computer:
Natural Expert typically uses only 80K for the heap, and even then some clients
complain it is too large.

Traditionally, lazy languages disallow side effects, because the order in which
the effects occur would be difficult to predict. NEL, however, permits one use of
side effects, a primitive that prints a given question on a terminal and returns
the answer typed by the user. Questions are printed in an arbitrary order, but
that’s no problem for this domain. More importantly, thanks to lazy evaluation,
a question is asked at most once, and only if it’s relevant to the task at hand.
Expert systems people call this “backwards chaining”.

Training is key to industrial use of any system. Natural Expert is taught in a
one-week course, which includes polymorphic types and higher-order functions.
Typically, students grumble about all the compile-time error messages generated
by the unfamiliar type system, but are pleased to discover that once a program
passes the compiler it often runs correctly on the first try. Nonetheless, clients
still point to lack of familiarity with functional languages as a bar to wider
acceptance.

Although many of the applications built with Natural Expert are success-
ful and in current use, sales of the system generated insufficient revenue, and
Software AG has dropped it as a product.



1.6 Ensemble

Ensemble is a library of protocols that can be used to quickly build distributed
applications. Ensemble is in daily use at Cornell to coordinate sharing of keys in
a secure network, and to support a distributed CD audio storage and playback
service. A number of commercial concerns have begun projects with Ensemble,
including BBN, Lockheed Martin, and Microsoft [16].

Ensemble protocol stacks typically have ten or more layers. Highly-layered
stacks are flexible, but can be slow. Ensemble regains speed by a series of opti-
mizations. The protocol designer segments the code in each the layer, marking
common cases. It is a simple matter (currently performed by hand, but easily
automated) to trace which segments execute together, and collect these into op-
timized trace handlers. They also cache information to minimize header size and
reorder computations to preserve latency. The result is a win-win architecture,
offering both modularity and performance.

Ensemble is written entirely in Objective Caml, a dialect of ML. Ensemble
beats the performance of its predecessor, Horus, by a wide margin, even though
Horus is written in C. To quote the designers, “The use of ML does mean that
our current implementation of Ensemble is somewhat slower than it could be,
but this has been more than made up for by the ability to rapidly experiment
with structural changes, and thereby increase performance through improved
design rather than through long hours of hand-coding the entire system in C”
[16].

The designers took care to restrict the use of features of ML they deemed
expensive. Higher-order functions are used only in stylized ways that can be com-
piled efficiently. Exception handling and garbage-collected objects are avoided
in the trace handlers. To squeeze the most out of Ensemble, a final step is to
translate the trace handlers (which constitute only a small part of the code) into
C by hand. This achieves a further improvement of about a factor of two.

A related effort is the Fox Project at Carnegie-Mellon University, which first
demonstrated that systems software can be written in functional languages. You
can access the FoxNet Web Server at foxnet.cs.cmu.edu. The HTTPD server,
the TCP/IP stack, and everything down to the driver protocol is implemented
in the Fox variant of Standard ML [3].

Ensemble has produced the fastest product of its kind, while the Fox Project
stack runs at speeds varying from 8% faster to 100% slower than commercial im-
plementations. However, this is comparing apples with oranges: Ensemble gains
speed by experimenting with new protocols, while Fox measures its achievements
against the fixed target of the TCP/IP protocol.

The Fox Project was an important precursor to Ensemble, in that it demon-
strated functional languages could be used to build systems programs with rea-
sonable performance. Nonetheless, in my opinion Ensemble marks a more impor-
tant milestone for functional programming: FoxNet was created by researchers
primarily interested in languages, while Ensemble was created by researchers
primarily interested in networking.



1.7 Conclusions

So there you have it, six instances of functional languages used in anger. Or
rather more than six, depending on how you count.

Perhaps some disclaimers are in order. I’m one of the designers of Haskell.
Glasgow Haskell is due to my former colleagues, SML/NJ is due to my current
colleagues, HOL is largely due to another former colleague, and Pdiff is due to
other current colleagues. I consulted for Ericsson on the design of a type system
for Erlang. CPL/Kleisli is partly based on my research into comprehensions. So
I may be biased.

The list of applications given here is far from exhaustive. I’ve omitted Mi-
crosoft’s Fran animation library for Haskell [9], Lufthansa’s combination of a
simple functional language with partial evaluation to speed up crew scheduling
[2], Hewlett Packard’s ECDL network control language, the Lolita natural lan-
guage understanding system, and Mitre’s speech recognition system, to name a
few. Some of these are listed at a web page for Functional Programming in the
Real World [31].

2 Why no one uses functional languages

As we have just seen, to say that no one uses functional languages is an exag-
geration. Calls to the European Parliament are routed by programs written in
Erlang, virtual CDs are distributed on Cornell’s network via Ensemble, real CDs
are shipped by Polygram in Europe via Natural Expert.

Still . . . I work at Bell Labs, where C and C++ were invented. Compared
to users of C, “no one” is a tolerably accurate count of the users of functional
languages.

Advocates of functional languages claim they produce an order of magnitude
improvement in productivity. Experiments don’t always verify that figure —
sometimes they show an improvement of only a factor of four. Still, code that’s
four times as short, four times as quick to write, or four times easier to maintain
is not to be sniffed at. So why aren’t functional languages more widely used?

2.1 Reasons

Here is a list of some of the factors that inhibit adoption of functional languages.
I’ll note some research aimed at ameliorating these factors, but make no pretence
of completeness.

Most of these factors remain serious impediments for most systems. Notable
exceptions are Ericsson’s Erlang (www.erlang.se) and Harlequin’s ML Works
(www.harlequin.com), two industrial-grade systems with extensive user envi-
ronments and support.



Compatibility. Computing has matured to the point where systems are often
assembled from components rather than built from scratch. Many of these com-
ponents are written in C or C++, so a foreign function interface to C is essential,
and interfaces to other languages can be useful.

The isolationist nature of functional languages is beginning to give way to a
spirit of open interchange. Serious implementations now routinely provide inter-
faces to C, and sometimes other languages. As mentioned above, this is straight-
forward for strict languages, and recent advances with monads and linear logic
has made it possible for lazy languages.

Conquering isolationism is a task for everyone, not just functional program-
mers. The computing industry is now beginning to deploy standards, such as
CORBA and COM, that support the construction of software from reusable
components. Recent work allows any Haskell program to be packaged as a COM
component, and any COM component to be called from Haskell [24]. Among
other applications, this allows Haskell to be used as a scripting language for Mi-
crosoft’s Internet Explorer web browser. My colleagues at Lucent are currently
applying similar ideas to the SML/NJ compiler.

Libraries. The fashionable idea of software reuse has been around for ages in
the form of software libraries. A good library can make or break a language.
Users are attracted to Tcl primarily on the strength of the Tk graphics library.
Much of the attractiveness of Java has little to do with the language itself, but
with the associated libraries for graphics, networking, databases, telephony, and
enterprise servers. (Much of the unattractiveness of Java is due to those same
libraries.)

Considerable effort has been extended on developing graphic user interface
libraries for functional languages. Haskell boasts a plethora: Fudgets, Gadgets,
Haggis, and Hugs Tk. SML/NJ has two, eXene and SML Tk. The SML language
comes with a powerful module system, which makes flexible libraries easier to
construct. One example of such a library is ML RISC, a retargetable back end
that has been used for SML and C compilers and has been adopted to a number
of architectures [10].

Portability and installation. I have heard of numerous projects where C won
out over a functional language, not because C runs faster (although often it
does), but because the hegemony of C guarantees that it is widely portable.
As mentioned above, Lucent researchers would have preferred to build the PRL
database language using SML, but chose C++ because SML was not available
on the Amdahl mainframe they used.

On the other hand, abstract machines are a popular implementation tech-
nique, for both functional languages and for Java, in part because writing an
emulator for the machine in C makes it is easy to port to a wide variety of ar-
chitectures. The Hugs interpreter for Haskell is written in C, and fairly easy to
port.

Even when a functional language has been ported to the machine and op-
erating system at hand, it may not be easy to install. While Hugs is easy to



install (one mouse click on my Windows box), installing the Glasgow Haskell
compiler is something of an adventure (I’ve so far failed to install it on my local
Irix machine).

Availability. Large projects are understandably reluctant to commit to a lan-
guage unless it comes with a guarantee of continuing support. A few functional
languages are available commercially: Research Software markets Miranda, ISL
markets Poplog/SML, Harlequin markets ML Works, and Ericsson has a divi-
sion devoted to support of Erlang. Nonetheless, for many functional languages,
it remains difficult to ensure a stable source and reliable support.

An additional problem arises because functional languages are often under
active development, creating tension between the needs of stability and research.
The Haskell community is attempting to resolve these by defining Standard
Haskell, a version of the language that will remain stable and supported while
other versions of Haskell continue to evolve [17].

Footprint. Following the Lisp tradition, many functional language implementa-
tions offer a read-eval-print loop. While convenient, it is also essential to provide
some way to convert a functional program into a stand-alone application pro-
gram, that can be invoked directly without the intervention of a read-eval-print
loop. Most systems now offer this. However, these systems often incorporate the
entire runtime package for the library, and thus have unacceptably large memory
footprints. An ability to develop compact stand-alone applications is essential.

Tools. To be usable, a language system must be accompanied by a debugger and
a profiler. Just as with interlanguage working, designing such tools is straightfor-
ward for strict languages, but trickier for lazy languages. However, there are few
debuggers or profilers even for strict languages, perhaps because constructing
them is not perceived as research. That is a shame, since such tools are sorely
needed, and there remains much of interest to learn about their construction
and use.

Constructing debuggers and profilers for lazy languages is recognized as dif-
ficult. Fortunately, there have been great strides in profiler research, and most
implementations of Haskell are now accompanied by usable time and space pro-
filing tools. But the slow rate of progress on debuggers for lazy languages makes
us researchers look, well, lazy.

At a larger scale, one wants integrated development environments and soft-
ware engineering methodologies. Building an integrated development environ-
ment is a lot of work with little research content, so it is not surprising that this
has attracted little attention. But there is plenty of interesting work to be done in
applying software methodologies to functional languages, and it is disappointing
that there is virtually no effort in this area.

Training. To programmers practiced in C, C++, or Java, functional programs
look odd. It takes a while to come to grips with writing f(x,y) as f x y. Curried
food and curried functions are both acquired tastes.



Programmers practiced in imperative languages are used to a certain style of
programming. For a given task, the imperative solution may leap immediately
to mind or be found in a handy textbook, while a comparable functional solu-
tion may require considerable effort to find (though once found it may be more
elegant). And while many problems do have efficient functional solutions, there
remain some tough nuts for which the best known solutions are imperative in
style. Some functional languages lessen these problems by providing an escape
to imperative style: SML includes updateable references as a basic data type,
and Haskell provides them via monads [20].

The training problem is not intractable. Software AG found they could train
industrial programmers to use Natural Expert in a one-week course that included
lazy evaluation, polymorphic types, and higher-order functions. Typically, stu-
dents were miffed when the compiler would repeatedly reject programs for type
errors, but pleasantly surprised when their programs finally passed the type
checker and ran correctly on the first try [18].

Popularity. If a manager chooses to use a functional language for a project and
the project fails, then he or she is out on a limb with little support. If a manager
chooses C++ and the project fails, then he or she has the defense that the same
thing has happened to everyone else.

Though management problems are a significant barrier, the flipside is a sig-
nificant opportunity: a large project that is in trouble may be willing to consider
switching to a functional language because the increase in productivity may get
them out of a jam. An effective way in can be to offer to prototype the solution
in a functional language, and once the prototype is running show how to scale
it to a full solution.

No less than managers, employees, too, have their worries. Experience with
C++ or Java will buff up your resume nicely, while Haskell or SML will do you
little good. Recall, for instance, that no developer could be found to maintain
Lucent’s Pdiff system, written in SML, so a physicist looking to switch fields
was hired (as mentioned in Section 1.3).

2.2 Non-reasons

Having listed many good reasons why people avoid functional languages, let me
now rebut two pieces of common cant as to why people don’t use functional
languages to which I do not subscribe.

Performance. A decade ago people might have reasonably rejected functional
languages for poor performance, but these days the performance of functional
languages is often within the same ballpark as C. Performance can vary widely,
but for the symbolic manipulation to which functional languages are well suited,
a rough estimate of within a factor of two of C seems fair.

More important, experience shows that performance that rivals C is not
a requirement for success. Java has become enormously successful with per-
formance significantly short of C. Tcl/Tk, Perl, and Visual Basic all rose to



prominence with implementations that are interpreted. In the functional world,
Erlang achieved its success as an interpreted language, and the Hugs interpreter
for Haskell is more widely used than the Glasgow Haskell compiler.

One has languages with high performance that are not widely used, and lan-
guages with middling performance that are widely used. Performance is some-
times an issue, but it is rare for it to be the deciding factor. It is imprudent to
expect that all we need do is make functional languages run blindingly fast in
order for them to become immensely popular.

“They don’t get it”. Functional programming is beautiful, a joy to behold.
Once someone understands functional programming, he or she will switch to
it immediately. The masses that stick with outmoded imperative and object-
oriented programming do so out of blind prejudice. They just don’t get it.

The above paragraph echoes beliefs deeply held by many researchers. But the
long list in the preceding section should make it clear that it may be possible to
be attracted by functional programming, but still find it unusable.

For instance, here is a posting to the Haskell mailing list.

I have been trying to learn Haskell and have been impressed with both
its elegance and the way it allows me to write code that works on the first
try (or two). However, I am not a researcher. I do commercial software
development and need some documentation and stability. [19]

Mailing lists related to functional languages are rife with requests for foreign
function interfaces, libraries, and tools.

Doubtless, there are prejudiced individuals out there, accustomed to C and
its variants and dismissive of alternatives. But many out there do “get it”, and
eschew functional programming for other reasons.

2.3 Lessons

To summarize, there are a large number of factors that hinder the widespread
adoption of functional languages. To be widely used, a language should support
interlanguage working, possess extensive libraries, be highly portable, have a
stable and easy to install implementation, come with debuggers and profilers,
be accompanied by training courses, and have a good track record on previous
projects. It helps if the implementation is efficient, but this is not an absolute
requirement. Potential users may find the language attractive, but reject it be-
cause of some or all of the preceding factors. Here are the lessons I draw from
this exercise.

Killer App. The factors listed constitute a significant barrier to use of functional
languages, but not an absolute barrier. A user will forego many conveniences if
given a compelling reason to do so. Tcl/Tk and Perl rose to prominence without
benefit of debuggers or profilers.

Some researchers hope that the high-level nature of functional languages
will prove compelling on its own, but experience to date suggests this hope is



misplaced. Instead, experience shows that users will be drawn to a language if it
lets them conveniently do something that otherwise is difficult to achieve. Like
other new technologies, functional languages must seek their killer app.

Each of the “angry half-dozen” exploits some strength of functional lan-
guages. Telecommunications developers are drawn to Erlang by its support for
concurrency and distribution; the latter is tied directly to the fact that functional
data, being immutable, is well suited for transmission across a network. Creators
of theorem provers are drawn to ML by its support for symbolic computations.
Geneticists are drawn to CPL/Kleisli because its type system supports access to
heterogeneous databases, and because the mathematical properties of functional
languages can be exploited in query optimization. Expert system developers are
drawn to Natural Expert because lazy evaluation resembles reasoning by back-
ward chaining, and because lazy evaluation enables a space-efficient interface to
databases.

Top-notch functional programming research is often tied to applications.
Carnegie-Mellon grounds its functional programming work in the Fox project.
Chalmers researchers have close relations with Carlstedt and Logikkonsult, and
among other things have applied partial evaluation to airline scheduling. Glas-
gow teamed up with York to produce a whole book of applications. The Oregon
Graduate Institute is teaming up with Intel to look at hardware design. Yale re-
searchers have applied functional programming to music performance and nat-
ural language understanding, and are teaming up with Microsoft to look at
animation. However, most of this research has not centered around application
libraries or packages that might attract significant user communities.

Applications have unexplored depths. Jump in, the water’s fine!

Research emphasis. Despite the applications work listed above, functional pro-
gramming researchers place far more emphasis on developing systems than on
applying those systems. Further, the bulk of effort is devoted to language design,
program analysis, and the construction of optimizing compilers, with far less to
debuggers, profilers, and software engineering tools and methodologies.

Shifts in research emphasis may require shifts in the reward structure. As
Kuhn noted in The Structure of Scientific Revolutions, the mainstream of aca-
demic work consists of incremental contributions to existing paradigms. Within
functional programming, the mainstream is program analysis and compiler de-
velopment. Leaders in the field need to move into the new areas of tools and
applications, and conferences and journals need to explicitly welcome contribu-
tions in these areas. To aid a paradigm shift, a field may set out new criteria for
judging work in new areas.

As I write, Gopal Gupta is organizing PADL 99, the First International Con-
ference on Practical Aspects of Declarative Languages [14]. And Simon Peyton
Jones and myself have just completed an editorial for the Journal of Functional
Programming welcoming papers on functional programming practice and expe-
rience, and setting out the criteria we apply to judge them [25].



A modest proposal. Even a modest implementation of a functional language
should provide a foreign function interface, a debugger, and a profiler. By this
measure, I know of only a few modest implementations of functional languages,
including Ericsson’s Erlang, Harlequin’s ML Works, and INRIA’s CAML.

Andrew Tolmach and Andrew Appel devised an ingenious debugger for the
SML/NJ implementation [27], but as the implementation evolved the debugger
was not maintained, and there is no debugger available for the current release
of SML/NJ.

There is a tension between building useful systems and extending the frontiers
of research, and functional language researchers can pride themselves on having
found the resources to build some excellent systems. We now need to take the
next step, and ensure these systems include essential interfaces and tools. We
should no longer settle for implementations that are not even modest.

Hope. This long list of reasons why no one uses functional languages may
look depressing, but I prefer to look on the bright side. People do not reject
functional languages because of stupidity, rather they reject them for a variety
of good reasons. Stupidity is famously resistant to attack — these other problems
are something we can tackle.

3 Functional and logic programming

There are many overlaps between logic programming and functional program-
ming, and some intriguing differences.

I argued above that a “killer app” is essential for success. While functional
languages have had moderate successes in a few areas, they have only become
perceived as the language of choice in one fairly narrow area: theorem provers. On
the other hand, logic programming languages have three “killer apps” where they
have achieved widespread success: deductive databases, artificial intelligence, and
constraint programming.

Arguably, this is why one can point to hundreds of industrial applications of
logic programming (I saw one list with nearly one thousand entries), whereas
equivalent applications of functional programming number in the dozens.

Unfortunately, in both the functional and logic camps, rather than play to
our strengths we try to be all things to all people. With the exception of the
original ML, which aimed squarely at theorem proving (and where its descen-
dants have dominated that area), relatively few functional or logic languages aim
at conquering one application area. Instead, advocates promote functional and
logic languages as general purpose, good for whatever ails you. Perhaps a more
specific emollient is in order. Designers of logic languages might have an easier
job filling this prescription than those of functional languages, as logic languages
already have a better track record with “killer apps”.

The name declarative was coined to cover both functional and logic pro-
gramming, recognizing that they have much in common. Despite this, the two
communities meet together rarely, having separate conferences and journals.



One area of overlap is the attempt to build languages that combine the
features of functional and logic languages. Most of the attempts in this direction
seem to come from members of the logic programming community. There have
been some technically strong achievements in this area, but as yet no “killer
app” has emerged.

As mentioned above, Gopal Gupta is organizing PADL 99, the First Inter-
national Conference on Practical Aspects of Declarative Languages. This aims
to draw together two communities that should interact more, and to focus their
attention on applications — a double win!
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