
The Essence of
Language Integrated Query

James Cheney, Sam Lindley, Philip Wadler
University of Edinburgh

Midlands Graduate School
Leicester, 9 April 2013

Database programming languages

Kleisli
Buneman, Libkin, Suciu, Tannen, Wong (Penn)

Ferry
Grust, Mayr, Rittinger, Schreiber (Tübingen)

Links
Cooper, Lindley, Wadler, Yallop (Edinburgh)

SML#
Ohori, Ueno (Tohoku)

Ur/Web
Chlipala (Harvard/MIT)

LINQ for C#, VB, F#
Helsbjorg, Meijer, Syme (Microsoft Redmond & Cambridge)

Our goals:
Abstraction over values (first-order)

Abstraction over predicates (higher-order)
Composition of queries

Dynamic generation of queries
Type-safety

Goldilocks:
Exactly one query per run

Not too few (failure)
Not too many (avalanche)

Our restrictions:

We consider only select-from-where queries,
with exists and union.

We equate bags and lists.

Future work to extend to group-by and sort-by.

Part I

A first example

A database

people

name age

“Alex” 60

“Bert” 56

“Cora” 33

“Drew” 31

“Edna” 21

“Fred” 60

couples

her him

“Alex” “Bert”

“Cora” “Drew”

“Edna” “Fred”

A query in SQL

select w.name as name, w.age−m.age as diff

from couples as c,

people as w,

people as m

where c.her = w.name and c.him = m.name and

w.age > m.age

name diff

“Alex” 4

“Cora” 2

A database as data

{people =

[{name = “Alex” ; age = 60};
{name = “Bert” ; age = 56};
{name = “Cora” ; age = 33};
{name = “Drew”; age = 31};
{name = “Edna”; age = 21};
{name = “Fred” ; age = 60}];

couples =

[{her = “Alex” ; him = “Bert” };
{her = “Cora” ; him = “Drew”};
{her = “Edna”; him = “Fred” }]}

Importing the database (naive)

type DB =

{people :

{name : string; age : int} list;

couples :

{her : string; him : string} list}
let db′ : DB = database(“People”)

A query as a comprehension (naive)

let differences′ : {name : string; diff : int} list =

for c in db′.couples do

for w in db′.people do

for m in db′.people do

if c.her = w.name && c.him = m.name && w.age > m.age then

yield {name : w.name; diff : w.age−m.age}

differences’

[{name = “Alex” ; diff = 4}
{name = “Cora”; diff = 2}]

Importing the database (quoted)

type DB =

{people :

{name : string; age : int} list;

couples :

{her : string; him : string} list}
let db : Expr<DB> = <@ database(“People”) @>

A query as a comprehension (quoted)

let differences : Expr< {name : string; diff : int} list> =

<@ for c in (%db).couples do

for w in (%db).people do

for m in (%db).people do

if c.her = w.name && c.him = m.name && w.age > m.age then

yield {name : w.name; diff : w.age−m.age} @>

run(differences)

[{name = “Alex” ; diff = 4}
{name = “Cora”; diff = 2}]

Execute run as follows:
1. compute quoted expression
2. simplify quoted expression

3. translate query to SQL
4. execute SQL

5. translate answer to host language

Each run generates one query if:
A. answer type is flat (bag-of-record-of-scalars)
B. only permitted operations (e.g., no recursion)

C. consistent use of database (all same)

Part II

Abstraction, composition, dynamic generation

Abstracting over values

type Names = {name : string} list

let range : Expr< (int, int)→ Names> =

<@ fun(a, b)→ for w in (%db).people do

if a ≤ w.age && w.age < b then

yield {name : w.name} @>

run(<@ (%range)(30, 40) @>)

[{name = “Cora”}; {name = “Drew”}]

Abstracting over a predicate

let satisfies : Expr< (int→ bool)→ Names> =

<@ fun(p)→ for w in (%db).people do

if p(w.age) then

yield {name : w.name} @>

run(<@ (%satisfies)(fun(x)→ 30 ≤ x && x < 40) @>)

[{name = “Cora”}; {name = “Drew”}]

run(<@ (%satisfies)(fun(x)→ x mod 2 = 0) @>)

[{name = “Alex”}; {name = “Bert”}; {name = “Fred”}]

Composing queries

let getAge : Expr<string→ int list> =

<@ fun(s)→ for u in (%db).people do

if u.name = s then

yield u.age @>

let compose : Expr< (string, string)→ Names> =

<@ fun(s, t)→ for a in (%getAge)(s) do

for b in (%getAge)(t) do

(%range)(a, b) @>

run(<@ (%compose)(“Edna”, “Bert”) @>)

[{name = “Cora”}; {name = “Drew”}; {name = “Edna”}]

Dynamically generated queries (1)

type Predicate =

| Above of int

| Below of int

| And of Predicate× Predicate

| Or of Predicate× Predicate

| Not of Predicate

let t0 : Predicate = And(Above(30), Below(40))

let t1 : Predicate = Not(Or(Below(30), Above(40)))

Dynamically generated queries (2)

let rec P(t : Predicate) : Expr< int→ bool> =

match t with

| Above(a)→ <@ fun(x)→ (%lift(a)) ≤ x @>

| Below(a)→ <@ fun(x)→ x < (%lift(a)) @>

| And(t, u)→ <@ fun(x)→ (%P(t))(x) && (%P(u))(x) @>

| Or(t, u) → <@ fun(x)→ (%P(t))(x) || (%P(u))(x) @>

| Not(t) → <@ fun(x)→ not((%P(t))(x)) @>

Dynamically generated queries (3)

P(t0)

<@ fun(x)→ (fun(x)→ 30 ≤ x)(x) && (fun(x)→ x < 40)(x) @>

<@ fun(x)→ 30 ≤ x && x < 40 @>

run(<@ (%satisfies)(%P(t0)) @>)

[{name = “Cora”}; {name = “Drew”}]

run(<@ (%satisfies)(%P(t1)) @>)

[{name = “Cora”}; {name = “Drew”}]

Part III

Nesting

Flat data
{departments =

[{dpt = “Product”};
{dpt = “Quality”};
{dpt = “Research”};
{dpt = “Sales”}];

employees =

[{dpt = “Product”; emp = “Alex”};
{dpt = “Product”; emp = “Bert”};
{dpt = “Research”; emp = “Cora”};
{dpt = “Research”; emp = “Drew”};
{dpt = “Research”; emp = “Edna”};
{dpt = “Sales”; emp = “Fred”}];

Flat data (continued)

tasks =

[{emp = “Alex”; tsk = “build”};
{emp = “Bert”; tsk = “build”};
{emp = “Cora”; tsk = “abstract”};
{emp = “Cora”; tsk = “build”};
{emp = “Cora”; tsk = “design”};
{emp = “Drew”; tsk = “abstract”};
{emp = “Drew”; tsk = “design”};
{emp = “Edna”; tsk = “abstract”};
{emp = “Edna”; tsk = “call”};
{emp = “Edna”; tsk = “design”};
{emp = “Fred”; tsk = “call”}]}

Importing the database

type Org = {departments : {dpt : string} list;

employees : {dpt : string; emp : string} list;

tasks : {emp : string; tsk : string} list }
let org : Expr<Org> = <@ database(“Org”) @>

Departments where every employee can do a given task

let expertise′ : Expr<string→ {dpt : string} list> =

<@ fun(u)→ for d in (%org).departments do

if not(exists(

for e in (%org).employees do

if d.dpt = e.dpt && not(exists(

for t in (%org).tasks do

if e.emp = t.emp && t.tsk = u then yield { })
)) then yield { })

)) then yield {dpt = d.dpt} @>

run(<@ (%expertise’)(“abstract”) @>)

[{dpt = “Quality”}; {dpt = “Research”}]

Nested data

[{dpt = “Product”; employees =

[{emp = “Alex”; tasks = [“build”]}
{emp = “Bert”; tasks = [“build”]}]};

{dpt = “Quality”; employees = []};
{dpt = “Research”; employees =

[{emp = “Cora”; tasks = [“abstract”; “build”; “design”]};
{emp = “Drew”; tasks = [“abstract”; “design”]};
{emp = “Edna”; tasks = [“abstract”; “call”; “design”]}]};

{dpt = “Sales”; employees =

[{emp = “Fred”; tasks = [“call”]}]}]

Nested data from flat data

type NestedOrg = [{dpt : string; employees :

[{emp : string; tasks : [string]}]}]
let nestedOrg : Expr<NestedOrg> =

<@ for d in (%org).departments do

yield {dpt = d.dpt; employees =

for e in (%org).employees do

if d.dpt = e.dpt then

yield {emp = e.emp; tasks =

for t in (%org).tasks do

if e.emp = t.emp then

yield t.tsk}}} @>

Higher-order queries

let any : Expr< (A list, A→ bool)→ bool> =

<@ fun(xs, p)→
exists(for x in xs do

if p(x) then

yield { }) @>
let all : Expr< (A list, A→ bool)→ bool> =

<@ fun(xs, p)→
not((%any)(xs, fun(x)→ not(p(x)))) @>

let contains : Expr< (A list, A)→ bool> =

<@ fun(xs, u)→
(%any)(xs, fun(x)→ x = u) @>

Departments where every employee can do a given task

let expertise : Expr<string→ {dpt : string} list> =

<@ fun(u)→ for d in (%nestedOrg)

if (%all)(d.employees,

fun(e)→ (%contains)(e.tasks, u) then

yield {dpt = d.dpt} @>

run(<@ (%expertise)(“abstract”) @>)

[{dpt = “Quality”}; {dpt = “Research”}]

Part IV

Quotations vs. functions

Abstracting over values

let range : Expr< (int, int)→ Names> =

<@ fun(a, b)→ for w in (%db).people do

if a ≤ w.age && w.age < b then

yield {name : w.name} @>
run(<@ (%range)(30, 40) @>)

vs.

let range′(a : Expr< int>, b : Expr< int>) : Names =

<@ for w in (%db).people do

if (%a) ≤ w.age && w.age < (%b) then

yield {name : w.name} @>
run(range′(<@ 30 @>,<@ 40 @>))

Composing queries

let compose : Expr< (string, string)→ Names> =

<@ fun(s, t)→ for a in (%getAge)(s) do

for b in (%getAge)(t) do

(%range)(a, b) @>

vs.

let compose′ : Expr< (string, string)→ Names> =

<@ fun(s, t)→ for a in (%getAge)(s) do

for b in (%getAge)(t) do

(%range′(<@ a @>, <@ b @>)) @>

Prefer
closed quotations

to
open quotations.

Prefer
quotations of functions

to
functions of quotations.

Part V

From XPath to SQL

Part VI

Idealised LINQ

Terms
VAR

Γ, x : A ` x : A

FUN

Γ, x : A ` N : B

Γ ` fun(x)→ N : A→ B

APP

Γ ` L : A→ B Γ `M : A

Γ ` L M : B

SINGLETON

Γ `M : A

Γ ` yield M : A list

FOR

Γ `M : A list Γ, x : A ` N : B list

Γ ` for x in M do N : B list

REC

Γ, f : A→ B, x : A ` N : B

Γ ` rec f (x)→ N : A→ B

Quoted terms

VARQ

Γ; ∆, x : A ` x : A

FUNQ
Γ; ∆, x : A ` N : B

Γ; ∆ ` fun(x)→ N : A→ B

APPQ
Γ; ∆ ` L : A→ B Γ; ∆ `M : A

Γ; ∆ ` L M : B

SINGLETONQ
Γ; ∆ `M : A

Γ; ∆ ` yield M : A list

FORQ
Γ; ∆ `M : A list Γ; ∆, x : A ` N : B list

Γ; ∆ ` for x in M do N : B list

DATABASE

Σ(db) = {` : T}
Γ; ∆ ` database(db) : {` : T}

Quotation and anti-quotation

QUOTE

Γ; · `M : A

Γ ` <@ M @> : Expr<A>

ANTIQUOTE

Γ `M : Expr<A>

Γ; ∆ ` (%M) : A

RUN

Γ `M : Expr<T >

Γ ` run(M) : T

LIFT

Γ `M : O

Γ ` lift(M) : Expr<O >

Normalisation: symbolic evaluation

(fun(x)→ N) M N [x := M]

{` = M}.`i Mi

for x in (yield M) do N N [x := M]

for y in (for x in L do M) do N for x in L do (for y in M do N)

for x in (if L then M) do N if L then (for x in M do N)

for x in [] do N []

for x in (L @M) do N (for x in L do N) @ (for x in M do N)

if true then M M

if false then M []

Normalisation: ad hoc rewriting

for x in L do (M @N) ↪→ (for x in L do M) @ (for x in L do N)

for x in L do [] ↪→ []

if L then (M @N) ↪→ (if L then M) @ (if L then N)

if L then[] ↪→ []

if L then (for x in M do N) ↪→ for x in M do (if L then N)

if L then (if M then N) ↪→ if (L && M) then N

yield x ↪→ yield {` = x.`}
database(db).` ↪→ for x in database(db).` do yield x

Properties of reduction

On well-typed terms, the relations and ↪→

• preserve typing,

• are stongly normalising, and

• are confluent.

Terms in normal form under satisfy the subformula property: with the
exception of predicates (such as < or exists), the type of a subterm must be a
subformula of either the type of a free variable or of the type of the term.

Example (1): query

run(<@ (%compose)(“Edna”, “Bert”) @>)

Example (2): after splicing

(fun(s, t)→
for a in (fun(s)→

for u in database(“People”).people do

if u.name = s then yield u.age)(s) do

for b in (fun(s)→
for u in database(“People”).people do

if u.name = s then yield u.age)(t) do

(fun(a, b)→
for w in database(“People”).people do

if a ≤ w.age && w.age < b then

yield {name : w.name})(a, b))

(“Edna”, “Bert”)

Example (3): beta reduction

for a in (for u in database(“People”).people do

if u.name = “Edna” then yield u.age) do

for b in (for u in database(“People”).people do

if u.name = “Bert” then yield u.age) do

for w in database(“People”).people do

if a ≤ w.age && w.age < b then

yield {name : w.name}

Example (4): other rewriting

for u in database(“People”).people do

if u.name = “Edna” then

for v in database(“People”).people do

if v.name = “Bert” then

for w in database(“People”).people do

if u.age ≤ w.age && w.age < v.age then

yield {name : w.name}

Example (5): ad hoc reductions ↪→

for u in database(“People”).people do

for v in database(“People”).people do

for w in database(“People”).people do

if u.name = “Edna” && v.name = “Bert” &&

u.age ≤ w.age && w.age < v.age then

yield {name : w.name}

Example (6): SQL

select w.name as name

from people as u,

people as v,

people as w

where u.name = “Edna” and v.name = “Bert” and

u.age ≤ w.age and w.age < v.age

Part VII

Results

Example F# 2.0 F# 3.0 ILINQ norm

differences 17.6 20.6 18.1 0.5

range × 5.6 2.9 0.3

satisfies 2.6 × 2.9 0.3

satisfies 4.4 × 4.6 0.3

compose × × 4.0 0.8

P(t0) 2.8 × 3.3 0.3

P(t1) 2.7 × 3.0 0.3

expertise′ 7.2 9.2 8.0 0.6

expertise × 66.7av 8.3 0.9

xp0 × 8.3 7.9 1.9

xp1 × 14.7 13.4 1.1

xp2 × 17.9 20.7 2.2

xp3 × 3744.9 3768.6 4.4
All times in milliseconds. av marks query avalanche.

Our goals:
Abstraction over values (first-order)

Abstraction over predicates (higher-order)
Composition of queries

Dynamic generation of queries
Type-safety

Goldilocks:
Exactly one query per run

Not too few (failure)
Not too many (avalanche)

Appendix A7

Problems with F#

Problems with F# PowerPack

(Notes from James Cheney)

Problems fixed in F# PowerPack code:

• F# 2.0/PowerPack lacked support for singletons in nonstandard places (i.e.
other than in a comprehension body).

• F# 2.0/PowerPack also lacked support for Seq.exists in certain places because
it was assuming that expressions of base types (eg. booleans) did not need to
be further translated.

F# 3.0:

• Did not exhibit the above problems

• But did exhibit translation bug where something like

query if 1 = 2 then yield 3

leads to a run-time type error.

Appendix A7

From XPath to SQL

Representing XML

a

b

c

#doc

d

e f

0

1

2

3 4

5 6 11

7 8 9 10

12

13

xml

id parent name pre post

0 -1 #doc 0 13

1 0 a 1 12

2 1 b 2 5

3 2 c 3 4

4 1 d 6 11

5 4 e 7 8

6 4 f 9 10

type Node =

{id : int, parent : int, name : string, pre : int, post : int}

Abstract syntax of XPath

type Axis =

| Self

| Child

| Descendant

| DescendantOrSelf

| Following

| FollowingSibling

| Rev of Axis

type Path =

| Seq of Path× Path

| Axis of Axis

| NameTest of string

| Filter of Path

An evaluator for XPath: axis

let rec axis(ax : Axis) : Expr< (Node, Node)→ bool> =

match ax with

| Self→ <@ fun(s, t)→ s.id = t.id @>

| Child→ <@ fun(s, t)→ s.id = t.parent @>

| Descendant→ <@ fun(s, t)→
s.pre < t.pre && t.post < s.post @>

| DescendantOrSelf→ <@ fun(s, t)→
s.pre ≤ t.pre && t.post ≤ s.post @>

| Following→ <@ fun(s, t)→ s.pre < t.pre @>

| FollowingSibling→ <@ fun(s, t)→
s.post < t.pre && s.parent = t.parent @>

| Rev(axis)→ <@ fun(s, t)→ (%axis(ax))(t, s) @>

An evaluator for XPath: path

let rec path(p : Path) : Expr< (Node, Node)→ bool> =

match p with

| Seq(p, q)→ <@ fun(s, u)→ (%any)((%db).xml,

fun(t)→ (%path(p))(s, t) && (%path(q))(t, u)) @>

| Axis(ax)→ axis(ax)

| NameTest(name)→ <@ fun(s, t)→
s.id = t.id && s.name = name @>

| Filter(p)→ <@ fun(s, t)→ s.id = t.id &&

(%any)((%db).xml, fun(u)→ (%path(p))(s, u)) @>

An evaluator for XPath: xpath

let xpath(p : Path) : Expr<Node list> =

<@ for root in (%db).xml do

for s in (%db).xml do

if root.parent = −1 && (%path(p))(root, s) then

yield s @>

Examples

a

b

c

#doc

d

e f

0

1

2

3 4

5 6 11

7 8 9 10

12

13

/*/*

run(xpath(Seq(Axis(Child), Axis(Child))))

[2; 4]

//*[following-sibling::d]

run(xpath(Seq(Axis(Descendant),

Filter(Seq(Axis(FollowingSibling),

NameTest(“d”))))))

[2]

