The Essence of
Language Integrated Query

James Cheney, Sam Lindley, Philip Wadler
University of Edinburgh

Midlands Graduate School
Leicester, 9 April 2013

Database programming languages

Kleishi

Buneman, Libkin, Suciu, Tannen, Wong (Penn)

Ferry
Grust, Mayr, Rittinger, Schreiber (Tiibingen)

Links
Cooper, Lindley, Wadler, Yallop (Edinburgh)

SML#
Ohori, Ueno (Tohoku)

Ur/Web
Chlipala (Harvard/MIT)

LINQ for C#, VB, F#
Helsbjorg, Meijer, Syme (Microsoft Redmond & Cambridge)

Our goals:

Abstraction over values (first-order)
Abstraction over predicates (higher-order)
Composition of queries
Dynamic generation of queries

Type-safety
Goldilocks:

Exactly one query per run

Not too few (failure)

Not too many (avalanche)

Our restrictions:

We consider only select-from-where queries,

with exists and union.

We equate bags and [ists.

Future work to extend to group-by and sort-by.

Part 1

A first example

A database

people

(hame age
“Alex” | 60
“Bert” | 56
“Cora” | 33
“Drew” | 31
“‘Edna” | 21

. “Fred” | 60

couples
4 .)
her him
“Alex” “Bert”
“Cora” | “Drew”
“Edna” | “Fred”
\ J

A query in SQL

select w.name as name, w.age — m.age as diff
from couples as c,

people as w,

people as m
where c.her = w.name and c.him = m.name and

w.age > m.age

N
name | diff
“Alex” | 4

“Cora” | 2
g

A database as data

{people =

[{name = “Alex” ; age = 60};
{name = “Bert” ; age = 56};
{name = “Cora”; age = 33};
{name = “Drew”; age = 31};
{name = “Edna”; age = 21};
{name = “Fred” ; age = 60}];

couples =

[{her = “Alex” ; him = “Bert” };
{her = “Cora”; him = “Drew”};
{her = “Edna”; him = “Fred” }1 }

Importing the database (naive)

type DB =
{people :
{name : string; age : int} list;
couples :
{her : string; him : string} list}
let db’ : DB = database(“People”)

A query as a comprehension (naive)

let differences’ : {name : string; diff : int} list =
for c in db’.couples do
for w in db’.people do
for m in db’.people do
if c.her = w.name && c.him = m.name && w.age > m.age then
yield {name : w.name; diff : w.age — m.age}

differences’

[{name = “Alex” ; diff = 4}
{name = “Cora”; diff =2}]

Importing the database (quoted)

type DB =
{people :
{name : string; age : int} list;
couples :
{her : string; him : string} list}
let db : Expr< DB > = <@ database(“People”) @>

A query as a comprehension (quoted)

let differences : Expr< {name : string; diff : int} list> =
<@ for cin (%db).couples do
for w in (2db).people do
for m in (2db).people do
if c.her = w.name && c.him = m.name && w.age > m.age then
yield {name : w.name; diff : w.age — m.age} @>

run(differences)

[{name = “Alex” ; diff = 4}
{name = “Cora”; diff =2}]

Execute run as follows:

1. compute quoted expression
2. simplify quoted expression
3. translate query to SQL
4. execute SQL

5. translate answer to host language

Each run generates one query if:
A. answer type 1s flat (bag-of-record-of-scalars)
B. only permitted operations (e.g., no recursion)
C. consistent use of database (all same)

Part 11

Abstraction, composition, dynamic generation

Abstracting over values

type Names = {name : string} list
let range : Expr< (int, int) — Names > =
<@ fun(a, b) — for win (%db).people do
if a <w.age && w.age < bthen
yield {name : w.name} @>

run(<@ (srange)(30,40) @>)

[{name = “Cora”’}; {name = “Drew”}]

Abstracting over a predicate

let satisfies : Expr< (int — bool) — Names > =
<@ fun(p) — for win (%db).people do
if p(w.age) then
yield {name : w.name} @>

run(<@ (ssatisfies)(fun(x) — 30 < x && x < 40) @>)

[{name = “Cora”’}; {name = “Drew”}]

run(<@ (%satisfies)(fun(x) — x mod 2 = 0) @>)

[{name = “Alex”}; {name = “Bert”}; {name = “Fred”}

Composing queries

let getAge : Expr<string — int list > =
<@ fun(s) — for u in (2db).people do
if u.name = s then
yield u.age @>
let compose : Expr< (string, string) — Names > =
<@ fun(s, t) — for ain (%getAge)(s) do
for b in (3getAge)(t) do
(srange)(a, b) @>

run(<@ (scompose)(“Edna”, “Bert”) @>)

[{name = “Cora”}; {name = “Drew”}; {name = “Edna”}]

Dynamically generated queries (1)

type Predicate =
| Above of int
| Below of int
| And of Predicate x Predicate
| Or of Predicate x Predicate
| Not of Predicate
let t; : Predicate = And(Above(30), Below(40))
let t; : Predicate = Not(Or(Below(30), Above(40)))

Dynamically generated queries (2)

let rec P(t: Predicate) : Expr<int — bool > =
match ¢ with
| Above(a)— <@ fun(x (zlift(a)) < x @>
< (slift(a)) @>
(5P(1))(x) && (5P(u))(x) @>
(SPM)X) 11 (5P(u))(x) @>
not((5P(t))(x)) @>

(X)
| Below(a) — <@ fun(x)
| And(t, u) — <@ fun(x)
| Or(t,u) — <@ fun(x)

(X)

lllll

| Not(t) — <@ fun(x

Dynamically generated queries (3)

P(to)
<@ fun(x) — (fun(x) — 30 < x)(x) && (fun(x) — x < 40)(x) @>
<@ fun(x) — 30 < x && X < 40 @>

run(<Q@ (satisfies)(3P(ty)) @>)

[{name = “Cora”’}; {name = “Drew”}]

run(<Q@ (ssatisfies)(3P(t1)) @>)

[{name = “Cora”’}; {name = “Drew”}]

Part 111

Nesting

Flat data

{departments =

[{dpt = “Product”};
{dpt = “Quality”};
{dpt = “Research”};
{dpt = “Sales”}];

employees =

[{dpt = “Product”; emp = “Alex”};
{dpt = “Product”’; emp = “Bert”};
{dpt = “Research”;emp = “Cora”};
{dpt = “Research”;emp = “Drew”};
{dpt = “Research”;emp = “Edna’};
{dpt = “Sales”; emp = “Fred”}1;

Flat data (continued)

tasks =

[{emp = “Alex”; tsk = “build”};
{emp = “Bert”; tsk = “build”};
{emp = “Cora”; tsk = “abstract”};
{emp = “Cora”; tsk = “build”};
{emp = “Cora”; tsk = “design”};
{emp = “Drew”; tsk = “abstract”};
{emp = “Drew”; tsk = “design”};
{emp = “Edna”; tsk = “abstract”};
{emp = “Edna”; tsk = “call’};
{emp = “Edna”; tsk = “design”};
{emp = “Fred”; tsk = “call”}] }

Importing the database

type Org = {departments : {dpt : string} list;
employees : {dpt : string; emp : string} list;
tasks : {emp : string; tsk : string} list }
let org : Expr< Org > = <@ database(“Org”) @>

Departments where every employee can do a given task

let expertise’ : Expr< string — {dpt : string} list > =
<@ fun(u) — for d in (%0rg).departments do
if not(exists(
for e in (3org).employees do
if d.dpt = e.dpt && not(exists(
for tin (%org).tasks do
if e.emp = t.emp && t.tsk = u thenyield { })
)) then yield { })
)) then yield {dpt = d.dpt} @>

run(<@ (sexpertise’)(“abstract”) @>)
[{dpt = “Quality”}; {dpt = “Research”}]

Nested data

[{dpt = “Product”; employees =
[{emp = “Alex”; tasks = [“build”] }
{emp = “Bert”; tasks = [“build”] }1};
{dpt = “Quality”; employees = [] };
{dpt = “Research”; employees =
[{emp = “Cora”; tasks = [“abstract”; “build”; “design”] };
{emp = “Drew”; tasks = [“abstract”; “design”] };
{emp = “Edna”; tasks = [“abstract”; “call”; “design”] }1 };
{dpt = “Sales”; employees =
[{emp = “Fred”; tasks = [“call’] }]1}]

Nested data from flat data

type NestedOrg = [{dpt : string; employees :
[{emp : string; tasks : [string]}]}]
let nestedOrg : Expr< NestedOrg > =
<@ for din (%org).departments do
yield {dpt = d.dpt; employees =
for e in (%0rg).employees do
if d.dpt = e.dpt then
yield {emp = e.emp; tasks =
for tin (2org).tasks do
if e.emp =t.emp then
yield t.tsk}}} @>

Higher-order queries

let any : Expr< (A list, A — bool) — bool > =
<@ fun(xs, p) —
exists(for x in xs do
if p(x) then
yield { }) @>
let all : Expr< (A list, A — bool) — bool > =
<@ fun(xs, p) —
not((%any)(xs, fun(x) — not(p(x)))) @>
let contains : Expr< (A list, A) — bool > =
<@ fun(xs, u) —

($any)(xs, fun(x) — x = u) @>

Departments where every employee can do a given task

let expertise : Expr< string — {dpt : string} list> =
<@ fun(u) — for d in (3nestedOrg)
if (2all)(d.employees,
fun(e) — (%contains)(e.tasks, u) then
yield {dpt = d.dpt} @>

run(<@ (sexpertise)(“abstract”) @>)

[{dpt = “Quality”}; {dpt = “Research”}]

Part IV

Quotations vs. functions

Abstracting over values

let range : Expr< (int, int) — Names > =
<@ fun(a, b) — for win (%db).people do
if a <w.age && w.age < bthen
yield {name : w.name} @>
run(<@ (srange)(30,40) @>)

VS.

let range’(a : Expr<int>, b : Expr<int>) : Names =
<@ for win (2db).people do
if (3a) < w.age && w.age < (%b) then
yield {name : w.name} @>
run(range’(<@ 30 @>, <@ 40 @>))

Composing queries

let compose : Expr< (string, string) — Names > =
<@ fun(s, t) — for ain (3getAge)(s) do
for b in (3getAge)(t) do
(srange)(a, b) @>

VS.

let compose’ : Expr< (string, string) — Names > =
<@ fun(s, t) — for ain (3getAge)(s) do
for b in (3getAge)(t) do
(srange’(<@ a @>, <@ b @>)) @>

Prefer
closed quotations
to

open quotations.

Prefer
quotations of functions
to

functions of quotations.

Part V

From XPath to SQL

Part VI

Idealised LINQ

Terms

VAR
[Nz:AFx: A
FUN APP
[Nz:AFN:B I'-L:A— B I'-M: A
['Ffun(zx) - N: A— B I'FLM:B
SINGLETON FOR
I'EM: A ' M: Alist ['z: A+ N : B list
['+vyield M : A list ['Fforzin M do N : B list

REC
INf:A—-B,x:A-N:B

['Frec f(x) = N:A— B

Quoted terms

VARQ

I"Ax:AFx: A

FUNQ APPQ
I"A,x: AN :B I"AFL:A— B [CAFEM:A

AFfun(z) = N:A— B ["AFLM:B

SINGLETONQ FORQ
[CAFEM:A [CAERM: Alist [CA,x: AF N : B list

[A Fvyield M : A list [AFforxzin M do N : B list

DATABASE

$(db) = {7: T}
I'; A - database(db) : {/: T}

Quotation and anti-quotation

QUOTE
Iv-FM: A

I'F<@ M @>: Expr< A>

RUN
' M : Expr<T >

['Frun(M) : T

ANTIQUOTE
' M :Expr<A>

AR (SM): A

LIFT
I'=M:O

T F lift(M) : Expr< O >

Normalisation: symbolic evaluation

(fun(z) — N) M

=y

for z in (yield M) do N
foryin (forzin Ldo M) do N
for z in (if L then M) do N
forzin [] doN

forzin (L@ M)do N

if true then M/

if false then M/

¢

¢

H

Nz := M]

M;

Nz := M]

for z in L do (for y in M do N)

if L then (for zin M do N)

[]
(forzin Ldo N) @ (for xin M do N)
M

[]

Normalisation: ad hoc rewriting

forzinLdo(M@N) — (forxin Ldo M) @ (for zin L do N)
forcinLdo[] — []
if Lthen (M ¢ N) — (if Lthen M) @ (if L then N)
if Lthen [] — []
if L then (for zin M do N) — for zin M do (if L then N)
if L then (if M then N) — if (L && M) then N
yield z — vyield {/ = x./}
database(db)./ — for x in database(db)./ do yield =

Properties of reduction

On well-typed terms, the relations ~» and —
e preserve typing,
e are stongly normalising, and

e are confluent.

Terms in normal form under ~~ satisfy the subformula property: with the
exception of predicates (such as < or exists), the type of a subterm must be a
subformula of either the type of a free variable or of the type of the term.

Example (1): query

run(<@ (scompose)(“Edna”, “Bert”) @>)

Example (2): after splicing

(fun(s, t) —
for ain (fun(s) —
for u in database(“People”).people do
if u.name = s then yield u.age)(s) do
for b in (fun(s) —
for u in database(“People”).people do
if u.name = s then yield u.age)(t) do
(fun(a, b) —
for w in database(“People”).people do
if a < w.age && w.age < bthen
yield {name : w.name})(a, b))
(“Edna”, “Bert”)

Example (3): beta reduction ~~

for a in (for u in database(“People”).people do

if u.name = “Edna” then yield u.age) do
for b in (for u in database(“People”).people do

if u.name = “Bert” then yield u.age) do
for w in database(“People”).people do
if a < w.age && w.age < bthen
yield {name : w.name}

Example (4): other rewriting ~~

for u in database(“People”).people do

if u.name = “Edna” then

for v in database(“People”).people do

if v.name = “Bert” then

for w in database(“People”).people do

if u.age < w.age && w.age < v.age then
yield {name : w.name}

Example (5): ad hoc reductions —

for u in database(“People”).people do

for v in database(“People”).people do

for w in database(“People”).people do

if u.name = “Edna” && v.name = “Bert” &&
u.age < w.age && w.age < v.age then

yield {name : w.name}

Example (6): SQL

select w.name as name
from people as u,
people as v,
people as w
where u.name = “Edna” and v.name = “Bert” and
u.age < w.age and w.age < v.age

Part VII

Results

Example F# 2.0 F# 3.0 ILINQ norm
differences | 17.6 20.6 18.1 0.5
range X 5.6 2.9 0.3
satisfies 2.6 X 2.9 0.3
satisfies 4.4 X 4.6 0.3
compose X X 4.0 0.8
P(to) 2.8 X 3.3 0.3
P(t;) 2.7 X 3.0 0.3
expertise’ 7.2 9.2 8.0 0.6
expertise X 66.7% 8.3 0.9
XP, X 8.3 7.9 1.9
XP, X 14.7 13.4 1.1
XP, X 17.9 20.7 2.2
XPs X 3744.9 3768.6 4.4

All times in milliseconds. " marks query avalanche.

Our goals:

Abstraction over values (first-order)
Abstraction over predicates (higher-order)
Composition of queries
Dynamic generation of queries

Type-safety
Goldilocks:

Exactly one query per run

Not too few (failure)

Not too many (avalanche)

Appendix A7

Problems with F#

Problems with F# PowerPack

(Notes from James Cheney)

Problems fixed in F# PowerPack code:

e F# 2.0/PowerPack lacked support for singletons in nonstandard places (i.e.
other than in a comprehension body).

o F# 2.0/PowerPack also lacked support for Seq.exists in certain places because
it was assuming that expressions of base types (eg. booleans) did not need to
be further translated.

F# 3.0:
e Did not exhibit the above problems

e But did exhibit translation bug where something like
query 1f 1 = 2 then yield 3

leads to a run-time type error.

Appendix A7

From XPath to SQL

Representing XML

xml

.)
id | parent | name | pre | post
0 -1 #doc 0 13
1 0 a 1 12
2 1 b 2 5
3 2 C 3 4
4 1 d 6 11
5 4 e 7 8
6 4 f 9 10

- J

type Node =

{id : int, parent : int, name : string, pre : int, post : int}

Abstract syntax of XPath

type Axis = type Path =
| Self | Seq of Path x Path
| Child | Axis of Axis
| Descendant | NameTest of string
| DescendantOrSelf | Filter of Path
| Following

| FollowingSibling
| Rev of Axis

An evaluator for XPath: axis

let rec axis(ax : Axis) : Expr< (Node, Node) — bool > =
match ax with
| Self — <@ fun(s,t) — s.id =t.id @>
| Child — <@ fun(s,t) — s.id = t.parent @>
| Descendant — <@ fun(s,t) —
s.pre < t.pre && t.post < s.post @>
| DescendantOrSelf — <@ fun(s,t) —
s.pre < t.pre && t.post < s.post @>
| Following — <@ fun(s,t) — s.pre < t.pre @>
| FollowingSibling — <@ fun(s,t) —
s.post < t.pre && s.parent = t.parent @>
| Rev(axis) — <@ fun(s,t) — (%axis(ax))(t,s) @>

An evaluator for XPath: path

let rec path(p : Path) : Expr< (Node, Node) — bool > =

match p with

| Seq(p,q) — <@ fun(s,u) — (%any)((%db).xml,
fun(t) — (spath(p))(s, 1) && (%path(q))(t,u)) @>

| Axis(ax) — axis(ax)

| NameTest(name) — <@ fun(s,t) —
s.id =t.id && s.name = name @>

| Filter(p) — <@ fun(s,t) — s.id =t.id &&
(%any)((%db).xml, fun(u) — (%path(p))(s, u)) @>

An evaluator for XPath: xpath

let xpath(p : Path) : Expr< Node list > =
<@ for root in (%db).xml do
for sin (2db).xml do
if root.parent = —1 && (%path(p))(root, s) then
yield s @>

Examples

EVES
run(xpath(Seq(Axis(Child), Axis(Child))))
""""""""""" [2; 4]

/ /= [following-sibling: : d]

run(xpath(Seq(Axis(Descendant),
Filter(Seq(Axis(FollowingSibling),
NameTest(“d”))))))
[2]

