
A located lambda calculus

Ezra elias kilty Cooper Philip Wadler
University of Edinburgh

Abstract
Several recent language designs have offered a unified language for
programming a distributed system; we call these “location-aware”
languages. These languages provide constructs that allow the pro-
grammer to control the location (the choice of host, for example)
where a piece of code should run, which can be useful for secu-
rity or performance reasons. On the other hand, a central mantra
of web engineering insists that web servers should be “stateless”:
that no “session state” should be maintained on behalf of individ-
ual clients—that is, no state that pertains to the particular point of
the interaction at which a client program resides. Thus far, most
implementations of unified location-aware languages have ignored
this precept, usually keeping a process for each client running on
the server, or otherwise storing state information in memory. We
show how to implement a location-aware language on top of the
stateless-server model.

1. Introduction
Designing a web server requires thinking carefully about user state
and how to manage it. Unlike a desktop application, which deals
with one user at a time, or a traditional networked system, which
may handle multuple simultaneous requests but in a more con-
trolled environment, a modest web system can expect to deal with
tens or hundreds of thousands of users in a day, each one can have
multiple windows open on the site simultaneously—and these users
can disappear at any time without notifying the server. This makes
it infeasible for a web server to maintain state regarding a user’s
session. The mantra of web programming is: Get the state out!—
get it out of the server and into the client. An efficient web server
will respond to each request quickly and then forget about it even
quicker.

Nonetheless, several recent high-level programming language
designs allow the programmer the illusion of a persistent environ-
ment encompassing both client and server. This allows the pro-
grammer to move control back and forth freely between client and
server, using local resources on either side as necessary, but still
expressing the program in one language.

Murphy et al. (2004) introduced a core located calculus, Lamb-
da 5, and Murphy (2007) built upon this a full-fledged program-
ming language, ML5, also showing how to compile it to separate
code for client and server. Neubauer and Thiemann (2005) also in-
troduced a variant of ML with location annotations and showed

[Copyright notice will appear here once ’preprint’ option is removed.]

how to perform a splitting transformation to produce code for each
location. However, each of these works relied on concurrently-
running servers. Ours is the first work we’re aware of that shows
how to implement a located language on top of a stateless server
model.

Our technique involves three essential transformations: defunc-
tionalization à la Reynolds, CPS transformation, and a “trampo-
line” that allows tunnelling server-to-client requests within server
responses.

We have implemented a version of this feature in the Links lan-
guage (Cooper et al. 2006). In the current version, only calls to top-
level functions can pass control between client and server. Here
we provide a formalization and show how to relax the top level-
function restriction. In particular, the current, limited version re-
quires just a CPS translation and a trampoline; defunctionalization
is needed in implementing nested annotations.

This paper This paper presents a simple λ-calculus enriched with
location annotations, allowing the programmer to indicate the loca-
tion where a fragment of code should execute. The semantics of
this calculus clarifies where each computation step is allowed to
take place.

We then give a translation from this calculus to a first-order ab-
stract machine that models an asymmetrical client- server environ-
ment, and show that the translation preserves the locative semantics
of the source calculus.

As a stepping stone to the full translation, we formally define
defunctionalization. By isolating this phase of the larger translation,
we hope to clarify the notation and formal techniques that will
be used in the full translation. While there are many compact
definitions of CPS transformations in the literature, we did not find
such a compact and formal definition of defunctionalization. We
give a complete formal definition of defunctionalization in eleven
lines.

2. Defunctionalization
Source calculus, λsrc

Figure 1 shows an entirely pedestrian call-by-value λ-calculus,
called λsrc, defined with a big-step reduction relation M ⇓ V ,
stating that term M reduces to value V . We write N{V/x} for
the capture-avoiding substitution of a value V for the variable x
in the term N , and N{V1/x1, . . . , Vn/xn} for the simultaneous
capture-avoiding substitution of each Vi for the corresponding xi.
We let σ range over such n-ary substitutions. We assume terms are
equal up to α-equivalence.

First-order machine
The defunctionalized machine, DM, defined in Figure 2, is a first-
order machine, in contrast to λsrc which allowed expressions in
the function position of an application. In DM, terms, ranged over
by L, M , and N , are first-order; they are built from constants c,
variables x, constructor applications F (~M), function applications

1 2008/4/2

Syntax

constants c
variables x

terms L, M, N ::= LM | λx.N | x | c
values V, W ::= λx.N | x | c

Semantics (big-step reduction)

V ⇓ V (VALUE)

L ⇓ λx.N M ⇓ W N{W/x} ⇓ V

LM ⇓ V
(BETA)

Figure 1. Higher-order source, λsrc.

Syntax

variables x, y, z
function names f, g

constructors F ,G

values V, W, K ::= c | x | F (~V)

terms M, N ::= c | x | f(~M) |
F (~M) | case M of A

alternative sets A a set of A items
case alternatives A ::= F (~x) → M

eval. contexts E ::= [] | f(~V , E, ~M) |
F (~V , E, ~M) | case E of A

function def. D ::= f(~x) = M
definition set D ::= letrec D and · · · and D

Semantics (small-step reduction)

M −→D N

E[f(~V)] −→D E[M{~V /~x}]
when (f(~x) = M) ∈ D

E[case (F (~V)) of A] −→D E[M{~V /~x}]
when (F (~x) → M) ∈ A

Figure 2. First-order target, DM (the Defunctionalized Machine).

f(~M) and case expressions case M of A. A list A of case
alternatives is well-formed if it uniquely maps each name.

The machine also uses a set D of function definitions. Each has
the form f(~x) = M , defining a function called f taking parameters
~x which are then bound in the function body M . A definition set
is well-formed if it uniquely defines each name. The definitions are
mutually recursive, so scope of each definition extends throughout
all the other definitions as well as the term under evaluation.

The semantics is defined through a small-step reduction rela-
tion M −→D N stating that the term M reduces to the term N
in the context of definition-set D. The relation −�D is the reflex-
ive, transitive closure of −→D , with the definitions D held fixed
through the reduction sequence.

Defunctionalization
Defunctionalization is a translation from the terms of λsrc to the
terms and definition-sets of DM; it is defined in Figure 3. From
a term M we compute a defunctionalized term JMK and a corre-
sponding definition set, JMKtop. Let arg be a special reserved vari-
able name not appearing in the source program. The coll function

Jλx.NK = pλx.Nq(~y) ~y = FV(λx.N)

JxK = x

JcK = c

JLMK = apply(JLK, JMK)

coll f LM = f(LM) ∪ coll f L ∪ coll f M

coll f λx.N = f(λx.N) ∪ coll f N

coll f V = f(V) when V 6= λx.N

Jλx.NKfun,aux = {pλx.Nq(~y) → JNK{arg/x}}
where ~y = FV(λx.N)

JMKfun,aux = {} when M 6= λx.N

JMKfun = coll J−Kfun,aux M

JMKtop = letrec apply(fun, arg) = case fun of JMKfun

Figure 3. Defunctionalization.

JF (~V)K−1
D = λx.(JN{x/arg}K−1){J~V K−1/~y}

when (F (~y) → N) ∈ cases(apply ,D), where x fresh

JxK−1
D = x

JcK−1
D = c

Japply(L, M)K−1
D = JLK−1

D JMK−1
D

Figure 4. An reverse translation for defunctionalization.

is used by JMKtop to traverse a term: it applies a function f to each
subterm of its argument, collecting the results.

A special feature of our translation is the use of an injective
function that maps source terms into the space of constructor
names. We write pMq for the name assigned to the term M by
this function. One example of such a function is the one that col-
lects the names assigned to immediate subterms and uses a hash
function to digest these into a new name. Issues of possible hash
collisions would have to be treated delicately.

We also use a reverse translation, or retraction of J−K, defined
in Figure 4. Here JMK−1

D denotes the retraction of a DM term M
in the context of definitions D. We lift the reverse translation to
substitutions:

If σ is {V1/x1, . . . , Vn/xn}
then JσK−1

D is {JV1K−1
D /x1, . . . , JVnK−1

D /xn}.
To extract the alternatives of case-expressions from function bod-
ies, we use a function cases, defined as follows.

Definition 1. Define a meta-function cases that returns the branches
of a given function when that function is defined by case-analysis.
Formally, define

cases(f,D) = A
when (f(x, ~y) = case fun of A) ∈ D

This completes the definition of the reverse translation J−K−1.
The central claim of this section is that the defunctionalized

machine simulates the source calculus under this translation. We
have a few preliminaries to deal with first.

2 2008/4/2

During reduction we may lose subterms which would have
given rise to defunctionalized definitions; thus the reduction of a
term does not have the same definition-set as its ancestor. Still, all
the definitions it needs were generated by the original term; we
formalize this as follows.

Definition 2 (Definition containment). A definition set D contains
D′, written D > D′, if

cases(apply ,D) ⊇ cases(apply ,D′).

Correctness of the translation from λsrc to DM
Finally, we can state and prove the simulation of λsrc by DM. First
a few preliminaries.

The function J−K−1
− inverts the pair of functions J−K and

J−Ktop, as follows.

Observation 1. If D > JMKtop then JJMKK−1
D = M . Note

that the forward translation replaces each variable bound by a λ-
abstraction with the variable arg , and the reverse translation gener-
ates fresh names when generating abstractions. This is acceptable
since we identify α-equivalent terms.

Lemma 1 (Substitution-Reverse translation). The reverse trans-
lation preserves substitutions. Given definition-set D, term M
and value V , if D > JMKtop, then we have JM{V/x}K−1

D =
JMK−1

D {JV K−1
D /x}

Proof. By induction on the structure of M . The proof of each case
is a simple matter of pushing the substitutions down through the
terms, applying the inductive hypothesis, and pulling them back up
the terms.

Proposition 1 (Simulation). Given a λsrc term M , DM value V and
definitions D with D > JMKtop, If JMK −� V then M ⇓ JV K−1

D .

Proof. This follows directly from the following lemma.

Lemma 2. Given a λsrc term M and a DM value V , substitution σ
and definitions D with D > JMKtop,

if JMKσ −� V then MJσK−1
D ⇓ JV K−1

D

Proof. By induction on the length of the reduction JMKσ −� V .
We take cases on the structure of the term M .

• Case V . The reduction is of zero steps, JV Kσ −� JV Kσ, and
JJV KσK−1

D = V JσK−1
D . The judgment V JσK−1

D ⇓ V JσK−1
D is

by VALUE. huzzah!
• Case LM . By hypothesis, JLMKσ −� V . Recall that

JLMKσ = apply(JLKσ, JMKσ).

It must be the case that JLKσ and JMKσ each reduce to some
value, for if not the reduction would get stuck. Further, the
value to which JLKσ reduces must be a constructor application
F (~V), for the same reason. Let W be the value to which
JMKσ reduces. Let x be a fresh variable and let N be such
that (F (~y) → JNK{arg/x}) ∈ cases(apply ,D). We know
the body of the case for F has the form JNK{arg/x} because
it is in the image of the translation J−Ktop. As such we have

JF (~V)K−1
D = λx.N{J~V K−1

D /~y}.
The reduction follows:

apply(JLKσ, JMKσ)

−� apply(F (~V), W)

−→ JNK{~V /~y, W/x} where ~y = FV(N)

−� V

Now we apply the inductive hypothesis three times. Note that
all of these reductions are no longer than the present one, and
the definitions in JLKtop, JMKtop and JNKtop are all contained
in D (we know JNKtop is contained because JNK appeared as
the body of a case in apply , and so λx.N must have been a
subterm of LM), so the inductive hypothesis applies.
From JLKσ −� F (~V) we get

LJσK−1
D ⇓ λx.N{J~V K−1

D /~y}.

From JMKσ −� W we get

MJσK−1
D ⇓ JW K−1

D .

From JNK{~V /~y, W/x} −� V we get

N{J~V K−1
D /~y, JW K−1/x} ⇓ JV K−1.

By the freshness of x, N{J~V K−1
D /~y}{JW K−1

D /x} ⇓ JV K−1
D .

The judgment (LM)JσK−1
D ⇓ JV K−1

D follows by BETA. huz-
zah!

3 2008/4/2

Syntax

constants c
variables x
locations a, b ::= c | s

terms L, M, N ::= LM | V
values V, W ::= λax.N | x | c

Semantics (big-step reduction)

M ⇓a V

V ⇓a V (VALUE)

L ⇓a λbx.N M ⇓a W N{W/x} ⇓b V

LM ⇓a V
(BETA)

Figure 5. The located lambda calculus, λloc.

3. The Located λ-calculus
The Located λ-calculus
The located lambda calculus, λloc, is defined in Figure 5. This cal-
culus extends the pedestrian calculus of Section 2 by tagging λ-
abstractions with a location; we use the set of locations {c, s}, be-
cause we are interested in the client-server setting, but the calculus
would be undisturbed by any other choice of location set.

The annotation on a λ-abstraction indicates the location where
its body must execute. Thus an abstraction λcx.N represents a
function that, when applied, would evaluate the term N at the
client (c), binding the variable x to the function argument as usual.
Constants are assumed to be universal, that is, all locations treat
them the same way, and they contain no location annotations.

The semantics, defined in big-step style, uses a judgment of the
form M ⇓a V , read “the term M , evaluated at location a, results in
value V .” The reader can verify that the body N of an a-annotated
abstraction λax.N is only ever evaluated at location a, and thus the
location annotations are honored by the semantics.

Again we write N{V/x} for the capture-avoiding substitution
of a value V for the variable x in the term N . We assume terms
are equal up to α-equivalence. The annotation a on λax.N has no
effect on the binding behavior of names.

3.1 Client/server machine
Our target abstract machine models a pair of interacting agents,

a client and a server, that are each first-order computing machines.
Figure 6 defines the machine, called CSM.

Being a first-order machine, the application form f(~M) is n-
ary and allows only a function name, f , in the function posi-
tion. The machine also introduces constructor applications of the
form F (~M), which can be seen as a tagged tuple. Constructor-
applications are destructed by the case-analysis form case M of A.
A list A of case alternatives is well-formed if it defines each name
only once.

The client may make requests to the server, using the form
req f (~M). The server cannot make requests and can only run in
response to client requests. Note that the req f (~M) form has no
meaning in server position; it may lead to a stuck configuration.

A configuration K of this machine comes in one of two forms:
a client-side configuration (M ; ·) consisting of an active client
term M and a quiescent server (represented by the dot), or a
server-side configuration (E; M) consisting of an active server
term M and a suspended client context E, which is waiting for

Syntax

function names f, g
constructor names F ,G

values V, W, K ::= x | c | F (~V)

terms L, M, N ::= x | c | f(~M)

| F (~M) | case M of A
| req f (~M)

alternative sets A a set of A item
case alternatives A ::= F (~x) → M

evaluation contexts E ::= [] | f(~V , E, ~M)

| F (~V , E, ~M)
| case E of A
| req f (~V , E, ~M)

configurations K ::= (M ; ·) | (E; M)
function definitions D ::= f(~x) = M

definition set D, C,S ::= letrec D and · · · and D

Semantics (small-step reduction)

Client:
(E[f(~V)]; ·) −→C,S (E[M{~V /~x}]; ·)

when (f(~x) = M) ∈ C
(E[case (F (~V)) of A]; ·) −→C,S (E[M{~V /~x}]; ·)

when (F (~x) → M) ∈ A
Server:

(E; E′[f(~V)]) −→C,S (E; E′[M{~V /~x}])
when (f(~x) = M) ∈ S

(E; E′[case (F (~V)) of A]) −→C,S (E; E′[M{~V /~x}])
when (F (~x) → M) ∈ A

Communication:
(E[req f (~V)]; ·) −→C,S (E; f(~V))

(E; V) −→C,S (E[V]; ·)

Figure 6. Definition of the Client/Server Machine (CSM).

the server’s response. Although the client and server are in some
sense independent agents, they interact in a synchronous fashion:
upon making a request, the client blocks waiting for the server, and
upon completing a request, the server is idle until the next request.

Reduction takes place in the context of a pair of definition sets,
one for each agent, thus the reduction judgment takes the form
K −→C,S K′. Each definition f(~x) = M defines the function
name f , taking arguments ~x, to be the term M . The variables ~x are
thus bound in M . A definition set is only well-formed if it uniquely
defines each name. This does not preclude the other definition set,
in a pair (C,S), from also defining the same name.

The reflexive, transitive closure of the relation−→C,S is written
with a double-headed arrow −�C,S . This keeps the definition-sets
fixed throughout the reduction sequence.

Observation 2. CSM reduction steps can be made in any evalua-
tion context: (M ; ·) −� (N ; ·) implies (E[M]; ·) −� (E[N]; ·)
and (E; M) −� (E; N) implies (E′[E]; M) −� (E′[E]; N).
This is a direct consequence of the reduction rules, which are al-
ready defined in terms of evaluation contexts.

Lemma 3 (Substitution-Evaluation). For any substitution σ, we
have

(M ; ·) −�C,S (N ; ·) implies (Mσ; ·) −�C,S (Nσ; ·) and

(E; M) −�C,S (E; N) implies (E; Mσ) −�C,S (E; Nσ).

4 2008/4/2

(−)◦− : Vλloc → VCSM

(λax.N)◦ = pλax.Nq(~y) ~y = FV(λax.N)

x◦ = x

c◦ = c

(−)∗ : Mλloc → MCSM|c

V ∗ = V ◦

(LM)∗ = apply(L∗, M∗)

(−)†(−) : (Mλloc × VCSM) → MCSM|s

V †K = cont(K, V ◦)

(LM)†K = L†(pMq(~y, K)) where ~y = FV(M)

Figure 7. Term-level translations from λloc to CSM.

colla f LM = fa(LM) ∪ colla f L ∪ colla f M

colla f λbx.N = fa(λbx.N) ∪ collb f N

colla f x = fa(x)

colla f c = fa(c)

Figure 8. Generic traversal function for λloc terms.

Proof. We show that K −→C,S K′ implies Kσ −→C,S K′σ.
The result for −�C,S then follows by induction on the reduction
sequence.

Whether K is of the form (M ; ·) or (E; M), decompose M
into the form E′[M ′]. The proposition then follows by induction
on M ′. The proof of each case is a simple matter of pushing
the substitutions down through the terms, applying the inductive
hypothesis, and pulling them back up the terms.

Translation from λloc to CSM
Figures 7–10 give a translation from the client-server λloc to CSM.
Figure 7 gives term-level translations (−)◦, (−)∗ and (−)†(−),
which generate values, client terms, and server terms, respectively.
The functions (−)∗ and (−)†(−) are only defined for λloc client
and server terms, respectively. The translation respects this and
applies these functions only to terms of the appropriate sort. The
translation assumes that the λloc program being translated is a client
term. This is in keeping with the client-server paradigm, where the
client initiates the interaction.

The resulting terms make use of function definitions for apply ,
tramp and cont . The necessary definition sets are produced by the
top-level translations, J−Kc,top and J−Ks,top, defined in Figures 9–
10, making use of the traversal function coll of Figure 8. Intuitively,
the apply functions handle all function applications, the cont func-
tion handles continuation application, and tramp is the trampoline,
which tunnels server-to-client requests through responses. For this
translation, let arg and k be special reserved variable names not
appearing in the source program.

The function coll traverses a term in a location-sensitive way: it
computes the union of fa(N) for each subterm N of M , where a
is the location of the context where N appears.

The bodies of the apply functions will have a case for each ab-
straction appearing in the source term. Each location will have a
case for both locations’ abstractions; for its own abstractions it gets

J−Kc,top : Mλloc → DCSM

JMKc,top = letrec apply(fun, arg) = case fun of JMKc,fun

and tramp(x) = case x of

| Call(f, x, k) →
tramp(req cont (k, apply(f, x))

| Return(x) → x

Jλcx.NKc,fun,aux
a = {pλcx.Nq(~y) → N∗{arg/x}}

where ~y = FV(λx.N)

Jλsx.NKc,fun,aux
a =

{pλsx.Nq(~y) → tramp(req apply (pλx.Nq(~y), arg, Top()))}
where ~y = FV(λx.N)

JMKc,fun,aux
a = {} when M 6= λax.N

JMKc,fun = collc (J−Kc,fun,aux
−) M

Figure 9. Top-level translation from λloc to CSM (client).

J−Ks,top : Mλloc → DCSM

JMKs,top = letrec apply(fun, arg, k) = case fun of JMKs,fun

and cont(k, arg) = case k of

JMKs,cont

| App(fun, k) → apply(fun, arg , k)

| Top() → Return(arg)

Jλsx.NKs,fun,aux
a = {pλsx.Nq(~y) → (N†k){arg/x}}

where ~y = FV(λx.N)

Jλcx.NKs,fun,aux
a =

{pλcx.Nq(~y) → Call(pλx.Nq(~y), arg , k)}
where ~y = FV(λx.N)

JMKs,fun,aux
a = {} when M 6= λax.N

JMKs,fun = collc (J−Ks,fun,aux
−) M

JLMKs,cont,aux
s = pMq(~y, k) → M†(App(arg , k))

JMKs,cont = collc (J−Ks,cont,aux
−) M

Figure 10. Top-level translation from λloc to CSM (server).

a full definition but for the other’s abstractions the case will be a
mere stub. This stub dispatches a request to the other location, to
apply the function to the given arguments. The cont function is
defined only on the server, because it arises from the CPS transfor-
mation; it has a case for evaluating the r.h.s. of each server-located
application, a case App for applying a function to an argument,
and a case for Top which is the continuation for returning a value
to the client. These correspond to the defunctionalizations of the
abstractions that appear in the classic CPS transformation. Recall
the translation for applications,

(LM)cpsK = Lcps(λf. Mcps(λx. fxK)),

and recall that we always need a “top-level” continuation λx.x to
extract a value from a CPS term; this corresponds to Top.

5 2008/4/2

Note that the traversals used in J−Kc,top and J−Ks,top pass to
coll an outermost current location of c; this reflects the requirement
that the source program is a client term.

The tramp function implements the trampoline. Its protocol is
as follows: when the client first needs to make a server call, it makes
a request wrapped in tramp. The server will either complete this
call itself, without any client calls, or it will have to make a client
call along the way. If it needs to make a client call, it returns a
specification of that call as a value Call(fun, arg , k), where fun
and arg specify the call and k is the current continuation. The
tramp function recognizes these constructions and evaluates the
necessary terms locally, then places another request to the server
to apply k to whatever value resulted, again wrapping the request
in tramp. When the server finally completes its original call, it
returns the value as x in the Return(x) construction; the tramp
function recognizes this as the result of the original server call, so
it simply returns x. As an invariant, the client always wraps its
server-requests in a call to tramp. This way it can always handle
Call responses.

3.2 Correctness of the translation from λloc to CSM
As with the defunctionalization formalization, we again need to
compare definition-sets. This time we define the containment re-
lation more generally: it holds just when the names defined in the
r.h.s. are all defined in the l.h.s. and upon inspecting correspond-
ing function definitions, either the bodies are identical or they are
both case analyses where the l.h.s. contains all the alternatives of
the r.h.s.

Definition 3 (Definition containment). We say a definition set D
contains D′, written D > D′, if for each definition f(~x) = M ′ in
D′ there is a definition f(~x) = M in D and either M = M ′ or
cases(f,D) ⊇ cases(f,D′).

Figure 11 defines a reverse translation for the λloc → CSM
translation. This translation allows us to retract results from CSM
into λloc. All of the functions used in this translation are parame-
terized on the definition sets C and S. To extract the alternatives
of case-expressions from function bodies, we use a function cases,
defined as follows:

Definition 4. Define cases(f,D) = A when

(f(x, ~y) = case x of A) ∈ D.

Note we are relying on the fact that each of our special func-
tions dispatches on the first of its arguments, whether that be the
argument fun for apply , or k for cont ; the dispatching argument is
conveniently always the first.

Lemma 4 (Retraction). When C > JMKc,top and S > JMKs,top,
we have for each M

(i) (M◦)•C,S = M ,
(ii) (M∗)?

C,S = M and
(iii) for each K in CSM: (M†K)‡C,S = K$MC,S

for those terms on which the relevant operation (respectively (−)◦,
(−)∗, or (−)†(−)) is defined.

Proof. By induction on M .
We omit the (C,S) argument to each of the reverse-translation

functions, since it never changes.

• Case x for (i). Trivial.
• Case c for (i). Trivial.
• Case λax.N for (i).

Let x′ be a fresh variable.

(−)•−,− : VCSM → DCSM → DCSM → Vλloc

c•C,S = c

x•C,S = x

(F (~V))•C,S = λcx.(N{x/arg})?
C,S{~V •

C,S/~y}
when (F (~y) → N) ∈ cases(apply , C) and N 6= tramp(req · ·)

where x fresh
(F (~V))•C,S = λsx.(N{x/arg})‡C,S{~V •

C,S/~y}
when (F (~y) → N) ∈ cases(apply ,S) and N 6= Call(·, ·, ·)

where x fresh

(−)?
−,− : MCSM|c → DCSM → DCSM → Mλloc

V ?
C,S = V •

C,S

x?
C,S = x

(apply(L, M))?
C,S = L?

C,SM?
C,S

(tramp(req cont (K, M)))?
C,S = K$

C,S(M?
C,S)

(tramp(req apply (V, W, K)))?
C,S

= (apply(V, W, K))‡C,S

(−)‡−,− : MCSM|s → DCSM → DCSM → Mλloc

(cont(K, V))‡C,S = K$
C,S(V •

C,S)

(apply(V, W, K))‡C,S = K$
C,S(V •

C,SW •
C,S)

(Call(V, W, K))‡C,S = K$
C,S(V •

C,SW •
C,S)

(−)$−,− : VCSM → DCSM → DCSM → Mλloc → Mλloc

k$
C,SN = N

(Top())$C,SN = N

(App(V, K))$C,SN = K$
C,S(V •

C,SN)

(F (~V , K))$C,SN =

(K$
C,S(M‡

C,S{~V •
C,S/~y})){N/arg}

when (F (~y) → M) ∈ cases(cont ,S)

and F 6= Top, F 6= App

Figure 11. Reverse translation from CSM to λloc.

Take cases on a.
Case a = s:

(λsx.N)◦
•

= (pλsx.Nq(~y))•

~y = FV(λx.N)

= λx′.((N†k){arg/x}{x′/arg})‡

= λx′.((N†k){x′/x})‡

= λx.(N†k)‡

= (ind. hyp.)
λx.N

huzzah!

6 2008/4/2

Case a = c:

(λcx.N)◦
•

= (pλcx.Nq(~y))•

~y = FV(λx.N)

= λx′.(N∗{arg/x}{x′/arg})?

= λx.N∗?

= (ind. hyp.)
λx.N

huzzah!
• Cases V for (−)∗.

V ∗?
= V ◦?

= V ◦•

= (ind. hyp.)
V

huzzah!
• Cases V for (ii).

(V †K)‡ = (cont(K, V ◦))‡

= K$(V ◦•)

= (ind. hyp.)

K$V

huzzah!
• Case LM for (ii).

((LM)∗)? = (apply(L∗, M∗)))?

= L∗?
M∗?

= (ind. hyp.)
LM

huzzah!
• Case LM for (iii).

((LM)†K)‡ = (L†(pMq(~y, K)))‡ ~y = FV(M)

= (ind. hyp.)

(pMq(~y, K))$(L)

= (K$((M†(App(arg , k)))‡)){L/arg}
= (ind. hyp.)

(K$((App(arg , k))$(M))){L/arg}
= (K$(arg M)){L/arg}
= K$(LM)

huzzah!

Lemma 5 (Substitution-(−)•). If cases(apply , C) and cases(apply ,S)
have a case for every constructor appearing in V and W then

V •
C,S{W •

C,S/x} = (V {W/x})•C,S .

Proof. By induction on M .

• Case c, x. Trivial.
• Case F (~V).

Recall that (F (~V))•C,S = (λax.N){~V •
C,S/~y}.

(λax.N){~V •
C,S/~y}{W •

C,S/x}
= (λax.N){~V •

C,S{W •
C,S/x}/~y}

= (ind. hyp.)

(λax.N){(~V {W/x})•C,S/~y}
= (F (~V {W/x}))•C,S

= (F (~V){W/x})•C,S

huzzah!

Lemma 6 (Simulation). For any term M and substitution σ in λloc,
together with definition sets C and S such that C > JMKc,top and
S > JMKs,top, we have the following implications:

(i) if M∗σ −�C,S V
then Mσ•

C,S ⇓c V •
C,S and

(ii) if tramp([]); (M†k)σ
−�C,S tramp([]); cont(k, V)

then Mσ•
C,S ⇓s V •

C,S .

Proof. By induction on the length of the CSM reduction sequence.
Throughout the induction σ is kept general.

Throughout this proof, we make free use of Observation 2 and
Lemma 3, showing (respectively) that we can place a reduction
inside an evaluation context to get another reduction, and that we
can apply a substitution to a reduction to get another reduction.

In this proof we omit the definitions C, S on reductions, because
they are unchanged through each reduction sequence and on the
reverse-translation functions because they are unchanged through-
out the recursive calls thereof.

Take cases on the structure of M and split the conclusion into
cases for (i) and (ii); in the case of an application LM , take cases
on whether L reduces to a client abstraction λcx.N or to a server
abstraction λsx.N :

• Case LM for (i) where L reduces to a client abstraction.
By hypothesis, we have (LM)∗σ −� V . Recall (LM)∗σ =
apply(L∗σ, M∗σ). It must be that M∗σ reduces to a value; call
it W . It must be that L∗σ reduces to a value of the form F (~y).
Let N be such that (F (~y) → N∗{arg/x}) ∈ cases(apply , C).
(We know it has this form because the cases of apply are in
the image of the J−Kc,fun translation.) Let x be a fresh variable.
The reduction follows:

(LM)∗σ = apply(L∗σ, M∗σ)

−� apply(F (~V), M∗σ)

−� apply(F (~V), W)

−� N∗{~V /~y, W/x}
−� V

We have N∗{~V /~y, W/x} = N∗{~V /~y}{W/x} due to the
freshness of x.
Applying the inductive hypothesis three times, we get

Lσ• ⇓c (F (~V))• = λcx.N{~V •/~y},
Mσ• ⇓c W • and

N{~V •/~y}{W •/x} ⇓c V •.

The judgment (LM)σ• ⇓c V • follows by BETA.
• Case LM for (i) where L reduces to a server abstraction.

By hypothesis, we have (LM)∗σ −� V . Recall (LM)∗σ =
apply(L∗σ, M∗σ). It must be that M∗σ reduces to a value; call

7 2008/4/2

it W . It must be that L∗σ reduces to a value of the form F (~y).
Let N be such that

(F (~y) → (N†k){arg/x})) ∈ cases(apply,S) and
(F (~y) → tramp(req apply (F (~y), arg ,Top())))

∈ cases(apply , C).

Let x be a fresh variable. The reduction follows:

(LM)∗σ = apply(L∗σ, M∗σ)

−� apply(F (~V), W)

−� tramp(req apply ; (F (~V), W,Top()))

−� tramp([]); apply(F (~V), W,Top())

−� tramp([]); (N†(Top())){~V /~y, W/x}
−� tramp([]); cont(Top(), V)

−� V

Applying the inductive hypothesis three times, we get

Lσ• ⇓c (F (~V))• = λsx.(N†k)‡{~V •/~y}
= λsx.N{~V •/~y},

Mσ• ⇓c W • and

N{~V •/~y, W •/x} ⇓s V •.

Also N{~V •/~y, W •/x} = N{~V •/~y}{W •/x} because of the
freshness of x.
The judgment (LM)σ• ⇓c V • follows by BETA. huzzah!

• Case LM for (ii) where L reduces to a server abstraction.
By hypothesis, we have

tramp([]); L†(pMq(~z, k))σ

−� tramp([]); cont(K, V).

Recall that (LM)†k = L†(pMq(~z, k)), letting ~z = FV(M).
It must be that (M†k)σ reduces to a term of the form cont(k, W).
It must be that (L†k)σ reduces to a term of the form cont(k,F (~y)).
Let N be such that (F (~y) → (N†k){arg/x})) ∈ cases(apply,S).
Let x be a fresh variable. The reduction follows:

tramp([]); ((LM)†k)σ

= tramp([]); (L†(pMq(~z, k)))σ

−� tramp([]); cont((pMq(~z, k))σ,F (~V))

= tramp([]); cont(pMq(~zσ, k),F (~V))

−→ tramp([]); (M†(App(arg, k))){F (~V)/arg, ~zσ/~z}
= tramp([]); (M†k){App(F (~V), k)/k, ~zσ/~z}
−� tramp([]); cont(App(F (~V), k), W)

−→ tramp([]); apply(F (~V), W, k)

−→ tramp([]); (N†k){~V /~y, W/x}
−� tramp([]); cont(k, V)

Also, because x is fresh, we have

N{~V •/~y, W •/x} = N{~V •/~y}{W •/x}.
Applying the inductive hypothesis three times, we get

Lσ• ⇓s (F (~V))• = λsx.(N†k)‡{~V •/~y}
= λsx.N{~V •/~y},

Mσ• ⇓s W • and

N{~V •/~y}{W •/x} ⇓s V •.

The judgment (LM)σ• ⇓s V • follows by BETA. huzzah!

• Case LM for (ii) where L reduces to a client abstraction.
By hypothesis, we have

tramp([]); (L†(pMq(~z, k)))σ

−� tramp([]); cont(k, V).

Recall that (LM)†k = L†(pMq(~z, k)), letting ~z = FV(M).
It must be that (M†k)σ reduces to a term of the form cont(k, W).
It must be that (L†k)σ reduces to a term of the form cont(k,F (~y)).
Let N be such that (F (~y) → N∗{arg/x}) ∈ cases(apply , C)
and ~y be the variables s.t. F (~y) → N∗{arg/x} in the client-
side def. of apply . Also we have (F (~y) → Call(F (~y), arg , k)) ∈
cases(apply ,S). Let x be a fresh variable. The reduction fol-
lows:

((LM)†k)σ

= tramp([]); (L†(pMq(~z, k)))σ

−� tramp([]); cont(pMq(~zσ, k),F (~V))

−→ tramp([]); (M†(App(arg, k)))

{~zσ/~z,F (~V)/arg}
= tramp([]); (M†k){σ, App(F (~V), k)/k}
−� tramp([]); cont(App(F (~V), k), W)

−→ tramp([]); apply(F (~V), W, k)

−→ tramp([]); Call(F (~V), W, k)

−→ tramp(Call(F (~V), W, k))

−→ tramp(req cont (k, apply(F (~V), W)))

−→ tramp(req cont (k, N∗{~V /~y, W/x}))
−� tramp(req cont (k, V))

−� tramp([]); cont(k, V)

Because of the freshness of x, we have N{~V •/~y, W •/x} =

N{~V •/~y}{W •/x}.
Applying the inductive hypothesis three times, we get

Lσ• ⇓s (F (~V))•

= λcx.N∗?{~V •/~y}
= λcx.N{~V •/~y},

Mσ• ⇓s W • and

N{~V •/~y}{W •/x} ⇓s V •.

The judgment (LM)σ• ⇓s V • follows by BETA. huzzah!
• Case V . Using the substitution lemma (Lemma 5) and the

inverseness of (−)• to (−)◦, we get (V ◦σ)• = V σ•.
In both cases, for server and client, the reduction is of zero
steps:
For client, V ∗σ −� V ◦σ. The judgment V σ• ⇓c V σ• follows
by VALUE.
For server,

tramp([]); (V †k)σ

−� tramp([]); cont(k, V ◦σ).

The judgment V σ• ⇓s V σ• follows by VALUE.

4. A richer calculus
As a hypothetical language feature, we consider detaching location
annotations from abstractions, permitting any term to be wrapped
in location brackets.

8 2008/4/2

Syntax

constants c
variables x
locations a, b

terms L, M, N ::= 〈M〉a | λx.N | LM | V
values V, W ::= λax.N | x | c

Semantics (big-step)

M ⇓a V

V ⇓a V (VALUE)

λx.N ⇓a λax.N (ABSTR)

L ⇓a λbx.N M ⇓a W N{W/x} ⇓b V

LM ⇓a V
(BETA)

M ⇓b V

〈M〉b ⇓a V
(CLOTHE)

Figure 12. The bracket-located lambda calculus, λ〈〉 .

J〈M〉bKa = (λbx.JMKb)() x fresh
Jλx.NKa = λax.JNKa

Jλbx.NKa = λbx.JNKb

JxKa = x

JcKa = c

Figure 13. Translation from λ〈〉 to λloc.

The calculus λ〈〉 in Figure 12 adds location brackets 〈·〉a to
λloc and allows unannotated λ-abstractions. The interpretation of a
bracketed expression 〈M〉a in a location-b context is a computation
that evaluates the term M at location a and returns the value to
the location b. Note that unannotated λ-abstractions are not treated
as values: all values must be mobile, and yet the interpretation
of an unannotated abstraction is that its body will be executed at
the location corresponding to the nearest containing annotation.
Thus the abstraction itself must get annotated with this location,
and the ABSTR rule attaches this annotation when it is not already
provided.

Figure 13 gives a translation from λ〈〉 to λloc. Bracketed terms
〈M〉a are simply treated as applications of located thunks; and as
expected, unannotated abstractions λx.N inherit their annotation
from the nearest containing brackets.

To argue that this translation is correct in the same say as the
previous translation, we would need a reverse translation, but there
is a problem: the translation is not injective. We could resort to
some hack to distinguish the terms, or we could try to prove a looser
relationship, perhaps using a simulation relation. We don’t provide
a correctness proof here, but hope that the given interpretation is
enough to persuade the reader that the translation is reasonable.

Location brackets such as these may be an interesting language
feature, allowing programmers to designate the location of compu-
tation of arbitrary terms.

5. Related Work
Location-aware languages Lambda 5 (Murphy et al. 2004; Mur-
phy 2007) is a small calculus with constructs for controlling the
location and movement of terms and values. Lambda 5 offers fine
control over the runtime movements of code and data, whereas our
calculus uses the simple scope discipline of λ-binding and is prof-
ligate with data movements. Like ours, the translation of Lambda 5
to an operational model also involves a CPS translation; and where
we have used defunctionalization, it uses closure conversion.

Neubauer and Thiemann give an algorithm for splitting a
location-annotated sequential program into separate concurrent
programs that communicate over channels (Neubauer and Thie-
mann 2005). They note that “Our framework is applicable to [the
special case of a web application] given a suitable mediator that
implements channels on top of HTTP.” The trampoline technique
we have given provides that mediator. Neubauer and Thiemann use
session types to show that the various processes’ use of channels
are type-correct over the course of the interaction. Such a type
analysis could be profitably applied to λloc.

For security purposes, Zdancewic, Grossman and Morrissett
developed a calculus with brackets (Zdancewic et al. 1999), which
served as the model for our λ〈〉 . Their results show how a type
discipline, with type translations taking place at the brackets, can
be used to prove that certain principals (analogous to locations)
cannot inspect certain values passed across an interface. Such a
discipline could be applied to our calculus, to address information-
flow security between client and server.

Defunctionalization After first being introduced in a lucid but in-
formal account by John Reynolds (Reynolds 1972), defunctional-
ization has been formalized and verified in a typed setting in several
papers (Bell and Hook 1994; Bell et al. 1997; Pottier and Gauthier
2004; Nielsen 2000; Banerjee et al. 2001). These formalizations are
complicated by the types; we trade type safety for economy of pre-
sentation. Danvy and Nielsen (2001) explore a number of uses and
interesting relationships provided by defunctionalization.

Defunctionalization is very similar to lambda-lifting (Johnsson
1985), the essential difference being that lambda-lifting doesn’t
reify a closure as a denotable value. Thus it would not be applicable
here, where we need to serialize the function to send across the
wire.

As noted in the introduction, Murphy (2007) uses closure-
conversion in place of our defunctionalization; the distinction here
is that the converted closures still contain code pointers, rather than
using a stable name to identify each abstraction. These code point-
ers are only valid as long as the server is actively running, and thus
it may be difficult to achieve statelessness with such a system.

Continuation-Passing The continuation-passing transformation
has a long and storied history, going back to the 1970s (Fischer
1972; Plotkin 1975). Our treatment owes much to the presentation
and results of “A Reflection on Call-By-Value” (Sabry and Wadler
1997).

6. Conclusions and Future Work
We’ve shown how to compile a located λ-calculus to an asymmetri-
cal, stateless client-server machine by using a CPS-transformation
and “trampoline” effectively to represent the server’s call stack as
a value on the client. In the future, we hope to extend the source
calculus by adding features such as exceptions and generalizing by
allowing each annotation to consist of a set of permissible locations
(rather than a single one). We also hope to implement the “richer
calculus” with location brackets in the Links language.

The present work begins with a source calculus with location
annotations, but the activity of annotation may burden the program-

9 2008/4/2

mer. Considering that some resources are available only at some lo-
cations, it should be possible to automatically assign location anno-
tations so as to reduce communication costs, rather than requiring
the programmer to carefully annotate the program. Because the dy-
namic location behavior of a program may be hard to predict, and
because there are a variety of possible communication and compu-
tation cost models, and perhaps other issues to consider, such as
security, the problem is multifaceted and would be interesting to
explore.

References
Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. Design and cor-

rectness of program transformations based on control-flow analysis. In
TACS ’01, volume 2215 of Lecture Notes in Computer Science, pages
420–447. Springer, 2001.

Jeffrey M. Bell and James Hook. Defunctionalization of typed programs.
Technical report, Oregon Graduate Institute, 1994.

Jeffrey M. Bell, Françoise Bellegarde, and James Hook. Type-driven de-
functionalization. SIGPLAN Not., 32(8):25–37, 1997.

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links: Web
programming without tiers. In Formal Methods for Components and
Objects, 2006.

Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In
PPDP ’01, pages 162–174. ACM, 2001.

Michael J. Fischer. Lambda calculus schemata. SIGACT News, (14):104–
109, 1972.

Thomas Johnsson. Lambda lifting: transforming programs to recursive
equations. In Proc. of a conference on Functional programming lan-
guages and computer architecture, pages 190–203, New York, NY, USA,
1985. Springer-Verlag New York, Inc. ISBN 3-387-15975-4.

Tom Murphy, VII. Modal Types for Mobile Code. PhD thesis, Carnegie
Mellon University, 2007.

Tom Murphy, VII, Karl Crary, Robert Harper, and Frank Pfenning. A sym-
metric modal lambda calculus for distributed computing. In LICS ’04,
pages 286–295, Washington, DC, USA, 2004. IEEE Computer Society.

Matthias Neubauer and Peter Thiemann. From sequential programs to
multi-tier applications by program transformation. In POPL ’05, pages
221–232, New York, NY, USA, 2005. ACM Press.

Lasse R. Nielsen. A denotational investigation of defunctionalization.
Technical Report BRICS RS-00-47, DAIMI, Department of Computer
Science, University of Aarhus, December 2000.

Gordon Plotkin. Call-by-name, call-by-value, and the lambda calculus.
Theoretical Computer Science, 1:125–159, 1975.

François Pottier and Nadji Gauthier. Polymorphic typed defunctionaliza-
tion. In POPL ’04, pages 89–98, New York, NY, USA, 2004. ACM.

John C. Reynolds. Definitional interpreters for higher-order program-
ming languages. In ACM ’72: Proceedings of the ACM annual con-
ference, pages 717–740, New York, NY, USA, 1972. ACM Press. doi:
http://doi.acm.org/10.1145/800194.805852.

Amr Sabry and Philip Wadler. A reflection on call-by-value. ACM Trans.
Program. Lang. Syst., 19(6):916–941, 1997.

Steve Zdancewic, Dan Grossman, and Greg Morrisett. Principals in pro-
gramming languages: a syntactic proof technique. In ICFP ’99, pages
197–207, New York, NY, USA, 1999. ACM Press.

10 2008/4/2

