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“Where a mathematical reasoning can be had, it’s as

great folly to make use of any other, as to grope for a

thing in the dark, when you have a candle standing by

you.”

— Arbuthnot



Part I

MSL by example



“Mathematicians are like Frenchmen: whatever you say

to them they translate into their own language and forth-

with it is entirely different.”

— Goethe



Data in XML

<bib>

<book year="1999">

<title>Data on the Web</title>

<author>Abiteboul</author>

<author>Buneman</author>

<author>Suciu</author>

</book>

<book year="2002">

<title>XML Query</title>

<author>Fernandez</author>

<author>Suciu</author>

</book>

</bib>



Data in MSL

bib [

book [

@year [ 1999 ],

title [ "Data on the Web" ],

author [ "Abiteboul" ],

author [ "Buneman" ],

author [ "Suciu" ]

],

book [

@year [ 2002 ],

title [ "XML Query" ],

author [ "Fernandez" ],

author [ "Suciu" ]

]

]



Elements in Schema

<element name="bib">

<complexType>

<sequence>

<element name="book"

minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>

<element name="book">

<complexType>

<sequence>

<element name="title" type="xsi:string"/>

<element name="year" type="xsi:integer"/>

<element name="author" type="xsi:string"

minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>

</element>



Elements in MSL

component(

sort = element,

name = bib,

content =

bib [ book* ]

)

component(

sort = element,

name = book,

content =

book [

title [ xsi:string ],

year [ xsi:integer ],

author [ xsi:string ]+

]

)



Elements and types in Schema

<element name="bib" type="bibContent"/>

<complexType name="bibContent">

<sequence>

<element name="book"

minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>

<element name="book" type="bookContent"/>

<complexType name="bookContent">

<sequence>

<element name="title" type="xsi:string"/>

<element name="year" type="xsi:integer"/>

<element name="author" type="xsi:string"

minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>



Elements and types in MSL

component( component(

sort = element, sort = element

name = bib, name = book,

content = content =

bib [ bibContent ] book [ bookContent ]

) )

component( component(

sort = type, sort = type,

name = bibContent, name = bookContent,

content = content =

book* title [ xsi:string ],

) year [ xsi:integer ],

author [ xsi:string ]+

)



Derivation and abstraction in Schema

<complexType name="u" final="extension" abstract="false">

<restriction base="t">

<choice>

<element name="d"/>

<element name="e"/>

</choice>

</restriction>

</complex>



Derivation and abstraction in MSL

component(

sort = type,

name = u,

base = t,

derivation = restriction,

refinement = { restriction },
abstract = false,

content =

d | e

)



Part II

Syntax



“I never come across one of Laplace’s ‘Thus it plainly

appears’ without feeling sure that I have hours of hard

work in front of me.”

— Bowditch



Syntax

Data d ::= @a[d] attribute
| e[d] element
| d1 , d2 sequence
| () empty sequence

Groups g ::= @a[g] attribute
| e[g] element
| g1 , g2 sequence
| g1 | g2 choice
| g* repetition
| () empty
| ∅ none



Abbreviations

g? = g | () optional

g+ = g , g* one or more

g{m+1,n+1} = g , g{m,n} counting
g{0,n+1} = (g , g{0,n})?
g{0,0} = ()

g{m+1,∞} = g , g{m,*}

g{0,∞} = g*



Part III

Inference rules



Modus ponens Frege, 1879

Gentzen, 1934

` B → A ` B
` A

(→-I)



Frege’s Begriffschrift, 1879



Inference rules
d ∈ g

e[d] ∈ e[g]
(element)

d1 ∈ g1 d2 ∈ g2

d1 , d2 ∈ g1 , g2
(sequence)

() ∈ ()
(empty)

d ∈ g1

d ∈ g1 | g2
(choice 1)

d ∈ g2

d ∈ g1 | g2
(choice 2)

d1 ∈ g d2 ∈ g*
d1 , d2 ∈ g*

(repeat 1)

() ∈ g*
(repeat 2)



How typing works: element and sequence

"Data on the Web" ∈ String

elt

title["Data on the Web"] ∈ title[String]

1999 ∈ Integer

elt

year[1999] ∈ year[Integer]

seq

title["Data on the Web"],year[1999] ∈ title[String],year[Integer]

seq

book[title["Data on the Web"],year[1999]] ∈ book[title[String],year[Integer]]



How typing works: repetition

"A" ∈ String

elt

auth["A"] ∈ auth[String]

"B" ∈ String

elt

auth["B"] ∈ auth[String]

rep2

() ∈ auth[String]*

rep1

(auth["B"],()) ∈ auth[String]*

rep1

auth["A"],(auth["B"],()) ∈ auth[String]*

auth["A"],(auth["B"],())
= (auth["A"],auth["B"]),()
= auth["A"],auth["B"]



Part IV

Derivation by restriction



Dilbert



“Besides it is an error to believe that rigor in the proof is

the enemy of simplicity. On the contrary we find it con-

firmed by numerous examples that the rigorous method

is at the same time the simpler and the more easily com-

prehended. The very effort for rigor forces us to find out

simpler methods of proof.”

— Hilbert



Derivation by restriction

We write g<:res g′ if the instances of group g are a subset of the

instance of group g′. That is, g <:res g′ if for every document d

such that d ∈ g it is also the case that d ∈ g′.



Derivation by restriction

We write g<:res g′ if the instances of group g are a subset of the

instance of group g′. That is, g <:res g′ if for every document d

such that d ∈ g it is also the case that d ∈ g′.

∀d. d ∈ g ⇒ d ∈ g′

g <:res g′
(restriction)



Part V

Conclusions



What’s in MSL

- Model groups and validity.

- Derivation by extension and restriction.

- Interleaving (all groups).

- Attributes.

- Normalized names.



What’s not in MSL

- Identity constraints.

- The mapping from XML Schema syntax into components.

- Skip and lax wildcard validation.

- The unambiguity restriction on content models.

- The sibling element constraint.

- The xsi:nil attribute.

- A check that abstract components are not instantiated.

- Support for form and form default.

- Support for final, block, use, and value.

- The Post Schema Validation Infoset.

- Atomic datatypes.



“Much intellectual mediocrity can be and actually is con-

cealed by some technique sufficiently recondite to dis-

courage outside criticism.”

— George Sarton



“Never express yourself more clearly than you are able to

think.”

— Niels Bohr


