
MSL:

A model for W3C XML Schema

Allen Brown, Microsoft

Matthew Fuchs, Commerce One

Jonathan Robie, Software AG

Philip Wadler, Avaya Labs

W3C XML Schema Formalism

(W3C working draft)

(editors)

Allen Brown, Microsoft

Matthew Fuchs, Commerce One

Jonathan Robie, Software AG

Philip Wadler, Avaya Labs

“Where a mathematical reasoning can be had, it’s as

great folly to make use of any other, as to grope for a

thing in the dark, when you have a candle standing by

you.”

— Arbuthnot

Part I

MSL by example

“Mathematicians are like Frenchmen: whatever you say

to them they translate into their own language and forth-

with it is entirely different.”

— Goethe

Data in XML

<bib>

<book year="1999">

<title>Data on the Web</title>

<author>Abiteboul</author>

<author>Buneman</author>

<author>Suciu</author>

</book>

<book year="2002">

<title>XML Query</title>

<author>Fernandez</author>

<author>Suciu</author>

</book>

</bib>

Data in MSL

bib [

book [

@year [1999],

title ["Data on the Web"],

author ["Abiteboul"],

author ["Buneman"],

author ["Suciu"]

],

book [

@year [2002],

title ["XML Query"],

author ["Fernandez"],

author ["Suciu"]

]

]

Elements in Schema

<element name="bib">

<complexType>

<sequence>

<element name="book"

minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>

<element name="book">

<complexType>

<sequence>

<element name="title" type="xsi:string"/>

<element name="year" type="xsi:integer"/>

<element name="author" type="xsi:string"

minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>

</element>

Elements in MSL

component(

sort = element,

name = bib,

content =

bib [book*]

)

component(

sort = element,

name = book,

content =

book [

title [xsi:string],

year [xsi:integer],

author [xsi:string]+

]

)

Elements and types in Schema

<element name="bib" type="bibContent"/>

<complexType name="bibContent">

<sequence>

<element name="book"

minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>

<element name="book" type="bookContent"/>

<complexType name="bookContent">

<sequence>

<element name="title" type="xsi:string"/>

<element name="year" type="xsi:integer"/>

<element name="author" type="xsi:string"

minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>

Elements and types in MSL

component(component(

sort = element, sort = element

name = bib, name = book,

content = content =

bib [bibContent] book [bookContent]

))

component(component(

sort = type, sort = type,

name = bibContent, name = bookContent,

content = content =

book* title [xsi:string],

) year [xsi:integer],

author [xsi:string]+

)

Derivation and abstraction in Schema

<complexType name="u" final="extension" abstract="false">

<restriction base="t">

<choice>

<element name="d"/>

<element name="e"/>

</choice>

</restriction>

</complex>

Derivation and abstraction in MSL

component(

sort = type,

name = u,

base = t,

derivation = restriction,

refinement = { restriction },
abstract = false,

content =

d | e

)

Part II

Syntax

“I never come across one of Laplace’s ‘Thus it plainly

appears’ without feeling sure that I have hours of hard

work in front of me.”

— Bowditch

Syntax

Data d ::= @a[d] attribute
| e[d] element
| d1 , d2 sequence
| () empty sequence

Groups g ::= @a[g] attribute
| e[g] element
| g1 , g2 sequence
| g1 | g2 choice
| g* repetition
| () empty
| ∅ none

Abbreviations

g? = g | () optional

g+ = g , g* one or more

g{m+1,n+1} = g , g{m,n} counting
g{0,n+1} = (g , g{0,n})?
g{0,0} = ()

g{m+1,∞} = g , g{m,*}

g{0,∞} = g*

Part III

Inference rules

Modus ponens Frege, 1879

Gentzen, 1934

` B → A ` B
` A

(→-I)

Frege’s Begriffschrift, 1879

Inference rules
d ∈ g

e[d] ∈ e[g]
(element)

d1 ∈ g1 d2 ∈ g2

d1 , d2 ∈ g1 , g2
(sequence)

() ∈ ()
(empty)

d ∈ g1

d ∈ g1 | g2
(choice 1)

d ∈ g2

d ∈ g1 | g2
(choice 2)

d1 ∈ g d2 ∈ g*
d1 , d2 ∈ g*

(repeat 1)

() ∈ g*
(repeat 2)

How typing works: element and sequence

"Data on the Web" ∈ String

elt

title["Data on the Web"] ∈ title[String]

1999 ∈ Integer

elt

year[1999] ∈ year[Integer]

seq

title["Data on the Web"],year[1999] ∈ title[String],year[Integer]

seq

book[title["Data on the Web"],year[1999]] ∈ book[title[String],year[Integer]]

How typing works: repetition

"A" ∈ String

elt

auth["A"] ∈ auth[String]

"B" ∈ String

elt

auth["B"] ∈ auth[String]

rep2

() ∈ auth[String]*

rep1

(auth["B"],()) ∈ auth[String]*

rep1

auth["A"],(auth["B"],()) ∈ auth[String]*

auth["A"],(auth["B"],())
= (auth["A"],auth["B"]),()
= auth["A"],auth["B"]

Part IV

Derivation by restriction

Dilbert

“Besides it is an error to believe that rigor in the proof is

the enemy of simplicity. On the contrary we find it con-

firmed by numerous examples that the rigorous method

is at the same time the simpler and the more easily com-

prehended. The very effort for rigor forces us to find out

simpler methods of proof.”

— Hilbert

Derivation by restriction

We write g<:res g′ if the instances of group g are a subset of the

instance of group g′. That is, g <:res g′ if for every document d

such that d ∈ g it is also the case that d ∈ g′.

Derivation by restriction

We write g<:res g′ if the instances of group g are a subset of the

instance of group g′. That is, g <:res g′ if for every document d

such that d ∈ g it is also the case that d ∈ g′.

∀d. d ∈ g ⇒ d ∈ g′

g <:res g′
(restriction)

Part V

Conclusions

What’s in MSL

- Model groups and validity.

- Derivation by extension and restriction.

- Interleaving (all groups).

- Attributes.

- Normalized names.

What’s not in MSL

- Identity constraints.

- The mapping from XML Schema syntax into components.

- Skip and lax wildcard validation.

- The unambiguity restriction on content models.

- The sibling element constraint.

- The xsi:nil attribute.

- A check that abstract components are not instantiated.

- Support for form and form default.

- Support for final, block, use, and value.

- The Post Schema Validation Infoset.

- Atomic datatypes.

“Much intellectual mediocrity can be and actually is con-

cealed by some technique sufficiently recondite to dis-

courage outside criticism.”

— George Sarton

“Never express yourself more clearly than you are able to

think.”

— Niels Bohr

