
As Natural as 0, 1, 2

Philip Wadler

University of Edinburgh

wadler@inf.ed.ac.uk



Haskell
Hindley-Milner types

Java
Girard-Reynolds types

XML
Operational semantics



Part 0

Counting starts at zero



Carle



Carle



Carle



Carle



Anno



Anno



Anno



Anno



Zero appears in India, 7th century CE



Counting in Japanese



Part 1

Aliens



How to talk to aliens



Independence Day



A universal programming language?



Part 2

Boolean algebra



George Boole (1815–1864)



Boole 1847: Mathematical analysis of logic



Boole 1854: Laws of Thought



Part 3

Frege’s Begriffsschrift



Gotlob Frege (1848–1925)



Frege 1879



Frege 1879



Frege 1879



Frege 1879



Frege 1879



Frege in modern notation

` B → A ` B

` A

` A → (B → A)

` (C → (B → A)) → ((C → B) → (C → A))

` (C → (B → A)) → (B → (C → A))

` (¬(¬A)) → A

` A → (¬(¬A))

A & B = ¬(A → (¬B))

A ∨B = (¬A) → B



Part 4

Gentzen’s Natural Deduction



Gerhard Gentzen (1909–1945)



Gentzen 1934: Natural Deduction



Gentzen 1934: Natural Deduction



Gentzen 1934: Sequent Calculus



Gentzen 1934: Natural Deduction

Id
A ` A

Γ, A ` B
→-I

Γ ` A → B

Γ ` A → B ∆ ` A
→-E

Γ, ∆ ` B

Γ ` A ∆ ` B
&-I

Γ, ∆ ` A & B

Γ ` A & B
&-E0

Γ ` A

Γ ` A & B
&-E1

Γ ` B



Simplifying proofs

Id
A ` A··· u

Γ, A ` B
→-I

Γ ` A → B

··· t

∆ ` A
→-E ⇒

··· t

∆ ` A··· u

Γ,∆ ` B
Γ,∆ ` B

··· t

Γ ` A

··· u

∆ ` B
&-I

Γ,∆ ` A & B
&-E0 ⇒

··· t

Γ ` A
Γ,∆ ` A



A proof

Id
B & A ` B & A

&-E1
B & A ` A

Id
B & A ` B & A

&-E0
B & A ` B

&-I
B & A ` A & B

→-I
` (B & A) → (A & B)

Id
B ` B

Id
A ` A

&-I
A, B ` B & A

→-E
A, B ` A & B



Simplifying a proof

Id
B & A ` B & A

&-E1
B & A ` A

Id
B & A ` B & A

&-E0
B & A ` B

&-I
B & A ` A & B

→-I
` (B & A) → (A & B)

Id
B ` B

Id
A ` A

&-I
A, B ` B & A

→-E
A, B ` A & B

⇓
Id

B ` B
Id

A ` A
&-I

A, B ` B & A
&-E1

A, B ` A

Id
B ` B

Id
A ` A

&-I
A, B ` B & A

&-E0
A, B ` B

&-I
A, B ` A & B



Simplifying a proof

Id
B ` B

Id
A ` A

&-I
A, B ` B & A

&-E1
A, B ` A

Id
B ` B

Id
A ` A

&-I
A, B ` B & A

&-E0
A, B ` B

&-I
A, B ` A & B

⇓
Id

A ` A
Id

B ` B
&-I

A, B ` A & B



Part 5

Church’s Lambda Calculus



Alonzo Church (1903–1995)



Church 1932: Lambda Calculus



Church 1932: Lambda Calculus



Church 1932: Lambda Calculus



Church 1932: Lambda Calculus

(λx. x + x) 2 ⇒ 2 + 2



Church-Rosser Theorem

(λx. x + x) ((λy. y + 1) 1)

↙ ↘
(λx. x + x) (1 + 1) ((λy. y + 1) 1) + ((λy. y + 1) 1)

↘ ↙
(1 + 1) + (1 + 1)



Reduction rules

(λx. u) t ⇒ u[t/x]

〈t, u〉0 ⇒ t

〈t, u〉1 ⇒ u



Reducing a term

(λz. 〈z1, z0〉) 〈y, x〉
⇓

〈〈y, x〉1, 〈y, x〉0〉
⇓

〈x, y〉



Church 1940: Typed Lambda Calculus

Id
x : A ` x : A

Γ, x : A ` u : B
→-I

Γ ` λx. u : A → B

Γ ` s : A → B ∆ ` t : A
→-E

Γ, ∆ ` s t : B

Γ ` t : A ∆ ` u : B
&-I

Γ, ∆ ` 〈t, u〉 : A & B

Γ ` s : A & B
&-E0

Γ ` s0 : A

Γ ` s : A & B
&-E1

Γ ` s1 : B



Simplifying programs

Id
x : A ` x : A··· u

Γ, x : A ` u : B
→-I

Γ ` λx. u : A → B

··· t

∆ ` t : A
→-E ⇒

··· t

∆ ` t : A··· u

Γ,∆ ` u[t/x] : B
Γ,∆ ` (λx. u) t : B

··· t

Γ ` t : A

··· u

∆ ` u : B
&-I

Γ,∆ ` 〈t, u〉 : A & B
&-E0 ⇒

··· t

Γ ` t : A
Γ,∆ ` 〈t, u〉0 : A



A program

Id
z:B & A ` z:B & A

&-E1

z:B & A ` z1:A

Id
z:B & A ` z:B & A

&-E0

z:B & A ` z0:B
&-I

z:B & A ` 〈z1, z0〉:A & B
→-I

` λz. 〈z1, z0〉:(B & A) → (A & B)

Id
y:B ` y:B

Id
x:A ` x:A

&-I
x:A, y:B ` 〈y, x〉:B & A

→-E
x:A, y:B ` (λz. 〈z1, z0〉) 〈y, x〉:A & B



Simplifying a program

Id
z:B & A ` z:B & A

&-E1

z:B & A ` z1:A

Id
z:B & A ` z:B & A

&-E0

z:B & A ` z0:B
&-I

z:B & A ` 〈z1, z0〉:A & B
→-I

` λz. 〈z1, z0〉:(B & A) → (A & B)

Id
y:B ` y:B

Id
x:A ` x:A

&-I
x:A, y:B ` 〈y, x〉:B & A

→-E
x:A, y:B ` (λz. 〈z1, z0〉) 〈y, x〉:A & B

⇓
Id

y:B ` y:B
Id

x:A ` x:A
&-I

x:A, y:B ` 〈y, x〉:B & A
&-E1

x:A, y:B ` 〈y, x〉1:A

Id
y:B ` y:B

Id
x:A ` x:A

&-I
x:A, y:B ` 〈y, x〉:B & A

&-E0

x:A, y:B ` 〈y, x〉0:B
&-I

x:A, y:B ` 〈〈y, x〉1, 〈y, x〉0〉:A & B



Simplifying a program

Id
y:B ` y:B

Id
x:A ` x:A

&-I
x:A, y:B ` 〈y, x〉:B & A

&-E1

x:A, y:B ` 〈y, x〉1:A

Id
y:B ` y:B

Id
x:A ` x:A

&-I
x:A, y:B ` 〈y, x〉:B & A

&-E0

x:A, y:B ` 〈y, x〉0:B
&-I

x:A, y:B ` 〈〈y, x〉1, 〈y, x〉0〉:A & B

⇓
Id

x:A ` x:A
Id

y:B ` y:B
&-I

x:A, y:B ` 〈x, y〉:A & B



Part 6

The Curry-Howard Isomorphism



Haskell Curry (1900–1982) / William Howard



Howard 1980



Howard 1980



Howard 1980



Part 7

Programs and Proofs



Programs

• Lisp (McCarthy, 1960)

• Iswim (Landin, 1966)

• Scheme (Steele and Sussman, 1975)

• ML (Milner, Gordon, Wadsworth, 1979)

• Miranda (Turner, 1985)

• Haskell (Hudak, Peyton Jones, and Wadler, 1987)

• O’Caml (Leroy, 1996)



Proofs

• Automath (de Bruijn, 1970)

• Type Theory (Martin Löf, 1975)

• ML/LCF (Milner, Gordon, and Wadsworth, 1979)

• HOL (Gordon and Melham, 1988)

• CoQ (Huet and Coquand, 1988)

• Isabelle (Paulson, 1993)



Proofs/Programs

• Hindley/Milner (1969/1975)

• Girard/Reynolds (1972/1975)

• Linear Logic/Syntactic Control of Interference (1985)

• Classical Logic/Continuation-Passing Style (1990)

• And dual to Or/Call-by-value dual to Call-by-name (2000)



Part 8

Programs and Proofs on the Web



Java (Gosling, Joy, and Steele, 1996)



Proof-Carrying Code (Necula and Lee, 1996)



Typed Assembly Language (Morrisett et al 1998)

What do you want to type check today?



Typed Assembly Language (Morrisett et al 1998)

What do you want to type check today?



Part 9

Conclusion



Russell’s paradox

Let w be the predicate: to be a predicate that cannot be
predicated of itself. Can w be predicated of itself? From each
answer the opposite follows.

— Bertrand Russell to Gottlob Frege, 16 June 1902

w = {x | x 6∈ x}

w ∈ w iff w 6∈ w



Russell on Frege

“As I think about acts of integrity and grace, I realise there is
nothing in my knowledge to compare to Frege’s dedication to
truth. His entire life’s work was on the verge of completion, much
of his work has been ignored to the benefit of men infinitely less
capable, his second volume was about to be published, and upon
finding that his fundamental assumption was in error, he
responded with intellectual pleasure, clearly submerging any
feelings of personal disappointment. It was almost superhuman,
and a telling indication of that which men are capable if their
dedication is to creative work and knowledge instead of cruder
efforts to dominate and be known.”

— Bertrand Russell, 23 November 1962



Frege
Undone by Russell’s Paradox

Church and Curry
Attended 1982 Conference on

Lisp and Functional Programming

Gentzen
“He once confided in me that he was really

quite contented since now he had at last time to think
about a consistency proof for analysis.”

Died in prison, 4 August 1945



Frege
Undone by Russell’s Paradox

Church and Curry
Attended 1982 Conference on

Lisp and Functional Programming

Gentzen
“He once confided in me that he was really

quite contented since now he had at last time to think
about a consistency proof for analysis.”

Died in prison, 4 August 1945



Special thanks to

Martina Sharp, Avaya Labs
for scanning all the pictures

Adam and Leora Wadler
for loaning me their books


