
Higher-Order and Symbolic Computation, 11, 355–361 (1998)
c° 1998 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Definitional Interpreters Revisited

JOHN C. REYNOLDS john.reynolds@cs.cmu.edu

School of Computer Science, Carnegie Mellon University

Abstract. To introduce the republication of “Definitional Interpreters for Higher-Order Programming Languages”,
the author recounts the circumstances of its creation, clarifies several obscurities, corrects a few mistakes, and
briefly summarizes some more recent developments.

Keywords: operational semantics, denotational semantics, interpreter, lambda calculus, applicative language,
functional language, metacircularity, higher-order function, defunctionalization, closure, call by value, call by
name, continuation, continuation-passing-style transformation, LISP, ISWIM, PAL, Scheme, SECD machine,
J-operator, escape, assignment.

In late 1971, Jean Sammet and Burt Leavenworth asked Art Evans and me to give a tutorial
session on “the application of the lambda calculus to programming languages” at the 25th
Anniversary ACM National Conference to be held the following summer. I had recently
returned from a sabbatical at Queen Mary College in London, where I had immersed my-
self in Dana Scott’s “lattice-theoretic” approach to denotational semantics, Peter Landin’s
SECD-machine approach to operational semantics, and the ideas about continuations of
Lockwood Morris, Christopher Wadsworth, and Jim Morris. So I eagerly accepted the
invitation, intending to present the novel ideas about semantics that I’d brought back with
me.

I soon realized, however, that this was an overly ambitious agenda for a one-hour tutorial,
particularly if I were to base my presentation on denotational semantics, which seemed
highly mathematical and esoteric in those days. (An impression of what I’d like to have
presented, given adequate time, can be garnered from Chapters 11 to 14 of Reference [1].)
So I took advantage of the close formal similarity between denotational and interpretive
semantics to reexpress my presentation in the more familiar context of various interpreters,
all written in a purely functional language. Then I discovered that I could classify these
interpreters according to whether they used higher-order functions and whether they were
independent of the order-of-application of the defining language, and that I could even
give constructive (though only informally justified) transformations from higher-level in-
terpreters to more machine-like ones.

The result was “Definitional Interpreters for Higher-Order Programming Languages” [2].
Both as a colloquium at various universities and at the ACM Conference itself (on August
16, 1972) it seemed to make an effective tutorial. (At the conference Art Evans preceded
my presentation with a elegant introduction to the lambda calculus and its use in defining
his programming language PAL, in which he illustrated both the concepts of syntactic sugar
and definition by an interpreter. Unfortunately, the only published record of his talk is an
extended abstract [4].)

After preparing the written version of the tutorial, I submitted it to the Communications of
the ACM on May 30, 1972, and received three referee reports on September 27. Although
the reports were favorable, they all requested significant revisions; moreover, the editor and



356 REYNOLDS

one referee felt that the paper should be shortened. I felt it would be impossible to shorten
the paper without destroying its tutorial value and limiting its audience to the few people
who already understood the technicalities of language definition. Thus I never prepared a
revision.

Nevertheless, the conference paper [2] has become a standard source for learning about
call-by-value functional languages (i.e., the descendants of Landin’s ISWIM [2DI]), the
representation of functions by closures, and the continuation-passing-style transformation.
Thus, I am delighted by this republication [3], which should make the paper more easily
available and more typographically legible. (Citations marked “DI” in this paper refer to
the bibliography at the end of Reference [3].)

In the republished version, I have corrected typographical errors, improved the English,
and incorporated some of the 26-year-old suggestions of referees and other colleagues.
To avoid muddying the historical water, however, I have not corrected the more serious
problems that reveal the na¨ıveté of my understanding of semantics in the early 1970’s.
(Similarly, although I have added bibliographic information about the original references,
I have not added references to newer papers.) Instead, I will deal with these matters in the
remainder of this introductory note.

1. In Section 4, in the abstract syntax equations

VAL = INTEGER ∪ BOOLEAN∪ FUNVAL

FUNVAL = VAL → VAL

it is not clear what the arrow means. One referee chided me for not invoking Scott’s
denotational semantics to clarify this meaning, but in fact the equations should make
sense regardless of whether the defining language is itself defined denotationally or
operationally.

In retrospect, it is obvious that these equations are a recursive type definition, which
presupposes a type system for the defining language. Moreover, FUNVAL is an abstract
type, since it describes only those functions from VAL to VAL that denote functional
values in the defined language. (In fact, no other functions from VAL to VAL arise
in Interpreter I, but that is an accidental consequence of the extreme simplicity of the
interpreter.)

2. In the fourth and third paragraphs before the end of Section 5, I should have emphasized
the fact that a metacircular interpreter is not really a definition, since it is trivial when
the defining language is understood, and otherwise it is ambiguous. In particular,
Interpreters I and II say nothing about order of application, while Interpreters I and III
say little about higher-order functions.

Jim Morris put the matter more strongly [5]:

The activity of defining features in terms of themselves is highly suspect,
especially when they are as subtle as functional objects. It is a fad that should
be debunked, in my opinion. A real significance of [a self-defined] interpreter
. . . is that it displays a simple universal function for the language in question.



DEFINITIONAL INTERPRETERS REVISITED 357

On the other hand, I clearly remember that John McCarthy’s definition of LISP [1DI],
which is a definitional interpreter in the style of II, was a great help when I first learned
that language. But it was not the sole support of my understanding.

3. In the fourth paragraph of Section 7, in justifying what is now called the continuation-
passing-style transformation, I claimed that “As can be seen with a little thought”, the
condition

(A) No operand or declaring expression can cause the application of a serious function.

implies that

(B) Whenever some function calls a serious function, the calling function must return
the same result as the called function, without performing any further computation.

Actually, with a little thought, one can see that this claim is false. For example, ifs is
a serious function, then either

if s(0) then 1 else2 or s(0)(1)

performs further computation after callings, yet neither expression contains an operand
or declaring expression that causes the application of a serious function.

It is the converse claim, that B implies A, that is true — and fortunately it is this converse
claim that is sufficient for the larger argument: If a program is in “continuation form”,
this implies B, which implies A, which implies that the meaning of the program is
independent of order-of-application.

In fact, to define a call-by-value language in a way that is independent of the order
of application of the defining language, it is not necessary to use a full continuation-
passing-style transformation. In Interpreter III, for example, one could replace the sixth
line of evalby

cond?(r)→ if eval(prem(r), e,mk-fin())
then eval(conc(r), e, c) elseeval(altr(r), e, c).

(Of course, this wouldn’t work if the defined language containedescapeor some other
mechanism for introducing continuations as values.)

4. In the third paragraph of Section 8, there is a regrettably obscure description of the
connection between definitional interpreters and Scott’s denotational semantics. In
fact, there are two quite different connections.

On the one hand, as discussed in the third paragraph, one can use denotational seman-
tics to define the defining language of an interpreter. Specifically, I suggested using
denotational semantics to define the defining language of Interpreter IV, which would in
turn define a call-by-value language. Such a roundabout method of definition seemed
reasonable because I believed that continuations were needed to define a call-by-value
language; this belief also motivated my odd remark that “the defining language modelled
by Scott uses call by name rather than call by value”. Soon after writing “Definitional



358 REYNOLDS

Interpreters”, however, I realized (with a little prodding from Gordon Plotkin) that one
can give a direct denotational semantics for a call-by-value language that is almost as
straightforward as the direct semantics of a call-by-name language [6].

On the other hand, an entirely different connection is that, for each interpreter in the
paper, there is a stylistically similar denotational definition of the defined language of
the interpreter. For example, the direct and continuation semantics given in Reference
[6] or [1, Sections 11.6 and 12.1] correspond to Interpreters I and IV, while the first-order
definition of Reference [1, Section 12.4-12.6] corresponds to Interpreter III.

This stylistic correspondence was both an impetus and a substantial help in actually
constructing the various interpreters. Yet I tried to avoid any reference to this corre-
spondence because it obscures the fundamental difference in kind between interpreters
and denotational semantics. Nevertheless, a hint of the correspondence surfaces in the
claim that Scott models are inherently call-by-name. This provoked a strong reaction
from Chris Wadsworth [7]:

. . . Scott treats semantics as being given by a (recursively-defined) mapping
from programs to their meanings (values, denotations, etc.) as elements of
suitable lattices. Of course, he must have some language in which to write his
semantic definitions but, in so far as there is one at all, his defining language
is just that of ordinary mathematics. Thus, if, for example,f and x are
mathematical expressions for elements, respectively, of a function lattice[D →
D′] and of the latticeD, then the function applicationf(x) unambiguously
denotes a certain unique element of the latticeD′, and call-by-name/value is
irrelevant to this mathematical meaning.

In summary, although the earliest Scott model (D∞) of a typeless language gave a
denotational semantics of a call-by-name language, denotational semantics in general is
neutral with respect to call by name versus call by value. Moreover, order of application
is an inherently operational concept that is only indirectly pertinent to denotational
semantics. (Probably, Wadsworth was especially aware of this fact because he had
recently discovered an evaluation method, graph reduction, that is operationally very
different from call by name, yet possesses the same denotational semantics [8].)

5. The equivalences between Landin’s J-operator [9] and myescapeoperator given in
the fourth paragraph of Section 9 are only valid when the expressions asserted to be
equivalent occur immediately within a lambda expression (i.e. an abstraction). This
limitation has been discussed by Hayo Thielecke [10] who presents a more general
solution due to Matthias Felleisen [11].

6. Some of the unpublished work that influenced “Definitional Interpreters” has since
been published, and some of the published references have been superceded by more
polished and accessible papers. In particular:

(A) An overview of the operational definition of PL/I by the IBM Vienna Laboratory
is provided by a journal article [12] that is more accessible than reports such as
[17DI].



DEFINITIONAL INTERPRETERS REVISITED 359

(B) In 1974, Wadsworth, in collaboration with Christopher Strachey, finally published
his work on continuations [13].

(C) In 1993, Michael Fischer published a journal version [14] of his 1972 paper using
continuations [27DI].

(D) In 1993, I published a brief history of the discoveries of continuations [15].

In the quarter-century since the appearance of “Definitional Interpreters”, the main topics
of the paper have been treated, with far greater rigor, by a variety of authors in a variety of
settings. Although a complete review of these developments is far beyond the scope of this
paper, the following are a few highlights that I am particularly aware of:

Defunctionalization Although the term “defunctionalization” never took root, the ideas
behind it have become commonplace. The concept of a closure, which is a record con-
taining a lambda expression paired with values for the free variables of the expression,
first appeared in LISP [16, pages 45 and 133; 17, pages 70–71] (where closures were
called “FUNARG triplets”) and in the work of Landin [18, 7DI] (who coined the term
“closure”). The replacement of lambda expressions by closure constructors, called
“closure conversion”, was used by Guy Steele in designing the RABBIT compiler [19]
for Scheme [20]. More recently, closure conversion has been developed in a typed
setting by Minamide, Morrisett, and Harper [22].

In “Definitional Interpreters”, however, closures do not contain lambda expressions, but
merely unique tags that are in one-to-one correspondence with occurrences of lambda
expressions in the program being defunctionalized. The computations described by
these occurrences are moved to interpretive functions associated with the points where
closures are applied to arguments. Moreover, within each interpretive function the case
selection on tags of closures is limited to those tags that might be seen at the point of
application.

I’ve been told that this was an early example of control flow analysis in a functional
setting, which has inspired some of the extensive development of this area [23]. In
fact, however, the limiting of the case selections was not determined by control flow
analysis, but by the informal abstract type declarations (called abstract syntax equations)
that guided the construction of the original interpreter.

Continuations In 1974, I proved an appropriate relation between the direct-style and
continuation-style denotational semantics of a purely functional language that provided
both call by value and call by name [6]. Shortly thereafter, Gordon Plotkin used
continuations to give transformations from a call-by-value to a call-by-name language
and back, showed that the operational semantics of the transformed programs were
independent of order of application, and established simulation relationships between
the operational semantics of the untransformed and transformed programs [24]. (He also
related his operational semantics, which were in the style of Landin’s SECD machine,
to a semantics based on reduction.)

In the years since then, further research has established the properties of a variety of
continuation-passing-style transformations — in an untyped setting [25], with simple
types [26, 27, 28], and with polymorphic types [29]. At the same time, continuations



360 REYNOLDS

have come to play a major role in the design of compilers for languages with powerful
procedure mechanisms [30].

Continuations as values have reappeared with thecatchoperation of Scheme [20]. and
the call/cc operation of Clinger, Friedman, and Wand [31] (which occurs in modern
versions of Scheme [32] and in Standard ML of New Jersey [33]).

Continuations have also been connected with negation in intuitionistic logic (In partic-
ular, various continuation-passing-style transformations correspond to double-negation
translations of classical into intuitionistic logic) [34, 35].

Effects Nontermination, escapes, and assignment have been recognized by Eugenio Moggi
as special cases of a general notion of “effect”, which can be defined using the category-
theoretic concept of a monad [36]. On the other hand, Andrzej Filinski has shown that
a wide variety of Moggi’s effects can be defined in terms of escapes (i.e. continuations
as values) and assignment [37].

Perhaps the real mystery about these concepts is that they reappear, with easily recogniz-
able similarity, in such a variety of settings: with and without types, in denotational and
operational semantics, in interpreters, and even in the transformation of arbitrary programs.

References

1. Reynolds, John C.Theories of Programming Languages. Cambridge University Press, Cambridge, England,
1998.

2. Reynolds, John C. Definitional interpreters for higher-order programming languages. InProceedings of
the ACM Annual Conference, volume 2, pages 717–740, Boston, Massachusetts, August 1972. ACM, New
York. Reprinted as [3].

3. Reynolds, John C. Definitional interpreters for higher-order programming languages.Higher-Order and
Symbolic Computation, 11(4):363–397, 1998.

4. Evans, Jr., Arthur. The lambda calculus and its relation to programming languages. InProceedings of the
ACM Annual Conference, volume 2, pages 714–716, Boston, Massachusetts, August, 1972. ACM, New
York.

5. Morris, Jr., James H. Private communication. September, 1972.
6. Reynolds, John C. On the relation between direct and continuation semantics. In Jacques Loeckx, editor,

Automata, Languages and Programming: 2nd Colloquium, volume 14 ofLecture Notes in Computer Science,
pages 141–156, Saarbr¨ucken, Germany, July 29–August 2, 1974. Springer-Verlag, Berlin.

7. Wadsworth, Christopher P. Private communication. August 30, 1972.
8. Wadsworth, Christopher P.Semantics and Pragmatics of the Lambda-Calculus. Ph. D. dissertation, Pro-

gramming Research Group, Oxford University, Oxford, England, September 1971.
9. Landin, Peter J. A generalization of jumps and labels.Higher-Order and Symbolic Computation, 11(2):125–

143, 1998. Originally a report for UNIVAC Systems Programming Research, dated August 29, 1965.
10. Thielecke, Hayo An introduction to Landin’s “A generalization of jumps and labels”.Higher-Order and

Symbolic Computation, 11(2):117–124, 1998.
11. Felleisen, Matthias Reflections on Landin’s J-operator: A partly historical note.Computer Languages,

12(3/4):197–207, 1987.
12. Lucas, Peter and Walk, K. On the formal description of PL/I.Annual Review in Automatic Programming,

6(3):105–182, 1969.
13. Strachey, Christopher and Wadsworth, Christopher P. Continuations, a mathematical semantics for handling

full jumps. Technical Monograph PRG–11, Programming Research Group, Oxford University Computing
Laboratory, Oxford, England, January 1974.

14. Fischer, Michael J. Lambda-calculus schemata.Lisp and Symbolic Computation, 6(3–4):259–287, Novem-
ber 1993.



DEFINITIONAL INTERPRETERS REVISITED 361

15. Reynolds, John C. The discoveries of continuations.Lisp and Symbolic Computation, 6(3–4):233–247,
November 1993.

16. McCarthy, John, Brayton, R., Edwards, Daniel J., Fox, P., Hodes, L., Luckham, David C., Maling, K.,
Park, David M.R. and Russell. S. LISP I programmer’s manual. Technical report, Computation Center
and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts,
March 1, 1960.

17. McCarthy, John, Abrahams, Paul W., Edwards, Daniel J., Hart, Timothy P. and Levin, Michael I.LISP 1.5
Programmer’s Manual. MIT Press, Cambridge, Massachusetts, 1962.

18. Landin, Peter J. The mechanical evaluation of expressions.The Computer Journal, 6(4):308–320, January
1964.

19. Steele Jr., Guy Lewis. RABBIT: A compiler for SCHEME (a study in compiler optimization). Report AI–TR–
474, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts,
May 1978.

20. Sussman, Gerald Jay and Steele Jr., Guy Lewis SCHEME: An interpreter for extended lambda calcu-
lus. AI Memo 349, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge,
Massachusetts, December 1975. Reprinted as [21].

21. Sussman, Gerald Jay and Steele Jr., Guy Lewis SCHEME: An interpreter for extended lambda calculus.
Higher-Order and Symbolic Computation, 11(4):405–439, 1998.

22. Minamide, Yasuhiko, Morrisett, Greg and Harper, Robert. Typed closure conversion. InConference Record
of POPL ’96: The 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 271–283, St. Petersburg Beach, Florida, January 21–24, 1996. ACM Press, New York.

23. Shivers, Olin .Control-Flow Analysis of Higher-Order Languages or Taming Lambda. Ph. D. dissertation,
School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, May 1991. Report
CMU–CS–91–145.

24. Plotkin, Gordon D. Call-by-name, call-by-value and theλ-calculus. Theoretical Computer Science,
1(2):125–159, December 1975.

25. Sabry, Amr and Felleisen, Matthias. Reasoning about programs in continuation-passing style.Lisp and
Symbolic Computation, 6(3–4):289–360, November 1993.

26. Meyer, Albert R. and Wand, Mitchell. Continuation semantics in typed lambda-calculi (summary). In
Rohit Parikh, editor,Logic of Programs, volume 193 ofLecture Notes in Computer Science, pages 219–224,
Brooklyn, New York, June 17–19, 1985. Springer-Verlag, Berlin.

27. Harper, Robert W., Duba, Bruce F. and MacQueen, David B. Typing first-class continuations in ML.Journal
of Functional Programming, 3(4):465–484, October 1993.

28. Hatcliff, John and Danvy, Olivier. A generic account of continuation-passing styles. InConference Record
of POPL ’94: 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
458–471, Portland, Oregon, January 17–21, 1994. ACM Press, New York.

29. Harper, Robert W. and Lillibridge, Mark. Polymorphic type assignment and CPS conversion.Lisp and
Symbolic Computation, 6(3–4):361–379, November 1993.

30. Appel, Andrew W.Compiling with Continuations. Cambridge University Press, Cambridge, England, 1992.
31. Clinger, William, Friedman, Daniel P. and Wand, Mitchell. A scheme for a higher-level semantic algebra. In

Maurice Nivat and John C. Reynolds, editors,Algebraic Methods in Semantics, pages 237–250. Cambridge
University Press, Cambridge, England, 1985.

32. Kelsey, Richard, Clinger, William and Rees, Jonathan (editors). Revised5 report on the algorithmic language
Scheme.Higher-Order and Symbolic Computation, 11(3):7–105, 1998.

33. Appel, Andrew W. and MacQueen, David B. Standard ML of New Jersey. In Jan Maluszy´nski and Mar-
tin Wirsing, editors,Programming Language Implementation and Logic Programming: 3rd International
Symposium, PLILP’91, volume 528 ofLecture Notes in Computer Science, pages 1–13, Passau, Germany,
August 26–28, 1991. Springer-Verlag, Berlin.

34. Griffin, Timothy G. A formulae-as-types notion of control. InConference Record of the Seventeenth Annual
ACM Symposium on Principles of Programming Languages, pages 47–58, San Francisco, January 17–19,
1990. ACM Press, New York.

35. Murthy, Chetan.Extracting Constructive Content from Classical Proofs. Ph. D. dissertation, Department
of Computer Science, Cornell University, Ithaca, New York, August 1990. Technical Report 90-1151.

36. Moggi, Eugenio. Notions of computation and monads.Information and Computation, 93(1):55–92, July
1991.

37. Filinski, Andrzej.Controlling Effects. Ph. D. dissertation, School of Computer Science, Carnegie Mellon
University, Pittsburgh, Pennsylvania, May 1996. Report CMU–CS–96–119.


