
Derivation of a Pattern-Matching Compiler

Geoff Barrett and Philip Wadler
Oxford University Computing Laboratory, Programming Research Group

1986

Introduction

This paper presents the derivation of an efficient compiler for pattern-matching in a
functional language. The algorithm is described in [A] and [W], and is used in the LML
compiler [J]. The derivation is based on that given in [Bar].

The algorithm relates to functional languages in two ways: a functional language is
used as the medium of the derivation, and the algorithm is useful for compiling functional
languages. The features of functional languages that make them well suited to program
transformation, such as referential transparency, are widely known [BD]. Less widely
known is the fact that it is now possible to write efficient compilers for such languages
[P], and indeed the LML compiler is itself written in LML.

The derivation relies heavily on the use of higher-order functions, such as fold and
map, that encapsulate common patterns of computation, and on the laws satisfied by
these functions. The higher-order functions and their associated laws are well-known
and have applications in a wide variety of contexts: for instance, see [Bu], [Bi], and
[BW]. This paper provides an extended example of how these laws can be used to
derive a practical and significant result. The derivation also relies heavily on familiar
mathematical properties, such as associativity, distributivity, and commutativity.

These results are encouraging, because they suggest that much of the hard work of
many derivations can be factored into a few general theorems, and that many of the
concepts and manipulations necessary for such derivations will already be familiar from
traditional algebra.

The emergence of general laws and an algebraic framework indicate how the field
of program derivation has matured. In early work on the transformation of functional
programs many similar derivations were repeated to derive similar results [BD, F]. Ex-
perience with such derivations has led to the emergence of more general theorems, and
many derivations can be structured and shortened by the use of such theorems.

The value of program derivations most often quoted is that they increase the reliability
of the resulting program. Another equally important value is that they lead to deeper
understanding. Knowledge of the derivation given here was very useful in writing the
explanation of the algorithm given in [W]. In particular, the structure of the explanation
there follows closely the structure of the derivation here.

1

1 Notation

The notation used for structures and functions is essentially that of SQUIGOL (see
[Bi]). The list constructor is the infix (:) and signatures are introduced by (::). All infix
operators have the same precedence and associate to the right. Four standard functions
are used throughout, namely ∗ for map, = for folding functions which are associative and
have an identity, =→ for folding functions which are not associative or have no identity
and == which constructs the list of corresponding pairs from two lists. Their definitions
follow:

f ∗ [] = []
f ∗ (a : x) = f a : f ∗ x

f =→ a [] = a
f =→ a (b : x) = f b (f =→ a x)

(f=) = f =→ e where e is the unit of f

[] == [] = []
(a : x) == (b : y) = (a; b) : x == y

Two particular functions are used throughout: ++ appends two lists; flatten produces
a list from a list of lists:

x ++ y = (:) =→ y x

flatten = ((++)=)

1.1 Specification of the function group

The derivation will require a function group which groups the elements of a list into
segments on which a function, f , is constant. These segments are tagged with the value
of f on the segment. For instance,

group f [4; 0; 3; 5; 6] = [(false; [4]) ; (true; [0; 3]) ; (false; [5; 6])]
where f x = x ≤ 3

We can specify the situation where y is a grouping of x under f as follows:

groups f x y ⇐⇒ flatten(snd ∗ y) = x
∧

(∧) = [f a = c | (c; z)← y; a← z]

The group function is uniquely specified by taking the shortest possible grouping of x:

groups f x (group f x) ∧ ∀ y | y groups f x y · #(group f x) ≤ #y

It can easily be shown that snd∗(group f x) contains no empty lists. (Otherwise, removing
elements of the form (a; []) retains the grouping property but is shorter.)

2

A possible implementation of group is as follows:

group f x = group′ =→ [] (graph f ∗ x)
where graph f a = (f a; a)

group′ [] fbb = [fbb]

group′ ((fa; x) : g) (fb; b) =

{
(fa; b : x) : g; fa = fb
(fb; [b]) : (fa; x) : g; fa 6= fb

2 An Abstract Language for Pattern Matching

In this section, we introduce a language in which the relevant features of pattern matching
may be expressed. The language is designed to obey a number of elegant, algebraic laws
by means of which it is given a semantics. The abstract syntax of this language is given
in terms of operators on the various types.

2.1 Syntax

Three types are primitive to the discussion. The type of variable names var. The type of
constructors con; with each constructor there is associated a natural number, called its
arity :: con −→ nat, which gives the maximum number of terms to which the constructor
may be applied. For example, the arity of the empty list is 0 and the arity of the list
constructor is 2. The third type is that of expressions which we shall introduce presently.

¿From the var and con types, we construct the type of patterns. A pattern is either
a variable or a constructor with a list of sub-patterns whose length is the arity of the
constructor:

pat ::= v var | c con [pat]

where c c ps is well-formed just when arity c = #ps.
We now come to the type of expressions, exp. We require the type to have the

operation of variable renaming:

sub :: (var; var) −→ exp −→ exp

where ren (u; v) e denotes the renaming of u for v in e; further, we assume a case
expression so that we have a function

case of :: var −→ [(pat; exp)] −→ exp

and the following pattern-matching operators:

e :: exp
f :: exp

⇒ :: (var; pat) −→ exp −→ exp
:: exp −→ exp −→ exp

3

where e is the value returned when a complete set of equations has failed to match; f is
the exception returned when a single equation does not apply.

The phrase (v; p) ⇒ e matches the binding of v against p. If the match succeeds
then the appropriate subterms of the binding are bound to the variables of p and e is
evaluated in the new environment; otherwise, the whole phrase is equivalent to f . It is
well-formed only when the variables of p are not bound in e and v is not free in e. The
bound variables of the phrase are the bound variables of e and the variables appearing
in p; the free variables are v along with the free variables of e which do not appear in p.

The phrase e1 e2 denotes the successive attempts to evaluate the matches e1 and e2.
If the first succeeds, then the second is discarded; otherwise, the second match is tried.
The phrase is always well-formed; its free variables are the free variables of e1 and the
free variables of e2; likewise the bound variables.

2.2 Semantics

The pattern-matching language is given a semantics by means of a set of algebraic equiv-
alences. The intended equivalence is the largest in which the constants e and f are not
equivalent, the operators and (v; p)⇒ and congruences and the following laws
are true.

We first give the semantics of (v; p)⇒ . This involves describing the way in which
variables are bound and expressions are matched against patterns. Matching against
a variable pattern always succeeds. The effect is to rename the variable in the final
expression:

(u; v v)⇒ e ≡ ren (u; v) e (1)

Under suitable disjointness conditions on bound variables, (u; v v)⇒ and (u; p)⇒
commute:

(u; v v)⇒ (
u′; p

)⇒ e ≡ (
u′; p

)⇒ (u; v v)⇒ e (2)

whenever v 6= u′ and u is not a variable of p. Note that by the well-formedness conditions,
v may not be a variable of p and since u′ is free in the expression (u; v v)⇒ (u′; p)⇒ e,
u 6= u′. For the sake of completeness we consider the case in which v = u′. In this case,
the binding of u is bound to v and so we need only match u against p for u′ = v may
not be free in e by the well-formedness rules:

(u; v v)⇒ (v; p)⇒ e ≡ (u; p)⇒ e

Note that these rules are not independent.
When matching a constructor against a pattern, the matching may be performed

one constructor at a time so that the sub-terms of the binding of u which matches the
outermost constructor of the pattern may be bound to new variables which are then
matched against the sub-patterns:

(v; c c ps)⇒ e ≡ (v; c c (v ∗us))⇒ (⇒) =→ e (us == ps) (3)

where us is a list of distinct variables which do not appear in any of the ps and are not
free in e; and #us = arity c.

4

All we need to know of the operator is that it is associative and has identity f :

e1
(
e2 e3

) ≡ (
e1 e2

)
e3 (4)

f e ≡ e

e f ≡ e

It is not in general true that is commutative. Consider, for instance, that u is bound
to ⊥ in the match

((u; c c ps)⇒ e1) ((u; v v)⇒ e2)

This phrase must be equivalent to ⊥. However, the phrase

((u; v v)⇒ e2) ((u; c c ps)⇒ e1)

is equivalent to ren (u; v) e, which may not be ⊥. Attempting to match against patterns
with distinct constructors does commute since everything except ⊥ fails to match at least
one of them:
(
(v; c c1 ps1)⇒ e1 (v; c c2 ps2)⇒ e2

) ≡ (
(v; c c2 ps2)⇒ e2 (v; c c1 ps1)⇒ e1

) {c 6= c′}
(5)

The last law is a distributivity law:

(v; p)⇒ (
e1 e2

) ≡ ((v; p)⇒ e1) ((v; p)⇒ e2) (6)

which holds because if the match (v; p)⇒ fails then both sides are equivalent to f ; if the
match succeeds, evaluating e1 e2 in an environment which binds the variables of p is
the same as evaluating e1 and e2 in that environment and choosing the first to succeed.

2.3 Equations and Case Expressions

Concretely, a named list of equations looks like:

mappairs f [] ys = []
mappairs f (x : xs) [] = []
mappairs f (x : xs) (y : ys) = f x y : mappairs f xs ys

An equation is nothing more than a list of patterns followed by an expression. For
example, the first equation of the function mappairs is

([v f; c NIL [] ; v ys] ; NIL)

so that in general we define
equn == ([pat] ; exp)

Furthermore, if mappairs is applied to the terms u1, u2 and u3, and the first equation
applies, then the result is given by

(u1; v f)⇒ (u2; c NIL [])⇒ (u3; v ys)⇒ NIL

5

and, in general, given a list of variables, us, the meaning of an equation is given by:

clause :: [var] −→ equn −→ match
clause us (ps; e) = (⇒) =→ e (us == ps)

A list of equations is intended to be tried in order from top to bottom so that if the
first fails, the second is tried and so on. However, if no equation matches, the result is
an error. We restrict ourselves to non-empty lists of equations whose pattern lists are all
of the same length so that

qs :: equns == [equn]

is well-formed only when it is non-empty and

all [m = n | n← lens] where m : lens = [#ps | (ps; e)← qs]

If mappairs is applied to terms u1, u2 and u3, the desired result is given by:

(u1; v f)⇒ (u2; c NIL [])⇒ (u3; v ys)⇒ NIL

(u1; v f)⇒ (u2; c CONS [v x; v xs])⇒ (u3; c NIL [])⇒ NIL

(u1; v f)⇒ (u2; c CONS [v x; v xs])⇒ (u3; c CONS [v y; v ys])⇒
(f x y : mappairs f xs ys)

e

(7)

so that e is returned if no equation matches. In general, the meaning of a set of equations
is given by:

mapEqun :: [var] −→ [equn] −→ match
mapEqunus qs =

()
= (clause us) ∗ qs e

where us are distinct, do not appear in the pattern of qs and #us = #ps for (ps; e) :qs′ =
qs.

We will wish to compile this expression into case expressions. The meaning of a case
expression is given in terms of ⇒ and as follows:

mapCase :: exp −→ exp
mapCase (case v of pes) =

()
= (f ∗ pes)

where f (p; e) = (v; p)⇒ e

Note that if no pattern is matched, the whole expression is equivalent to f .

3 The Problem

Consider an evaluation of expression (7), when u1 is bound to (+), u2 is bound to [1; 2]
and u3 is bound to [0]. The evaluation proceeds thus:

1. (+) matches f ; (1 : [2]) does not match [];

2. (+) matches f ; (1 : [2]) matches (x : xs); (0 : []) does not match [];

6

3. (+) matches f ; (1 : [2]) matches (x : xs); (0 : []) matches (y : ys).

By using the laws (4), (6), (2), and (1), and the semantics of case expressions, the reader
is invited to verify that the expression for mappairs u1 u2 u3, (7), may be transformed to:

case u2 of
c NIL []⇒ []

c CONS [v x; v xs]⇒
case u3 of

c NIL []⇒ []

c CONS [v y; v ys]⇒ (u1 x y : mappairs u1 xs ys)
e

An evaluation of this yields:

1. 1 : [2] does not match c NIL [].

2. 1 : [2] matches c CONS [v x; v xs],

(a) 0 : [] does not match c NIL [].

(b) 0 : [] does match c CONS [v y; v ys].

In the first evaluation there are three successful matches followed by failure; in the second
there are none.

This is the required output from the compiler. It has a number of features which
serve as the specification of the problem. The most important and most obvious is that
the output of the compiler means the same as its input. Secondly, all the patterns which
are to be matched have only variables as sub-patterns. Furthermore, each case expression
has a different constructor in each of its patterns.

The meaning-preserving part of the specification is formulated as:

compile :: [var] −→ [equn] −→ exp
compile us qs e ≡ mapEqun qs us

Since this is a consequence of:

compile us qs ≡ ()
= (clause us) ∗ qs

we may take the latter as the specification of the compilation function.

4 The Derivation

The algorithm is derived in a number of cases. The first case depends upon whether are
any patterns in the equations.

7

4.1 The degenerate Case

If there are no patterns in the list of equations, then it must be the case that the list of
variables is empty:

compile [] qs

Thus, the definition is:

compile [] qs =
()

= snd ∗ qs

4.2 The non-degenerate case

When the list of patterns in each equation is non-empty, we start the compilation by
grouping the equations into segments whose first patterns are variables or contain con-
structors. The two sorts of group require different compilation strategies; the correct
strategy for each group is selected by the function varconsCompile.

The first function to be defined inspects the first pattern to see whether it is a variable
or a constructor:

varcon :: equn −→ (VAR | CON)
varcon (v v : ps; m) = VAR

varcon (c c ps : ps′; m) = CON

The result of grouping a list of equations according to this function will be a list
of pairs, the first of which is VAR or CON. The function varconsCompile will select the
correct strategy for each group but the required meaning can be given regardless of the
compilation strategy so that the specification of varconsCompile is:

varconsCompile :: [var] −→ ((VAR | CON) ; [equn]) −→ exp
varconsCompile us (vc; qs) ≡ ()

= clause us ∗ qs

Let gqs = group varcon qs so that

qs

then we have

compile (u : us) qs

and this last line suffices for the definition of compile, so that:

compile (u : us) qs =
()

= varconsCompile (u : us) ∗ gqs
where gqs = group varcon qs

8

In order to define varconsCompile, we invent two new functions, varCompile and
consCompile which embody the different compilation strategies. Each applies to a list
of equations, but they have preconditions that the first pattern of each of the equations
must be a variable or contain a constructor, respectively, so that the specifications are:

varCompile; consCompile :: [var] −→ [equn] −→ exp
varCompile us qs ≡ ()

= clause us ∗ qs
consCompile us qs ≡ ()

= clause us ∗ qs

and we can see that the following definition of varconsCompile meets its specification:

varconsCompile us (VAR; qs) = varCompile us qs
varconsCompile us (CON; qs) = consCompile us qs

4.2.1 When all first patterns are variables

We begin to find a definition for varCompile by studying an application of clause to an
equation whose first pattern is a variable:

clause (u : us) (v v : ps; e)

Defining

equnSubst u (v v : ps; e) = (ps; ren (u; v) e)

we have

clause (u : us) (v v : ps; e)

Since the precondition of varCompile is that all first patterns must be variables, this
reformulation of clause may be substituted in the specification:

varCompile (u : us) qs

Hence we can make the definition:

varCompile (u : us) qs = compile us (equnSubst u ∗ qs)

4.2.2 When all first patterns have constructors

We now come to the compilation for a list of equations whose first pattern has a con-
structor. The aim is to use the commutativity rule, (5), in order to sort the equations so
that equations whose first patterns contain the same constructor are adjacent. We first
define a subsidiary order:

(u; c c ps)⇒ m ≺′ (
u; c c′ ps′

)⇒ m′ ⇐⇒ c ¡ c′

which is useful in the derivation, and a similar order on equn which will be used in the
program:

9

(
c c1 ps1 : ps′1; m1

) ≺ (
c c2 ps2 : ps′2; m2

)⇐⇒ c1 ¡ c2

consCompile us qs

Let oqs = stablesort (≺) qs. We next wish to group the equations according to the of
the first pattern, so we define:

conName :: equn −→ con
conName (c c ps′; e) = c

and let gqs = group conName oqs so that:

oqs

Lastly, each group of equations is to form one branch of a case expression. The function
which compiles the group is called onConsCompile and satisfies the specification:

oneConsCompile :: [var] −→ (con; [equn])
f u (oneConsCompile us (c; qs)) ≡ ()

= clause (u : us) qs
where f u (p; e) = (u; p)⇒ e

so we have:

consCompile (u : us) qs

Hence we make the definition:

consCompile us qs = case u of oneConsCompile us ∗ group conName oqs
where oqs = stablesort (≺) qs

4.2.3 When all first patterns have the same constructor

As in the case when all first patterns were variables, we begin by considering the appli-
cation of clause to a single equation. The following lemma is useful in the derivation:
Lemma 1

clause (u : us) (p : ps; e) = (u; p)⇒ clause us (ps; e)

Proof

clause (u : us) (p : ps; e)

The derivation proceeds:

clause (u : us)
(
c c ps′ : ps; e

)

Defining

10

deconstruct
(
c c ps′ : ps; e

)
=

(
ps′ ++ ps; e

)

and letting p′ = c c (v ∗us′), we have:

clause (u : us)
(
c c ps′ : ps; e

)

Let (p; e) = oneConsCompile us (c; qs), then

(u; p)⇒ e

Hence we make the definition

oneConsCompile us (c; qs) =
(
c c

(
v ∗us′

)
; compile

(
us′ ++ us

)
(deconstruct ∗ qs)

)

4.3 The complete algorithm and a note on termination

Taking together all the definitions derived so far gives the final program:

compile [] qs =
()

= snd ∗ qs
compile (u : us) qs =

()
= varconsCompile (u : us) ∗ gqs

where gqs = group varcon qs
varcon (v v : ps; m) = VAR

varcon (c c ps : ps′; m) = CON

varconsCompile us (VAR; qs) = varCompile us qs
varconsCompile us (CON; qs) = consCompile us qs

equnSubst u (v v : ps; e) = (ps; ren (u; v) e)

varCompile (u : us) qs = compile us (equnSubst u ∗ qs)

(c c1 ps1 : ps′1; m1) ≺ (c c2 ps2 : ps′2; m2) = c1 ¡ c2

conName (c c ps′; e) = c

consCompile us qs = case u of oneConsCompile us ∗ group conName oqs
where oqs = stablesort (≺) qs

deconstruct (c c ps′ : ps; e) = (ps′ ++ ps; e)

oneConsCompile us (c; qs) = (c c (v ∗us′) ; compile (us′ ++ us) (deconstruct ∗ qs))

where us′ is a list of new variables.
Defining the variant to be the sum of the arities of the constructors plus the number

of constructors appearing in qs plus the length of us, the variant is reduced each time
compile is applied. Thus, the algorithm terminates.

11

5 Conclusions

Although the basic laws of and⇒ and those pertaining to = and ∗ are intuitively simple,
the complete algorithm is not immediately comprehensible. The proof of correctness is
an aid not only to why the compiler works but also to how it works. By abstracting away
from the basic, unfamiliar operators in exp and relying on their more familiar properties,
irrelevant details can be ignored and the proof becomes much simpler. In [Bar], this
strategy is not employed and the derivation is at once far less comprehensible and four
times longer!

The use of = and ∗ to augment binary operators is widely applicable and generally
produces well-modularised proofs. (See [Bi], for instance.) The derivation presented here
contains no induction on lists. All of this manipulation can be factored into general
theorems, and used again in other derivations.

The particular properties of associativity, commutativity and distributivity appear in
other transformations (see [RH] where corresponds to IF or ALT and ⇒ to SEQ, and
[Bac] in which the transformation of non-deterministic to deterministic state-machines
relies on identical properties for | and ·). Programs are made more efficient by eliminating
redundant calculations. One common method of achieving this is by accumulation of a
result; in this transformation and in [Bac], however, the increase in efficiency relies on a
distributivity property. The object of both the latter transformations is a decision pro-
cedure which is optimised by eliminating backtracking. In [RH] too, a normal form for
finite programs is produced by, essentially, transformation into a decision procedure. Ac-
cumulation is an effective strategy when the predominant form of a program is sequential
calculation; distribution applies when the predominant form is a conditional construct.
This suggests that a ‘distribution’ strategy is a valuable member of the transformer’s tool
kit.

References

[A] Augustsson, L. Compiling Pattern Matching. IFIP international conference on
Functional Programming and Computer Architecture. Nancy, September 1985.

[Bac] Backhouse, R. The Syntax of Programming Languages. Prentice Hall, 1979.

[Bar] Barrett, G. Compiling Pattern Matching. M.Sc. Dissertation, Oxford University,
1985.

[Bi] Bird, R.S. An introduction to the theory of lists. International Summer School on
Logic of Programming and Calculi of Discrete Design, Marktoberdorf, Germany,
August 1986.

[BW] Bird, R.S., and Wadler, P.L., An Introduction to Functional Programming,
Prentice-Hall, 1988.

[Bu] Burge, W.H, Recursive Programming Techniques. Addison-Wesley, 1975.

12

[BD] Burstall, R.M. and Darlington, J. A transformation system for developing recursive
programs. Journal of the ACM, 24(1), January 1977.

[F] Feather, M.S. A system for assisting program transformation. ACM Transactions
on Programming Languages and Systems, 4(1):1–20, January 1982.

[J] Johnsson, T. Efficient compilation of lazy evaluation. ACM SIGPLAN Symposium
on Compiler Construction, SIGPLAN Notices, 19(6), June 1984.

[P] Peyton-Jones, S.L., The Implementation of Functional Programming Languages,
Prentice-Hall, 1987.

[RH] Roscoe, A.W. and Hoare, C.A.R. The Laws of occam Programming. TCS 60 (1988).

[W] Wadler, P.L., Compiling pattern matching, in [P].

A Laws about Lists

The derivation depends on the following results about functions of lists. Most of these
theorems are well-known and have straightforward proofs. For further discussion of sim-
ilar laws, see [Bi] or [BW].

Theorem 1

(f ∗) · (g∗) = ((f · g) ∗)

Theorem 2

#x = #y =⇒ (x == y) ++ (u == v) = (x ++ u) == (y ++ v)

Theorem 3

((⊕) =) · flatten = ((⊕) =) · (((⊕) =) ∗)

Theorem 4

(f ∗) · flatten = flatten · (((f ∗)) ∗)

Theorem 5

(⊕) =→ ((⊕) =→ a x) y = (⊕) =→ a (y ++ x)

13

Theorem 6

(∀ a b · f (a⊕ b) = f a⊗ f b) =⇒ f ((⊕) = (a : x)) = (⊗) = (f ∗ (a : x))

Theorem 7 If ≺ is a linear pre-order then

(a ≺ b⇒ a⊕ b = b ⊕ a) =⇒ ((⊕)=) = ((⊕) =) · stablesort (≺)

Theorem 8 If f is strictly monotonic then sorting and mapping f on a list commute:
(
f a ≺′ f b⇔ a ≺ b

)
=⇒ stablesort

(≺′) · (f ∗) = (f ∗) · stablesort (≺)

Theorem 9

(∀ a b · f (b ⊕ a) = b ⊕ f a) =⇒ f · (⊕) =→ a = (⊕) =→ (f a)

14

