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Coq vs Agda



The troubles with Coq …
• Everything needs to be done twice!  Students need to 

learn both the pair type (terms and patterns) and the 
tactics for manipulating conjunctions (split and destruct).

• Induction can be mysterious.

• Names vs notations: subst N x M vs N[x:=M].

• Naming conventions vary widely.

• Propositions as Types present but hidden.



… are absent in Agda

• No tactics to learn. Pairing and conjunction identical.

• Induction is the same as recursion.

• _[_:=_]  is name for  N [ x := M ].

• Standard Library makes a stab at consistency.

• Propositions as Types on proud display.



Agda vs Coq:
Simply-Typed Lambda

Calculus













Inherently Typed
is Golden



Named variables, separate types

de Bruijn indexes, inherently typed

451

275

Lines of code,
omitting examples

451 / 275 = 1.6

275 / 451 = 0.6







Progress + Preservation 
= Evaluation





















Substitution:
Single vs Simultaneous



Boolean vs Decidable



Conclusions
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