Programming Language Foundations in Agda

Philip Wadler (with Wen Kokke) University of Edinburgh / IOHK / Rio de Janeiro LFCS Lab Lunch, 9 October 2018

Proof Assistants

Robin Milner

LCF

Gerard Huet & Thierry Coquand

Coq

Conor McBride and James McKenna

Epigram

Ulf Norell and Andreas Abel

Agda

Propositions as Types

DOI:00.0000/000

Connecting mathematical logic and computation, it ensures that some aspects of programming are absolute.

BY PHILIP WADLER

Propositions as Types

POWERFUL INSIGHTS ARISE from linking two fields of study previously thought separate. Examples include Descartes's coordinates, which links geometry to algebra, Planck's Quantum Theory, which links particles to waves, and Shannon's Information Theory,

Figure 1. Gerhard Gentzen (1935)—Natural Deduction.

Figure 2. A proof. $\frac{[B\&A]^{z}}{A} \& -E_{2} \qquad \frac{[B\&A]^{z}}{B} \& -E_{1}$ $\frac{A\&B}{A\&B} \supset -I^{z}$ $(B\&A) \supset (A\&B)$

Figure 4. Simplifying a proof.

Figure 5. Alonzo Church (1935)—Lambda Calculus.

Figure 6: A program.

$$\frac{[z:B \times A]^{z}}{\pi_{2} z:A} \times -E_{2} \qquad \frac{[z:B \times A]^{z}}{\pi_{1} z:B} \times -E_{1}$$

$$\frac{\pi_{1} z:B}{\langle \pi_{2} z, \pi_{1} z \rangle:A \times B} \times -I$$

$$\frac{\langle \pi_{2} z, \pi_{1} z \rangle:A \times B}{\lambda z \cdot \langle \pi_{2} z, \pi_{1} z \rangle:(B \times A) \to (A \times B)} \to -I^{z}$$

Figure 8. Evaluating a program.

$$\frac{\begin{bmatrix} z:B \times A \end{bmatrix}^{z}}{\underbrace{\pi_{2} z:A}} \times E_{2} \qquad \frac{\begin{bmatrix} z:B \times A \end{bmatrix}^{z}}{\pi_{1} z:B}}{\times I} \times E_{1}$$

$$\frac{(\pi_{2} z, \pi_{1} z):A \times B}{\langle \pi_{2} z, \pi_{1} z \rangle:A \times B} \longrightarrow I^{z} \qquad \frac{y:B}{\langle y, x \rangle:B \times A} \times I}{\langle y, x \rangle:B \times A} \longrightarrow E$$

 $(\lambda z. \langle \pi_2 z, \pi_1 z \rangle) \langle y, x \rangle : A \times B$

Philip Wadler, Propositions as Types, *Communications of the ACM* December 2015 Programming Language Foundations in Agda (Programming Language) Foundations in Agda Programming (Language Foundations) in Agda

http://plfa.inf.ed.ac.uk

Please send your comments!

https://github.com/plfa

And your pull requests!

Coq vs Agda

The troubles with Coq ...

- Everything needs to be done twice! Students need to learn both the pair type (terms and patterns) and the tactics for manipulating conjunctions (split and destruct).
- Induction can be mysterious.
- Names vs notations: subst N x M vs N[x:=M].
- Naming conventions vary widely.
- Propositions as Types present but hidden.

... are absent in Agda

- No tactics to learn. Pairing and conjunction identical.
- Induction is the same as recursion.
- $[_:=]$ is name for N [x := M].
- Standard Library makes a stab at consistency.
- Propositions as Types on proud display.

Agda vs Coq: Simply-Typed Lambda Calculus

Progress

We would like to show that every term is either a value or takes a reduction step. However, this is not true in general. The term

```
`zero · `suc `zero
```

is neither a value nor can take a reduction step. And if s : `N → `N then the term

s · `zero

cannot reduce because we do not know which function is bound to the free variable s. The first of those terms is ill-typed, and the second has a free variable. Every term that is well-typed and closed has the desired property.

Progress: If $\emptyset \vdash M : A$ then either M is a value or there is an N such that $M \rightarrow N$.

To formulate this property, we first introduce a relation that captures what it means for a term m to make progess.

A term \underline{M} makes progress if either it can take a step, meaning there exists a term \underline{N} such that $\underline{M} \rightarrow \underline{N}$, or if it is done, meaning that \underline{M} is a value.

If a term is well-typed in the empty context then it satisfies progress.

```
progress : ∀ {M A}
  → Ø ⊣ M * A
    _____
  → Progress M
progress (\vdash `())
progress (⊢X ⊢N)
                                                  = done V-Å
progress (\vdashL \cdot \vdashM) with progress \vdashL
... | step L→L'
                                                  = step (\xi - \cdot 1 \ L \rightarrow L')
... | done VL with progress HM
... | step M→M'
                                                  = step (\xi - \cdot 2 \text{ VL } M \rightarrow M')
     | done VM with canonical HL VL
. . .
                                                  = step (\beta - \lambda VM)
       | C−Ă
. . .
progress ⊢zero
                                                  = done V-zero
progress (Hsuc HM) with progress HM
... | step M→M'
                                                  = step (\xi-suc M \rightarrow M')
                                                  = done (V-suc VM)
... | done VM
progress (Hcase HL HM HN) with progress HL
... | step L→L'
                                                  = step (\xi-case L-+L')
... | done VL with canonical HL VL
                                                  = step β-zero
    | C-zero
. . .
                                                  = step (\beta-suc (value CL))
     | C-suc CL
. . .
                                                  = step \beta - \mu
progress (⊢µ ⊢M)
```

We induct on the evidence that M is well-typed. Let's unpack the first three cases.

- The term cannot be a variable, since no variable is well typed in the empty context.
- If the term is a lambda abstraction then it is a value.
- If the term is an application L · M, recursively apply progress to the derivation that L is welltyped.
 - If the term steps, we have evidence that $L \rightarrow L'$, which by $\xi \cdot 1$ means that our original term steps to $L' \cdot M$
 - If the term is done, we have evidence that <u></u>is a value. Recursively apply progress to the derivation that <u>M</u> is well-typed.
 - If the term steps, we have evidence that M → M', which by ξ-·z means that our original term steps to L · M'. Step ξ-·z applies only if we have evidence that L is a value, but progress on that subterm has already supplied the required evidence.
 - If the term is done, we have evidence that M is a value. We apply the canonical forms lemma to the evidence that L is well typed and a value, which since we are in an application leads to the conclusion that L must be a lambda abstraction. We also have evidence that M is a value, so our original term steps by β-λ.

The remaining cases are similar. If by induction we have a step case we apply a ξ rule, and if we have a done case then either we have a value or apply a β rule. For fixpoint, no induction is required as the β rule applies immediately.

Our code reads neatly in part because we consider the step option before the done option. We could, of course, do it the other way around, but then the ... abbreviation no longer works, and we will need to write out all the arguments in full. In general, the rule of thumb is to consider the easy case (here step) before the hard case (here done). If you have two hard cases, you will have to expand out ... or introduce subsidiary functions.

Progress

The *progress* theorem tells us that closed, well-typed terms are not stuck: either a well-typed term is a value, or it can take a reduction step. The proof is a relatively straightforward extension of the progress proof we saw in the Types chapter. We'll give the proof in English first, then the formal version.

```
Theorem progress : ∀ t T,
empty |- t ∈ T →
value t v ∃ t', t ==> t'.
```

Proof: By induction on the derivation of $|-t \in T$.

- The last rule of the derivation cannot be T_Var, since a variable is never well typed in an empty context.
- The T_True, T_False, and T_Abs cases are trivial, since in each of these cases we can see by inspecting the rule that t is a value.
- If the last rule of the derivation is T_App, then t has the form t₁ t₂ for some t₁ and t₂, where | t₁ ∈ T₂ → T and | t₂ ∈ T₂ for some type T₂. By the induction hypothesis, either t₁ is a value or it can take a reduction step.
 - If t₁ is a value, then consider t₂, which by the other induction hypothesis must also either be a value or take a step.
 - Suppose t₂ is a value. Since t₁ is a value with an arrow type, it must be a lambda abstraction; hence t₁ t₂ can take a step by ST_AppAbs.
 - Otherwise, t₂ can take a step, and hence so can t₁ t₂ by ST_App2.
 - If t₁ can take a step, then so can t₁ t₂ by ST_App1.
- If the last rule of the derivation is T_If, then t = if t₁ then t₂ else t₃, where t₁ has type Bool. By the IH,
 t₁ either is a value or takes a step.
 - If t₁ is a value, then since it has type Bool it must be either true or false. If it is true, then t steps to t₂; otherwise it steps to t₃.
 - Otherwise, t₁ takes a step, and therefore so does t (by ST_If).

```
Proof with eauto.
  intros t T Ht.
  remember (@empty ty) as Gamma.
  induction Ht; subst Gamma...
  - (* T_Var *)
     (* contradictory: variables cannot be typed in an
        empty context *)
     inversion H.
  - (* T App *)
    (* t = t_1 t_2. Proceed by cases on whether t_1 is a
        value or steps... *)
     right. destruct IHHtl ...
    + (* t<sub>1</sub> is a value *)
       destruct IHHt2...
       * (* t<sub>2</sub> is also a value *)
          assert (\exists x_0 t_0, t_1 = tabs x_0 T_{11} t_0).
          eapply canonical forms fun; eauto.
         destruct H<sub>1</sub> as [x<sub>0</sub> [t<sub>0</sub> Heq]]. subst.
          \exists ([x_0:=t_2]t_0)...
       * (* t<sub>2</sub> steps *)
          inversion H<sub>0</sub> as [t<sub>2</sub>' Hstp]. ∃ (tapp t<sub>1</sub> t<sub>2</sub>')...
    + (* t1 steps *)
       inversion H as [t_1' \text{ Hstp}]. \exists (tapp t_1' t_2)...
  - (* T If *)
    right. destruct IHHt1...
    + (* t<sub>1</sub> is a value *)
       destruct (canonical forms bool t_1); subst; eauto.
    + (* t<sub>1</sub> also steps *)
       inversion H as [t_1' \text{ Hstp}]. \exists (tif t_1' t_2 t_3)...
Qed.
```

Inherently Typed is Golden

Lines of code, omitting examples

Named variables, separate types 451

de Bruijn indexes, inherently typed 275

451 / 275 = 1.6

275 / 451 = 0.6

```
Id : Set
Id = String
data Tern : Set where
 `_ : Td → Term
 \lambda_{-} : Id \rightarrow Term \rightarrow Term
 _-_ : Term > Term > Term
data Type : Set where
 → : Type + Type + Type
 IN : Type
data Context : Set where
 Ø : Context
 _____: Context + Id + Type + Context
data ____ : Context + Id + Type + Set where
 \mathbb{Z} : \forall \{\mathbf{I} \times \mathbf{A}\}
      _____
  ≁Γ, x≬A∋x}A
 S : ∀ {F x y A B}
  ≁ x ± y
   ≁ Γ ∋ x <sup>8</sup> A
  ÷Γ, Y°B∋X'A
data ⊢ * : Context + Term + Type + Set where
 \vdash : \forall \{ \Gamma \times A \}
  ÷Γ∋ x ∛ A
  → 1' ⊨ ' x $ A
 \vdash X : V \{\Gamma \times N \land D\}
  ≻Γ, x°A⊢N³Б
     _____
  → Γ ⊨ λ x = N } A = B
  _-_ : V { [ L M A B }
   \rightarrow \Gamma \vdash L \stackrel{!}{=} A \rightarrow B
    ÷Г⊢М∦А
    -> 1' ⊨ L - M $ B
```

```
data Type : Set where
 _→_ : Type → Type → Type
 `N : Type
data Context : Set where
 Ø : Context
 ____: Context - Type - Context
data  \supseteq : Context \rightarrow Type \rightarrow Set where
 Z : ∀ {Γ A}
       _____
  →Г, А <del>Э</del> А
  S_ : ∀ {Γ A B}
   ⇒ Г ∋ А
      _____
   →Г, В∋А
data \_\vdash\_: Context \rightarrow Type \rightarrow Set where
 `_ : \forall \{\Gamma\} \{A\}
   → Г ∋ А
      _____
   ⇒ Г <mark>⊢</mark> А
  \lambda_{-} : \forall \{\Gamma\} \{A B\}
  ⇒Г,А⊢В
      _____
   → Γ ⊢ A → B
  _·_ : ∀ {Γ} {A B}
    ⇒ Г <mark>⊢</mark> А → В
    → Г ⊢ А
       _____
    → Γ ⊢ Β
```

Progress + Preservation = Evaluation

Aside: the normalize Tactic

When experimenting with definitions of programming languages in Coq, we often want to see what a particular concrete term steps to — i.e., we want to find proofs for goals of the form t ==> t', where t is a completely concrete term and t' is unknown. These proofs are quite tedious to do by hand. Consider, for example, reducing an arithmetic expression using the small-step relation astep.

The following custom Tactic Notation definition captures this pattern. In addition, before each step, we print out the current goal, so that we can follow how the term is being reduced.

```
Tactic Notation "print_goal" :=
  match goal with |- ?x ⇒ idtac x end.
Tactic Notation "normalize" :=
  repeat (print_goal; eapply multi_step ;
      [ (eauto 10; fail) | (instantiate; simpl)]);
  apply multi_refl.
```

The normalize tactic also provides a simple way to calculate the normal form of a term, by starting with a goal with an existentially bound variable.

Functional Big-step Semantics

Scott Owens¹, Magnus O. Myreen², Ramana Kumar³, and Yong Kiam Tan⁴

¹ School of Computing, University of Kent, UK
 ² CSE Department, Chalmers University of Technology, Sweden

 ³ NICTA, Australia
 ⁴ IHPC, A*STAR, Singapore

Testing semantics To test a semantics, one must actually use it to evaluate programs. Functional big-step semantics can do this out-of-the-box, as can many small-step approaches [13,14]. Where semantics are defined in a relational big-

- C. Ellison and G. Rosu. An executable formal semantics of C with applications. In Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2012, pages 533-544, 2012. doi: 10.1145/2103656.2103719.
- 14. C. Klein, J. Clements, C. Dimoulas, C. Eastlund, M. Felleisen, M. Flatt, J. A. McCarthy, J. Rafkind, S. Tobin-Hochstadt, and R. B. Findler. Run your research: on the effectiveness of lightweight mechanization. In *Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2012*, pages 285–296, 2012. doi:10.1145/2103656.2103691.

Mechanized Metatheory for the Masses: The POPLMARK Challenge

Brian E. Aydemir¹, Aaron Bohannon¹, Matthew Fairbairn², J. Nathan Foster¹, Benjamin C. Pierce¹, Peter Sewell², Dimitrios Vytiniotis¹, Geoffrey Washburn¹, Stephanie Weirich¹, and Steve Zdancewic¹

¹ Department of Computer and Information Science, University of Pennsylvania ² Computer Laboratory, University of Cambridge

Challenge 2A: Type Safety for Pure F_<

Type soundness is usually proven in the style popularized by Wright and Felleisen [51], in terms of *preservation* and *progress* theorems. Challenge 2A is to prove these properties for pure F_{\leq} .

3.3 THEOREM [PRESERVATION]: If $\Gamma \vdash t$: T and $t \longrightarrow t'$, then $\Gamma \vdash t'$: T. \Box

3.4 THEOREM [PROGRESS]: If t is a closed, well-typed F_{\leq} term (i.e., if $\vdash t : T$ for some T), then either t is a value or else there is some t' with $t \longrightarrow t'$. \Box

Challenge 3: Testing and Animating with Respect to the Semantics

Our final challenge is to provide an implementation of this functionality, specifically for the following three tasks (using the language of Challenge 2B):

- 1. Given F_{\leq} terms t and t', decide whether $t \longrightarrow t'$.
- 2. Given F_{\leq} terms t and t', decide whether $t \longrightarrow^* t' \not\rightarrow$, where \longrightarrow^* is the reflexive-transitive closure of \longrightarrow .
- 3. Given an F_{\leq} term t, find a term t' such that $t \longrightarrow t'$.

Evaluation

By repeated application of progress and preservation, we can evaluate any well-typed term. In this section, we will present an Agda function that computes the reduction sequence from any given closed, well-typed term to its value, if it has one.

The evaluator takes gas and evidence that a term is well-typed, and returns the corresponding steps.

```
_ : eval (gas 100) (\vdashtwo° · \vdashsuc° · \vdashzero) ≡
    steps
     ((\lambda "s" \rightarrow (\lambda "z" \rightarrow `"s" \cdot (`"s" \cdot `"z"))) \cdot (\lambda "n" \rightarrow `suc `"n")

    `zero

     \rightarrow \langle \xi - \cdot 1 (\beta - \lambda V - \lambda) \rangle
       (\lambda "z" \rightarrow (\lambda "n" \rightarrow `suc ` "n") \cdot ((\lambda "n" \rightarrow `suc ` "n") \cdot ` "z")) \cdot
       `zero
     \rightarrow \langle \beta - \lambda V - zero \rangle
      (\lambda "n" \rightarrow `suc ` "n") \rightarrow ((\lambda "n" \rightarrow `suc ` "n") \rightarrow `zero)
     \rightarrow \langle \xi - \cdot z \ V - \lambda \ (\beta - \lambda \ V - zero) \rangle
      (λ "n" → `suc ` "n") · `suc `zero
     \rightarrow \langle \beta - \lambda (V-suc V-zero) \rangle
     `suc (`suc `zero)
     )
     (done (V-suc (V-suc V-zero)))
_{-} = refl
```

Substitution: Single vs Simultaneous Boolean vs Decidable

Conclusions

wiem @buggymcbugfix Follow

 \sim

I just proved commutativity of multiplication in Agda and got way too much serotonin out of it.

Programming Language Foundations in Agda is AMAZING. Check it out at plfa.github.io.

Thank you, Phil Wadler and @wenkokke.

(PS: If you have a better proof, let me know!)

*-comm : (m n : N) → m * n = n * m																
*-comm zero n																
rewrite *-absorption n = refl																
*-comm m zero																
rewrite *-absorption m = refl																
*-comm (suc m') (suc n')		suc	с л	1.1	k 3	suc	n'	=	sı	IC	n'	*	suc	: m'		
rewrite *-comm m' (suc n')		n"	+	(m)		- n'	1	m)	= /	π'	+	n"	* 51	IC	m*
sym (+-assoc n' m' (n' * m'))		n'	+	m*	+	n'	*	т"	=	т'	+	n^*	*	suc	m	
∗-comm n' m'		n"	+	т"	+	т"	*	n"	=	т'	+	n	\ast	suc	m*	
+-comm n' m'		<i>m</i> *	+	n'	+	m*	*	n"	=	т'	+	n	*	suc	m^*	
-comm n' (suc m')	1	m	+	n'	+	m'	*	n"	=	m'	+	(n	• •	- m'	*	n')
+-assoc m' n' (m' * n')																
= refl																

10:35 AM - 16 Oct 2018

http://plfa.inf.ed.ac.uk https://github.com/plfa

Or search for "Kokke Wadler"

Please send your comments and pull requests!