
Programming Language
Foundations in Agda

Philip Wadler
(with Wen Kokke)

University of Edinburgh / IOHK / Rio de Janeiro
LFCS Lab Lunch, 9 October 2018

Proof Assistants

Robin Milner

LCF

Gerard Huet & Thierry Coquand

Coq

Conor McBride and James McKenna

Epigram

Ulf Norell and Andreas Abel

Agda

Propositions as Types

Philip Wadler,
Propositions as Types,

Communications of the ACM
December 2015

Programming Language
Foundations in Agda

(Programming Language)
Foundations in Agda

Programming (Language
Foundations) in Agda

http://plfa.inf.ed.ac.uk

Please send your comments!

http://plfa.inf.ed.ac.uk

https://github.com/plfa

And your pull requests!

http://plfa.inf.ed.ac.uk

Coq vs Agda

The troubles with Coq …
• Everything needs to be done twice! Students need to

learn both the pair type (terms and patterns) and the
tactics for manipulating conjunctions (split and destruct).

• Induction can be mysterious.

• Names vs notations: subst N x M vs N[x:=M].

• Naming conventions vary widely.

• Propositions as Types present but hidden.

… are absent in Agda

• No tactics to learn. Pairing and conjunction identical.

• Induction is the same as recursion.

• _[_:=_] is name for N [x := M].

• Standard Library makes a stab at consistency.

• Propositions as Types on proud display.

Agda vs Coq:
Simply-Typed Lambda

Calculus

Inherently Typed
is Golden

Named variables, separate types

de Bruijn indexes, inherently typed

451

275

Lines of code,
omitting examples

451 / 275 = 1.6

275 / 451 = 0.6

Progress + Preservation
= Evaluation

Substitution:
Single vs Simultaneous

Boolean vs Decidable

Conclusions

http://plfa.inf.ed.ac.uk
https://github.com/plfa

Or search for “Kokke Wadler”

Please send your comments and pull requests!

https://github.com/plfa

