Formal Methods at
IOHK

Philip Wadler
University of Edinburgh / IOHK
Edinburgh / R1o de Janeiro
SBMF, 28 November 2018

o ©®
—I
—J
an
—
—J
O
—
-
L
ot

iy
O\
9
O—

PROOF OF PROOF OF

WORK vs STAKE

Ourohoros: A Provably Secure Proof-of-Stake Blockchain Protocol

Aggelos Kiayias® Alexander Russell’ Bernardo David* Roman Olivnykovs

August 21, 2017

Abstract

We present “Ouroboros™, the first blockchain protocol based on proof of stake with rig-
orous security guarantees. We establish security properties for the protocol comparable to
those achieved by the bitcoin blockchain protocol. As the protocol provides a “proof of stake™
blockchain discipline, it offers qualitative efficiency advantages over blockchains based on proot
ol physical resources (e.g., proof of work). We also preseni a novel reward mechanism for in-
cenlivizing Prool of Stake protocols and we prove ihat, given this mechanism, honest. behavior
is an approximate Nash equilibrium, thus neutralizing attacks such as selfish mining. We also
present initial evidence of the practicality of our protocol in real world settings by providing
experimental results on transaction confirmation and processing.

1 Introduction

A primary consideration regarding the operation of blockchain protocols based on proof of work
(PoW)—such as bitcoin [30]—is the energy required for their execution. At the time of this writ-
ing, generating a single block on the biteoin blockehain requires a number of hashing operations
exceeding 2%, which resulls in striking cnergy demands. Indeed, carly calculations indicated that
the energy requirements of the protocol were comparable to that of a small country [32].

[OHK

Cryptocurrency firm

Product: Ethereum Classic (ETC, Proof of Work)
Product: Cardano (ADA & multicurrency, Proof of Stake)
Committed to peer-reviewed research

Committed to Haskell

Two approaches to
formal methods

Previously: Write code, capture its behaviour with
specification

Now: Write specification, then implement with code
Some prootfs sketched by hand

One implementation adheres closely to spec, used for
testing

One implementation designed to be efficient

Wallet state

(utxo, pending) € Wallet = UTxO x Pending
wg € Wallet = (©,0)

Queries
availableBalance = balance o available
totalBalance = balance o total
Atomic updates
applyBlock b (utxo, pending) = (updateUTxO b utxo, updatePending b pending)
newPending tx (utxo, pending) = (utxo, pending U {tx})
Preconditions
newPending (ins, outs) (utxo, pending)
requires ins C dom(available (utxo, pending))
applyBlock b (utxo, pending)
requires dom(txouts b) Ndomutxo =@
Auxiliary functions

available, total € Wallet — UTxO
available (utxo, pending) = txins pending 4 utxo
total (utxo, pending) = available (utxo, pending) U change pending

change € Pending — UTxO
change pending = txouts pending t> TxOutoyrs

updateUTxO € Block - UTxO — UTxO
updateUTxO b utxo = txins b 41 (utxo U (txouts b > TxOutoyrs))

updatePending € Block — Pending — Pending
updatePending b p = {tx | tx € p, (inputs, _) = tx,inputs Ntxins b = @}

Figure 3: The basic model

Ps1 Calculus

0 Nil
MN.P Output
/ e r
M /\.7:.)}\.. P . fput T the (data) terms, ranged over by M, N
case o1 : Py |-+ [op : P, Case RO ;
_ C the conditions, ranged over by ¢
(va)P Restriction A the assertions, ranged over b: 1
P|Q Parallel 7 AEBETIONS, 1anget OvEL B
P Replication
R4 Assertion

Parametric family of process calculi
Specily tems, conditions, assertions

Established theory and tooling: Psi Calculi Workbench

Ps1 1n Haskell

data Psi where

Done :: Psi -- completed process
New :: (Channel a » Psi) » Psi -- create new unicast channel
Inp :: Channel a » (a » Psi) » Psi -- unicast input
Out :: Channel a » a » Psi » Psi -- unicast output
Log :: String » Psi bs 5 Psi bs -- logging
-- interpreters
simulatePsi :: [Psi] » [String] -- simulate, print logs
exportPsi :: [Psi] s [String] -- export to, say, Isabelle
runPsi :: [Psi] » I0 @ -- Prun concurrent processes

Add broadcast channels and subprocesses
data Psi :: [Type] + Type where

Done :: Psi bs -- completed process

New :: Summarize a = (Unicast a + Psi bs) » Psi bs -- create new unicast channel
Ulnp :: Unicast a » (a » Psi bs) - Psi bs -- unicast input

UOut :: Unicast a » a » Psi bs » Psi bs -- unicast output

BInp :: Broadcast bs a = (a » Psi bs) » Psi bs -- broadcast input

BOut :: Broadcast bs a » a » Psi bs » Psi bs -- broadcast output

Fork :: ProcId » Psi A[] » Psi bs » Psi bs -- fork new process

Log :: String » Psi bs » Psi bs -- logging

vl el

MARLOWE PLUTUS

2
\'4

\Y4

Reasoning about
Smart Contracts

PROGRESS: If a contract 1s not quiescent, there 1s always a finite
time by which each of the participants can take a step to progress
the contract.

PRESERVATION: If a contract 1s quiescent, the sum of money paid
into the smart contract 1s equal to the sum of money paid out of the
smart contract.

