
A prettier printer
Philip Wadler

Joyce Kilmer and most computer scientists agree: there is no poem as lovely as
a tree. In our love affair with the tree it is parsed, pattern matched, pruned —
and printed. A pretty printer is a tool, often a library of routines, that aids in
converting a tree into text. The text should occupy a minimal number of lines
while retaining indentation that reflects the underlying tree. A good pretty printer
must strike a balance between ease of use, flexibility of format, and optimality of
output.

Over the years, Richard Bird and others have developed the algebra of pro-
gramming to a fine art. John Hughes (1995) describes the evolution of a pretty
printer library, where both the design and implementation have been honed by
an appealing application of algebra. This library has become a standard package,
widely used in the field. A variant of it was implemented for use in the Glasgow
Haskell Compiler by Simon Peyton Jones (1997).

This chapter presents a new pretty printer library, which I believe is an im-
provement on the one designed by Hughes. The new library is based on a single
way to concatenate documents, which is associative and has a left and right unit.
This may seem an obvious design, but perhaps it is obvious only in retrospect.
Hughes’s library has two distinct ways to concatenate documents, horizontal and
vertical, with horizontal composition possessing a right unit but no left unit, and
vertical composition possessing neither unit. The new library is 30% shorter and
runs 30% faster than Hughes’s.

A widely used imperative pretty-printer is described by Derek Oppen (1980).
Oppen’s work appears to be the basis of the pretty-printing facilities in Caml.
The pretty printer presented here uses an algorithm equivalent to Oppen’s, but
presented in a functional rather than an imperative style. Further comparison
with Hughes’s and Oppen’s work appears in the conclusions.

A complete listing of the pretty printer library appears at the end of this
chapter.

2 A prettier printer

1 A simple pretty printer

To begin, we consider the simple case where each document has only one possible
layout — that is, no attempt is made to compress structure onto a single line.
There are six operators for this purpose.

(<>) :: Doc -> Doc -> Doc

nil :: Doc

text :: String -> Doc

line :: Doc

nest :: Int -> Doc -> Doc

layout :: Doc -> String

Here <> is the associative operation that concatenates two documents, which has
the empty document nil as its left and right unit. The function text converts a
string to the corresponding document, and the document line denotes a line break;
we adopt the convention that the string passed to text does not contain newline
characters, so that line is always used for this purpose. The function nest adds
indentation to a document. Finally, the function layout converts a document to
a string. (In practice, one might choose to make (text "\n") behave like line,
where "\n" is the string consisting of a single newline.)

One simple implementation of simple documents is as strings, with <> as string
concatenation, nil as the empty string, text as the identity function, line as the
string consisting of a single newline, nest i as the function that adds i spaces
after each newline (to increase indentation), and layout as the identity function.
This simple implmentation is not especially efficient, since nesting examines every
character of the nested document, nor does it generalize easily. We will consider a
more algebraic implementation shortly.

Note that indentation is added only at an explicit newline, not at the beginning
of a string. Readers familiar with Hughes’s pretty printer may find this choice
surprising, but it is precisely this choice that enables the use of one concatenation
operator rather than two.

As an example, here is a simple tree data type, and functions to convert a tree
to a document.

data Tree = Node String [Tree]

showTree (Node s ts) = text s <> nest (length s) (showBracket ts)

showBracket [] = nil

showBracket ts = text "[" <> nest 1 (showTrees ts) <> text "]"

showTrees [t] = showTree t

showTrees (t:ts) = showTree t <> text "," <> line <> showTrees ts

This produces output in the following style.

aaa[bbbbb[ccc,

Philip Wadler 3

dd],

eee,

ffff[gg,

hhh,

ii]]

Alternatively, here is a variant of the above function.

showTree’ (Node s ts) = text s <> showBracket’ ts

showBracket’ [] = nil

showBracket’ ts = text "[" <>

nest 2 (line <> showTrees’ ts) <>

line <> text "]")

showTrees’ [t] = showTree t

showTrees’ (t:ts) = showTree t <> text "," <> line <> showTrees ts

This now produces output in the following style.

aaa[

bbbbb[

ccc,

dd

],

eee,

ffff[

gg,

hhh,

ii

]

]

It is easy to formulate variants to generate yet other styles.
Every document can be reduced to a normal form of text alternating with line

breaks nested to a given indentation,

text s0 <> nest i1 line <> text s1 <> · · · <> nest ik line <> text sk

where each sj is a (possibly empty) string, and each ij is a (possibly zero) natural
number. For example, here is a document.

text "bbbbb" <> text "[" <>

nest 2 (

line <> text "ccc" <> text "," <>

line <> text "dd"

) <>

line <> text "]"

4 A prettier printer

And here is its normal form.

text "bbbbb[" <>

nest 2 line <> text "ccc," <>

nest 2 line <> text "dd" <>

nest 0 line <> text "]"

Hence, the document prints as follows.

bbbbb[

ccc,

dd

]

The following laws are adequate to reduce a document to normal form, taken
together with the fact that <> is associative with unit nil.

text (s ++ t) = text s <> text t

text "" = nil

nest (i+j) x = nest i (nest j x)

nest 0 x = x

nest i (x <> y) = nest i x <> nest i y

nest i nil = nil

nest i (text s) = text s

All but the last law come in pairs: each law on a binary operator is paired with
a corresponding law for its unit. The first pair of laws state that text is a homo-
morphism from string concatenation to document concatenation. The next pair of
laws state that nest is a homomorphism from addition to composition. The pair
after that state that nest distributes through concatenation. The last law states
that nesting is absorbed by text. In reducing a term to normal form, the first four
laws are applied left to right, while the last three are applied right to left.

We can also give laws that relate a document to its layout.

layout (x <> y) = layout x ++ layout y

layout nil = ""

layout (text s) = s

layout (nest i line) = ’\n’ : copy i ’ ’

The first two laws state that layout is a homomorphism from document concatena-
tion to string concatenation. In this sense, layout is the inverse of text, which is
precisely what the next law states. The final law states that the layout of a nested
line is a newline followed by one space for each level of indentation.

A simple, but adequate, implementation can be derived directly from the al-
gebra of documents. We represent a document as a concatenation of items, where
each item is either a text or a line break indented a given amount.

Philip Wadler 5

data Doc = Nil

| String ‘Text‘ Doc

| Int ‘Line‘ Doc

These constructors relate to the document operators as follows.

Nil = nil

s ‘Text‘ x = text s <> x

i ‘Line‘ x = nest i line <> x

For example, the normal form above is represented as follows.

"bbbbb[" ‘Text‘ (

2 ‘Line‘ ("ccc," ‘Text‘ (

2 ‘Line‘ ("dd" ‘Text‘ (

0 ‘Line‘ ("]" ‘Text‘ Nil)))))

Note that the document need not be in normal form, because it is not required
that text and line breaks alternate.

It is easy to derive representations for each function from the above equations.

nil = Nil

text s = s ‘Text‘ Nil

line = 0 ‘Line‘ Nil

(s ‘Text‘ x) <> y = s ‘Text‘ (x <> y)

(i ‘Line‘ x) <> y = i ‘Line‘ (x <> y)

Nil <> y = y

nest i (s ‘Text‘ x) = s ‘Text‘ nest i x

nest i (j ‘Line‘ x) = (i+j) ‘Line‘ nest i x

nest i Nil = Nil

layout (s ‘Text‘ x) = s ++ layout x

layout (i ‘Line‘ x) = ’\n’ : copy i ’ ’ ++ layout x

layout Nil = ""

For instance, here is the derivation of the first line of concatenation.

(s ‘Text‘ x) <> y

= { definition Text }

(text s <> x) <> y

= { associative <> }

text s <> (x <> y)

= { definition Text }

s ‘Text‘ (x <> y)

The remaining derivations are equally trivial.

6 A prettier printer

2 A pretty printer with alternative layouts

We now consider documents with multiple possible layouts. Whereas before we
might view a document as equivalent to a string, now we will view it as equivalent
to a set of strings, each corresponding to a different layout of the same document.

This extension is achieved by adding a single function.

group :: Doc -> Doc

Given a document, representing a set of layouts, group returns the set with one
new element added, representing the layout in which everything is compressed
on one line. This is achieved by replacing each newline (and the corresponding
indentation) with text consisting of a single space. (Variants might be considered
where each newline carries with it the alternate text it should be replaced by. For
instance, some newlines might be replaced by the empty text, others with a single
space.)

The function layout is replaced by one that chooses the prettiest among a set
of layouts. It takes as an additional parameter the preferred maximum line width
of the chosen layout.

pretty :: Int -> Doc -> String

(Variants might be considered with additional parameters, for instance a ‘ribbon
width’ indicating the maximum number of non-indentation characters that should
appear on a line.)

As an example, here is a revision of the first form of the function to convert a
tree to a document, which differs by the addition of a call to group.

showTree (Node s ts) = group (text s <> nest (length s) (showBracket ts))

If the previous document is printed with pretty 30, this definition produces the
following output.

aaa[bbbbb[ccc, dd],

eee,

ffff[gg, hhh, ii]]

This fits trees onto one line where possible, but introduces sufficient line breaks to
keep the total width less than 30 characters.

To formalize the semantics of the new operations, we add two auxiliary oper-
ators.

(<|>) :: Doc -> Doc -> Doc

flatten :: Doc -> Doc

The <|> operator forms the union of the two sets of layouts. The flatten operator
replaces each line break (and its associated indentation) by a single space. A
document always represents a non-empty set of layouts, where all layouts in the
set flatten to the same layout. As an invariant, we require in (x <|> y) that all

Philip Wadler 7

layouts in x and y flatten to the same layout. We do not expose <|> or flatten

directly to the user; instead, they are exposed only via group (defined below)
or fillwords and fill (defined in Section 4), which all preserve the invariant
required by <|>.

Laws extend each operator on simple documents pointwise through union.

(x <|> y) <> z = (x <> z) <|> (y <> z)

x <> (y <|> z) = (x <> y) <|> (x <> z)

nest i (x <|> y) = nest i x <|> nest i y

Since flattening gives the same result for each element of a set, the distribution law
for flatten is a bit simpler.

flatten (x <|> y) = flatten x

Further laws explain how flatten interacts with other document constructors, the
most interesting case being what happens with line.

flatten (x <> y) = flatten x <> flatten y

flatten nil = nil

flatten (text s) = text s

flatten line = text " "

flatten (nest i x) = flatten x

Now we can define group in terms of flatten and <|>.

group x = flatten x <|> x

These laws are adequate to reduce any document to a normal form

x1 <|> · · · <|> xn,

where each xj is in the normal form for a simple document.
Next, we need to specify how to choose the best layout among all those in a

set. Following Hughes, we do so by specifying an ordering relation between lines,
and extending this lexically to an ordering between documents.

The ordering relation depends on the available width. If both lines are shorter
than the available width, the longer one is better. If one line fits in the available
width and the other does not, the one that fits is better. If both lines are longer
than the available width, the shorter one is better. Note that this ordering relation
means that we may sometimes pick a layout where some line exceeds the given
width, but we will do so only if this is unavoidable. (This is a key difference from
Hughes, as we discuss later.)

One possible implementation is to consider sets of layouts, where sets are
represented by lists, and layouts are represented by strings or by the algebraic rep-
resentation of the preceding section. This implementation is hopelessly inefficient:
a hundred choices will produce 2100 possible documents.

Fortunately, the algebraic specification above leads straightforwardly to a more
tractable implementation. The new representation is similar to the old, except we
add a construct representing the union of two documents.

8 A prettier printer

data Doc = Nil

| String ‘Text‘ Doc

| Int ‘Line‘ Doc

| Doc ‘Union‘ Doc

These constructors relate to the document operators as follows.

Nil = nil

s ‘Text‘ x = text s <> x

i ‘Line‘ x = nest i line <> x

x ‘Union‘ y = x <|> y

We now have two invariants on (x ‘Union‘ y). As before, we require that x and y

flatten to the same layout. Additionally, we require that no first line of a document
in x is shorter than some first line of a document in y; or, equivalently, that every
first line in x is at least as long as every first line in y. We must insure these
invariants wherever we creat a Union.

To achieve acceptable performance, we will exploit the distributive law, and
use the representation (s ‘Text‘ (x ‘Union‘ y)) in preference to the equivalent
((s ‘Text‘ x) ‘Union‘ (s ‘Text‘ y)). For instance, consider the document

group (

group (

group (

group (text "hello" <> line <> text "a")

<> line <> text "b")

<> line <> text "c")

<> line <> text "d")

This has the following possible layouts:

hello a b c hello a b hello a hello

c b a

c b

c

To lay this out within a maximum width of 5, we must pick the last of these –
and we would like to eliminate the others in one fell swoop. To achieve this, we
pick a representation that brings to the front any common string. For instance, we
represent the above document in the form

"hello" ‘Text‘ ((" " ‘Text‘ x) ‘Union‘ (0 ‘Line‘ y))

for suitable documents x and y. Here "hello" has been factored out of all the
layouts in x and y, and " " has been factored out of all the layouts in x. Since
"hello" followed by " " occupies 6 characters and the line width is 5, we may
immediately choose the right operand of ‘Union‘ without further examination of
x, as desired.

Philip Wadler 9

The definitions of nil, text, line, <>, and nest remain exactly as before,
save that <> and nest must be extended to specify how they interact with Union.

(x ‘Union‘ y) <> z = (x <> z) ‘Union‘ (y <> z)

nest k (x ‘Union‘ y) = nest k x ‘Union‘ nest k y

These lines follow immediately from the distributive laws. In the first equation,
note that if no first line of x is shorter than any first line of y, then no first line
of x <> z is shorter than any first line of y <> z, so we preserve the invariant
required by Union, and similarly for the second equation.

Definitions of group and flatten are easily derived.

group Nil = Nil

group (i ‘Line‘ x) = (" " ‘Text‘ flatten x) ‘Union‘ (i ‘Line‘ x)

group (s ‘Text‘ x) = s ‘Text‘ group x

group (x ‘Union‘ y) = group x ‘Union‘ y

flatten Nil = Nil

flatten (i ‘Line‘ x) = " " ‘Text‘ flatten x

flatten (s ‘Text‘ x) = s ‘Text‘ flatten x

flatten (x ‘Union‘ y) = flatten x

For instance, here is the derivation of the second line of group.

group (i ‘Line‘ x)

= { definition Line }

group (nest i line <> x)

= { definition group }

flatten (nest i line <> x) <|> (nest i line <> x)

= { definition flatten }

(text " " <> flatten x) <|> (nest i line <> x)

= { definition Text, Union, Line }

(" " ‘Text‘ flatten x) ‘Union‘ (i ‘Line‘ x)

In the last line, each document on the left begins with a space while each document
on the right begins with a newline, so we preserve the invariant required by Union.

The derivation of the third line of group reveals a key point.

group (s ‘Text‘ x)

= { definition Text }

group (text s <> x)

= { definition group }

flatten (text s <> x) <|> (text s <> x)

= { definition flatten }

(text s <> flatten x) <|> (text s <> x)

= { <> distributes through <|> }

text s <> (flatten x <|> x)

= { definition group }

10 A prettier printer

text s <> group x

= { definition Text }

s ‘Text‘ group x

Distribution is used to bring together the two instances of text generated by the
definition of group. As we saw above, this factoring is crucial in efficiently choosing
a representation.

The other lines of group and flatten are also easily derived. The last line of
each follows from the invariant that the two operands of a union both flatten to
the same document.

Next, it is necessary to choose the best among the set of possible layouts. This
is done with a function best, which takes a document that may contain unions, and
returns a document containing no unions. A moment’s thought reveals that this
operation requires two additional parameters: one specifies the available width w,
and the second specifies the number of characters k already placed on the current
line (including indentation). The code is fairly straightforward.

best w k Nil = Nil

best w k (i ‘Line‘ x) = i ‘Line‘ best w i x

best w k (s ‘Text‘ x) = s ‘Text‘ best w (k + length s) x

best w k (x ‘Union‘ y) = better w k (best w k x) (best w k y)

better w k x y = if fits (w-k) x then x else y

The two middle cases adjust the current position: for a newline it is set to the
indentation, and for text it is incremented by the string length. For a union, the
better of the best of the two options is selected. It is essential for efficiency that
the inner computation of best is performed lazily. By the invariant for unions, no
first line of the left operand may be shorter than any first line of the right operand.
Hence, by the criterion given previously, the first operand is preferred if it fits, and
the second operand otherwise.

It is left to determine whether a document’s first line fits into w spaces. This
is also straightforward.

fits w x | w < 0 = False

fits w Nil = True

fits w (s ‘Text‘ x) = fits (w - length s) x

fits w (i ‘Line‘ x) = True

If the available width is less than zero, then the document cannot fit. Otherwise,
if the document is empty or begins with a newline then it fits trivially, while if
the document begins with text then it fits if the remaining document fits in the
remaining space. Handling negative widths is not merely esoteric, as the case for
text may yield a negative width. No case is required for unions, since the function
is only applied to the best layout of a set.

Finally, to pretty print a document one selects the best layout and converts it
to a string.

Philip Wadler 11

pretty w x = layout (best w 0 x)

The code for layout is unchanged from before.

3 Improving efficiency

The above implementation is tolerably efficient, but we can do better. It is reason-
able to expect that pretty printing a document should be achievable in time O(s),
where s is the size of the document (a count of the number of <>, nil, text, nest,
and group operations plus the length of all string arguments to text). Further,
the space should be proportional to O(w max d) where w is the width available for
printing, and d is the depth of the document (the depth of calls to nest or group).

There are two sources of inefficiency. First, concatenation of documents might
pile up to the left.

(· · ·((text s0 <> text s1) <> · · ·) <> text sn

Assuming each string has length one, this may require time O(n2) to process,
though we might hope it would take time O(n). Second, even when concatenation
associates to the right, nesting of documents adds a layer of processing to increment
the indentation of the inner document.

nest i0 (text s0 <> nest i1 (text s1 <> · · · <> nest in (text sn)· · ·))

Again assuming each string has length one, this may require time O(n2) to process,
though we might hope it would take time O(n).

A possible fix for the first problem is to add an explicit representation for
concatenation, and to generalize each operation to act on a list of concatenated
documents. A possible fix for the second problem is to add an explicit represen-
tation for nesting, and maintain a current indentation which is incremented as
nesting operators are processed. Combining these two fixes suggests generalizing
each operation to work on a list of indentation-document pairs.

To implement this fix, we introduce a new representation for documents, with
one constructor corresponding to each operator that builds a document. The repre-
sentation is changed so that there is one constructor corresponding to each operator
that builds a document. We use names in all caps to distinguish from the previous
representation.

data DOC = NIL

| DOC :<> DOC

| NEST Int DOC

| TEXT String

| LINE

| DOC :<|> DOC

The operators to build a document are defined trivially.

12 A prettier printer

nil = NIL

x <> y = x :<> y

nest i x = NEST i x

text s = TEXT s

line = LINE

Again, as an invariant, we require in (x :<|> y) that all layouts in x and y flatten
to the same layout, and that no first line in x is shorter than any first line in y.

Definitions of group and flatten are straightforward.

group x = flatten x :<|> x

flatten NIL = NIL

flatten (x :<> y) = flatten x :<> flatten y

flatten (NEST i x) = flatten x

flatten (TEXT s) = TEXT s

flatten LINE = TEXT " "

flatten (x :<|> y) = flatten x

These follow immediately from the equations given previously.
The representation function maps a list of indentation-document pairs into the

corresponding document.

rep z = fold (<>) nil [nest i x | (i,x) <- z]

The operation to find the best layout of a document is generalized to act on a list
of indentation-document pairs. The generalized operation is defined by composing
the old operation with the representation function.

be w k z = best w k (rep z) (hypothesis)

The new definition is easily derived from the old.

best w k x = be w k [(0,x)]

be w k [] = Nil

be w k ((i,NIL):z) = be w k z

be w k ((i,x :<> y):z) = be w k ((i,x):(i,y):z)

be w k ((i,NEST j x):z) = be w k ((i+j,x):z)

be w k ((i,TEXT s):z) = s ‘Text‘ be w (k + length s) z

be w k ((i,LINE):z) = i ‘Line‘ be w i z

be w k ((i,x :<|> y):z) = better w k (be w k ((i,x):z))

(be w k ((i,y):z))

Here is the derivation of the first line.

best w k x

= { 0 is unit for nest }

best w k (nest 0 x)

Philip Wadler 13

= { nil is unit for <> }

best w k (nest 0 x <> nil)

= { definition rep, hypothesis }

be w k [(0,x)]

Here is the case for :<>.

be w k ((i,x :<> y):z)

= { hypothesis, definition rep, definition :<> }

best w k (nest i (x <> y) <> rep z)

= { nest distributes over <> }

best w k ((nest i x <> nest i y) <> rep z)

= { <> is associative }

best w k (nest i x <> (nest i y <> rep z))

= { definition rep, hypothesis }

be w k ((i,x):(i,y):z)

Here is the case for NEST.

be w k ((i,NEST j x):z)

= { hypothesis, definition rep, definition NEST }

best w k (nest i (nest j x) <> rep z)

= { nest homomorphism from addition to composition }

best w k (nest (i+j) x <> rep z)

= { definition rep, hypothesis }

be w k ((i+j,x):z)

Here is the case for TEXT.

be w k ((i,TEXT s):z)

= { hypothesis, definition rep, definition TEXT }

best w k (nest i (text s) <> rep z)

= { text absorbs nest }

best w k (text s <> rep z)

= { definition best }

s ‘Text‘ best w (k + length s) (rep z)

= { hypothesis }

s ‘Text‘ be w (k + length s) z

The remaining cases are similar.
While the argument to best is represented using DOC, the result is represented

using the older representation Doc. Thus, the function pretty can be defined as
before.

pretty w x = layout (best w 0 x)

The functions layout, better, and fits are unchanged. The final code is collected
in Section 7.

14 A prettier printer

4 Examples

A number of convenience functions can be defined.

x <+> y = x <> text " " <> y

x </> y = x <> line <> y

folddoc f [] = nil

folddoc f [x] = x

folddoc f (x:xs) = f x (folddoc f xs)

spread = folddoc (<+>)

stack = folddoc (</>)

The reader may come up with many others.
Often a layout consists of an opening bracket, an indented portion, and a

closing bracket.

bracket l x r = group (text l <>

nest 2 (line <> x) <>

line <> text r)

The following abbreviates the second tree layout function.

showBracket’ ts = bracket "[" (showTrees’ ts) "]"

Another use of bracket appears below.
The function fillwords takes a string, and returns a document that fills each

line with as many words as will fit. It uses words, from the Haskell standard library,
to break a string into a list of words.

x <+/> y = x <> (text " " :<|> line) <> y

fillwords = folddoc (<+/>) . map text . words

Recall that we do not expose :<|> to the user, but x <+/> y may be safely ex-
posed, because it satisfies the invariant required by :<|>. Both text " " and line

flatten to the same layout, and the former has a longer first line than the latter.
Alternatively, one can rewrite the above by noting that (text " " :<|> line) is
equivalent to (group line).

A variant of fillwords is fill, which collapses a list of documents into a
document. It puts a space between two documents when this leads to reason-
able layout, and a newline otherwise. (I stole this function from Peyton Jones’s
expansion of Hughes’s pretty printer library.)

fill [] = nil

fill [x] = x

fill (x:y:zs) = (flatten x <+> fill (flatten y : zs))

:<|>

(x </> fill (y : zs))

Philip Wadler 15

Note the use of flatten to ensure that a space is only inserted between documents
which occupy a single line. Note also that the invariant for :<|> is again satisfied.
The next example demonstrates fill and the role of flatten.

Here are functions that pretty print a simplified subset of XML containing
elements, attributes, and text.

data XML = Elt String [Att] [XML]

| Txt String

data Att = Att String String

showXML x = folddoc (<>) (showXMLs x)

showXMLs (Elt n a []) = [text "<" <> showTag n a <> text "/>"]

showXMLs (Elt n a c) = [text "<" <> showTag n a <> text ">" <>

showFill showXMLs c <>

text "</" <> text n <> text ">"]

showXMLs (Txt s) = map text (words s)

showAtts (Att n v) = [text n <> text "=" <> text (quoted v)]

quoted s = "\"" ++ s ++ "\""

showTag n a = text n <> showFill showAtts a

showFill f [] = nil

showFill f xs = bracket "" (fill (concat (map f xs))) ""

Here is some XML printed for page width 30.

<p

color="red" font="Times"

size="10"

>

Here is some

 emphasized text.

Here is a

<a

href="http://www.eg.com/"

> link

elsewhere.

</p>

Here is the same XML printed for page width 60.

<p color="red" font="Times" size="10" >

Here is some emphasized text. Here is a

16 A prettier printer

 link elsewhere.

</p>

Observe how embedded markup either is flattened or appears on a line by itself.
If the two occurrences of flatten did not appear in fill, then one might have
layouts such as the following.

<p color="red" font="Times" size="10" >

Here is some

emphasized

 text. Here is a <a

href="http://www.eg.com/"

> link elsewhere.

</p>

This latter layout is not so pretty, because the start and close tags of the emphasis
and anchor elements are crammed together with other text, rather than getting
lines to themselves.

5 Related work and conclusion

Algebra Hughes has two fundamentally different concatenation operators. His hor-
izontal concatenation operator (also written <>) is complex: any nesting on the
first line of the second operand is cancelled, and all succeeding lines of the second
operand must be indented as far as the text on the last line of the first operand.
His vertical concatenation operator (written $$) is simple: it always adds a newline
between documents. For a detailed description, see Hughes (1995).

Hughes’s operators are both associative, but associate with each other in only
one of two possible ways. That is, of the two equations,

x $$ (y <> z) = (x $$ y) <> z

x <> (y $$ z) = (x <> y) $$ z

the first holds but the second does not. Horizontal concatenation has a left unit,
but because horizontal composition cancels nesting of its second argument, it is
inherently inimicable to a right unit. Vertical concatenation always adds a newline,
so it has neither unit.

In comparison, here everything is based on a single concatenation operator
that is associative and has both a left and right unit. We can define an analogue
of vertical concatenation.

x </> y = x <> line <> y

It follows immediately that </> is associative, and that <> and </> associate with
each other both ways, though </> has neither unit.

Philip Wadler 17

Expressiveness Hughes has a sep operator that takes a list of documents and con-
catenates them horizontally with spaces in between if the result fits on one line,
and vertically otherwise. Here there is a group operator that fits a document on
one line if possible.

Despite their differences, the two libraries let one express many typical layouts
in roughly the same way, with some things being more convenient in Hughes’s
library and others being more convenient for the library given here.

However, there are some layouts that Hughes’s library can express and the
library given here cannot. It is not clear whether these layouts are actually useful
in practice, but it is clear that they impose difficulties for Hughes’s library, as
discussed next.

Optimality Say that a pretty printing algorithm is optimal if it chooses line breaks
so as to avoid overflow whenever possible; say that it is bounded if it can make
this choice after looking at no more than the next w characters, where w is the
line width. Hughes notes that there is no algorithm to choose line breaks for his
combinators that is optimal and bounded, while the layout algorithm presented
here has both properties.

Derivation Both Hughes’s library and the one presented here demonstrate the use
of algebra to derive an efficient implementation.

Hughes’s derivation is more complex than the one here. For Hughes, not
every document set contains a flat alternative (one without a newline), and sep

offers a flat alternative only if each component document has a flat alternative.
Hence Hughes’s analogue of flatten may return an empty set of layouts, and such
empty sets require special treatment. Here, every document has a non-empty set
of layouts. Hughes also requires code sequences that apply negative nesting, to
unindent code when the scope of nesting introduced by horizontal concatenation is
exited. Here, all nesting is non-negative.

Oppen (1980) describes a pretty-printer with similar capabilities to the one
described here. Like the algorithm given here, it is optimal and bounded: line
breaks are chosen to avoid overflow whenever possible, and lookahead is limited to
the width of one line. Oppen’s algorithm is based on a buffer, and can be tricky to
implement. My first attempt to implement the combinators described here used a
buffer in a similar way to Oppen, and was quite complex. This paper presents my
second attempt, which uses algebra as inspired by Hughes, and is much simpler.

(Chitil has since published an implementation of Oppen’s algorithm that shows
just how tricky it is to get it right in a purely functional style (Chitil 2001).)

Bird’s influence Richard Bird put algebraic design on the map (so to speak). John
Hughes made pretty printer libraries a prime example of the algebraic approach.
The greatest homage is imitation, and here I have paid as much homage as I can
to Hughes and Bird.

In this respect, it may be worth drawing special attention to the handling
of indentation. In Hughes’s development, indentation has a decidedly imperative
cast, with a fiendishly clever use of negative indentations to cancel positive ones.
Here, the same result is achieved by close adherence to Bird’s algebraic approach,

18 A prettier printer

exploiting the fact that the indentation operator distributes through concatenation.
One might say, the prettier printer hatched in Bird’s nest.

6 Acknowledgements

I thank Richard Bird, Koen Claessen, John Hughes, Sam Kamin, Daniel J. P.
Leijen, Jeffrey Lewis, Chris Okasaki, Simon Peyton Jones, and Andreas Rossberg
for comments on earlier versions of this note.

7 Code

-- The pretty printer

infixr 5 :<|>

infixr 6 :<>

infixr 6 <>

data DOC = NIL

| DOC :<> DOC

| NEST Int DOC

| TEXT String

| LINE

| DOC :<|> DOC

data Doc = Nil

| String ‘Text‘ Doc

| Int ‘Line‘ Doc

nil = NIL

x <> y = x :<> y

nest i x = NEST i x

text s = TEXT s

line = LINE

group x = flatten x :<|> x

flatten NIL = NIL

flatten (x :<> y) = flatten x :<> flatten y

flatten (NEST i x) = NEST i (flatten x)

flatten (TEXT s) = TEXT s

flatten LINE = TEXT " "

flatten (x :<|> y) = flatten x

layout Nil = ""

Philip Wadler 19

layout (s ‘Text‘ x) = s ++ layout x

layout (i ‘Line‘ x) = ’\n’ : copy i ’ ’ ++ layout x

copy i x = [x | _ <- [1..i]]

best w k x = be w k [(0,x)]

be w k [] = Nil

be w k ((i,NIL):z) = be w k z

be w k ((i,x :<> y):z) = be w k ((i,x):(i,y):z)

be w k ((i,NEST j x):z) = be w k ((i+j,x):z)

be w k ((i,TEXT s):z) = s ‘Text‘ be w (k+length s) z

be w k ((i,LINE):z) = i ‘Line‘ be w i z

be w k ((i,x :<|> y):z) = better w k (be w k ((i,x):z))

(be w k ((i,y):z))

better w k x y = if fits (w-k) x then x else y

fits w x | w < 0 = False

fits w Nil = True

fits w (s ‘Text‘ x) = fits (w - length s) x

fits w (i ‘Line‘ x) = True

pretty w x = layout (best w 0 x)

-- Utility functions

x <+> y = x <> text " " <> y

x </> y = x <> line <> y

folddoc f [] = nil

folddoc f [x] = x

folddoc f (x:xs) = f x (folddoc f xs)

spread = folddoc (<+>)

stack = folddoc (</>)

bracket l x r = group (text l <>

nest 2 (line <> x) <>

line <> text r)

x <+/> y = x <> (text " " :<|> line) <> y

fillwords = folddoc (<+/>) . map text . words

fill [] = nil

20 A prettier printer

fill [x] = x

fill (x:y:zs) = (flatten x <+> fill (flatten y : zs))

:<|>

(x </> fill (y : zs))

-- Tree example

data Tree = Node String [Tree]

showTree (Node s ts) = group (text s <> nest (length s) (showBracket ts))

showBracket [] = nil

showBracket ts = text "[" <> nest 1 (showTrees ts) <> text "]"

showTrees [t] = showTree t

showTrees (t:ts) = showTree t <> text "," <> line <> showTrees ts

showTree’ (Node s ts) = text s <> showBracket’ ts

showBracket’ [] = nil

showBracket’ ts = bracket "[" (showTrees’ ts) "]"

showTrees’ [t] = showTree t

showTrees’ (t:ts) = showTree t <> text "," <> line <> showTrees ts

tree = Node "aaa" [

Node "bbbbb" [

Node "ccc" [],

Node "dd" []

],

Node "eee" [],

Node "ffff" [

Node "gg" [],

Node "hhh" [],

Node "ii" []

]

]

testtree w = putStr (pretty w (showTree tree))

testtree’ w = putStr (pretty w (showTree’ tree))

-- XML example

data XML = Elt String [Att] [XML]

| Txt String

Philip Wadler 21

data Att = Att String String

showXML x = folddoc (<>) (showXMLs x)

showXMLs (Elt n a []) = [text "<" <> showTag n a <> text "/>"]

showXMLs (Elt n a c) = [text "<" <> showTag n a <> text ">" <>

showFill showXMLs c <>

text "</" <> text n <> text ">"]

showXMLs (Txt s) = map text (words s)

showAtts (Att n v) = [text n <> text "=" <> text (quoted v)]

quoted s = "\"" ++ s ++ "\""

showTag n a = text n <> showFill showAtts a

showFill f [] = nil

showFill f xs = bracket "" (fill (concat (map f xs))) ""

xml = Elt "p" [

Att "color" "red",

Att "font" "Times",

Att "size" "10"

] [

Txt "Here is some",

Elt "em" [] [

Txt "emphasized"

],

Txt "text.",

Txt "Here is a",

Elt "a" [

Att "href" "http://www.eg.com/"

] [

Txt "link"

],

Txt "elsewhere."

]

testXML w = putStr (pretty w (showXML xml))

References

[Chitil 2001] Olaf Chitil. Pretty Printing with Lazy Dequeues. ACM SIGPLAN
Haskell Workshop, Firenze, Italy, 2 September 2001, Universiteit Utrecht
UU-CS-2001-23, p. 183–201.

22 A prettier printer

[Hughes 1995] John Hughes. The design of a pretty-printer library. In J. Jeuring
and E. Meijer, editors, Advanced Functional Programming, Springer
Verlag LNCS 925, 1995.

[Oppen 1980] Derek Oppen. Pretty-printing. ACM Transactions on Programming
Languages and Systems, 2(4): 1980.

[Peyton Jones 1997] Simon Peyton Jones. Haskell pretty-printer library, 1997.
Available from http://www.haskell.org/libraries/#prettyprinting.

