Everything old is new again:
Quoted Domain Specific Languages

Philip Wadler
University of Edinburgh

BuzzConf, Thursday 13 June 2019
How does one integrate a Domain-Specific Language and a host language?

Quotation (McCarthy, 1960)

Normalisation (Gentzen, 1935)
A functional language is a domain-specific language for creating domain-specific languages
Part I

Getting started: Join queries
A query: Who is younger than Alex?

<table>
<thead>
<tr>
<th>name</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Alex”</td>
<td>40</td>
</tr>
<tr>
<td>“Bert”</td>
<td>30</td>
</tr>
<tr>
<td>“Cora”</td>
<td>35</td>
</tr>
<tr>
<td>“Drew”</td>
<td>60</td>
</tr>
<tr>
<td>“Edna”</td>
<td>25</td>
</tr>
<tr>
<td>“Fred”</td>
<td>70</td>
</tr>
</tbody>
</table>

```sql
select v.name as name, v.age as age
from people as u,
people as v
where u.name = "Alex" and v.age < u.age
```

<table>
<thead>
<tr>
<th>name</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Bert”</td>
<td>30</td>
</tr>
<tr>
<td>“Cora”</td>
<td>35</td>
</tr>
<tr>
<td>“Edna”</td>
<td>25</td>
</tr>
</tbody>
</table>
A database as data

<table>
<thead>
<tr>
<th>name</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Alex”</td>
<td>40</td>
</tr>
<tr>
<td>“Bert”</td>
<td>30</td>
</tr>
<tr>
<td>“Cora”</td>
<td>35</td>
</tr>
<tr>
<td>“Drew”</td>
<td>60</td>
</tr>
<tr>
<td>“Edna”</td>
<td>25</td>
</tr>
<tr>
<td>“Fred”</td>
<td>70</td>
</tr>
</tbody>
</table>

{people =
 [{name = “Alex” ; age = 40};
 {name = “Bert” ; age = 30};
 {name = “Cora” ; age = 35};
 {name = “Drew” ; age = 60};
 {name = “Edna” ; age = 25};
 {name = “Fred” ; age = 70}]}
A query as F# code (naive)

```fsharp
type DB = {people : {name : string; age : int} list}
let db' : DB = database("People")
let youths' : {name : string; age : int} list =
    for u in db'.people do
        for v in db'.people do
            if u.name = "Alex" && v.age < u.age then
                yield {name : v.name; age : v.age}

youths' ~> [
    {name = "Bert" ; age = 30}
    {name = "Cora" ; age = 35}
    {name = "Edna" ; age = 25} ]
```
A query as F# code (quoted)

type DB = {people : {name : string; age : int} list}
let db : Expr< DB > = <@ database(“People”) @>
let youths : Expr< {name : string; age : int} list > =
 <@ for u in (%db).people do
 for v in (%db).people do
 if u.name = “Alex” && v.age < u.age then
 yield {name : v.name; age : v.age} @>

run(youths) ↦
[{name = “Bert” ; age = 30}
 {name = “Cora” ; age = 35}
 {name = “Edna” ; age = 25}]
What does **run** do?

1. Normalise quoted expression
2. Translate query to SQL
3. Execute SQL
4. Translate answer to host language

Theorem

Each **run** generates one query if

A. answer type is flat (list of record of scalars)
B. only permitted operations (e.g., no recursion)
C. only refers to one database
Scala (naive)

```scala
val youths' : List [{ val name : String; val age : Int}] =
  for {u ← db'.people
        v ← db'.people
        if u.name == "Alex" && v.age < u.age}
  yield new Record { val name = v.name; val age = v.age }
```

Scala (quoted)

```scala
val youths : Rep [ List [{ val name : String; val age : Int}] ] =
  for {u ← db.people
        v ← db.people
        if u.name == "Alex" && v.age < u.age}
  yield new Record { val name = v.name; val age = v.age }
```
Part II

Abstraction, composition, dynamic generation
Abstracting over values

```plaintext
let range : Expr<(int, int) → Names> =
  <@ fun(a, b) → for w in (%db).people do
    if a ≤ w.age && w.age < b then
      yield {name : w.name} @>

run(<@ (%range)(30, 40) @>)

select w.name as name
from people as w
where 30 ≤ w.age and w.age < 40
```
Abstracting over a predicate

\[
\text{let } \text{satisfies : } \text{Expr} \langle \text{int} \rightarrow \text{bool} \rangle \rightarrow \text{Names} > = \\
<@ \text{fun}(p) \rightarrow \text{for } w \text{ in } (\% \text{db}).\text{people do} \\\n\quad \text{if } p(w.\text{age}) \text{ then} \\\n\quad \text{yield } \{ \text{name : w.name} \} @> \\
\]

\[
\text{run}(<@ (\% \text{satisfies})(\text{fun}(x) \rightarrow 30 \leq x \text{ && } x < 40) @>) \\
\]

\[
\text{select } w.\text{name as name} \\\n\text{from } \text{people as } w \\\n\text{where } 30 \leq w.\text{age and } w.\text{age} < 40
\]
Dynamically generated queries

```plaintext
let rec P(t : Predicate) : Expr< int → bool > =
  match t with
  | Above(a) → <@ fun(x) → (%lift(a)) ≤ x @>
  | Below(a) → <@ fun(x) → x < (%lift(a)) @>
  | And(t, u) → <@ fun(x) → (%P(t))(x) && (%P(u))(x) @>
```

```plaintext
type Predicate =
  | Above of int
  | Below of int
  | And of Predicate × Predicate
```
Dynamically generated queries

\[P(\text{And}(\text{Above}(30), \text{Below}(40))) \]

\[\leadsto \langle @ \ \text{fun}(x) \rightarrow (\text{fun}(x_1) \rightarrow 30 \leq x_1)(x) \ \&\& \ (\text{fun}(x_2) \rightarrow x_2 < 40)(x) \rangle @> \]

\[\leadsto \langle @ \ \text{fun}(x) \rightarrow 30 \leq x \ \&\& \ x < 40 \rangle @> \]

\[\text{run}(\langle @ (\%\text{satisfies})(\%P(\text{And}(\text{Above}(30), \text{Below}(40)))) \rangle @>) \]

\[\text{select} \ w.\text{name as name} \]
\[\text{from} \ \text{people as w} \]
\[\text{where} \ 30 \leq w.\text{age} \ \text{and} \ w.\text{age} < 40 \]
Part III

Closed quotation vs. open quotation
Dynamically generated queries, revisited

\[
\text{let rec } P(t : \text{Predicate}) : \text{Expr< int } \rightarrow \text{ bool }> = \\
\begin{align*}
\text{match } t \text{ with} \\
\mid \text{Above}(a) \rightarrow \langle \text{fun}(x) \rightarrow (\%\text{lift}(a)) \leq x \rangle \\
\mid \text{Below}(a) \rightarrow \langle \text{fun}(x) \rightarrow x < (\%\text{lift}(a)) \rangle \\
\mid \text{And}(t, u) \rightarrow \langle \text{fun}(x) \rightarrow (\%P(t))(x) \&\& (\%P(u))(x) \rangle \\
\end{align*}
\]

\text{VS.}

\[
\text{let rec } P'(t : \text{Predicate})(x : \text{Expr< int >}) : \text{Expr< bool >} = \\
\begin{align*}
\text{match } t \text{ with} \\
\mid \text{Above}(a) \rightarrow \langle \%\text{lift}(a) \leq \%x \rangle \\
\mid \text{Below}(a) \rightarrow \langle \%x < \%\text{lift}(a) \rangle \\
\mid \text{And}(t, u) \rightarrow \langle \%P'(t)(x) \&\& \%P'(u)(x) \rangle \\
\end{align*}
\]
Abstracting over a predicate, revisited

\[
\text{let satisfies : }
\text{Expr< (int }\rightarrow\text{ bool) }\rightarrow\text{ Names } = \\
\text{@ fun(p) }\rightarrow\text{ for w in }\text{%db).people do} \\
\text{ if p(w.age) then } \\
\text{ yield } \{\text{name : w.name}\} @> \\
\text{ vs. } \\
\text{let satisfies’(p : }
\text{Expr< int }\rightarrow\text{ Expr< bool >) : }
\text{Expr< Names > = } \\
\text{@ for w in }\text{%db).people do} \\
\text{ if }\text{ (%p(<@ w.age @>) then } \\
\text{ yield } \{\text{name : w.name}\} @>
\]
<table>
<thead>
<tr>
<th>QDSL</th>
<th>EDSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Expr}< A \rightarrow B >$ ✓</td>
<td>$\text{Expr}< A > \rightarrow \text{Expr}< B >$ ✓</td>
</tr>
<tr>
<td>$\text{Expr}< A \times B >$ ✓</td>
<td>$\text{Expr}< A > \times \text{Expr}< B >$ ✓</td>
</tr>
<tr>
<td>$\text{Expr}< A + B >$ ✓</td>
<td>$\text{Expr}< A > + \text{Expr}< B >$ X</td>
</tr>
</tbody>
</table>
closed quotations

vs.

open quotations

quotations of functions

\((\text{Expr}<A \rightarrow B>)\)

vs.

functions of quotations

\((\text{Expr}<A> \rightarrow \text{Expr})\)
Part IV

The Subformula Principle
Gerhard Gentzen (1909–1945)
Natural Deduction — Gentzen (1935)

<table>
<thead>
<tr>
<th>&–I</th>
<th>&–E</th>
<th>∨–I</th>
<th>∨–E</th>
</tr>
</thead>
<tbody>
<tr>
<td>[A \land B]</td>
<td>[A \land B]</td>
<td>[A \lor B]</td>
<td>[A \lor B]</td>
</tr>
<tr>
<td>[A \land B]</td>
<td>[A]</td>
<td>[B]</td>
<td>[C]</td>
</tr>
<tr>
<td>[A \land B]</td>
<td>[A \lor B]</td>
<td>[C]</td>
<td>[C]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>∃–I</th>
<th>∃–E</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\exists x , Fx]</td>
<td>[\exists x , Fx]</td>
</tr>
<tr>
<td>[F_a]</td>
<td>[C]</td>
</tr>
<tr>
<td>[\exists x , Fx]</td>
<td>[C]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>⊃–I</th>
<th>⊃–E</th>
</tr>
</thead>
<tbody>
<tr>
<td>[A]</td>
<td>[A \supset B]</td>
</tr>
<tr>
<td>[B]</td>
<td>[B]</td>
</tr>
<tr>
<td>[A \supset B]</td>
<td>[B]</td>
</tr>
<tr>
<td>[A \supset B]</td>
<td>[\neg A]</td>
</tr>
<tr>
<td>[A \supset B]</td>
<td>[\neg A]</td>
</tr>
</tbody>
</table>
Natural Deduction

\[
\begin{align*}
\forall x (A) & \\
\vdots & \\
B & \\
\hline
\forall x (A) & \\
\end{align*}
\]

\[
\begin{align*}
A \supset B & \quad A \\
\hline
B & \quad \supset E
\end{align*}
\]

\[
\begin{align*}
A & \quad \& I \\
B & \\
\hline
A \& B
\end{align*}
\]

\[
\begin{align*}
A \& B & \quad \& E_0 \\
\hline
A
\end{align*}
\]

\[
\begin{align*}
A \& B & \quad \& E_1 \\
\hline
B
\end{align*}
\]
Proof Normalisation

\[
\begin{array}{c}
[A]_x \\
\vdots \\
B \\
\overline{A \supset B} \quad \supset \text{-I}^x \\
A \supset B & \quad \supset \text{-I} \\
\hline
B & \quad \supset \text{-E} \\
\hline
A \quad B & \quad \supset \text{-E} \\
\hline
A & \quad B & \quad \& \text{-I} \\
\hline
A & \quad B & \quad \& \text{-E}_0 \\
\hline
A & \quad & \quad \supset \text{-E}_0 \\
\hline
(A) & \quad & \quad \supset \text{-E}_0 \\
\hline
\end{array}
\]
Subformula principle

Perhaps we may express the essential properties of such a normal proof by saying: it is not roundabout. No concepts enter into the proof than those contained in its final result, and their use was therefore essential to the achievement of that result.

— Gerhard Gentzen, 1935

(Subformula principle) Every formula occurring in a normal deduction in [Gentzen’s system of natural deduction] of A from Γ is a subformula of A or of some formula of Γ.

— Dag Prawitz, 1965
The Curry-Howard homeomorphism
Alonzo Church (1903–1995)
Typed λ-calculus

\[[x : A]^x \]

\[\vdash N : B \]

\[\lambda x. N : A \to B \quad \rightarrow \text{I}^x \]

\[L : A \to B \quad M : A \quad L M : B \quad \rightarrow \text{E} \]

\[L : A \times B \quad \times \text{-I} \]

\[(M, N) : A \times B \]

\[L : A \times B \quad \times \text{-E}_0 \]

\[\text{fst} L : A \]

\[L : A \times B \quad \times \text{-E}_1 \]

\[\text{snd} L : B \]
Normalising terms

\[
\begin{align*}
[x : A]^x \\
\vdots \\
N : B \quad \rightarrow^I \quad \vdots \\
\lambda x. N : A \rightarrow B \\
(\lambda x. N) M : B \\
\vdots \\
\vdots \\
M : A \quad N : B \quad \rightarrow^I \\
(M, N) : A \times B \\
fst (M, N) : A \\
\times-E_0 \\
M : A
\end{align*}
\]
Normalisation

\[
(fun(x) \rightarrow N) \ M \leadsto N\{x := M\}
\]

\[
\{\ell = M\}.\ell_i \leadsto M_i
\]

\[
\text{for } x \text{ in (yield } M \text{) do } N \leadsto N\{x := M\}
\]

\[
\text{for } y \text{ in (for } x \text{ in } L \text{ do } M \text{) do } N \leadsto \text{for } x \text{ in } L \text{ do (for } y \text{ in } M \text{ do } N\)
\]

\[
\text{for } x \text{ in (if } L \text{ then } M \text{) do } N \leadsto \text{if } L \text{ then (for } x \text{ in } M \text{ do } N\)
\]

\[
\text{for } x \text{ in [] do } N \leadsto []
\]

\[
\text{for } x \text{ in (} L @ M \text{) do } N \leadsto (\text{for } x \text{ in } L \text{ do } N) @ (\text{for } x \text{ in } M \text{ do } N)
\]

\[
\text{if true then } M \leadsto M
\]

\[
\text{if false then } M \leadsto []
\]
Applications of the Subformula Principle

- **Normalisation eliminates higher-order functions**
 (SQL, Feldspar)
- **Normalisation eliminates nested intermediate data**
 (SQL)
- **Normalisation fuses intermediate arrays**
 (Feldspar)
Part V

Nested intermediate data
Flat data

<table>
<thead>
<tr>
<th>departments</th>
<th>employees</th>
<th>tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>dpt</td>
<td>dpt</td>
<td>emp</td>
</tr>
<tr>
<td>“Product”</td>
<td>“Product”</td>
<td>“Alex”</td>
</tr>
<tr>
<td>“Quality”</td>
<td>“Product”</td>
<td>“Bert”</td>
</tr>
<tr>
<td>“Research”</td>
<td>“Research”</td>
<td>“Cora”</td>
</tr>
<tr>
<td>“Sales”</td>
<td>“Sales”</td>
<td>“Drew”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“Edna”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“Fred”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Departments where every employee can abstract

```
select d.dpt as dpt
from departments as d
where not(exists(
    select *
    from employees as e
    where d.dpt = e.dpt and not(exists(
        select *
        from tasks as t
        where e.emp = t.emp and t.tsk = "abstract"
    ))
))
```

<table>
<thead>
<tr>
<th>dpt</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Quality"</td>
</tr>
<tr>
<td>"Research"</td>
</tr>
</tbody>
</table>
Importing the database

```haskell
type Org = {departments : {dpt : string} list;
            employees : {dpt : string; emp : string} list;
            tasks : {emp : string; tsk : string} list }

let org : Expr< Org > = @$\text{database}($"\text{Org}"") @$
```
Departments where every employee can do a given task

```ocaml
let expertise' : Expr< string → {dpt : string} list > =
<@ fun(u) → for d in (%org).departments do
  if not(exists(
    for e in (%org).employees do
      if d.dpt = e.dpt && not(exists(
        for t in (%org).tasks do
          if e.emp = t.emp && t.tsk = u then yield { } )
        ) ) then yield { } )
  ) then yield {dpt = d.dpt} @>

run(<@ (%expertise')(“abstract”) @>)
[ {dpt = “Quality”}; {dpt = “Research”} ]```
Nested data

```javascript
[{dpt = "Product"; employees =
 [{emp = "Alex"; tasks = ["build"] }
 {emp = "Bert"; tasks = ["build"] }] }
{dpt = "Quality"; employees = [] }]
{dpt = "Research"; employees =
 [{emp = "Cora"; tasks = ["abstract"; "build"; "design"] }
 {emp = "Drew"; tasks = ["abstract"; "design"] }
 {emp = "Edna"; tasks = ["abstract"; "call"; "design"] }] }
{dpt = "Sales"; employees =
 [{emp = "Fred"; tasks = ["call"] }] }
```
Nested data from flat data

```plaintext

type NestedOrg = [{dpt : string; employees :
 [{emp : string; tasks : [string] }] }]

let nestedOrg : Expr<NestedOrg> =
 @@ for d in (%org).departments do
 yield {dpt = d.dpt; employees =
 for e in (%org).employees do
 if d.dpt = e.dpt then
 yield {emp = e.emp; tasks =
 for t in (%org).tasks do
 if e.emp = t.emp then
 yield t.tsk}} } } @@
```
Higher-order queries

let any : Expr<(A list, A → bool) → bool> =
<@ fun(xs, p) →
exists(for x in xs do
    if p(x) then
        yield { })) @>

let all : Expr<(A list, A → bool) → bool> =
<@ fun(xs, p) →
not((%any)(xs, fun(x) → not(p(x)))) @>

let contains : Expr<(A list, A) → bool> =
<@ fun(xs, u) →
(%any)(xs, fun(x) → x = u) @>
Departments where every employee can do a given task

```plaintext
let expertise : Expr< string → {dpt : string} list > =
 <@ fun(u) → for d in (%nestedOrg)
 if (%all)(d.employees,
 fun(e) → (%contains)(e.tasks, u) then
 yield {dpt = d.dpt} @>

run(<@ (%expertise)(“abstract”) @>)
[{dpt = “Quality”}; {dpt = “Research”}]
```
Part VI

Compiling XPath to SQL
Part VII

Results
## SQL LINQ results (F#)

<table>
<thead>
<tr>
<th>Example</th>
<th>F# 2.0</th>
<th>F# 3.0</th>
<th>us</th>
<th>(norm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>differences</td>
<td>17.6</td>
<td>20.6</td>
<td>18.1</td>
<td>0.5</td>
</tr>
<tr>
<td>range</td>
<td>×</td>
<td>5.6</td>
<td>2.9</td>
<td>0.3</td>
</tr>
<tr>
<td>satisfies</td>
<td>2.6</td>
<td>×</td>
<td>2.9</td>
<td>0.3</td>
</tr>
<tr>
<td>P(t₀)</td>
<td>2.8</td>
<td>×</td>
<td>3.3</td>
<td>0.3</td>
</tr>
<tr>
<td>P(t₁)</td>
<td>2.7</td>
<td>×</td>
<td>3.0</td>
<td>0.3</td>
</tr>
<tr>
<td>expertise'</td>
<td>7.2</td>
<td>9.2</td>
<td>8.0</td>
<td>0.6</td>
</tr>
<tr>
<td>expertise</td>
<td>×</td>
<td>66.7&lt;sup&gt;av&lt;/sup&gt;</td>
<td>8.3</td>
<td>0.9</td>
</tr>
<tr>
<td>xp₀</td>
<td>×</td>
<td>8.3</td>
<td>7.9</td>
<td>1.9</td>
</tr>
<tr>
<td>xp₁</td>
<td>×</td>
<td>14.7</td>
<td>13.4</td>
<td>1.1</td>
</tr>
<tr>
<td>xp₂</td>
<td>×</td>
<td>17.9</td>
<td>20.7</td>
<td>2.2</td>
</tr>
<tr>
<td>xp₃</td>
<td>×</td>
<td>3744.9</td>
<td>3768.6</td>
<td>4.4</td>
</tr>
</tbody>
</table>

Times in milliseconds; <sup>av</sup> marks query avalanche.
## Feldspar results (Haskell)

<table>
<thead>
<tr>
<th></th>
<th>QDSL Feldspar</th>
<th>EDSL Feldspar</th>
<th>Generated Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Compile</td>
<td>Run</td>
<td>Compile</td>
</tr>
<tr>
<td>IPGray</td>
<td>16.96</td>
<td>0.01</td>
<td>15.06</td>
</tr>
<tr>
<td>IPBW</td>
<td>17.08</td>
<td>0.01</td>
<td>14.86</td>
</tr>
<tr>
<td>FFT</td>
<td>17.87</td>
<td>0.39</td>
<td>15.79</td>
</tr>
<tr>
<td>CRC</td>
<td>17.14</td>
<td>0.01</td>
<td>15.33</td>
</tr>
<tr>
<td>Window</td>
<td>17.85</td>
<td>0.02</td>
<td>15.77</td>
</tr>
</tbody>
</table>

Times in seconds; minimum time of ten runs.
Part VIII

Conclusion
‘Good artists copy, great artists steal’

– Pablo Picasso
“‘Good artists copy, great artists steal’
– Pablo Picasso”

– Steve Jobs
“‘Good artists copy, great artists steal’
– Pablo Picasso”
– Steve Jobs

EDSL
	types
	syntax (some)

QDSL
	types
	syntax (all)

normalisation
How does one integrate a Domain-Specific Language and a host language?

Quotation (McCarthy, 1960)

Normalisation (Gentzen, 1935)
The script-writers dream, Cooper, DBPL, 2009.


Everything old is new again: Quoted Domain Specific Languages, Najd, Lindley, Svenningsson, Wadler, PEPM, 2016.

Propositions as types, Wadler, CACM, Dec 2015.


Ezra Cooper*†, James Cheney*, Sam Lindley*, Shayan Najd*‡, Josef Svenningsson§, Philip Wadler*

*University of Edinburgh, †Qumulo, ‡Google, §Chalmers & HiQ