Everything old is new again:
Quoted Domain Specific Languages

Philip Wadler
University of Edinburgh

Curry On
Prague, Tuesday 7 July 2015
How does one integrate a Domain-Specific Language and a host language?

Quotation (McCarthy, 1960)

Normalisation (Gentzen, 1935)
Part I

Getting started: Join queries
A query: Who is younger than Alex?

<table>
<thead>
<tr>
<th>name</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Alex”</td>
<td>40</td>
</tr>
<tr>
<td>“Bert”</td>
<td>30</td>
</tr>
<tr>
<td>“Cora”</td>
<td>35</td>
</tr>
<tr>
<td>“Drew”</td>
<td>60</td>
</tr>
<tr>
<td>“Edna”</td>
<td>25</td>
</tr>
<tr>
<td>“Fred”</td>
<td>70</td>
</tr>
</tbody>
</table>

```
select v.name as name,
       v.age as age
from people as u,
     people as v
where u.name = “Alex” and
      v.age < u.age
```
A database as data

<table>
<thead>
<tr>
<th>name</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Alex”</td>
<td>40</td>
</tr>
<tr>
<td>“Bert”</td>
<td>30</td>
</tr>
<tr>
<td>“Cora”</td>
<td>35</td>
</tr>
<tr>
<td>“Drew”</td>
<td>60</td>
</tr>
<tr>
<td>“Edna”</td>
<td>25</td>
</tr>
<tr>
<td>“Fred”</td>
<td>70</td>
</tr>
</tbody>
</table>

```javascript
{people =
    [{name = “Alex”; age = 40};
     {name = “Bert”; age = 30};
     {name = “Cora”; age = 35};
     {name = “Drew”; age = 60};
     {name = “Edna”; age = 25};
     {name = “Fred”; age = 70}]
}
```
A query as F# code (naive)

```fsharp
type DB = {people : {name : string; age : int} list}
let db' : DB = database("People")
let youths' : {name : string; age : int} list =
    for u in db'.people do
    for v in db'.people do
        if u.name = "Alex" && v.age < u.age then
            yield {name : v.name; age : v.age}

youths' ~> [
    {name = "Bert" ; age = 30}
    {name = "Cora" ; age = 35}
    {name = "Edna"; age = 25} ]
```
A query as F# code (quoted)

```fsharp
type DB = {people : {name : string; age : int} list}
let db : Expr< DB > = @{ database(“People”) @} 
let youths : Expr< {name : string; age : int} list > = 
  @{ for u in (%db).people do 
    for v in (%db).people do 
      if u.name = “Alex” && v.age < u.age then 
        yield {name : v.name; age : v.age} @}

run(youths) >>= [ 
  {name = “Bert”; age = 30} 
  {name = “Cora”; age = 35} 
  {name = “Edna”; age = 25} ]
```
What does run do?

1. Simplify quoted expression
2. Translate query to SQL
3. Execute SQL
4. Translate answer to host language

Theorem

Each run generates one query if
A. answer type is flat (list of record of scalars)
B. only permitted operations (e.g., no recursion)
C. only refers to one database
Scala (naive)

```scala
val youth' : List [{ val name : String; val age : Int}] =
for {u ← db'.people
    v ← db'.people
    if u.name == "Alex" && v.age < u.age}
yield new Record { val name = v.name; val age = v.age }
```

Scala (quoted)

```scala
val youth : Rep[ List [{ val name : String; val age : Int}] ] =
for {u ← db.people
    v ← db.people
    if u.name == "Alex" && v.age < u.age}
yield new Record { val name = v.name; val age = v.age }
```
Part II

Abstraction, composition, dynamic generation
Abstracting over values

```haskell
let range : Expr<(int, int) -> Names> =
  @ fun(a, b) -> for w in (%db).people do
      if a <= w.age && w.age < b then
        yield {name : w.name} @>

run(@ (%range)(30, 40) @>)

select w.name as name
from people as w
where 30 <= w.age and w.age < 40
```
Abstracting over a predicate

let satisfies : Expr< (int → bool) → Names > =
 @@ fun(p) → for w in (%db).people do
 if p(w.age) then
 yield {name : w.name} @>

run(@@ (%satisfies)(fun(x) → 30 ≤ x && x < 40) @>)

select w.name as name
from people as w
where 30 ≤ w.age and w.age < 40
Dynamically generated queries

```
type Predicate =
  | Above of int
  | Below of int
  | And of Predicate × Predicate

let rec P(t : Predicate) : Expr< int → bool > =
  match t with
  | Above(a) → <@ fun(x) → (%lift(a)) ≤ x @>
  | Below(a) → <@ fun(x) → x < (%lift(a)) @>
  | And(t, u) → <@ fun(x) → (%P(t))(x) && (%P(u))(x) @>
```
Dynamically generated queries

\[P(\text{And(Above}(30), \text{Below}(40))) \]

\[\leadsto \langle @ \text{fun}(x) \rightarrow (\text{fun}(x_1) \rightarrow 30 \leq x_1)(x) \ & \ & (\text{fun}(x_2) \rightarrow x_2 < 40)(x) \rangle \]

\[\leadsto \langle @ \text{fun}(x) \rightarrow 30 \leq x \ & \ & x < 40 \rangle \]

\[\text{run}(\langle @ (%\text{satisfies})(%P(\text{And(Above}(30), \text{Below}(40))))\rangle) \]

\[\text{select w.name as name} \]
\[\text{from people as w} \]
\[\text{where 30} \leq w.\text{age} \ & \ & \text{and w.age} < 40 \]
Part III

Closed quotation vs. open quotation
Dynamically generated queries, revisited

\[
\begin{align*}
\text{let rec } & P(t : \text{Predicate}) : \text{Expr}^{\text{int} \to \text{bool}} = \\
& \text{match } t \text{ with} \\
& | \text{Above}(a) \rightarrow \text{@ fun}(x) \rightarrow (\%\text{lift}(a)) \leq x \text{@>} \\
& | \text{Below}(a) \rightarrow \text{@ fun}(x) \rightarrow x < (\%\text{lift}(a)) \text{@>} \\
& | \text{And}(t, u) \rightarrow \text{@ fun}(x) \rightarrow (\%P(t))(x) \&\& (\%P(u))(x) \text{@>}
\end{align*}
\]

\[
\text{VS.}
\]

\[
\begin{align*}
\text{let rec } & P'(t : \text{Predicate})(x : \text{Expr}^{\text{int}}) : \text{Expr}^{\text{bool}} = \\
& \text{match } t \text{ with} \\
& | \text{Above}(a) \rightarrow \text{@ (\%\text{lift}(a)) \leq (\%x) \text{@>} \\
& | \text{Below}(a) \rightarrow \text{@ (\%x) < (\%\text{lift}(a)) \text{@>} \\
& | \text{And}(t, u) \rightarrow \text{@ (\%P'(t)(x)) \&\& (\%P'(u)(x)) \text{@>}
\end{align*}
\]
Abstracting over a predicate, revisited

```
let satisfies : Expr< (int → bool) → Names > =
  @$ fun(p) → for w in (%db).people do
      if p(w.age) then
        yield {name : w.name} @$

vs.

let satisfies' (p : Expr< int > → Expr< bool >) : Expr< Names > =
  @$ for w in (%db).people do
      if (%p(@ w.age @)) then
        yield {name : w.name} @$
```
closed quotations

vs.

open quotations

quotations of functions

\((\text{Expr}< A \rightarrow B >)\)

vs.

functions of quotations

\((\text{Expr}< A > \rightarrow \text{Expr}< B >)\)
Part IV

The Subformula Principle
Gerhard Gentzen (1909–1945)
Natural Deduction — Gentzen (1935)

\[
\begin{array}{cccc}
\&-I & \&-E & \lor- I & \lor-E \\
& A & \& B & A & \& B & A \lor B & A \lor B \\
& A \& B & & & C & C \\
\lor-I & \lor-E & \exists-I & \exists-E \\
& \forall x \exists x & \exists x & \exists x & \exists x \\
& a & \forall x \exists x & \exists x & \exists x \\
& \exists x \exists x & C \\
\rightarrow-I & \rightarrow-E & \rightarrow-I & \rightarrow-E \\
& \forall x & \lor \exists x & A & \rightarrow B \\
& \forall x \exists x & A & \rightarrow B \\
& \forall x \exists x & \exists x & \exists x \\
& \forall x \exists x & \exists x & \exists x \\
& \exists x \exists x & C & C \\
\end{array}
\]
Natural Deduction

\[\begin{align*}
\text{[A]}^x \\
\therefore \\
B \\
\frac{A \supset B}{A \supset B} \supset \text{-I}^x \\
\end{align*} \]

\[\begin{align*}
A \supset B & \quad A \\
\therefore B & \quad \supset \text{-E} \\
\end{align*} \]

\[\begin{align*}
A & \quad B \\
\therefore A \& B & \quad \& \text{-I} \\
\end{align*} \]

\[\begin{align*}
A \& B & \quad A \& B \\
\therefore A & \quad \& \text{-E}_0 \\
\end{align*} \]

\[\begin{align*}
A \& B & \quad B \& E_1 \\
\end{align*} \]
Proof Normalisation

\[
\begin{align*}
[A]^x & \quad .
\end{align*}
\]

\[
\begin{align*}
B & \quad \supset \text{-I}^x & \quad .
\end{align*}
\]

\[
\begin{align*}
A \supset B & \quad \supset \text{-I}^x & \quad .
\end{align*}
\]

\[
\begin{align*}
B & \quad \supset \text{-E} & \quad \Rightarrow & \quad B
\end{align*}
\]

\[
\begin{align*}
\quad & \quad .
\end{align*}
\]

\[
\begin{align*}
A & \quad B & \quad \&\text{-I}
\end{align*}
\]

\[
\begin{align*}
A \& B & \quad \&\text{-I}^x & \quad .
\end{align*}
\]

\[
\begin{align*}
A \& B & \quad \&\text{-E}_0 & \quad \Rightarrow & \quad A
\end{align*}
\]
Subformula principle

Perhaps we may express the essential properties of such a normal proof by saying: it is not roundabout. No concepts enter into the proof than those contained in its final result, and their use was therefore essential to the achievement of that result.

— Gerhard Gentzen, 1935

(Subformula principle) Every formula occurring in a normal deduction in [Gentzen’s system of natural deduction] of A from Γ is a subformula of A or of some formula of Γ.

— Dag Prawitz, 1965
The Curry-Howard homeomorphism
Alonzo Church (1903–1995)
Typed λ-calculus

\[
\begin{align*}
[x : A]^x \\
\cdot \\
N : B \\
\lambda x. N : A \to B \\
\end{align*}
\]

\[
\begin{align*}
L : A \to B \\
M : A \\
L M : B \\
\end{align*}
\]

\[
\begin{align*}
M : A \\
N : B \\
(M, N) : A \times B \\
\end{align*}
\]

\[
\begin{align*}
L : A \times B \\
\times E_0 \\
\end{align*}
\]

\[
\begin{align*}
L : A \times B \\
\times E_1 \\
\end{align*}
\]
Normalising terms

\[[x : A]^x \]
\[\vdots \]
\[N : B \]
\[\lambda x. N : A \to B \]
\[(\lambda x. N) \ M : B \]
\[\rightsquigarrow \text{I}^x \]
\[\Rightarrow M : A \]

\[\vdots \]
\[M : A \]
\[N : B \]
\[(M, N) : A \times B \]
\[\text{fst} (M, N) : A \]
\[\times \text{I} \]
\[\times \text{E}_0 \]
\[\Rightarrow M : A \]
Normalisation

\[(\text{fun}(x) \rightarrow N) \, M \rightsquigarrow N[x := M]\]

\[\{\ell = M\}.\ell_i \rightsquigarrow M_i\]

\text{for } x \text{ in } (\text{yield } M) \text{ do } N \rightsquigarrow N[x := M]\]

\text{for } y \text{ in } (\text{for } x \text{ in } L \text{ do } M) \text{ do } N \rightsquigarrow \text{for } x \text{ in } L \text{ do } (\text{for } y \text{ in } M \text{ do } N)

\text{for } x \text{ in } (\text{if } L \text{ then } M) \text{ do } N \rightsquigarrow \text{if } L \text{ then } (\text{for } x \text{ in } M \text{ do } N)

\text{for } x \text{ in } [] \text{ do } N \rightsquigarrow []

\text{for } x \text{ in } (L \odot M) \text{ do } N \rightsquigarrow (\text{for } x \text{ in } L \text{ do } N) \odot (\text{for } x \text{ in } M \text{ do } N)

\text{if } \text{true} \text{ then } M \rightsquigarrow M

\text{if } \text{false} \text{ then } M \rightsquigarrow []
Applications of the Subformula Principle

• **Normalisation eliminates higher-order functions**
 (SQL, Feldspar)

• **Normalisation eliminates nested intermediate data**
 (SQL)

• **Normalisation fuses intermediate arrays**
 (Feldspar)
Part V

Results
SQL LINQ results (F#)

<table>
<thead>
<tr>
<th>Example</th>
<th>F# 2.0</th>
<th>F# 3.0</th>
<th>us</th>
<th>(norm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>differences</td>
<td>17.6</td>
<td>20.6</td>
<td>18.1</td>
<td>0.5</td>
</tr>
<tr>
<td>range</td>
<td>×</td>
<td>5.6</td>
<td>2.9</td>
<td>0.3</td>
</tr>
<tr>
<td>satisfies</td>
<td>2.6</td>
<td>×</td>
<td>2.9</td>
<td>0.3</td>
</tr>
<tr>
<td>P(t₀)</td>
<td>2.8</td>
<td>×</td>
<td>3.3</td>
<td>0.3</td>
</tr>
<tr>
<td>P(t₁)</td>
<td>2.7</td>
<td>×</td>
<td>3.0</td>
<td>0.3</td>
</tr>
<tr>
<td>expertise'</td>
<td>7.2</td>
<td>9.2</td>
<td>8.0</td>
<td>0.6</td>
</tr>
<tr>
<td>expertise</td>
<td>×</td>
<td>66.7ᵃᵛ</td>
<td>8.3</td>
<td>0.9</td>
</tr>
<tr>
<td>xp₀</td>
<td>×</td>
<td>8.3</td>
<td>7.9</td>
<td>1.9</td>
</tr>
<tr>
<td>xp₁</td>
<td>×</td>
<td>14.7</td>
<td>13.4</td>
<td>1.1</td>
</tr>
<tr>
<td>xp₂</td>
<td>×</td>
<td>17.9</td>
<td>20.7</td>
<td>2.2</td>
</tr>
<tr>
<td>xp₃</td>
<td>×</td>
<td>3744.9</td>
<td>3768.6</td>
<td>4.4</td>
</tr>
</tbody>
</table>

Times in milliseconds; ᵃᵛ marks query avalanche.
Feldspar results (Haskell)

<table>
<thead>
<tr>
<th></th>
<th>QDSL Feldspar</th>
<th>EDSL Feldspar</th>
<th>Generated Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Compile</td>
<td>Run</td>
<td>Compile</td>
</tr>
<tr>
<td>IPGray</td>
<td>16.96</td>
<td>0.01</td>
<td>15.06</td>
</tr>
<tr>
<td>IPBW</td>
<td>17.08</td>
<td>0.01</td>
<td>14.86</td>
</tr>
<tr>
<td>FFT</td>
<td>17.87</td>
<td>0.39</td>
<td>15.79</td>
</tr>
<tr>
<td>CRC</td>
<td>17.14</td>
<td>0.01</td>
<td>15.33</td>
</tr>
<tr>
<td>Window</td>
<td>17.85</td>
<td>0.02</td>
<td>15.77</td>
</tr>
</tbody>
</table>

Times in seconds; minimum time of ten runs.
Part VI

Conclusion
How does one integrate a Domain-Specific Language and a host language?

Quotation (McCarthy, 1960)
Normalisation (Gentzen, 1935)
The script-writers dream, Cooper, DBPL, 2009.

Everything old is new again: Quoted Domain Specific Languages, Najd, Lindley, Svenningsson, Wadler, Draft, 2015.

Propositions as types, Wadler, CACM, to appear.

Ezra Cooper∗†, James Cheney*, Sam Lindley*, Shayan Najd∗†, Josef Svenningsson‡, Philip Wadler*

*University of Edinburgh, †Google, ‡Chalmers University