
Everything old is new again:
Quoted Domain Specific Languages

Philip Wadler
University of Edinburgh

DSLDI
Prague, Tuesday 7 July 2015

How does one integrate a Domain-Specific Language
and a host language?

Quotation (McCarthy, 1960)

Normalisation (Gentzen, 1935)

Part I

Getting started: Join queries

A query: Who is younger than Alex?

people

name age

“Alex” 40

“Bert” 30

“Cora” 35

“Drew” 60

“Edna” 25

“Fred” 70

select v.name as name,

v.age as age

from people as u,

people as v

where u.name = “Alex” and

v.age < u.age

answer

name age

“Bert” 30

“Cora” 35

“Edna” 25

A database as data

people

name age

“Alex” 40

“Bert” 30

“Cora” 35

“Drew” 60

“Edna” 25

“Fred” 70

{people =

[{name = “Alex” ; age = 40};
{name = “Bert” ; age = 30};
{name = “Cora” ; age = 35};
{name = “Drew”; age = 60};
{name = “Edna”; age = 25};
{name = “Fred” ; age = 70}]}

A query as F# code (naive)

type DB = {people : {name : string; age : int} list}
let db′ : DB = database(“People”)

let youths′ : {name : string; age : int} list =

for u in db′.people do

for v in db′.people do

if u.name = “Alex” && v.age < u.age then

yield {name : v.name; age : v.age}

youths′

[{name = “Bert” ; age = 30}
{name = “Cora” ; age = 35}
{name = “Edna”; age = 25}]

A query as F# code (quoted)

type DB = {people : {name : string; age : int} list}
let db : Expr<DB> = <@ database(“People”) @>

let youths : Expr< {name : string; age : int} list> =

<@ for u in (%db).people do

for v in (%db).people do

if u.name = “Alex” && v.age < u.age then

yield {name : v.name; age : v.age} @>

run(youths)

[{name = “Bert” ; age = 30}
{name = “Cora” ; age = 35}
{name = “Edna”; age = 25}]

What does run do?

1. Simplify quoted expression
2. Translate query to SQL
3. Execute SQL
4. Translate answer to host language

Theorem
Each run generates one query if
A. answer type is flat (list of record of scalars)
B. only permitted operations (e.g., no recursion)
C. only refers to one database

Scala (naive)

val youth′ : List[{ val name : String; val age : Int}] =

for {u← db′.people

v← db′.people

if u.name == “Alex” && v.age < u.age}
yield new Record { val name = v.name; val age = v.age }

Scala (quoted)

val youth : Rep[List[{ val name : String; val age : Int}]] =

for {u← db.people

v← db.people

if u.name == “Alex” && v.age < u.age}
yield new Record { val name = v.name; val age = v.age }

Part II

Nested intermediate data

Flat data

departments

dpt

“Product”

“Quality”

“Research”

“Sales”

employees

dpt emp

“Product” “Alex”

“Product” “Bert”

“Research” “Cora”

“Research” “Drew”

“Research” “Edna”

“Sales” “Fred”

tasks

emp tsk

“Alex” “build”

“Bert” “build”

“Cora” “abstract”

“Cora” “build”

“Cora” “design”

“Drew” “abstract”

“Drew” “design”

“Edna” “abstract”

“Edna” “call”

“Edna” “design”

“Fred” “call”

Importing the database

type Org = {departments : {dpt : string} list;

employees : {dpt : string; emp : string} list;

tasks : {emp : string; tsk : string} list }
let org : Expr<Org> = <@ database(“Org”) @>

Departments where every employee can do a given task

let expertise′ : Expr<string→ {dpt : string} list> =

<@ fun(u)→ for d in (%org).departments do

if not(exists(

for e in (%org).employees do

if d.dpt = e.dpt && not(exists(

for t in (%org).tasks do

if e.emp = t.emp && t.tsk = u then yield { })
)) then yield { })

)) then yield {dpt = d.dpt} @>

run(<@ (%expertise′)(“abstract”) @>)

[{dpt = “Quality”}; {dpt = “Research”}]

Nested data

[{dpt = “Product”; employees =

[{emp = “Alex”; tasks = [“build”]}
{emp = “Bert”; tasks = [“build”]}]};

{dpt = “Quality”; employees = []};
{dpt = “Research”; employees =

[{emp = “Cora”; tasks = [“abstract”; “build”; “design”]};
{emp = “Drew”; tasks = [“abstract”; “design”]};
{emp = “Edna”; tasks = [“abstract”; “call”; “design”]}]};

{dpt = “Sales”; employees =

[{emp = “Fred”; tasks = [“call”]}]}]

Nested data from flat data

type NestedOrg = [{dpt : string; employees :

[{emp : string; tasks : [string]}]}]
let nestedOrg : Expr<NestedOrg> =

<@ for d in (%org).departments do

yield {dpt = d.dpt; employees =

for e in (%org).employees do

if d.dpt = e.dpt then

yield {emp = e.emp; tasks =

for t in (%org).tasks do

if e.emp = t.emp then

yield t.tsk}}} @>

Higher-order queries

let any : Expr< (A list, A→ bool)→ bool> =

<@ fun(xs, p)→
exists(for x in xs do

if p(x) then

yield { }) @>
let all : Expr< (A list, A→ bool)→ bool> =

<@ fun(xs, p)→
not((%any)(xs, fun(x)→ not(p(x)))) @>

let contains : Expr< (A list, A)→ bool> =

<@ fun(xs, u)→
(%any)(xs, fun(x)→ x = u) @>

Departments where every employee can do a given task

let expertise : Expr<string→ {dpt : string} list> =

<@ fun(u)→ for d in (%nestedOrg)

if (%all)(d.employees,

fun(e)→ (%contains)(e.tasks, u) then

yield {dpt = d.dpt} @>

run(<@ (%expertise)(“abstract”) @>)

[{dpt = “Quality”}; {dpt = “Research”}]

Part III

Conclusion

How does one integrate a Domain-Specific Language
and a host language?

Quotation (McCarthy, 1960)

Normalisation (Gentzen, 1935)

The script-writers dream, Cooper, DBPL, 2009.

A practical theory of language integrated query,
Cheney, Lindley, Wadler, ICFP, 2013.

Everything old is new again: Quoted Domain Specific Languages,
Najd, Lindley, Svenningsson, Wadler, Draft, 2015.

Propositions as types, Wadler, CACM, to appear.

http://fsprojects.github.io/FSharp.Linq.Experimental.ComposableQuery/

Ezra Cooper∗†, James Cheney∗, Sam Lindley∗,
Shayan Najd∗†, Josef Svenningsson‡, Philip Wadler∗

∗University of Edinburgh, † Google, ‡Chalmers University

