
A Reflection on Call-by-Value

AMR SABRY

University of Oregon

and

PHILIP WADLER

Bell Laboratories, Lucent Technologies

One way to model a sound and complete translation from a source calculus into a target calculus
is with an adjoint or a Galois connection. In the special case of a reflection, one also has that the

target calculus is isomorphic to a subset of the source. We show that three widely studied trans-
lations form reflections. We use as our source language Moggi’s computational lambda calculus,
which is an extension of Plotkin’s call-by-value calculus. We show that Plotkin’s CPS transla-
tion, Moggi’s monad translation, and Girard’s translation to linear logic can all be regarded as

reflections from this source language, and we put forward the computational lambda calculus as
a model of call-by-value computation that improves on the traditional call-by-value calculus. Our
work strengthens Plotkin’s and Moggi’s original results and improves on recent work based on

equational correspondence, which uses equations rather than reductions.

Categories and Subject Descriptors: D.1.1 [Programming Techniques]: Applicative (Func-

tional) Programming; D.3.4 [Programming Languages]: Processors—compilers; F.3.2 [Logics

and Meanings of Programs]: Semantics of Programming Languages; F.4.1 [Mathematical

Logic and Formal Languages]: Mathematical Logic

General Terms: Languages, Theory

Additional Key Words and Phrases: Category theory, compiling, continuations, Galois connections

1. INTRODUCTION

Compiler correctness is a central concern of computing. It is often expressed in the
form of a diagram.

M∗

M

N

N#

-
T

-S

?∗ 6#

This article is a revised and extended version of a paper that appeared in the ACM SIGPLAN
International Conference on Functional Programming (Philadelphia, Pa.), 1996. Work started
while the first author was at Chalmers University, and the second author was at University of

Glasgow.
Authors’ addresses: A. Sabry, University of Oregon, Department of Computer and Information
Science, Eugene, OR 97403; P. Wadler, Bell Laboratories, Lucent Technologies, 700 Mountain
Avenue, Room 2T-304, Murray Hill, NJ 07974-0636.
Permission to make digital/hard copy of all or part of this material without fee is granted
provided that the copies are not made or distributed for profit or commercial advantage, the
ACM copyright/server notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery, Inc. (ACM). To copy

otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 1997 ACM 0164-0925/97/0900-0111 $03.50

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997, Pages 111–??.

112 · Amr Sabry and Philip Wadler

Here the upper arrow indicates reduction in the source calculus S; the lower arrow
indicates reduction in the target calculus T ; the downward arrow indicates the
compiling map ∗; and the upward arrow indicates the decompiling map #.

The diagram states that compiling, evaluating in the target, and decompiling is
equivalent to evaluating in the source. There are two forms this equivalence may
take.

—Soundness. Every reduction in the source is valid in the target: If M −→−→S N#

then M∗ −→−→T N .

—Completeness. Every reduction in the target is valid in the source: If M∗ −→−→T N
then M −→−→S N#.

If both properties are present, one has what theorists call an adjoint or a Galois
connection.

Sometimes one has a further pleasant property, that compiling is a left inverse
to decompiling, N#∗ ≡ N for every target term N , where ≡ is syntactic identity
(up to renaming). This special form of an adjoint is called a reflection. Whenever
a reflection exists, the target is isomorphic to a subset of the source, which we call
the kernel.

We show that three widely studied translations may be regarded as reflections.
Our source calculus is the computational lambda calculus, λc, of Moggi [1988],
which extends the call-by-value calculus, λv, of Plotkin [1975]. Our first translation
is the continuation passing style (CPS) translation, also of Plotkin [1975]. Our
second translation is into the monadic metalanguage, λml, also of Moggi [1988].
The CPS translation arises as a special case of the monad translation, and factors
through it. Our third translation is into a calculus based on the linear logic of Girard
[1987]. Our linear calculus is closely related to formulations devised independently
by Wadler [1993b] and Barber [1995].

We do not merely shoehorn the classic CPS and monad translations into a new
framework, we actually improve on them, taking results previously proved for equal-
ities and extending them to reductions. Further, we show for the first time that
Moggi’s computational lambda calculus λc actually has computational content, and
therefore might serve as an improvement over Plotkin’s call-by-value lambda cal-
culus λv.

Plotkin [1975] showed, among other things, that the call-by-value CPS translation
was sound but not complete, in that it preserves but does not reflect equalities.
Plotkin devised the call-by-value lambda calculus λv to model some operational
properties of programming languages, notably procedure calls. It was a calculus
with a reduction theory, from which one can derive an equational theory. As usual,
we take equality to be the symmetric, transitive, and reflexive closure of reduction;
it follows from the Church-Rosser theorem that two terms are equal if and only if
they reduce to a common term. Plotkin’s CPS translation (here written ∗) takes
the call-by-value calculus λv (the source) into the traditional call-by-name lambda
calculus λn (the target). Plotkin proved the translation is sound, in that if M = N
in the source then M∗ = N∗ in the target, and showed it is not complete, in that
the converse does not hold. He proved soundness by showing that the translation
preserves reductions, so if M −→−→ N in the source then M∗ −→−→ N∗ in the target.

A baker’s dozen of years later, Moggi [1988] showed, among other things, that the

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

A Reflection on Call-by-Value · 113

call-by-value monad translation is both sound and complete, in that it preserves and
reflects equalities. Moggi devised the monadic metalanguage λml to model some
denotational properties of programming languages, notably computational effects
and their interaction with procedure calls; the theory included CPS as a special
case. The original λml had an equational theory only. Moggi’s monad translation
(here written ∗) takes the computational lambda calculus λc (the source) into the
metalanguage λml (the target). The translation is both sound and complete, in
that M = N in the source if and only if M∗ = N∗ in the target. This is hardly a
surprise, as λc was designed precisely so this result would hold.

Later still, Sabry and Felleisen [1993] strengthened Plotkin’s result using Moggi’s.
Their variant of the CPS translation (here written ∗) takes the computational
lambda calculus λc (the source) into the traditional call-by-name lambda calculus
λn (the target). They showed that M = N in the source if and only if M∗ = N∗ in
the target. Further, they introduced an inverse CPS translation (here written #)
such that M = N in the target if and only if M# = N# in the source, and M = M∗#

in the source, and N#∗ = N in the target. Taken together, these conditions amount
to an equational correspondence. This result showed that monads in general and
continuations in particular satisfy exactly the same equations.

Hatcliff and Danvy [1994] strengthened Moggi’s result by showing that the monad
translation is also an equational correspondence. This extension of Moggi’s unsur-
prising result is equally unsurprising.

What is surprising is how little attention was paid to reductions. The original
technical report [Moggi 1988] specified theories of reduction and of equality for λc;
however, only the equality theory of λc appears in the conference paper [Moggi
1989], and λc rates barely a line in the journal version [Moggi 1991]. None of these
contains a reduction theory for λml, though this was considered by Hatcliff and
Danvy [1994]. However, ours is the first work we know of to relate the reductions
of λc and λml.

Our results supersede all of the preceding results, replacing equalities with re-
ductions. The existence of an adjoint is equivalent to stating that M −→−→ N in
the source implies M∗ −→−→ N∗ in the target, and M −→−→ N in the target implies
M# −→−→ N# in the source, and M −→−→ M∗# in the source, and N#∗ −→−→ N in
the target. These trivially imply the existence of an equational correspondence.
Further, since we have a reflection, the mere equality N#∗ = N of the equational
correspondence is here replaced by syntactic identity N#∗ ≡ N .

Although Moggi introduced a confluent reduction theory for λc, it appears to
be treated purely as a technical trick to aid equational reasoning. There is no
evidence that Moggi considered it as a model of computation via reduction (and
he later confirmed this in a personal communication). Further, λc has two rules,
(let .1) and (let .2) that look more like expansions then reductions. The order Moggi
picked for them was dictated purely by a technicality: the need for confluence.

Nonetheless, the results here show that λc relates closely to several models of
computation, including ordinary lambda calculus via CPS and the monadic meta-
language. More precisely, there exists an isomorphism between the kernel of λc

and suitably “shrunk” versions of each of the target calculi. It turns out that the
dubious rules (let .1) and (let .2) have a natural interpretation as administrative
reductions (that is, they can be viewed as occurring at compile time rather than

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

114 · Amr Sabry and Philip Wadler

run time), which makes them far more intuitive: they correspond to the naming of
subterms, which is considered one of the beneficial properties of CPS.

The process of “shrinking” the target languages T deserves some clarification.
In general the goal is to find a sublanguage T∗ of T whose set of terms is a subset
of the set of T -terms and whose reductions are consistent with the T -reductions.
The restricted set of T∗-terms is straightforward to specify: it should contain those
terms (1) that are reachable from the source language via the translation to the
target language and (2) that are closed under the T∗-reductions. The set of T∗-
reductions is more problematic to specify. Ideally the restricted set of reductions
would be the same as the set of T -reductions, only restricted to the smaller syntax.
And indeed such a case arises when restricting λml to λml∗. The other two cases
are less than ideal. For the shrinking of λn to λcps, some of the reductions of λcps

correspond to a sequence of two λn-reductions. For the shrinking of λlin to λlin∗,
one of the λlin∗ reductions corresponds to an equality of λlin. One way to fix this
bad fit between λlin and λlin∗ might be to develop a new linear calculus with a
more suitable computational model.

While the step from equalities to reductions seems natural in retrospect, we doubt
we would have taken it without the guiding light of category theory. In particular,
we were motivated by noting the close resemblance between the notion of equational
correspondence in Sabry and Felleisen [1993] and the properties of an adjunction.

Related Work. Like the wheel, CPS is such an excellent idea that it was rein-
vented many times [Reynolds 1993]. Two formalizations are due to Fischer [1972]
and Plotkin [1975]. It was proposed as a basis for compiler construction by Steele
[1978] and subsequently exploited by Kranz et al. [1986], Appel [1992], and others.

One might hope that the variant CPS translation of Fischer [1972] is also a
reflection. An earlier version of this article [Sabry and Wadler 1996] claimed this
was the case, but gave no proof. We should have been more cautious. Here we
show that it is impossible for the Fischer CPS translation to be a reflection.

In applications of CPS to compiling, one first translates the source into the target
via CPS and then optimizes the target. One claim of Sabry and Felleisen [1993] was
that one could perform the same optimizations directly in the source, and this was
further elaborated by Flanagan et al. [1993]. However, the claim was not properly
justified: it was only shown that the same equations hold in the source and target.
Here we show for the first time that the same reductions hold in source and target,
which more properly corresponds to optimization.

Lawall and Danvy [1993] make much of relating forward and inverse translations
via two Galois connections and an isomorphism. Their Galois connections are
induced from the translations and are not defined a priori. Furthermore, their
order is based on the syntactic structure of terms as opposed to their semantic
properties under reduction, and it is not preserved by their isomorphism. Hence
their three maps do not compose to give a single Galois connection between source
and target, whereas here we show such a connection.

Administrative reductions play a central role in many CPS translations, from
Plotkin’s work onward. Sabry and Felleisen [1993] show a correspondence between
what they dub the A-reductions in the source and administrative reductions in the
target. Similar correspondences are studied by Flanagan et al. [1993] and Hatcliff

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

A Reflection on Call-by-Value · 115

λv → λml → λlin → λn

λc

∪

λc∗
∼= λml∗

∼= λlin∗

∪ ∪ ∪

λc∗∗
∼= λml∗∗

∼= λlin∗∗
∼= λcps

Fig. 1. Summary of results.

and Danvy [1994]. Here we show that administrative reductions correspond pre-
cisely to the reductions M → M∗# implied by the existence of the adjunction, and
we show that the A-normal form corresponds to the kernel of the reflection, the
isomorphic image of the target in the source.

The adjunction is a central abstraction of category theory [Mac Lane 1971] and
has the Galois connection as a degenerate case [Davey and Priestley 1990]. Adjoints
and Galois connections have long been the tool of choice for relating semantic
models, but are less often used to relate operational models. A notable exception
is the work of Melton et al. [1985], who discuss a notion of compiler correctness
strikingly similar to ours. However, their Galois connections happen to be insertions
(the map ∗ from source to target is injective), while ours are reflections (the map
from target to source is injective).

Moggi [1988] presents λc as an untyped calculus of reductions and presents λml as
a typed calculus of equalities. Here we uniformly use untyped calculi of reductions.
So far as we can see, everything works equally well for typed calculi of reductions,
such as those considered by Hatcliff and Danvy [1994], since we conjecture that our
translations preserve types.

This article is a revised and extended version of a conference paper with the
same title [Sabry and Wadler 1996]. The material on the linear calculus and on the
Fischer CPS translation is new.

Outline. The remainder of this article is structured as follows. Section 2 summa-
rizes our results. Section 3 introduces Galois connections and reflections. Section 4
reviews the traditional translation of λv into λml and reviews why it fails to be
a reflection. Section 5 shows that there is a reflection between λc and a variant
λml∗ of λml. Section 6 factors this reflection through an intermediate calculus λc∗

corresponding to the isomorphic image of λml∗ in λc. Section 7 extends the results
to a translation into linear logic, and Section 8 deals with translations into CPS.
Section 9 observes that the variant CPS translation due to Fischer cannot be a
reflection. Section 10 describes related work. Section 11 concludes.

2. SUMMARY

If you like to see a summary in advance, read this section now; if you like to see a
summary on completion, save it until the end. Depending on your preference, you
may thereby read this section once, twice, or never.

Figure 1 illustrates a road-map of the terrain we cover. First, we consider the
traditional monad translation from λv into λml. This translation is not a reflection;
but expanding λv into λc, shrinking λml into λml∗, and fine-tuning the translation

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

116 · Amr Sabry and Philip Wadler

finally yields a reflection in λc of λml∗. The existence of a reflection guarantees
that there is a kernel λc∗ of λc that is isomorphic to λml∗. Calculus λc has seven
reduction rules, and λc∗ arises by normalizing with respect to two of these rules:
(let .1) and (let .2).

Second, we consider the translation from λv to a linear calculus λlin. The trans-
lation has essentially the same properties as the previous monad translation. As
before, making the translation into a reflection requires expanding λv into λc and
shrinking λlin to λlin∗; the reflection also guarantees that λlin∗ is isomorphic to the
kernel computational calculus λc∗.

Finally we consider the traditional CPS translation from λv into λn. Again, this
translation is not a reflection; but expanding λv into λc, shrinking λn into λcps,
and fine-tuning the translation yields a reflection in λc of λcps. Again, the existence
of a reflection guarantees that there is a kernel λc∗∗ of λc that is isomorphic to
λcps. Calculus λc∗∗ arises by normalizing λc∗ with regard to one further reduction
rule (assoc). Furthermore, the CPS translation factors through both the monad
translation and the linear translation; so there is also a kernel λml∗∗ of λml∗ and a
kernel λlin∗∗ of λlin∗ that is also isomorphic to λcps.

3. GALOIS CONNECTIONS AND REFLECTIONS

Let us review the standard results about Galois connections and reflections [Davey
and Priestley 1990; Mac Lane 1971; Melton et al. 1985]. The standard results need
to be adapted slightly, as reduction is a preorder (it is reflexive and transitive) but
not a partial order (it is not antisymmetric).

We write −→ for a single-step of reduction; −→−→ for the reflexive and transi-
tive closure of reduction; = for the reflexive, transitive, and symmetric closure of
reduction; and ≡ for syntactic identity up to renaming.

Assume a source calculus S with reduction relation −→−→S and a target calculus
T with reduction relation −→−→T . Reductions are directed in such a way that they
correspond to evaluation steps or optimizations. Let the maps ∗ : S → T and
: T → S correspond to compiling and decompiling, respectively. Finally, let
MS , NS range over terms of S, and let MT , NT range over terms of T .

Definition 3.1. Maps ∗ and # form a Galois connection from S to T whenever

MS −→−→S NT
if and only if MS

∗ −→−→T NT .

There is an alternative characterization of a Galois connection.

Proposition 3.2. Maps ∗ and # form a Galois connection from S to T if and
only if the following four conditions hold.

(1) MS −→−→S MS
∗#,

(2) NT
#∗ −→−→T NT ,

(3) MS −→−→S NS implies MS
∗ −→−→T NS

∗,

(4) MT −→−→T NT implies NT
−→−→S NT

#.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

A Reflection on Call-by-Value · 117

#T

S

* #**#=S T=S=T

#

*

*

Fig. 2. A reflection and its kernel isomorphism.

If the same four conditions hold with −→−→S and −→−→T replaced by =S and =T ,
then one has an equational correspondence, as defined by Sabry and Felleisen [1993].
Hence, every Galois connection implies an equational correspondence, though not
conversely.

If the compiling map ∗ is left inverse to the decompiling map #, then one has a
reflection.

Definition 3.3. Maps ∗ and # form a reflection in S of T if they form a Galois
connection and NT ≡ NT

#∗.

For a reflection, # is necessarily injective. Galois connections and reflections
compose.

Proposition 3.4. Let ∗1 and #1 form a Galois connection (reflection) from S
to T , and ∗2 and #2 form a Galois connection (reflection) from T to U . Then ∗1∗2

and #2#1 form a Galois connection (reflection) from S to U .

Every reflection factors into an inclusion and an order isomorphism. Write S∗#

for the subset of S containing just those terms of the form M∗#, and write Id :
S∗# → S for the trivial inclusion function. A reflection ∗ and # in S of T is an
inclusion if # is the identity (and hence S ⊇ T) and is an order isomorphism if ∗
and # are inverses (and hence S ∼= T).

Proposition 3.5. Let ∗ and # form a reflection in S of T .

(1) Translations ∗# and Id form an inclusion in S of S∗#.

(2) Translations ∗ and # form an order isomorphism between S∗# and T .

The composition of the inclusion and the isomorphism is the original reflection.

The proposition is illustrated in Figure 2, which shows calculi S and T and the
images S∗, T#, S∗#, and T#∗ of these calculi under maps ∗ and #. The kernel S∗#

of S is isomorphic to T .
The summary illustrated in Figure 1 demonstrates repeated use of this proposi-

tion. Each reflection is factored into an inclusion (shown vertically) and an order
isomorphism (shown horizontally).

For a Galois connection, one normally has two additional results, that M∗ ≡

M∗#∗ and P# ≡ P#∗#. These proofs depend on antisymmetry and hence do not
apply here. (As a counterexample to antisymmetry, we have Y I −→ I(Y I) −→ Y I,

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

118 · Amr Sabry and Philip Wadler

terms L, M, N ::= V | LM
values V, W ::= x | λx. N

(β.v) (λx. N)V −→ N [x := V]
(η.v) λx. (V x) −→ V, if x /∈ fv(V)

Fig. 3. The call-by-value calculus, λv.

terms L, M, N ::= x | λx. M | MN | [M] | let x ⇐ M in N

(β) (λx. N)M −→ N [x := M]
(η) λx. (Mx) −→ M, if x /∈ fv(M)
(β.let) let x ⇐ [M] in N −→ N [x := M]
(η.let) let x ⇐ M in [x] −→ M
(assoc) let y ⇐ (let x ⇐ L in M) in N −→ let x ⇐ L in (let y ⇐ M in N)

Fig. 4. The monadic calculus, λml.

but Y I 6≡ I(Y I); I is the identity, and Y is the fixpoint combinator. Note that
antisymmetry can only fail for terms with no normal form.) In any event, both
equivalences do follow from the stronger property of being a reflection.

4. MONADS: THE PROBLEM

Let us review the traditional translation from the call-by-value calculus into the
monad calculus, and see why it fails to be a reflection.

Plotkin’s call-by-value calculus λv is summarized in Figure 3. We let x, y, z range
over variables, L,M,N range over terms, and V,W range over values. A term is
either a value or an application, and a value is either a variable or an abstraction.
The call-by-value nature of the calculus is expressed by limiting the argument to a
value in (β.v) and by limiting the function to a value in (η.v).

An important aspect of each calculus with which we deal is that it is confluent.
Confluence ensures that optimizations (reductions) can be combined in any order.

Proposition 4.1. The reductions of λv are confluent.

Moggi’s monadic metalanguage λml is summarized in Figure 4. This calculus
distinguishes values from computations. Functions may accept and return either
values or computations and are defined by the call-by-name rules (β) and (η). Two
terms relate values to computations: the term [M] denotes the computation that
does nothing save return the value M ; and the term let x ⇐ L in N denotes the
computation that composes computation L and N by first performing L, binding
its result to x, and then performing N . The interaction of these terms is described
by the three rules (β.let), (η.let), and (assoc). The rule (assoc) is only valid if the
obvious scoping restrictions are satisfied (y is not bound in L, and x is not bound
in N). We omit such restrictions in the remainder of the article.

Proposition 4.2. The reductions of λml are confluent.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

A Reflection on Call-by-Value · 119

∗ : λv → λml

V ∗ ≡ [V †
]

(LM)∗ ≡ let x ⇐ L∗
in let y ⇐ M∗

in xy

(x)† ≡ x

(λx. N)† ≡ λx. N∗

Fig. 5. Translation of λv into λml.

A translation ∗ from λv to λml is described in Figure 5. In the case of applications,
the translation introduces two variables x and y that occur free in neither L nor
M . Translation ∗ on terms uses an auxiliary translation † on values. The two
translations are related by a substitution lemma, N∗[x := V †] ≡ (N [x := V])

∗
,

which is easily checked by induction over the structure of terms.
The translation ∗ is sound in that M −→−→v N implies M∗ −→−→ml N∗. This is

easily checked by looking at the translation of (β.v),

((λx.N)V)
∗
≡ let y ⇐ [λx.N∗] in let z ⇐ [V †] in yz
−→−→(β.let) (λx.N∗)V †

−→(β) N∗[x := V †]
≡ (N [x := V])

∗
,

and similarly for (η.v).
However, the translation is not complete even in the weak sense required by

equational correspondence: M∗ =ml N∗ does not imply M =v N . For example, it
is easy to check that

((λx. xM)L)
∗

=ml (LM)
∗

if x /∈ fv(M)

while if L is not a value then the equivalence does not hold in the call-by-value
calculus.

Proposition 4.3. The translation ∗ : λv → λml is sound, but does not generate
an equational correspondence.

5. MONADS: THE SOLUTION

To refine the translation ∗ : λv → λml into a reflection requires three steps: first,
grow λv into λc; second, shrink λml into λml∗; third, fine-tune the translation ∗.

Step one grows λv into λc, which is summarized in Figure 6. The new calculus
corresponds to Moggi’s untyped computational λ-calculus as it appeared in his
original Edinburgh LFCS Technical Report [Moggi 1988, Def. 6.2]. It was carefully
designed to model directly the effect of translation into λml. This is achieved by
adding to λc a term let x = M in N which mimics the term let x ⇐ M in N of
λml; by adding to λc reductions corresponding to each reduction of λml; and by
adding to λc two more reductions, (let .1) and (let .2), which mimic the effect of the
translation from λv into λml.

Let P,Q range over nonvalues. Rules (let .1) and (let .2) are restricted to act on
nonvalues, since values yield a reduction in the opposite direction via (β.let).

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

120 · Amr Sabry and Philip Wadler

terms L, M, N ::= V | P
values V, W ::= x | λx. N
nonvalues P, Q ::= LM | let x = M in N

(β.v) (λx. N)V −→ N [x := V]
(η.v) λx. (V x) −→ V, if x /∈ fv(V)
(β.let) let x = V in N −→ N [x := V]
(η.let) let x = M in x −→ M
(assoc) let y = (let x = L in M) in N −→ let x = L in (let y = M in N)
(let .1) PM −→ let x = P in xM
(let .2) V Q −→ let y = Q in V y

Fig. 6. The computational calculus, λc.

terms L, M, N ::= [V] | P
values V, W ::= x | λx. N
nonvalues P, Q ::= V W | let x ⇐ M in N

(β.v) (λx. N)V −→ N [x := V]
(η.v) λx. (V x) −→ V, if x /∈ fv(V)
(β.let) let x ⇐ [V] in N −→ N [x := V]
(η.let) let x ⇐ M in [x] −→ M
(assoc) let y ⇐ (let x ⇐ L in M) in N −→ let x ⇐ L in (let y ⇐ M in N)

Fig. 7. The simplified monadic calculus, λml∗.

You may wonder: is the new form (let x = M in N) necessary, or could it be
represented by (λx.N)M instead? The latter is possible, but then the rules (β.let),
(η.let), (assoc), (let .1), and (let .2) all become more difficult to read. Further, we
prefer for historical reasons to stick to Moggi’s formulation.

You may also wonder: do the rules (let .1) and (let .2) point in the right direction?
They do: the direction explicitly captures the evaluation order of the subexpressions
of an application. To evaluate an application, we evaluate the function position to
a value (let .1), and then evaluate the argument to a value (let .2). Furthermore, re-
versing the rules would yield a nonconfluent system. For example, reversing (let .1),
we have P ≡ (let y = (let x = L in M) in yN) reduces to ((let x = L in M)N).
We also have

P −→(assoc) let x = L in (let y = M in yN) −→(rev .let.1) let x = L in MN,

which shows that confluence fails. The system as given is confluent, as was shown
by Moggi [1988].

Proposition 5.1. The reductions of λc are confluent.

Step two shrinks λml into λml∗, which is summarized in Figure 7. The grammar
of λml is the smallest one that contains all terms in the image of the translation
∗ : λv → λml of the previous section and which is closed under the reductions of
λml. The new grammar differs from the old in two key ways: applications MN

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

A Reflection on Call-by-Value · 121

∗ : λc → λml∗

V ∗ ≡ [V †
]

(PM)∗ ≡ let x ⇐ P ∗
in (xM)∗

(V Q)∗ ≡ let y ⇐ Q∗
in (V y)∗

(V W)∗ ≡ V †W †

(let x = M in N)∗ ≡ let x ⇐ M∗
in N∗

(x)† ≡ x

(λx. M)† ≡ λx. M∗

: λml∗ → λc

x# ≡ x
(λx. M)# ≡ λx. M#

(V W)# ≡ V #W#

([V])# ≡ V #

(let x ⇐ M in N)# ≡ let x = M#
in N#

Fig. 8. Reflection in λc of λml∗.

in λml are restricted to the form V W in λml∗, and computations [M] in λml are
restricted to the form [V] in λml∗.

The reduction rules are restricted accordingly. Since all applications have the
form V W , rules (β) and (η) and rules (β.v) and (η.v) have the same effect on the
calculus. This provides an analogue of Plotkin’s indifference property, which states
that call-by-value and call-by-name evaluation yield the same result for terms in
CPS.

Proposition 5.2. The grammar of λml∗ is closed under the reductions of λml.
That is, if M −→ N in λml and M is in λml∗, then N is also in λml∗, and M −→ N
in λml∗.

The proof is an easy case analysis. It follows as a corollary from Proposition 4.2
that the reductions of λml∗ are confluent.

Step three adapts the translation ∗ : λv → λml to the new calculi. The straight-
forward choice is to leave the translation as is, adding a line for let.

V ∗ ≡ [V †]

(LM)
∗
≡ let x ⇐ L∗in let y ⇐ M∗in xy

(let x = M in N)
∗
≡ let x ⇐ M∗ in N∗

Here † is as in Figure 5. The meaning of the overbars will be explained shortly.
Alas, this translation is not even sound in our stronger sense: it preserves the

equalities of λc, but not reductions. The key problem is with rule (let .2), which
requires (β.let) reductions in both directions.

(V Q)
∗
≡ let x ⇐ [V †] in let y ⇐ Q∗ in xy
−→β.let let y ⇐ Q∗ in V †y
←−←−β.let let y ⇐ Q∗ in let x′ ⇐ [V †] in let y′ ⇐ [y] in x′y′

≡ (let y = Q in V y)
∗

The solution is to consider the (β.let) reductions as part of the translation. The
two overlined occurrences of let introduced in the translation of applications are

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

122 · Amr Sabry and Philip Wadler

regarded as administrative occurrences. A second stage is added to the translation,
where all administrative (β.let) redexes (that is, ones where the relevant let is
overlined) are reduced.

This somewhat awkward description as a two-stage translation with administra-
tive redexes may be replaced by the equivalent translation given in the first half
of Figure 8. This was derived by a simple case analysis on applications, with ac-
cording simplification. The obvious homomorphism, shown in the second half of
the figure, serves as the inverse translation. It is now straightforward to verify that
these constitute a reflection.

Proposition 5.3. Translations ∗ and # (see Figure 8) form a reflection in λc

of λml∗.

Proof. To prove that the translations form a reflection, we must establish the
following (see Proposition 3.2 and Definition 3.3):

(1) For M ∈ λc, M −→−→ M∗#,

(2) For M ∈ λml∗, M#∗ ≡ M ,

(3) For M,N ∈ λc, M −→−→ N implies M∗ −→−→ N∗,

(4) For M,N ∈ λml∗, M −→−→ N implies M# −→−→ N#.

Parts (1) and (2) are verified by induction over the structure of terms, and parts
(3) and (4) are verified by induction over the length of reduction sequences. We
show the proof of case (3) in detail. The main part of the proof is to show that every
reduction between terms in λc corresponds to a sequence of reductions between the
translated terms. We proceed by cases:

Case β.v . We have

((λx.N) V)
∗
≡ ((λx.N∗) V †) −→ N∗[x := V †] ≡ (N [x := V])

∗
,

where the last step follows by Substitution Lemma 5.4.

Case η.v . We have

(λx.V x)
∗
≡ [λx.V †x] −→ [V †] ≡ V ∗.

Case β.let . We have

(let x = V in N)
∗
≡ let x ⇐ [V †] in N∗ −→ N∗[x := V †] ≡ (N [x := V])

∗
,

where the last step follows by Substitution Lemma 5.4.

Case η.let . We have

(let x = M in x)
∗
≡ let x ⇐ M∗ in [x] −→ M∗.

Case assoc. We have

(let y = (let x = L in M) in N)
∗

≡ let y ⇐ (let x ⇐ L∗ in M∗) in N∗

−→ let x ⇐ L∗ in let y ⇐ M∗ in N∗

≡ (let x = L in (let y = M in N))
∗
.

Case let .1. We have

(PM)
∗
≡ let x ⇐ P ∗ in (xM)

∗
≡ (let x = P in xM)

∗
.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

A Reflection on Call-by-Value · 123

terms L, M, N ::= V | P
values V, W ::= x | λx. N
nonvalues P, Q ::= V W | let x = M in N

Reductions (β.v), (η.v), (β.let), (η.let), (assoc), as in Figure 6

Fig. 9. The kernel computational calculus, λc∗.

∗1 : λc → λc∗

V ∗ ≡ V †

(PM)∗ ≡ let x = P ∗
in (xM)∗

(V Q)∗ ≡ let y = Q∗
in (V y)∗

(V W)∗ ≡ V †W †

(let x = M in N)∗ ≡ let x = M∗
in N∗

x† ≡ x

(λx. M)† ≡ λx. M∗

#1 : λc∗ → λc

the trivial inclusion

Fig. 10. Inclusion in λc of λc∗.

Case let .2. We have (V Q)
∗
≡ let y ⇐ Q∗ in (V y)

∗
≡ (let y = Q in V y)

∗
.

The proofs of cases (3) and (4) above rely on the following substitution lemma.

Lemma 5.4. Let M,V be terms of the appropriate sort in λc and N,W be terms
of the appropriate sort in λml∗; then we have

M∗[x := V †] ≡ (M [x := V])
∗

N#[x := W †] ≡ (N [x := W])
#
.

6. MONADS: THE FACTORIZATION

Proposition 3.5 guarantees that there must be an isomorphic image of λml∗ within
λc. It consists of exactly those terms of the form M∗#. We name this calculus λc∗,
and it is summarized in Figure 9. The grammar is identical to λc, except general
applications MN are replaced by value applications V W , much as in the move from
λml to λml∗.

The terms of λc∗ can be characterized as the terms of λc in (let .1) and (let .2)
normal form. Once a term has been normalized with respect to these two rules,
they are never required again — that is, none of the other rules will introduce a
(let .1) or (let .2) redex.

As guaranteed by Proposition 3.5, the reflection ∗ : λc → λml∗ factors into an
inclusion ∗1 : λc → λc∗ and an order isomorphism ∗2 : λc∗ → λml∗, given in
Figures 10 and 11. The proposition even shows how to compute these: ∗1 is ∗#; #1

is the identity; ∗2 is a restriction of ∗; and #2 is #. What is a pleasant bonus, not
guaranteed by the proposition, is that ∗1 has a simple interpretation: it reduces a
term of λc to (let .1) and (let .2) normal form, hence yielding a term of λc∗.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

124 · Amr Sabry and Philip Wadler

∗2 : λc∗ → λml∗

V ∗ ≡ [V †
]

(V W)∗ ≡ V †W †

(let x = M in N)∗ ≡ let x ⇐ M∗
in N∗

x† ≡ x

(λx. M)† ≡ λx. M∗

#2 : λml∗ → λc∗

same as # from Figure 8

Fig. 11. Isomorphism of λc∗ and λml∗.

terms L, M, N ::= V | P
values V ::= x | λa. M
nonvalues P, Q ::= a | LM | (!M) | let !x = L in N

(β.−◦) (λa. N)M −→ N [a := M]
(η.−◦) λa. Ma −→ M
(β.!) let !x =!M in N −→ N [x := M]
(η.!) let !x = M in !x −→ M, if x /∈ fv(M)
(!−◦) (let !x = L in M)N −→ let !x = L in (MN)
(−◦!) V (let !x = L in M) −→ let !x = L in (V M)
(!!) let !y = (let !x = L in M) in N −→ let !x = L in (let !y = M in N)

Fig. 12. The linear calculus, λlin.

7. LINEAR CALCULUS

Figure 12 summarizes a linear lambda calculus similar to the ones studied by
Wadler [1993a; 1993b] and Maraist et al. [1995]. The calculus contains two sorts
of variables: a, b, c range over linear variables which are used exactly once in a
term, while x, y, z range over classical variables which may appear any number
of times. These conventions are the ones used by Benton [1995] and Benton and
Wadler [1996]. Introduction and elimination of linear implication −◦ corresponds,
respectively, to abstraction over linear variables λa.N and application LM . Intro-
duction and elimination of the modality ! corresponds to the term forms !M and
let !x = L in N .

There are two important side conditions on the grammar: each linear variable is
used exactly once, and no linear variable appears free in a term of the form !M .
Informally, evaluation of the term let !x = L in N proceeds by first evaluating L
to a term of the form !M and then substituting M for x in N . Thus we may view
the term !M as suspending evaluation and the term let !x = L in N as forcing the
corresponding evaluation. The requirement that no linear variable appears free in
!M ensures that the substitution of M for x does not violate the requirement that
each linear variable is used exactly once.

All the rules of the calculus correspond to simplification of proofs in linear logic.
The rules (β−◦) and (β.!) simplify a logical introduction followed by the correspond-
ing logical elimination. The rules (η.−◦) and (η.!) simplify a logical elimination
followed by the corresponding logical introduction. Note that there is no need for

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

A Reflection on Call-by-Value · 125

∗ : λv → λlin

V ∗ ≡ !V †

(LM)∗ ≡ (let !x = L∗
in x)M∗

x† ≡ x

(λx. N)† ≡ λa. let !x = a in N∗

Fig. 13. Translation of λv into λlin.

terms L, M, N ::= !V | P
values V ::= x | λa. let !x = a in M
nonvalues P, Q ::= V (!V) | let !x = M in N

(β.−◦) (λa. let !x = a in M) (!V) −→ N [x := V]
(η.−◦) λa. let !x = a in V (!x) −→ V, if x /∈ fv(V)
(β.!) let !x =!V in N −→ N [x := V]
(η.!) let !x = M in !x −→ M, if x /∈ fv(M)
(!!) let !y = (let !x = L in M) in N −→ let !x = L in (let !y = M in N)

Fig. 14. The restricted linear calculus, λlin∗.

a side condition in (η.−◦), since linear variables can only occur once in a term. The
rules (!−◦), (−◦!), and (!!) correspond to commuting conversions. All of the rules,
except for (−◦!), were discussed by Maraist et al. [1995]. We explain the significance
of the additional (−◦!) rule in Section 7.2 after studying the translation from λv to
λlin.

7.1 Reflection of Linear Calculus in Call-by-Value

Our starting point is the translation from λv to λlin of Maraist et al. [1995], which
is described in Figure 13. This translation maps (β.v) reductions to reductions in
the linear calculus:

((λx.N)V)
∗
≡ (let !z =!(λa. let !x = a in N∗) in z) (!V †)
−→−→(β.!) (λa. let !x = a in N∗) (!V †)
−→−→(β−◦) let !x =!V † in N∗

−→−→(β.!) N∗[x := V †]
≡ N [x := V]

∗

However, this naive linear translation fails to be a reflection for much the same
reasons that the naive monad translation failed, as described in Section 4. As in
λml, we can prove in λlin that

((λx. xM)L)
∗

=lin (LM)
∗
,

which is not provable in the call-by-value calculus if L is not a value. Analogous
to Section 5, the solution to this problem is to extend the source calculus from
λv to λc, to restrict the target calculus from λlin to λlin∗, and to fine-tune the
corresponding translation. Instead of constructing these calculi and translations
from scratch, we exploit the existing isomorphism between λc∗ and λml∗ to guide

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

126 · Amr Sabry and Philip Wadler

∗2 : λc∗ → λlin∗

V ∗ ≡ !V †

(V W)∗ ≡ V †(!W †)
(let x = M in N)∗ ≡ let !x = M∗

in N∗

x† ≡ x

(λx. M)† ≡ λa. let !x = a in M∗

#2 : λlin∗ → λc∗

x# ≡ x
(λa. let !x = a in M)# ≡ λx. M#

(V (!W))# ≡ V #W#

(!V)# ≡ V #

(let !x = M in N)# ≡ let x = M#
in N#

Fig. 15. Isomorphism of λc∗ and λlin∗.

the design of λlin∗. The idea is to adapt the optimized translation from λc∗ to λml∗

to a translation from λc∗ to the linear calculus. The target of this translation would
be the kernel linear calculus λlin∗.

The isomorphism is spelled out by the maps ∗2 and #2 between λc∗ and λlin,
shown in Figure 15. Note the similarity between these two maps and the corre-
sponding maps between λc∗ and λml∗ in Figure 11. The terms and reduction rules of
the restricted linear calculus in Figure 14 are derived from the terms and reduction
rules of λc∗ using the map ∗2 of Figure 15.

Proposition 7.1.1. The terms and reductions of the calculi λc∗ and λlin∗ are
isomorphic. In other words, for all M,N ∈ λc∗ and P,Q ∈ λlin∗, we have

—M∗# ≡ M and P#∗ ≡ P ,

—If M −→ N then M∗ −→ N∗, and

—If P −→ Q then P# −→ Q#.

The existence of the isomorphism immediately implies several properties of λlin∗.

Proposition 7.1.2. The calculus λlin∗ is confluent and closed under reduction.

For this approach to make sense, it remains to verify that the calculus λlin∗ is
really a restriction of λlin in the sense that all reductions rules in λlin∗ must be
provable in λlin. For most of the rules, this is straightforward to verify. The only
nonobvious rule is the λlin∗ version of (η.−◦), which can be proved in λlin as follows:

λa. let !x = a in V (!x) = λa. (V (let !x = a in !x)) (−◦!)
= λa. (V a) (η.!)
= V (η.−◦)

Note that the proof uses equalities rather than reductions, indicating the bad fit
between λlin and λlin∗.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

A Reflection on Call-by-Value · 127

∗ : λc → λlin∗

V ∗ ≡ !V †

(PM)∗ ≡ let !x = P ∗
in (xM)∗

(V Q)∗ ≡ let !y = Q∗
in (V y)∗

(V W)∗ ≡ V †(!W †)
(let x = M in N)∗ ≡ let !x = M∗

in N∗

x† ≡ x

(λx. M)† ≡ λa. let !x = a in M∗

: λlin∗ → λc∗

same as #2 from Figure 15

Fig. 16. Reflection in λc of λlin∗.

Putting together the inclusion in λc of λc∗ of Figure 10 and the isomorphism
between λc∗ and λlin∗ of Figure 15, we can immediately construct a reflection in
λc of λlin∗.

Proposition 7.1.3. Translations ∗ and # (see Figure 16) form a reflection in
λc of λlin∗.

7.2 Eta-Rules for Linear Logic

Maraist et al. [1995] were concerned with a similar problem: finding translations
between call-by-value calculi and linear calculi that are both sound and complete.
They adopt a similar solution: expanding the source calculus from VAL to LET.
One significant difference is that their source calculus does not contain an (η.v)
rule, and their target calculus does not contain (η.−◦), (η.!), and (−◦!).

Furthermore, when Maraist et al. [1995] attempted to add the (η.v) rule to the
call-by-value calculus, and the (η.−◦) and (η.!) rules to the linear lambda calculus,
they noted that the translation from the call-by-value calculus to the linear calculus
does not preserve (η.v). They suggested that perhaps more reductions rules should
be added to the linear calculus if such reductions could be justified logically. We
have indeed followed their suggestion to solve the problem by adding the rule (−◦!),
which is the symmetric commuting conversion from (!−◦). (The symmetry is not
complete, since we are evaluating the subexpressions of an application from left-to-
right.) With the addition of the (−◦!) rule, the translation from the call-by-value
calculus to the linear calculus preserves the (η.v) rule as we have shown.

8. CONTINUATIONS

The development for continuations is paralleled by the development for monads
and the linear calculus. Just as λv maps into λml via the traditional call-by-value
monad translation, so does λv map into λn via the traditional call-by-value CPS
translation:

V ∗ ≡ λk. kV †

(LM)
∗
≡ λk. L∗(λx.M∗(λy. xyk))

x† ≡ x

(λx.N)
†
≡ λx.N∗

A remarkable property of this translation is that one may always choose k to

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

128 · Amr Sabry and Philip Wadler

terms L, M, N ::= KV | V WK
values V, W ::= x | λx. λk. M
continuations K ::= k | λx. M

(β.v) (λx. λk. M)V K −→ M [x := V][k := K]
(η.v) λx. λk. V xk −→ V, if x /∈ fv(V)
(β.let) (λx. M)V −→ M [x := V]
(η.let) λx. Kx −→ K, if x /∈ fv(K)

Fig. 17. Continuation-passing style calculus λcps.

∗ : λc → λcps

M∗ ≡ M : k

V : K ≡ KV †

(PM) : K ≡ P : (λx. ((xM) : K))
(V Q) : K ≡ Q : (λy. ((V y) : K))

(V W) : K ≡ V †W †K
(let x = M in N) : K ≡ M : (λx. (N : K))

x† ≡ x

(λx. M)† ≡ λx. λk. M∗

: λcps → λc

(KV)# ≡ K♭[V ♮]

(V WK)# ≡ K♭[V ♮W ♮]

x♮ ≡ x

(λx. λk. M)♮ ≡ λx. M#

k♭ ≡ []

(λx. N)♭ ≡ let x = [] in N#

Fig. 18. Reflection in λc of λcps.

be exactly the same name, without fear of name clash. Again, this translation is
sound but not complete.

To refine the translation ∗ : λv → λn into a reflection also requires three steps:
first, grow the source λv into λc; second, shrink the target λn into λcps; third, fine-
tune the translation ∗. Step one was already accomplished as part of the monad
development. Like for the linear calculus, steps two and three are best considered
in reverse order, as the calculus of step two should be the image of the modified
translation of step three.

To refine the translation ∗ : λv → λn, it is suitably extended for let and has

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

A Reflection on Call-by-Value · 129

terms L, M, N ::= K[V] | K[V W]
values V, W ::= x | λx. M
contexts K ::= [] | let x = [] in M

(β.v) K[(λx. M)V] −→ M [x := V] : K, K maximal
(η.v) λx. (V x) −→ V, if x /∈ fv(V)
(β.let) let x = V in M −→ M [x := V]
(η.let) let x = [] in K[x] −→ K, if x /∈ fv(K)

V : K ≡ K[V]
(V W) : K ≡ K[V W]
(let x = V in M) : K ≡ let x = V in (M : K)
(let x = V W in M) : K ≡ let x = V W in (M : K)

Fig. 19. The kernel computational calculus λc∗∗.

∗1 : λc → λc∗∗

M∗ ≡ M : []

V : K ≡ K[V]
(PM) : K ≡ P : (let x = [] in ((xM) : K))
(V Q) : K ≡ Q : (let y = [] in ((V y) : K))

(V W) : K ≡ K[V †W †]
(let x = M in N) : K ≡ M : (let x = [] in (N : K))

x† ≡ x

(λx. M)† ≡ λx. M∗

#1 : λc∗∗ → λc

the trivial inclusion

Fig. 20. Inclusion in λc of λc∗∗.

some reductions labeled as administrative.

V ∗ ≡ λk. kV †

(LM)
∗
≡ λk. L∗(λx.M∗(λy. xyk))

(let x = M in N)
∗
≡ λk.M∗(λx.N∗k)

x† ≡ x

(λx.N)
†
≡ λx.N∗

The translation now takes place in three stages. Stage one applies the translation
proper. Stage two reduces any administrative (β) redexes — that is, ones where
the relevant λ is overlined. Stage three strips the leading λk, which always appears
and so is redundant.

This three-stage translation may be replaced by the equivalent translation given
in the first half of Figure 18. The old translation relates to the new as follows:
M∗old ≡ λk.M∗new, where k is the distinguished continuation variable. The aux-
iliary translation M :K closely resembles a translation introduced by Plotkin [1975]
to capture the effect of administrative reductions.

Step two shrinks the target λn into λcps, which is summarized in Figure 17.
The grammar is the smallest one that is in the image of the refined translation

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

130 · Amr Sabry and Philip Wadler

∗2 : λc∗∗ → λcps

(K[V])∗ ≡ K‡V †

(K[V W])∗ ≡ V †W †K‡

x† ≡ x

(λx. M)† ≡ λx. λk. M†

[]‡ ≡ k

(let x = [] in N)‡ ≡ λx. N∗

#2 : λcps → λc∗∗

same as # from Figure 18

Fig. 21. Isomorphism of λc∗∗ and λcps.

∗. An additional class of nonterminals, K, is added to the grammar, ranging over
continuations. This class contains the distinguished free variable k and contains
those lambda expressions which may be substituted for k.

Examination reveals that each of the rules (β) and (η) arises in exactly two
situations, yielding four rules in the target λcps corresponding to four of the seven
rules in the source λc. It is easily verified that the grammar is indeed closed under
reduction. Every application has a value as an argument, so call-by-value and call-
by-name reductions have the same effect on the language, which explains Plotkin’s
indifference property.

Proposition 8.1. The grammar of λcps is closed under the reductions of λcps.

The inverse translation # of Figure 18 is now easily derived. It has three parts,
one for each component of the target grammar. A term M in λcps maps to a term
M# in λc; a value V in λcps maps to a value V ♮ in λc; and a continuation K in λcps

maps to an evaluation context K♭ in λc. An evaluation context C is a term with a
hole [], and if C is an evaluation context then C[M] denotes the result of replacing
the hole in C by the term M . The filling operation is straightforward, since the
holes of our evaluation contexts are never in the scope of a bound variable.

We can now verify that the maps of Figure 18 constitute a reflection.

Proposition 8.2. Translations ∗ and # form a reflection in λc of λcps.

Proof. We prove each of the four parts of Proposition 3.2 separately. The proof
of part (1)

M −→−→ M∗#

requires a stronger inductive hypothesis,

K♭[M] −→−→ (M : K)
#
,

but is otherwise straightforward. As usual the proofs rely on the relevant substitu-
tion lemmas.

Lemma 8.3. Let M,V be terms of the appropriate sorts in λc, and let K be in
λcps; then (M : K)[x := V †] ≡ (M [x := V]) : K.

Lemma 8.4. Let M,V,K be terms of the appropriate sort in λcps; then

K♭[M#[x := V ♮]] −→−→ (M [x := V][k := K])
#
.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

A Reflection on Call-by-Value · 131

This completes the parallel development of the reflection; there is also a parallel
development of the factorization. Proposition 3.5 guarantees that there must be
an isomorphic image of λcps within λc. We name this calculus λc∗∗, and it is
summarized in Figure 19. Just as the grammar of λcps has three components —
terms, values, and continuations — so the grammar of λc∗∗ has three components:
terms, values, and contexts. Observe that, despite the introduction of contexts, each
term still possesses a unique decomposition in terms of the syntax. (For instance,
the term xy corresponds to K[V W], where K is []; V is x; and W is y.)

The terms of λc∗∗ can be characterized as the terms of λc in (let .1), (let .2),
and (assoc) normal form. As in the previous development, once a term has been
normalized, no further reductions ever introduce a (let .1) or (let .2) redex. Alas,
the same cannot be said of (assoc). The reduction (β.v) may indeed introduce a
further (assoc) redex, as shown by the counterexample

let x = ((λy. let z = ab in c) d) in e
−→ let x = (let z = ab in c) in e.

To gain insight into the problem, consider the corresponding CPS reduction:

((λy. λk. (a b (λz. kc))) d (λx. ke))
−→ (a b (λz. (λx. ke)c))

The image of this in λc∗∗ is

let x = ((λy. let z = ab in c) d) in e
−→ let z = ab in let x = c in e

where the right-hand side is in (assoc)-normal form. The CPS language achieves
this normalization using the metaoperation of substitution which traverses the CPS
term to locate k and replace it by the continuation thus effectively “pushing” the
continuation deep inside the term.

In order to properly match the behavior of CPS, we therefore add a correspond-
ing metaoperation to λc∗∗, M : K shown in Figure 19. Using the new meta-
operation we can extend the problematic source reduction (β.v) with a built-in
(assoc)-normalization action that mirrors the action of (β) on CPS terms. (An
alternative to adding metanotation for substitution may be to move to calculi that
use explicit substitution, but we have not explored this possibility.)

There is one pitfall to avoid: since reductions apply to any subterm, one may
be tempted to apply rule (β.v) to the subterm ((λy. let z = ab in c) d) in the
counterexample by taking K to be [] rather than let x = [] in e. To step around
this pitfall, we use a nonstandard convention that pattern-matching a term against
the left-hand side of (β.v) should select the maximal K.

Again, as guaranteed by Proposition 3.5, the reflection ∗ : λc → λcps factors into
an inclusion ∗1 : λc → λc∗∗ and an order isomorphism ∗2 : λc∗∗ → λcps, given in
Figures 20 and 21. Again, these can be computed directly from the proposition,
and again there is a bonus: ∗1 has a simple interpretation as reducing a term of λc

to its (let .1), (let .2), and (assoc) normal form.
In addition, the CPS translation factors through the monad translation. One

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

132 · Amr Sabry and Philip Wadler

may translate λml∗ into λcps as follows:

[V]
∗ ≡ λk. kV †

(V W)
∗
≡ λk. V †W †k

(let x ⇐ M in N)
∗
≡ λk.M∗(λx.N∗k)

x† ≡ x

(λx.N)
†
≡ λx.N∗

Regarding this as a two-stage translation with administrative reductions yields a
reflection. As before, the reflection factors through a calculus λml∗∗, corresponding
to the subset of λml∗ consisting of terms in (assoc) normal form. The three calculi
λc∗∗, λml∗∗, and λcps are isomorphic.

In a similar way, the isomorphism between λc∗ and λlin of Figure 15 can be
adapted to an isomorphism between λc∗∗ and a kernel of the linear calculus λlin∗∗

in (!!) normal form. Figure 1 diagrams the situation.

9. THE FISCHER TRANSLATION

The CPS translation of Fischer [1972] differs from the CPS translation of Plotkin
[1975] in that it swaps the order of function argument and continuation, allowing
additional administrative reductions to be performed. Here is the Fischer transla-
tion, for comparison with the Plotkin translation in Section 8.

V ∗ ≡ λk. kV †

(LM)
∗
≡ λk. L∗(λx.M∗(λy. xky))

x† ≡ x

(λx.N)
†
≡ λk. λx.N∗k

For example, the term (λx. x)y yields (λx. λk. kx)yk under the Plotkin translation,
and it yields (λx. kx)y under the Fischer translation, where in each case one reduces
all administrative (β) redexes and strips the leading λk.

An earlier version of this article claimed that the Fischer CPS translation could
be made a reflection, but gave no proof. Here we withdraw that claim. We show
that the Fischer translation cannot be a reflection, nor can it be a Galois connection
with the source calculus λc. However, it may be a Galois connection with a different
source calculus.

The Fischer translation cannot be a reflection. Thanks to administrative reduc-
tion, no term in the image of the Fischer translation will contain a λk redex; but in
order to be closed under reduction, the target language must contain such redexes.
For example, take M ≡ (λf. fx)(λy. y), so that M∗ ≡ (λf. fkx)(λk. λy. ky). Then
M∗ −→ P , where P ≡ (λk. λy. ky)kx. But there is no source term with Fischer
translation P , so we cannot have P#∗ ≡ P . Note that this argument is independent
of the reductions in the source language.

Further, the Fischer translation cannot be a Galois connection when the source
calculus is λc. For example, take M ≡ f((λx. x)y) and N ≡ (λx. fx)y. Both terms
have the same Fischer translation, namely M∗ ≡ N∗ ≡ P ≡ (λx. fkx)y. Since we
have a Galois connection, we require that M −→−→ M∗# ≡ P# and N −→−→ N∗# ≡ P#

in λc, and so fy is the only possible choice for P#. For a Galois connection we also
require that P#∗ −→−→ P , but this fails, since P#∗ ≡ fky 6−→−→ (λx. fkx)y ≡ P .

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

A Reflection on Call-by-Value · 133

We saw in Section 4 that a naive translation with no administrative reductions
fails to be a reflection. Here we see that the Fischer translation has too many
administrative reductions to be a reflection. Just as Goldilock’s porridge must be
neither too hot nor too cold, administrative reductions must be neither too many
nor too few.

Nonetheless, it may be possible to find a Galois connection based on the Fischer
translation with a different choice of source calculus. We leave this as an open
question.

10. RELATED WORK

Plotkin [1975], among other contributions, formalizes the call-by-value CPS trans-
lation and shows that it preserves but does not reflect equalities: if M = N in λv

then M∗ = N∗ in λn, but not conversely. Here and throughout, we write ∗ for the
variant of the CPS translation under consideration, and hope this will lead to no
confusion.

Sabry and Felleisen [1993] strengthen Plotkin’s result by making the implication
above reversible. They extend the call-by-value lambda calculus λv with a set of
reductions X such that M = N in λvX if and only if M∗ = N∗ in λn. As they note,
λvX and λc prove the same equalities; but they do not prove the same reductions.

Sabry and Felleisen [1993] introduce the notion of equational correspondence de-
scribed in Section 3, and they prove that their translation constitutes such a corre-
spondence. In fact, they prove something stronger, making their translation almost,
but not quite, a Galois connection: their translation satisfies all four conditions of
Proposition 3.2, except that condition (2), P#∗ −→−→ P , is replaced by the weaker
P#∗ = P . (Compare this to the stronger P#∗ ≡ P required of a reflection.)

They also single out a subset A of X and observe that these A-reductions cor-
respond directly to the administrative reductions on CPS terms. Their terms in
A-normal form roughly correspond to our kernel calculus λc∗∗, of terms in (let .1),
(let .2), and (assoc) normal form.

However, Sabry and Felleisen use Fischer’s CPS translation, which we have seen
cannot be a reflection. It remains an open question whether there is a variant of
Sabry and Felleisen’s work which yields a Galois connection.

Flanagan et al. [1993] apply the results of Sabry and Felleisen [1993]. They
suggest that CPS translation may not be so beneficial after all: it may be better
to work directly in the source calculus. They show that terms in A-normal form
behave similarly to CPS terms, demonstrating this via a sequence of abstract ma-
chines. They also briefly sketch possible applications of the full set of reductions
X. But they fail to observe our central point: that for optimization purposes one
wants a result showing correspondence of reductions rather than correspondence of
equations.

Lawall and Danvy [1993] give a factoring of CPS similar to the one described here
and refer to Galois connections. They relate four languages: a source language, a
kernel source language, a kernel target language, and a target language. The first
two relate via a Galois connection; the middle two are isomorphic; and the last two
again relate via a Galois connection. The first two parts of their factorization are
similar to our inclusion in λc of λc∗∗, and our order isomorphism from λc∗∗ to λcps.
Their third step schedules evaluation, determining for each application whether the

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

134 · Amr Sabry and Philip Wadler

function or argument evaluates first. Here we use a language where the function
always evaluates before the argument, so we need no counterpart of their third step.

The Galois connections of Lawall and Danvy are based on an artificial ordering
induced directly from the translations. One might argue that they are misusing
the notion of Galois connection and are instead dealing with the somewhat weaker
notion of a pair of translations ∗ and # satisfying M∗#∗ ≡T M∗ and P#∗# ≡S P#.
As they note, their artificial ordering is unsatisfactory, because their middle isomor-
phism between the source kernel and target kernel does not respect this ordering:
it is not an order isomorphism, and hence not a Galois connection. Thus, their fac-
torization cannot be viewed as a composition of Galois connections. In contrast, we
use a natural ordering relation, and our Galois connections do compose. Whereas
their isomorphism violates the ordering of their Galois connection, our isomorphism
arises as a consequence of our Galois connection, as shown by Proposition 3.5.

Hatcliff and Danvy [1994] consider translations analogous to our translations
from λv to λml, and from λml to λcps. They also look at translations from other
source languages into λml, an issue we ignore. They show the translation from λv

to λml is sound; we give the stronger result that the translation from λc to λml is
a reflection. They also show that the translation from λml to λcps is an equational
correspondence; again we give the stronger result that it is a reflection.

Maraist et al. [1995] consider translations into a linear lambda calculus. That
paper extends the call-by-value calculus VAL to the calculus LET; this article ex-
tends the call-by-value calculus λv to the calculus λc. The earlier paper stressed
the analogy of the linear translation with the CPS translation; as can be seen from
the work here, an analogy of the linear translation with the monad translation is
even more apposite.

11. CONCLUSION

This section describes a number of possible extensions of our results and draws a
conclusion about λc as a model of call-by-value.

Standard Reduction. Most lambda calculi possess a notion of standard reduction,
characterized by two properties. First, at most one standard reduction applies to a
term. Second, if any sequence of reductions reduces a term to an answer, then the
sequence of standard reductions will also do so. Hence standard reductions capture
the behavior of an evaluator. Plotkin [1975] specified standard reductions for λv,
and his results for CPS demonstrate not only that reductions are preserved, but
also that standard reductions are preserved. (He expresses this in a different but
equivalent form by saying that evaluation is preserved.) Hatcliff and Danvy [1994]
give similar results for translation from Moggi’s λml into CPS. It appears straight-
forward (1) to extend the work here by specifying a suitable notion of standard
reduction for each of the calculi involved and (2) to show that the given transla-
tions are still reflections if one replaces reductions by standard reductions.

Call-by-Value and Call-by-Need. Maraist et al. [1995] study a call-by-let calculus
that is closely related to λc and that translates into linear logic. By extending the
call-by-let calculus with just one law,

let x = M in N −→ N, if x /∈ fv(N),

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

A Reflection on Call-by-Value · 135

the authors derive a call-by-need calculus [Ariola et al. 1995] that translates into
affine logic. We conjecture that when augmented with the above law, λc also yields
a model of call-by-need.

A Reflection on Call-by-Value. Plotkin’s original paper on λv layed out two key
properties of this calculus: first, it is adequate to describe evaluation, and second,
it is inadequate to prove some equalities that we might reasonably expect to hold
between terms. The first was demonstrated by a correspondence between λv and
the SECD machine of Landin [1964]. The second was demonstrated by observing
that there are terms that are not provably equal in λv, but whose translations into
CPS are provably equal.

Moggi defined λc as an extension of λv that is sound and complete for all monad
models and hence proves a reasonably large set of equalities. He picked a confluent
calculus to ease symbolic manipulation, but made no claims that λc was itself a
reasonable model of computation. Sabry and Felleisen showed that λc proves two
terms equal exactly when their CPS translations are equal. This reinforces the
claim that λc yields a good theory of equality, but because they dealt only with
equational correspondence, again says nothing about λc as a model of computation.
Our results here relate λc reductions to reductions in λml and λcps, both widely
accepted as models of computation. We hereby put forward λc as a model of call-
by-value computation that improves on λv.

REFERENCES

Appel, A. W. 1992. Compiling with Continuations. Cambridge University Press, Cambridge,

Mass.

Ariola, Z. M., Felleisen, M., Maraist, J., Odersky, M., and Wadler, P. 1995. A call-by-need
lambda calculus. In the ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages. ACM Press, New York, 233–246.

Barber, A. 1995. Dual intuitionistic linear logic. Draft, Dept. of Computer Science, Univ. of
Edinburgh, Edinburgh, U.K.

Benton, N. and Wadler, P. 1996. Linear logic, monads, and the lambda calculus. In the
Symposium on Logic in Computer Science. IEEE Computer Society Press, Los Alamitos, Calif.

Benton, P. N. 1995. A mixed linear and non-linear logic: Proofs, terms, and models. In Pro-

ceedings of Computer Science Logic (Kazimierz, Poland, 1994). Lecture Notes in Computer
Science, vol. 933. Springer-Verlag, Berlin. Full version available as Tech. Rep. 352, Computer
Laboratory, Univ. of Cambridge, October 1994.

Davey, B. A. and Priestley, H. A. 1990. Introduction to Lattices and Order. Cambridge
University Press, Cambridge, Mass.

Fischer, M. 1972. Lambda calculus schemata. In Conference on Proving Assertions about

Programs. SIGPLAN Not. 7, 1, 104-109. Revised version in Lisp and Symbolic Computation

6 , 3/4 (1993), 259-287.

Flanagan, C., Sabry, A., Duba, B., and Felleisen, M. 1993. The essence of compiling with

continuations. In the ACM SIGPLAN Conference on Programming Language Design and

Implementation. ACM Press, New York, 237–247.

Girard, J.-Y. 1987. Linear logic. Theoret. Comput. Sci. 50, 1–102.

Hatcliff, J. and Danvy, O. 1994. A generic account of continuation-passing styles. In the ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM Press, New
York, 458–471.

Kranz, D., Kelsey, R., Rees, J., Hudak, P., Philbin, J., and Adams, N. 1986. Orbit: An
optimizing compiler for Scheme. In the ACM SIGPLAN Symposium on Compiler Construction.
SIGPLAN Not. 21, 7, 219-233.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

136 · Amr Sabry and Philip Wadler

Landin, P. 1964. The mechanical evaluation of expressions. Comput. J. 6, 4, 308–320.

Lawall, J. and Danvy, O. 1993. Separating stages in the continuation-passing transform. In the
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM Press,

New York, 124–136.

Mac Lane, S. 1971. Categories for the Working Mathematician. Springer-Verlag, Berlin.

Maraist, J., Odersky, M., Turner, D. N., and Wadler, P. 1995. Call-by-name, call-by-
value, call-by-need and the linear lambda calculus. In the International Conference on the

Mathematical Foundations of Programming Semantics.

Melton, A., Schmidt, D. A., and Strecker, G. 1985. Galois connections and computer science
applications. In Category Theory and Computer Programming. Lecture Notes in Computer

Science, vol. 240. Springer-Verlag, Berlin, 299–312.

Moggi, E. 1988. Computational lambda-calculus and monads. Tech. Rep. ECS-LFCS-88-86,

Univ. of Edinburgh, Edinburgh, U.K.

Moggi, E. 1989. Computational lambda-calculus and monads. In the Symposium on Logic in

Computer Science. IEEE Computer Society Press, Los Alamitos, Calif., 14–23.

Moggi, E. 1991. Notions of computation and monads. Inf. Comput. 93, 55–92.

Plotkin, G. 1975. Call-by-name, call-by-value, and the λ-calculus. Theoret. Comput. Sci. 1,
125–159.

Reynolds, J. C. 1993. The discoveries of continuations. Lisp Symbol. Comput. 6, 3/4, 233–247.

Sabry, A. and Felleisen, M. 1993. Reasoning about programs in continuation-passing style.
Lisp Symbol. Comput. 6, 3/4, 289–360.

Sabry, A. and Wadler, P. 1996. A reflection on call-by-value. In SIGPLAN International

Conference on Functional Programming. ACM Press, New York, 13–24.

Steele, G. L. 1978. Rabbit: A compiler for Scheme. MIT AI Memo 474, Massachusetts Institute
of Technology, Cambridge, Mass.

Wadler, P. 1993a. A syntax for linear logic. In the International Conference on the Mathematical

Foundations of Programming Semantics. Lecture Notes in Computer Science, vol. 802. Springer-
Verlag, Berlin.

Wadler, P. 1993b. A taste of linear logic (Invited talk). In Mathematical Foundations of Com-

puter Science. Lecture Notes in Computer Science, vol. 711. Springer-Verlag, Berlin.

Received August 1996; revised March 1997; accepted June 1997

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

