
Threesomes, With and Without Blame?

Jeremy G. Siek1 and Philip Wadler2

1 University of Colorado at Boulder
2 University of Edinburgh

Abstract. The blame calculus of Wadler and Findler gives a high-level seman-
tics to casts in higher-order languages. The coercion calculus of Henglein, on
the other hand, provides an instruction set for casts whose normal forms ensure
space efficiency. In this paper we address two questions: 1) can space efficiency
be obtained in a high-level semantics? and 2) can we precisely characterize the
relationship between the high and low-level semantics of casts? Towards answer-
ing both of these questions, we design a cast calculus that summarizes a sequence
of casts as a threesome cast that contains a source type, a target type, and a third
middle type that is the greatest lower bound of all the types in the sequence. We
show that the threesome calculus is equivalent to the blame calculus and to one
of the coercion-based, blame-tracking calculi of Siek, Garcia, and Taha. We also
show that the threesome calculus is space efficient and obtain a tighter bound than
that of Herman, Tomb, and Flanagan.

1 Introduction

The blame calculus of Wadler and Findler [2009] gives a high-level semantics for casts
in higher-order languages and shows how to trace cast errors back to their source (i.e.,
blame tracking) using techniques from higher-order contracts [Findler and Felleisen,
2002]. These casts integrate dynamic typing into statically typed languages, but they
also play an important role in the compilation of languages with gradual typing [Siek
and Taha, 2006] and hybrid typing [Gronski et al., 2006].

Herman et al. [2007] observe that in straightforward implementations of the blame
calculus, casts can consume unbounded space at run time. To solve this problem, they
use the coercion calculus of Henglein [1994] to compress sequences of casts. The coer-
cion calculus can be viewed as low-level instruction set for casts. Siek et al. [2009] show
how to add blame tracking to the coercion calculus while maintaining space efficiency.
We review the blame calculus in Section 2 and the coercion calculus in Section 3.

In this paper we show that space efficiency can also be achieved in a high-level
calculus. The key idea is that a cast consisting of three types (threesomes) can express
a sequences of normal casts (twosomes). We describe the threesome calculus without
blame tracking in Section 4 and show that the threesome calculus is space efficient,
obtaining a tighter bound on space than that of Herman et al. [2007]. We then show that
the threesome calculus is equivalent (ignoring blame labels) to both the blame calculus
and a coercion-based calculus. In Section 5 we add blame tracking to the threesome

? Workshop on Script to Program Evolution (STOP), Genova, 2009

2 Siek and Wadler

base types B ⊃ {Bool, Int}
types R, S, T, U ::= B | S → T | Dyn

labels l, m, l, m

terms s, t ::= k | x | λx :S.t | s t | 〈T l⇐S〉s

New typing rules Γ ` t : TΓ ` s : S S ∼ T

Γ ` 〈T l⇐S〉s : T

Consistency S ∼ T
B ∼ B Dyn ∼ T T ∼ Dyn

S ∼ S′ T ∼ T ′

S → T ∼ S′ → T ′

Fig. 1. Static semantics of the blame calculus

calculus and extend the equivalence results to include blame tracking. As a corollary,
we establish that the high-level blame calculus is equivalent to the low-level coercion-
based calculus.

2 Twosomes

The syntax and type system of the blame calculus (minus subset types) is shown in
Fig. 1. This calculus is the simply-typed lambda calculus extended with the type Dyn

(the sum of all types) and casts of the form 〈T l⇐ S〉s. We give application higher
precedence than casts. The semantics of a cast is to evaluate term s to a value v, check
whether the run-time type of v matches T , and if so, return the coercion of v to T .
Otherwise execution halts and signals that the cast at location l of the source program
caused an error. The dynamic semantics of the blame calculus is shown in Fig. 2. The
reflexive, transitive closure of the reduction relation is written −→∗.

In the case of first-order values such as integers, the semantics of the cast is straight-
forward: the run-time check either succeeds and the cast acts like the identify function,
or the check fails and the cast is blamed.

〈Int m⇐Dyn〉〈Dyn l⇐Int〉4 −→∗ 4
〈Bool m⇐Dyn〉〈Dyn l⇐Int〉4 −→∗ blame m

Higher-order Casts The semantics of casts is more subtle in the case of higher-order
values such a functions. The complication is that one cannot immediately check whether
a function is consistent with the target type of the cast. For example, when the following
function of type Int → Dyn is cast to Int → Int, there is no way to immediately tell
if the function will return an integer every time it is called.

f ≡ (λx : Int. if 0 < x then 〈Dyn l2⇐Int〉2 else 〈Dyn l1⇐Bool〉true)
. . . 〈Int→ Int

l3⇐Int→ Dyn〉f . . .

So long as the function is only called with positive numbers, its behavior respects the
cast. If it is ever called with a negative number, then the function violates the cast.

Threesomes, With and Without Blame 3

ground types G, H ::= B | Dyn→ Dyn

values v, w ::= k | λx :S.t | 〈Dyn l⇐G〉v | 〈S′ → T ′
l⇐S → T 〉v

results r ::= t | blame l

evaluation contexts E ::= � | E t | v E | 〈T l⇐S〉E

New Reductions s −→ r
E[〈B l⇐B〉v] −→ E[v]

E[〈Dyn l⇐Dyn〉v] −→ E[v]

E[〈G m⇐Dyn〉〈Dyn l⇐G〉v] −→ E[v]

E[〈H m⇐Dyn〉〈Dyn l⇐G〉v] −→ blame m if G 6= H

E[〈Dyn l⇐S → T 〉v] −→ E[〈Dyn l⇐Dyn→ Dyn〉〈Dyn→ Dyn
l⇐S → T 〉v],

if S → T 6= Dyn→ Dyn

E[〈S → T
l⇐Dyn〉v] −→ E[〈S → T

l⇐Dyn→ Dyn〉〈Dyn→ Dyn
l⇐Dyn〉v],

if S → T 6= Dyn→ Dyn

E[(〈S′ → T ′
l⇐S → T 〉u) v] −→ E[〈T ′ l⇐T 〉 u(〈S l⇐S′〉v)]

Fig. 2. Dynamic semantics of the blame calculus.

The standard solution, adopted from work on higher-order contracts by Findler and
Felleisen [2002], is to defer checking until the function is applied to an argument, at
which point the argument is compared to the target parameter type, and upon function
return, the return value is checked against the return type. This can be accomplished
by using the cast as a wrapper and splitting the wrapper into two when the function is

applied: (〈T1 → T2
l⇐S1 → S2〉v1) v2 −→ 〈T2

l⇐S2〉 v1(〈S1
l⇐T1〉v2).

Because a higher-order cast is not checked immediately, it might fail in a context far
removed from where it was originally applied. To help diagnose such failures, dynamic
semantics are enhanced with blame tracking, a facility that traces failures back to their
origin in the source program [Findler and Felleisen, 2002, Gronski and Flanagan, 2007,
Siek et al., 2009, Wadler and Findler, 2009].

Space Efficiency Herman et al. [2007] observe two circumstances where higher-order
casts can lead to unbounded space consumption. First, some programs repeatedly apply
casts to the same function, which can build up to an arbitrarily large number of casts.
Second, a cast applied to the result of a function call can turn what would have been a
tail recursive function into one that is no longer tail recursive, thereby causing the func-
tion to consume space proportional to the depth of the recursion. We refer the reader to
Herman et al. [2007] for specific examples of these space efficiency problems. Herman
et al. [2007] solve these problems by using the coercion calculus of Henglein [1994] to
compactly represent sequences of casts, which we discuss next.

3 The Coercion Calculus

Henglein [1994] introduced a sub-language called the coercion calculus to express
casts. Instead of casts of the form 〈T l⇐ S〉s, Henglein uses casts of the form 〈c〉s

4 Siek and Wadler

where c is a term of the coercion calculus. The coercion calculus is not intended to be
directly used by programmers, but instead casts of the form 〈T l⇐S〉s are compiled into
casts of the form 〈c〉s. The original coercion calculus did not include blame tracking, so
here we use the L ∪UD coercion-based calculus of Siek et al. [2009], shown in Fig. 3.

The coercion G! injects a value into Dyn whereas the coercion G?l projects a value
out of Dyn, blaming location l in the case of a type mismatch. A function coercion
c → d applies coercion c to a function’s argument and d to its return value. Coercion
composition d◦c applies coercion c then coercion d. In addition to Henglein’s coercions,
we adopt the Faill

T⇐G coercion of Herman et al. [2007], which compactly represents
coercions that are destined to fail but have not yet been applied to a value.

We use a different formulation of evaluation context than that of Herman et al.
[2007]. (Siek et al. [2009] use the same formulation as Herman et al. [2007].) Unique
decomposition does not hold for their contexts, for example, in a sequence of three
casts, either the outer two or the inner two can be merged.

Lemma 1 (Unique Decomposition). For a well-typed closed t, either t is a value or
there is a unique decomposition into a redex t′ and a context E such that t = E[t′].

4 Threesomes without blame

Our goal in the design of the threesome calculus is to achieve space efficiency while
maintaining the high-level nature of the calculus, that is, expressing casts in terms of
types. The key to space efficiency is to find a way to compress sequences of casts into a
single cast while maintaining the same behavior. We will compress two successive casts
into a threesome cast, and show how to compress two successive threesome casts into
a single, equivalent threesome cast; we can thus compress any sequence of two-way
casts into a single threesome cast by a sequence of compressions. In this section, for
simplicity, we will ignore blame labels, and restore them in the next section.

The simplest idea would be to coerce the pair of casts 〈U ⇐ T 〉〈T ⇐ S〉s into the
single cast 〈U⇐S〉s, but this is too simple. For instance, the cast

〈Dyn⇐Bool〉〈Bool⇐Dyn〉s

is not equivalent to 〈Dyn ⇐ Dyn〉s because the former requires s to be the dynamic
embedding of a boolean, while the latter is just the identity. Therefore, we use threesome
casts that are the equivalent of a pair of two-way casts, writing

〈U T⇐=S〉s

to stand for 〈U ⇐ T 〉〈T ⇐ S〉s. In particular, the sequence of casts above is written
〈Dyn Bool⇐=Dyn〉s.

However, we must extend the notion of type that we use for middle types to also
include a bottom type. For instance, the cast

〈Int⇐Dyn〉〈Dyn⇐Bool〉s

will collapse to 〈Int ⊥⇐=Bool〉s. A threesome cast with middle ⊥ reduces to blame.

Threesomes, With and Without Blame 5

non-dynamic types S∗, T∗ ::= B | S → T

coercions c, d ::= ιT | G! | G?l | d ◦ c | c → d | Faill
T⇐S∗

terms s, t ::= k | x | λx.t | s t | 〈c〉s

Well-typed coercions ` c : T ⇐ S

` ιT : T ⇐ T ` Faill
T⇐S∗ : T ⇐ S∗ ` G! : Dyn ⇐ G ` G?l : G ⇐ Dyn

` c : S1 ⇐ T1 ` d : T2 ⇐ S2

` c → d : (T1 → T2) ⇐ (S1 → S2)

` d : T3 ⇐ T2 ` c : T2 ⇐ T1

` d ◦ c : T3 ⇐ T1

New typing rules Γ ` t : TΓ ` s : S ` c : T ⇐ S

Γ ` 〈c〉s : T

Compilation of casts to coercions 〈〈T ⇐l S〉〉 = c

〈〈B ⇐l
B〉〉 = ιB 〈〈Dyn ⇐l

Dyn〉〉 = ιDyn 〈〈Dyn ⇐l
B〉〉 = B! 〈〈B ⇐l

Dyn〉〉 = B?
l

〈〈Dyn ⇐l
S → T 〉〉 = (Dyn → Dyn)! ◦ (〈〈S ⇐l

Dyn〉〉 → 〈〈Dyn ⇐l
T 〉〉)

〈〈S → T ⇐l
Dyn〉〉 = (〈〈Dyn ⇐l

S〉〉 → 〈〈T ⇐l
Dyn〉〉) ◦ (Dyn → Dyn)?

l

〈〈S′ → T
′ ⇐l

S → T 〉〉 = 〈〈S ⇐l
S
′〉〉 → 〈〈T ′ ⇐l

T 〉〉

Compilation from the blame calculus to the coercion-based calculus 〈〈t〉〉c = t

〈〈x〉〉c = x 〈〈k〉〉c = k 〈〈λx : S. t〉〉c = λx : S. 〈〈t〉〉c

〈〈t s〉〉c = 〈〈t〉〉c 〈〈s〉〉c 〈〈〈T l⇐S〉s〉〉c = 〈〈〈T ⇐l
S〉〉〉〈〈s〉〉c

Run-time Structures normalized coercions c
coercion contexts C ::= C ◦ c | d ◦ C | C → d | c → C
uncoerced values u ::= k | λx : S.t
values v, w ::= u | 〈c〉u
cast-free context F ::= � | E[� t] | E[v �]
evaluation contexts E ::= F | F [〈c〉�]

Coercion equality (refl., symm., trans., and compatible closure of the following rule) c = d

c1 ◦ c2 ◦ c3 = (c1 ◦ c2) ◦ c3

Coercion Reductions c −→ c
C[G?

l ◦ G!] −→ C[ιG]

C[H?
l ◦ G!] −→ C[Fail

l
H⇐G] if G 6= H

C[(d1 → d2) ◦ (c1 → c2)] −→ C[(c1 ◦ d1) → (d2 ◦ c2)]

C[ιT ◦ c] −→ C[c]

C[d ◦ ιT] −→ C[d]

C[d ◦ Fail
l
S⇐S∗] −→ C[Fail

l
T⇐S∗] where ` d : T ⇐ S

C[Fail
l
T⇐T∗ ◦ (c → d)] −→ C[Fail

l
T⇐S∗] where ` c → d : T

∗ ⇐ S
∗

New Reductions s −→ r
E[〈ιB〉u] −→ E[u]

F [〈d〉〈c〉v] −→ F [〈c′〉v] if d ◦ c −→∗
c′

F [〈Faill
T⇐G〉u] −→ blame l

E[(〈c → d〉u) w] −→ E[〈d〉 u(〈c〉w)]

Fig. 3. The L ∪UD coercion-based calculus

6 Siek and Wadler

It is worth noticing the following invariant: the middle type is smaller or equal to
the source and target types with respect to naive subtyping. In naive subtyping (Fig. 4),
Dyn is top and ⊥ is bottom. Function types are naive subtypes if their corresponding
parameters and return types are naive subtypes, both covariantly. The next example
shows how this covariance agrees with the blame calculus reduction rules.

Suppose that the two casts are higher-order, casting between function types:

〈U1 → U2⇐T1 → T2〉〈T1 → T2⇐S1 → S2〉s

The checking of higher-order casts is delayed, but later on the cast could be applied to
an argument t, causing the casts to be split as follows.

〈U2⇐T2〉〈T2⇐S2〉 s(〈S1⇐T1〉〈T1⇐U1〉t)

To simulate this behavior with threesome casts we simply use the following reduction
rule for splitting higher-order threesomes.

〈U1 → U2
T1→T2⇐= S1 → S2〉s −→ 〈U2

T2⇐=S2〉 s(〈S1
T1⇐U1〉t)

Because T1 → T2 <:n S1 → S2 we have T1 <:n S1 and T2 <:n S2, so the subtyping
invariant continues to hold on the middle types thanks to the covariance on functions.

Next, we consider how to compress two successive threesome casts into a single
equivalent threesome cast. The middle type of the new cast will be some function of the
middle types of the two casts. Let us use & for this function.

〈R T ′⇐=U〉〈U T⇐=S〉s −→ 〈RT ′&T⇐= S〉s

First, we observe that the blame calculus checks the head symbol of a type to decide
whether to signal an error. The following gnd function isolates the head symbol.

gnd(B) = B gnd(S → T) = Dyn→ Dyn

So we should have T&T ′ = ⊥ if gnd(T) 6= gnd(T ′). On the the other hand, suppose
T and T ′ are the same base type B. Then the two threesomes represent

〈R⇐B〉〈B⇐U〉〈U⇐B〉〈B⇐S〉s

and the type system forces U to be either Dyn or B, so the middle two casts are the
identity. Thus, the result should be 〈R B⇐=S〉s and we have B&B = B.

Next, suppose that T is Dyn. Then both S and U must also be Dyn by the subtyping
invariant. It is then easy to see then that we should have T ′&Dyn = T ′.

〈R T ′⇐=Dyn〉〈Dyn Dyn⇐=Dyn〉s −→ 〈R T ′⇐=Dyn〉s

Similar reasoning gives us Dyn&T = T .
For function types, we can derive the definition of & from the observation that

merging higher-order casts should be equivalent to splitting higher-order casts at func-
tion applications then merging the results. The following reduction shows splitting then
merging.

Threesomes, With and Without Blame 7

(〈R1 → R2
T ′1→T ′2⇐= U1 → U2〉〈U1 → U2

T1→T2⇐= S1 → S2〉s) t

−→2 〈R2
T ′2⇐=U2〉〈U2

T2⇐=S2〉 s(〈S1
T1⇐=U1〉〈U1

T ′1⇐=R1〉t)
−→ 〈R2

T ′2&T2⇐= S2〉 s(〈S1
T1&T ′1⇐= R1〉t)

So the definition of & for function types should be

(T ′
1 → T ′

2)&(T1 → T2) = (T1&T ′
1) → (T ′

2&T2)

We have now derived all of the equation for & except for ⊥, which we leave for the
reader. Interestingly enough, the & function computes the greatest lower bound with
respect to naive subtyping.

Lemma 2 (& is the greatest lower bound).

1. S&T <:n S and S&T <:n T
2. R <:n S and R <:n T implies R <:n S&T

Equivalence to the (twosome) blame calculus Towards proving the threesome calcu-
lus equivalent to the blame calculus (ignoring blame labels), we define a bisimulation
relation ≈.

x ≈ x k ≈ k

s2 ≈ s3 t2 ≈ t3
s2 t2 ≈ s3 t3

t2 ≈ t3
λx : S. t2 ≈ λx : S. t3

s2 ≈ s3

s2 ≈ s3 blame l ≈ blame

s2 ≈ s3

〈T l⇐S〉s2 ≈ 〈T T&S⇐=S〉s3

t2 ≈ 〈T P⇐=S〉s3 Q = U&T

〈U l⇐T 〉t2 ≈ 〈U Q&P⇐= S〉s3

t2 ≈ (JT1 → T2
P⇐=SKs3) (〈T1

T1&U1⇐= U1〉t3) Q = (U1 → U2)&(T1 → T2)

〈U2
l⇐T2〉t2 ≈ (〈U1 → U2

Q&P⇐= S〉s3) t3

where JT P⇐=SKs =

(
s if S = P = T

〈T P⇐=S〉s otherwise

Lemma 3 (Bisimulation between the blame calculus and threesome calculus).
If t2 ≈ t3 and both t2 and t3 are well typed, then

1. if t2 −→ r2, then t3 −→∗ r3 and r2 ≈ r3 for some r3.
2. if t3 −→ r3, then t2 −→∗ r2 and r2 ≈ r3 for some r2.

Lemma 4. t ≈ 〈〈t〉〉3
Theorem 1 (Equivalence of the blame calculus and threesome calculus).

1. t2 −→∗ v2 implies 〈〈t2〉〉3 −→∗
3 v3 and v2 ≈ v3 for some v3.

2. 〈〈t2〉〉3 −→∗
3 v3 implies t2 −→∗ v2 and v2 ≈ v3 for some v2.

3. t2 −→∗ blame l for some l iff 〈〈t2〉〉3 −→∗
3 blame.

8 Siek and Wadler

New Syntax
middle types P, Q ::= B | P → Q | Dyn | ⊥
terms s, t ::= . . . | 〈T P⇐=S〉s
values v, w ::= u | 〈Dyn P⇐=S〉u | 〈S′ → T ′

P→Q⇐= S → T 〉u
cast-free contexts F ::= � | E[� t] | E[v �]

evaluation contexts E ::= F | F [〈T P⇐=S〉�]

Naive subtyping P <:n Q
B <:n B P <:n Dyn ⊥ <:n Q

P <:n P ′ Q <:n Q′

P → Q <:n P ′ → Q′

New typing rules Γ ` t : TΓ ` s : S P <:n T P <:n S

Γ ` 〈T P⇐=S〉s : T

Algorithm to compute the greatest lower bound P&Q

B&B = B
(P → Q)&(P ′ → Q′) = (P ′&P) → (Q&Q′)

Dyn&P = P
P&Dyn = P

⊥&P = ⊥
P&⊥ = ⊥
P&Q = ⊥ if gnd(P) 6= gnd(Q)

Compilation from the blame calculus 〈〈t〉〉3 = t

〈〈x〉〉3 = x 〈〈k〉〉3 = k 〈〈λx : S. t〉〉3 = λx : S. 〈〈t〉〉3

〈〈t s〉〉3 = 〈〈t〉〉3 〈〈s〉〉3 〈〈〈T l⇐S〉s〉〉3 = 〈T T&S⇐= S〉〈〈s〉〉3

New Reductions s −→ r

E[〈B B⇐=B〉u] −→ E[u]

E[〈Dyn Dyn⇐=Dyn〉u] −→ E[u]

F [〈T Q⇐=S
′〉〈S′ P⇐=S〉s] −→ F [〈T Q&P⇐= S〉s]

F [〈T ⊥⇐=S〉u] −→ blame

E[(〈S′ → T
′ P→Q⇐= S → T 〉u) w] −→ E[〈T ′ Q⇐=T 〉 u(〈S P⇐=S

′〉w)]

Fig. 4. The threesome calculus without blame.

Threesomes, With and Without Blame 9

Equivalence to the coercion-based calculus The correspondence between the three-
some cast calculus and the coercion-based calculus is very tight. We relate coercions to
threesome casts with the mid function, which computes the middle type from a coer-
cion.

mid(ιT) = T mid(G!) = G mid(G?l) = G mid(Faill
H⇐G) = ⊥

mid(c → d) = mid(c) → mid(d) mid(d ◦ c) = mid(d)&mid(c)

The following is the bisimulation relation between the two.

x ≈ x k ≈ k

s1 ≈ s2 t1 ≈ t2
s1 t1 ≈ s2 t2 blame l ≈ blame

u1 ≈ u2

λx : S. u1 ≈ λx : S. u2

s1 ≈ s2 R = mid(c)

〈c〉s1 ≈ 〈T R⇐=S〉s2

Lemma 5 (Strong bisimulation between the coercion and threesome calculus).
If tc ≈ t3 and both tc and t3 are well typed, then

1. if tc −→ rc, then t3 −→ r3 and rc ≈ r3 for some r3.
2. if t3 −→ r3, then tc −→ rc and rc ≈ r3 for some rc.

Theorem 2 (Equivalence of the coercion calculus and threesome calculus).

1. 〈〈t2〉〉c −→∗
c vc implies 〈〈t2〉〉3 −→∗

3 v3 and vc ≈ v3 for some v3.
2. 〈〈t2〉〉3 −→∗

3 v3 implies 〈〈t2〉〉c −→∗
c vc and vc ≈ v3 for some vc.

3. 〈〈t2〉〉c −→∗
c blame l for some l iff 〈〈t2〉〉3 −→∗

3 blame.

Space Efficiency The main task in putting bounds on the size of casts during execution
is to put a bound on the result of composing two casts. The approach taken by Herman
et al. [2007] for the coercion calculus is to show that the height of a composed coercion
is no greater than the height of the two coercions. Then, because coercions are trees with
limited branching, it follows that the overall size of the composed coercion is bounded
by roughly 2h where h is the height.

Here we obtain a tighter bound for the threesome calculus that takes into account
that when two casts are composed, there is often considerable overlap between the two
middle types, and therefore the resulting size of the new middle type is not much bigger.
Recall the reduction rule for composing casts:

F [〈T R⇐=S′〉〈S′ U⇐=S〉u] −→ F [〈T R&U⇐= S〉u]

A straw man for the bound is the size of the greatest lower bound of all the types that
occur in the program. The problem with this straw man is that the greatest lower bound
of two types can sometimes be smaller, thereby not providing an upper bound on size.
For example, Int&(Dyn → Dyn) = ⊥. Instead we need to take the maximum of the
structure of the two types. This can be accomplished by mapping types to their shadow,
written dT e, and then computing the greatest lower bound.

dBe = Dyn dS → T e = dSe → dT e dDyne = Dyn d⊥e = Dyn

10 Siek and Wadler

We then have the properties that 1) the size of the shadow is the same as the size
of the type, 2) a lower bound of the shadow of two types is also a lower bound of the
shadow of their greatest lower bound, and 3) the size of a shadow is bounded above by
any lower type with respect to naive subtyping.

Lemma 6.

1. size(T) = size(dT e).
2. If R <:n dSe and R <:n dT e then R <:n dS&T e.
3. If R <:n dSe and ⊥ /∈ R then size(dSe) ≤ size(R).

Lemma 7 (Preservation of lower bounds). If T is a lower bound (with respect to
naive subtyping) of the shadows of every type that occurs in s, and s −→ s′, then T is
also a lower bound of the shadows of every type that occurs in s′.

Theorem 3. The size of any type that appears in the reduction sequence of a program
is bounded by the size of the greatest lower bound of the shadows of all the types in the
program.

We conjecture that the size of the greatest lower bound of the shadows of all the
types in the program is typically much less than 2h, where h is the maximum height of
any type in the program.

5 Threesomes with blame

We add blame tracking to the threesome cast calculus by augmenting the middle type P

in 〈T P⇐=S〉s with blame labels. Fig. 5 shows the syntax of the threesome cast calculus,
and most importantly, the syntax of labeled types. The erasure of a labeled type P to an
unlabeled type is written |P |. Fig. 5 also shows the compilation of the blame calculus
to the threesome calculus.

With the addition of blame labels, we must replace the use of greatest lower bound
in the semantics with a composition operator that takes into account the blame labels.
Also, with the addition of blame labels, the order of cast failure becomes observable
so composition is no longer symmetric. Before giving the definition of the composition
operator, we establish some auxiliary notation.

gnd(Bp) = Bp gnd(P →p Q) = (Dyn→ Dyn)p PGp

iff gnd(P) = Gp

We give the definitions for the composition of labeled types and the dynamic semantics
of the threesome cast calculus in Fig. 6.

Our treatment of the labeled bottom type ⊥lGp

deserves some explanation. We ini-
tially tried to label bottom types with a single label, as in ⊥l. However, that approach
fails to capture the correct blame tracking behavior. Consider the following examples.

〈Int l⇐Dyn〉〈Dyn m⇐Bool〉〈Bool n⇐Dyn〉〈Dyn o⇐Int〉1 −→ blame n

〈Int l⇐Dyn〉〈Dyn m⇐Bool〉〈Bool n⇐Dyn〉〈Dyn o⇐Bool〉true −→ blame l

Threesomes, With and Without Blame 11

New Syntax
optional label p, q ::= l | ε

labeled types P, Q ::= Bp | P →p Q | Dyn | ⊥lGp

terms s, t ::= k | x | λx.t | s t | 〈T P⇐=S〉s

New typing rules Γ ` t : T
Γ ` s : S T <:n |P | S <:n |P |

Γ ` 〈T P⇐=S〉s : T

Compile casts to labeled types {{T l⇐ S}} = P

{{B l⇐ B}} = B
ε {{S′ → T

′ l⇐ S → T}} = {{S l⇐ S
′}} →ε {{T ′ l⇐ T}}

{{Dyn l⇐ Dyn}} = Dyn {{B l⇐ Dyn}} = B
l {{Dyn l⇐ B}} = B

ε

{{S → T
l⇐ Dyn}} = {{Dyn l⇐ S}} →l {{T l⇐ Dyn}}

{{Dyn l⇐ S → T}} = {{S l⇐ Dyn}} →l {{Dyn l⇐ T}}

Compile blame terms to threesome terms 〈〈t〉〉3 = t

〈〈x〉〉3 = x 〈〈k〉〉3 = k 〈〈λx : S. t〉〉3 = λx : S. 〈〈t〉〉3

〈〈t s〉〉3 = 〈〈t〉〉3 〈〈s〉〉3 〈〈〈T l⇐S〉s〉〉3 = 〈T {{T
l⇐S}}⇐= S〉〈〈s〉〉3

Fig. 5. Static semantics of the threesome calculus and compilation from blame calculus.

Syntax values v, w ::= u | 〈Dyn P⇐=S〉u | 〈S′ → T ′
P→pQ⇐= S → T 〉u

cast-free context F ::= � | E[� t] | E[v �]

evaluation contexts E ::= F | F [〈T P⇐=S〉�]

Composition Q ◦ P

Bq ◦Bp = Bp

P ◦ Dyn = P
Dyn ◦ P = P

QHm

◦ P Gp

= ⊥mGp

if G 6= H

Q ◦ ⊥mGp

= ⊥mGp

⊥mGq

◦ P Gp

= ⊥mGp

⊥mHl

◦ P Gp

= ⊥lGp

(P ′ →q Q′) ◦ (P →p Q) = (P ◦ P ′) →p (Q′ ◦Q)

New Reductions s −→ r
E[〈B Bε

⇐=B〉u] −→ E[u]

E[〈Dyn Dyn⇐=Dyn〉u] −→ E[u]

F [〈U Q⇐=T 〉〈T P⇐=S〉s] −→ F [〈U Q◦P⇐=S〉s]

F [〈T ⊥lGε

⇐= S〉u] −→ blame l

E[(〈S′ → T ′
P→pQ⇐= S → T 〉u) w] −→ E[〈T ′ Q⇐=T 〉 u(〈S P⇐=S′〉w)]

Fig. 6. Dynamic semantics of the threesome cast calculus.

12 Siek and Wadler

In the threesome calculus the casts are merged outside-in. The two outermost casts
would be merged into cast with middle type ⊥l. For the next merge, we could have the
calculus produce either ⊥l or ⊥n. However, either choice would be wrong for one of
the above examples. Our solution is to label bottom types with not only a label, but also
with a labeled ground type. So in this case, the second merge results in ⊥lBooln

.

Equivalence to the (twosome) blame calculus The bisimulation relation is similar to
the one for the threesome calculus without blame. The main difference is that uses of
the greatest lower bound are replaced with the compilation and composition functions.

x ≈ x
s2 ≈ s3 t2 ≈ t3

s2 t2 ≈ s3 t3

s2 ≈ s3

λx : S. s2 ≈ λx : S. s3

s2 ≈ s3
s2 ≈ s3

s2 ≈ s3 P = {{T l⇐ S}}

〈T l⇐S〉s2 ≈ 〈T P⇐=S〉s3

s2 ≈ 〈T P⇐=S〉s3 Q = {{U l⇐ T}}

〈U l⇐T 〉s2 ≈ 〈U Q◦P⇐= S〉s3

blame l ≈ blame l

t2 ≈ (JT1 → T2
P⇐=SKs3) (〈T1

{{T1
l⇐U1}}⇐= U1〉t3) Q = {{U1 → U2

l⇐ T1 → T2}}

〈U2
l⇐T2〉t2 ≈ (〈U Q◦P⇐= S〉s3) t3

where JT P⇐=SKs =

(
s if S = |P | = T

〈T P⇐=S〉s otherwise

Lemma 8 (Bisimulation between the blame calculus and the threesome calculus).
If t2 ≈ t3 and both t2 and t3 are well typed, then

1. if t2 −→ r2, then t3 −→∗
3 r3 and r2 ≈ r3 for some r3.

2. if t3 −→ r3, then t2 −→∗ r2 and r2 ≈ r3 for some r2.

Theorem 4 (Equivalence of blame calculus and the threesome calculus).

1. t2 −→∗ v2 implies 〈〈t2〉〉3 −→∗
3 v3 and v2 ≈ v3 for some v3.

2. 〈〈t2〉〉3 −→∗
3 v3 implies t2 −→∗ v2 and v2 ≈ v3 for some v2.

3. t2 −→∗ blame l iff 〈〈t2〉〉3 −→∗
3 blame l.

Equivalence to the coercion calculus The bisimulation between the coercion calculus
and the threesome calculus is similar to the bisimulation without blame, just the mid
function must be updated to account for blame labels. The bisimulation leads to the
equivalence of the threesome calculus and the coercion-based calculus.

Theorem 5 (Equivalence of the coercion calculus and threesome calculus).

1. 〈〈t2〉〉c −→∗
c vc implies 〈〈t2〉〉3 −→∗

3 v3 and vc ≈ v3 for some v3.
2. 〈〈t2〉〉3 −→∗

3 v3 implies 〈〈t2〉〉c −→∗
c vc and vc ≈ v3 for some vc.

3. 〈〈t2〉〉c −→∗
c blame l iff 〈〈t2〉〉3 −→∗

3 blame l.

Using the transitivity of bisimulation, it is then straightforward to connect, via the
threesome calculus, the blame calculus with the coercion-based calculus .

Corollary 1 (Equivalence of the blame and coercion calculus).

1. t2 −→∗ v2 implies 〈〈t2〉〉c −→∗
c vc and v2 ≈ vc for some vc.

2. 〈〈t2〉〉c −→∗
c vc implies t2 −→∗ v2 and v2 ≈ vc for some v.

3. t2 −→∗ blame l iff 〈〈t2〉〉c −→∗
c blame l.

Threesomes, With and Without Blame 13

6 Conclusion

In this paper we presented the first space-efficient, high-level semantics for casts: the
threesome cast calculus. We show that the threesome cast calculus is equivalent to the
blame calculus and the L ∪ UD coercion-based calculus, thereby providing a concrete
connection between prior high-level and low-level semantics for casts.

Bibliography

R. B. Findler and M. Felleisen. Contracts for higher-order functions. In ACM International
Conference on Functional Programming, October 2002.

Jessica Gronski and Cormac Flanagan. Unifying hybrid types and contracts. In Trends in Func-
tional Prog. (TFP), 2007.

Jessica Gronski, Kenneth Knowles, Aaron Tomb, Stephen N. Freund, and Cormac Flanagan.
Sage: Hybrid checking for flexible specifications. In Scheme and Functional Programming
Workshop, pages 93–104, 2006.

Fritz Henglein. Dynamic typing: syntax and proof theory. Science of Computer Programming,
22(3):197–230, June 1994.

David Herman, Aaron Tomb, and Cormac Flanagan. Space-efficient gradual typing. In Trends in
Functional Prog. (TFP), page XXVIII, April 2007.

Jeremy G. Siek and Walid Taha. Gradual typing for functional languages. In Scheme and Func-
tional Programming Workshop, pages 81–92, September 2006.

Jeremy G. Siek, Ronald Garcia, and Walid Taha. Exploring the design space of higher-order
casts. In European Symposium on Programming, March 2009.

Philip Wadler and Robert Bruce Findler. Well-typed programs can’t be blamed. In European
Symposium on Programming, 2009.

	Threesomes, With and Without Blame
	Jeremy G. Siek and Philip Wadler

