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Abstract XML Document

We present a novel streaming algorithm for evaluating
XPath expressions that use backward ayssdnt and

ancestoy and forward axes in a single document-order,__
traversal of an XML document. Other streaming XPath®*"

processors, such as YFilter, XTrie, and TurboXPath han g . aizeq xpan
dle only forward axes. We show through experiments tha Processor XPath Specific |
Results

our algorithm significantly outperforms (by more than a
factor of two) a traditional non-streaming XPath engine.
Furthermore, since our algorithm only retains relevant
portions of the input document in memory, it scales bet-
ter than traditional XPath engines. It can process large

documents; we have successfully tested documents qyed represented as an automaton. The XPath engine con-
1GB in size. On the other hand, the traditional XPath €8uomes events (for examp|e, SAX e\/ents) produced by a
gine degrades considerably in performance for documepigser, and for each event, the automaton may make state
over 100 MB in size and fails to complete for documenigansitions, and if necessary, store the element. At the end
of size over 200 MB. of processing the document, the XPath engine returns the
list of elements that are the result of the evaluation of the
. XPath expression.
1 Introduction Most current XPath engines, for example, the one pro-
vided with Xalan [2], require that the entire document be
XPath 1.0 [8], a language for addressing parts of XML [4h memory before evaluating an XPath expression. For
documents, is an integral component of languages farge documents, this approach may result in unaccept-
XML processing such as XSLT [7] and XQuery [10]able overhead. Furthermore, the XPath engine in Xalan
The performance of implementations of these languaga@luates XPath expressions in a naive manner, and may
depends on the efficiency of the underlying XPath eperform unnecessary traversals of the input document.
gine. XPath expressions have also been used as a genetal-example, consider an expression suchdascen-
purpose mechanism for accessing portions from XMlant::x/ancestor::y, which selects ali ancestors ok el-
documents, for example, an XPath-based API is provideghents in the document. The Xalan XPath engine evalu-
in DOM 3 [15] for traversing DOM [11] trees. XPathates this expression by using one traversal over the entire
expressions have found use in publish-subscribe systatosument to find all the elements, and for eachele-
as a mechanism for specifying content-based subscrient, a visit to each of its ancestors to find approprjate
tions [5]. Given the central role that XPath plays in thelements. As a result, some elements in the document are
XML stack, algorithms for improving the performance ofisited more than once.
evaluating common XPath expressions are essential. ~ The premise of streaming XPath is that, in many in-
In many environments, a natural way of processirsances, XPath expressions can be evaluated in one depth-
documents is tostream over them,i.e, evaluate the first, document-order traversal of an XML document. The
guery on the input document as it is parsed, storing ordgnefits of streaming XPath are twofold. First, rather than
portions of the document relevant to the result of tistoring the entire document in memory, only the portion
query [1, 9, 12]. A streaming XPath engine is structured the document relevant to the evaluation of the XPath
as shown in Figure 1. An XPath expression is analyzedstored. Second, the algorithm visits each node in the
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Figure 1: Structure of a streaming XPath processor.



document exactly once, avoiding unnecessary traversals.Tozawa and Murata [14] describe a method for convert-
In this paper, we present thexos! algorithm, which ing an XPath expression into modal logic formulas with
can evaluate XPath expressions containing both bapkst modalities. They present an algorithm for converting
ward (such aparent andancestor) and forward axes in such formulas into tree automata, which can be used to
a streaming fashion. Other streaming XPath process@ggluate XPath expressions on an input document. Their
such as YFilter [9], XTrie [5], and TurboXPath [12] hanpaper describes a theoretical approach that can handle all
dle only forward axes. This paper makes the followingPath axes. The current status of the implementation of
contributions: their algorithm is unclear. It would be interesting to com-
pare the performance of their implementation with that of
1. Anovel streaming algorithm for handling both backyaos.
ward and forward axes. The NiagaraCQ[6] system is a continuous query sys-
) i _tem that supports querying of distributed XML datasets
2. A concise represgntatlon of an XPath eXPressiQRying an XML query language. Continuous queries al-
called X-dag (Section 3.2), where all backward cofy;y ysers to receive new results as they become available.
stram.ts are (_:onverted |rjto forward constral_nts,.a k§¥%e focus of the NiagaraCQ project is on exploiting simi-
step in making streaming XPath processing in thgities in structure of queries to share computation across
presence of backward axes possible. groups of queries, and use of incremental group optimiza-
ion and incremental evaluation techniques. However, the
leries that they focus on involve simple structural pat-
rn matching rather than XPath/XQuery-based queries
at we deal with in this paper.

. t

3. A data structure called the matching structure (Se
tion 3.4) that represents compactly all matchinq
(Section 3.3) of an XPath expression in a documeqh

1.1 Related Work
2 Background

Our work is most closely related to thé&ilter [1], YFil-
ter [9], XTrie [5], and TurboXPath[12] systems, all of

o . .We describe the tree model of XML documents that is
which |nvoI_ve evaluation of XPath/XQgery—basgd querlgﬁe basis of the definition of XPath. We then describe the
on streaming XML documents. XFilter, YFilter, an '

XTrie are XML filtering systems where documents areevent stream that drives thexos algorithm. F|r.1aIIy,. we
routed and filtered based on subscriptions that are g)r((_esent the subset of XPath that we focus on in this paper.
pressed as queries. The TurboXPath system has been used

for XML-enabled data integration where user queries €31 Tree Model for XML Documents
operate over a mixture of locally stored data in a rela-

tional database and data streamed from external sour@ggsxML document can be represented as a tree, whose
The XFilter system handles simple XPath location pagiydes represent the structural components of the docu-
expressions (straight-line path expressions without amént — elements, text, attributes, comments, and pro-
branching and predicates) by transforming them intoc@ssing instructions. Parent-child edges in the tree rep-
Deterministic Finite Automaton. The YFilter system is appsent the inclusion of the child component in its parent
extension of XFilter in which a group of simple XPath loglement, where the scope of an element is bounded by its
cation path expressions are combined into a single Nondgyrt and end tags. The tree corresponding to an XML
terministic Finite Automaton (NFA), which correspondgocument is rooted at a virtual elemeRbot, which con-

to the union of these path expressions. Both XTrie agins the document element. We will, henceforth, discuss
TurboXPath can handle tree-shaped path expressionsdfi. documents in terms of their tree representatioh;
volving predicates (which are internally represented gspresents an XML document, aig and Ep denote its

trees called the XTrie and ParseTree respectively). In ades and edges respectively. Figure 2 illustrates the tree

However, all of these systems are limited to handling loca-, simplicity of exposition, we focus on elements in

tion path expressions that only contain forward axes (s paper, and ignore attributes, text nodes, etc. The tree,
child, descendant, forward-sibling). The yaos system im- yherefore, consists of the virtual root and the elements of
proves upon these systems by adding the ability to hangig jocument. To avoid confusion between the XML doc-
both backward (e.garent, ancestor) and forward axes in yment tree and the tree representation of the XPath (de-
the context of streaming XML. scribed later), we uselementso refer to the nodes of the

Lyaos (Xaos, pronounced Chaos) is an acronym for XML AnaWSggM‘L tree. We assume that the following functions are
Optimization, and Stuff defined on the elements of an XML document:




e id : Vp — Integer: Returns a unique identifier for

each element in a document. Table 1: XPath subset addressed in paper.

) o AbsLocPath := '/ RelLocPath
. t(lzg : V1t> — String: Returns the tag name of the RelLocPath = Step’/' RelLocPath | Step
element. Step = Auwzis:: NodeTest |
. ; Step'[' PredEzpr']
level : Vp — Integer: Returns the distance of the p P
¢ teve D — integer PredExpr := RelLocPath and PredExpr |

element from the root, wheievel(Root) = 0. AbsLocPath and PredEzpr |

We usex;; to denote an element withig = x,id = RelLocPath | AbsLocPath

i,level = 1. For example, the elemebtin Figure 2(b) %% = ancestor | parent | child |
is denoted b descendant
Ws.s- NodeT est = String

2.2 Event-Based Parsing

An event-based parser, for example, a SAX parser, scaasdle all thirteen axis specifiers in XPath 1.0, we focus
an XML document, producing events as it recognizes @r four: child, descendant, parent, and ancestor.

ement tags and other components of the document. Wé&teps may contain predicates, which restrict the
register functions that are invoked by the parser on staet of elements selected. For exampldescen-
and end element events. Each event conveys the natae::chapter[ancestor::book and child::table] selects all
and level of the corresponding element. The productiohapter descendants of the context node that haveck

of events is equivalent to that of a depth-first, pre-ordelement as an ancestor angdisle element as a child. Note
traversal of the document tree, where for each elementhat eaclthapter elementis used as a context node in eval-
start element event is generated, then its subtree is prating the subexpressioracestor::book andchild::table.
cessed in depth-first order, and finally, an end element

event is generated.

3 X-tree, X-dag, Matchings, and
2.3 XPath Matching Structures

The XPath language defines expressions for addressiijg\ ¢ algorithm operates on two representations of an
parts of an XML document. We focus dacation path ypaih expression called X-tree and X-dag. The x-dag is
expressions which evaluate to a set of elements in the dQqzey construct in our algorithm since it converts back-
ument. A location path is a structural pattern composggg constraints, such aarent, into forward constraints,

of sub-expressions callestep joined by the '/’ charac- s making streaming processing possible. We use an
ter. Each step consists of aris specifieranodetestand  5jiernate semantics of XPath expressions defined on x-
zero or more predicates. Location paths absoluteif - yrees hased on the notion wfatchings It can be shown
they begin with a '/'; otherwise they arelative. Table 1 hat our semantics is equivalent to the semantics provided
provides the BNF for the XPath subset that we shall Usfihe xpath 1.0 specification. The construction of the
in this paper (we refer to expressions satisfying this grafiching-structurea compact representation of match-

i 2 . ) . i .
mar as Restricted XPathsRxp). _ ings, is the main goal of the algorithm. We describe these
XPath expressions are evaluated relative to a contgy cepts in this section.

node in the document tree. The context node for an abso-
lute location path is always the root element. To evaluate
a relative location pathStep / RelLocPathwith respect 3-1  X-tree

to a context nodes, one first computeSteprelative t0c, - \ye represent axp expression as a rooted tree, called
yielding a set of elementdy”. The meaning oStep / Rel- X-tree, with labeled vertices and edgds,= (Vr, E1),

LocPathis the union of the sets of elements obtained Qi ore the root is labeleRoot. We use the term x-node

evaluatingRelLocPathin contextd, whered ranges oVer ;, raofer to the vertices of an x-tree. For easbde-
N. . . Testin the expression, there is an x-node in the x-tree
The set of elements searched in the evaluationSie® |5peled with the nodetest. Each x-node (excRpbt)

ata context node;, depends on its axis specifier. FOr €X55 4 ynique incoming edge, which is labeled with the
ample, the result of evaluatinggscendant:section is the = 5o specified before thélodeTest One of the x-nodes

subset of the proper descendants of the context node pé’atiesignated to be the output x-node. There are func-
matchsection. While thexaoc algorithm is extensible t0 s 1abel Ve — String, and azis : Ep —

2We will not use abbreviated XPath expressions in this paper.  {ancestor, parent, child, descendant} that return the




<X>

<Y>
<Z>
<V/>
<V/>
<W>
<W/>
</W>
</Z>
<U/>
</Y>
<Y> ¢ \ ¢
<Z>
s v | (ve | [ we | [way |
</Z>
</Y>
<IX> W(7)
(a) (b)

Figure 2: (a) An XML Document (b) Tree representation of the same document. The number in parentheses next to
the tag of each element is thé of the element.

labels associated with the x-nodes and edges respectivedyan ancestor af; in D. A matching,m : V7 — Vp,
Rules for building an x-tree from aRxp are provided in is a partial mapping from x-nodes of x-tr&éto elements
Appendix A for the interested reader. Figure 3a provide$ documentD such that the following conditions hold.

an example of an x-tree.
1. For all x-nodesv € domain(m), label(v) =

tag(m(v)), i.e. all mapped vertices satisfy the node-

We also use a directed, acyclic graph representation of a9 For all x-nodes;, andv, connected by an edge
Rxp called an X-dag. The x-dag is obtained from the x-  gych that, v € domain(m), (vi,m(v1)) is con-
tree by reformulating the ancestor and parent constraints  sjstent with(vy, m(vs)).
in the tree as descendant and child constraints. More pre-
cisely, it is a directed, labeled graph,= (g, Eg), with A matching isat an x-nodev if and only if its domain
the same set of vertices &5 and edges defined as folis contained in the sub-tree rootedvathA matching ab is
lows: total if its domain contains all the vertices of the subtree
rooted atv. It is easy to show that a document element
1. Edges inT labeledchild or descendant are also j, js in the result of arRxp r, if and only if, there exists
edges ofj. a total matching aRoot for the x-tree7 of r, where the
output x-node of/ is mapped ta:. xaos computes the

2. .F(_)r.each edge it Iabeledparer_lt, thgre 'S an edger sult defined by afRxp precisely in this manner. It finds
joining the same nodes but with direction reversed” . chinas fromVr to V. and emits the document
and label changed thild. Similarly, ancestor edges 9 z D

are reversed and relabeleddescendant edges. elements that correspond to the output x-node.

3. For any non-root x-node € G having no incoming 3.4 Matching-Structure

edges, alescendant edge is added frorRoot to v. )
The algorithm constructs a data structure called a

Figure 3b gives the x-dag corresponding to the x-treermatching-structuravhich is a compact representation of

Figure 3a. all total matchings aRoot of the Rxp relative to the
input document. A matching-structuré/,, ., is asso-
3.3 Matchings ciated with x-nodev, and represents a set of matchings

at v in which v is mapped to the document element
Letv; andv, be two x-nodes in an x-treé€ connected by The matching-structur#/,, . additionally contains a sub-
an edgee, and letd; andd, be two elements in a docu-matching for every child of in the x-tree. A submatch-
mentD. We say that the paifv;, d,) is consistenwith ing at childw of v is a (possibly empty) set of matching-
(ve,d2) (relative to x-tree7” and documenD) if d; and structures atv. For any matching-structucét,, .- in the
dy satisfy the relatiomxis(e). For example, if; andve,  submatching of\,, . atw, we require thatv, e) be con-
are connected by an edge labetedestor, thend, must sistent with(w, ¢’). A matching-structure\,, . is said to



Figure 3: (a) X-tree representation /descendant::y[child::ul/descendant::w[ancestor::z/child::v] (b) X-dag represen-
tation of the same XPath expression. The circle correspondingtias a thick edge to represent the fact that it is the
output node.

be aparent-matchingf a matching-structuré1,, .- if v that were earlier deemed relevant may no longer be rele-
is a parent ofw in x-tree7 and (v, e) is consistent with vant. The x-dag representation of tRep is used to de-
(w,e). If M, . is a parent-matching o#,, .-, then we termine if an element is relevant.
say also thaiM,, .- is achild-matchingof M, . An element that does not match any x-node is not rele-
Figure 4 shows the matching structure at the end of pr@nt since it cannot participate in any matching. apén
cessing the XPath of Figure 3 on the document in Figlements be those elements for which we have seen a start
ure 2, and the four total matchingsRwbot. The result is element event, but not an end element event. By virtue of
obtained by taking thev projection, thati{Ws 4, W7 5}. the depth-first manner in which events are generated, at
a start element event for elementhat matches a x-node
v, the open elements are ancestorg @f the document.
4 The QoS A|g0rithm If for some parent o’ of v in x-dag, there is no open,
relevant element’, such thatv, e) and(v’, ¢’) are con-
QoS processes events as they are generated by an ev%;ﬁfent, there cannot be relevant. There is no sequence of
based parser by operating over both the x-dag and x-tRY&Nts that a parser can generate for which that constraint
views of the inputRxp. At the end of processing thewill become true, and therefore, cannot contribute to
document, the result of thRxp expression is encoded in@ny matching. For the x-dag in Figure 3b, no element that
Moot root- FOT efficiency,yaos filters out events that do matchesw will be relevant unless there are open relevant
not contribute to any matchings. Relevant events are pRements that match andz.
cessed to build matching-structures. Finalylgoorroor Al EVETY step, we maintain laoking-for set, £, which
is used to emit the appropriate output. We shall descrigows us to evaluate whether the element associated with
these three stages in this section. A walk through of tHe next start element event is relevant. The members of
execution of the algorithm on tH@xp of Figure 3 and the £ are (v € Vp,level) pairs, where level may be an in-
document of Figure 2 is provided in Table 2. teger orx. The element associated with a start element
event is relevant if and only if there exists, level) €
L, label(v) = tag(e), and (level = level(e) or level =
4.1 Filtering Events *). Integer levels are used to enforce the constraint that if

) ) ) (v,e) and(v’, ¢’) are consistent and éfxis(v, v') = child,
At any point during executiony«os has processed a prethenlevel(v’) =1+ level(v)

fix of the input document. An infinite number of XML

documents share the same prefix, gnéds cannot predict

the future sequence of events that will be generated by 1®  Building Matching Structures

parser. An elemeng, is relevantif there exists some doc-

ument completion where participates in a matching. All We assume from now on that all events corresponding to
relevant elements must be processed. As events are ptements that are not relevant have been discarded. When
cessed, new relevant elements may be seen, or elemgnis processes a start element event for an element



Table 2: Walk through of evaluation of XPath of Figure 3 on document of Figugtart (End): A, , denotes the
start (end) element event for an eleme#t,,,. The Looking-for set column shows at the end of processing the

event.
Step Event Matches Comments Looking-for Set
1 Start: Rootp,y  (Root,0) Add (Y, %) and(Z, %) to L, sinceRoot is an open, relevant {(Y,x*), (Z,*)}
element matching their ancestors in the x-dag.
2 Start: Xi,1 Discarded. {(Y,%),(Z,%)}
3 Start: Y2 (Y, %) Start looking forU at level 3 sinceJ is connected t&Y by a  {(Y, %), (Z, %), (U, 3)}
child edge in the x-dag, and is matched at level 2. Do not
addW to £ because there is no open element that matches its
Z parent in the x-dag. Continue looking @Y, ) because
any element with tagy in the subtree of this element will
also be a candidate for matchig
4 Start: Z3 3 (Z, %) Start looking for(V, 4) since we have open relevant element§ (Y, *), (Z, %), (W, %), (V,4)}
matchingZ andRoot in the x-dag. We look for it at level 4
because théZ, V) edge is labeledhild.
5 Start: Va4 (V,4) We stop looking for(V, 4) because until we see the end of{ (Y, ), (Z, %), (W, %) }.
this elementievel > 4.
6 End: V44 (V,4) There is a total matching at, represented adtv,4. This {(Y,x*),(Z,x), (W, %), (V,4)}.
matching-structure is propagated to the appropriate sub-
matching ofM 7 3, the only parent-matching o1y 4.
7 Start: Vs 4 (v, 4) {(Y, %), (Z, %), (W, *)}
8 End: Vs 4 (V,4) As before My 5 is added to the appropriate submatching of (Y, ), (Z, *), (W, %), (V,4)}
Mzs.
9 Start: We 4 (W, %) {(Y, %), (Z, %), (W, *)}
10 Start: Wr 5 (W, %) {(Y,%),(Z, %), (W, %)}
11 End: W7 5 (W, %) W in the x-dag has an outgoirancestor edge. All child- {(Y, %), (Z, *), (W, *)}
matchings ofMy,7, in this case M z 3, are propagated into
the appropriate submatching 8l 7. All submatchings of
Myw,7 are now non-emptyMy,7 is propagated td 1y o
12 End: We 4 (W, %) As above My ¢ is propagated toVy 2. {(Y, %), (Z, %), (W, *)(V,4)}
13 End: Z3 3 (Z,%) Z has an incoming edge labeladcestor. SinceMzsis {(Y,*),(Z,*)(U,3)}
satisfied, no clean up is necessary.
14 Start: Us 3 (U,3) {(Y,%),(Z,%)}
15 End: Us 3 (U, 3) The total matching dt), My s is propagated to\1y». {(Y,%),(Z,%),(U,3)}
16 End: Y20 (Y, %) My, is satisfied since both submatchings, corresponding {¢Y, ), (Z, *)}
U andW are non-empty. We propagatety,», and we have
a total matching aRoot.
17 Start: Yo,2 (Z, %) {(Y,%),(Z,%),(U,3)}
18 Start: Zi0,3 (Z, %) {(Y, %), (Z,%),(V,4), (W, *)}
19 Start: Wii4 (W, %) {(Y,%),(Z, %), (W, )}
20 End: W11 4 (W, %) Again, sinceW has an outgoing edge labeladcestor, we  {(Y, %), (Z, *), (W, *), (V,4)}
add.M z 1o optimistically to the appropriate submatching of
Muw,11. Since this matching is now satisifed, it is propa-
gated toMy,g.
21 End: Zi0,3 (Z, %) Mz 10 is not satisfied — the submatching faris empty. {(Y, %), (Z, %), (U,3)}
We undo the propagation oMz 10 to Mw,11. Since
Muw,11 how is no longer satisfied, we undo the propagation
from My,11 to My g.
22 End: Yoo (Y, %) My g is not satisfied. Nothing is propagated. {(Y, %), (Z,%)}
23 End: Xi,1 Discarded. {(Y,%),(Z,%)}
24 End: Rootp,y  (Root,0) There is one entry in the submatching correspondiny,to {(Root, 0)

My 2. MRgoot,o IS satisfied.




Total Matchings at Root

[Root— 0,Z — 3,Y — 2,U +— 8,V i—» 4, W — 6]
[Root — 0,Z— 3, Y — 2, U~ 8V —4,W—T|
[Root— 0,Z — 3,Y — 2,U +— 8,V = 5, W — 6]
[Root— 0,Z — 3,Y — 2,U +— 8,V =5 W — 7]

va ) [vs ] Solution: {We.4, Wr.s }

Figure 4: Matching Structure at the end of processing the XPath of Figure 3. The boxes represent matching-structures.
For a matching-structureM,, ., the top half of the box show&,id(e)). Each slot in the bottom half of the box
corresponds to a submatching, which is represented as a list of pointers to the child matchings.

that matches a x-node, it creates a matching-structure,  Otherwise, no total matching exists. If we had found
M., to represent the match. Note thatmay match appropriate total matchings for each of the children
more than one x-node in the x-tree; a matching-structure of v in the x-tree, they would have been propagated
is created for each such match. The submatchings for to M, . by the time the end element event fer
these matching-structures are initially empty. RAsoc is processed. As above, i¥1, . represents a total
processes events, it stitches together these matching- matching, we propagate it to all appropriate parent-
structures, so that when the end of the document is seen, matchings.

MRoot,Root €NCOdes all total matchingsRoot in the doc-
ument.

The key step in this processpsopagation At an end
element event for an elementhat matches x-node, we
attempt to determine iM,, . represents a total matchin
atv. If there is a total matching, we inseMt, . into
the appropriate submatching of its parent-matchings. T

o}

propagation may be optimistic in that one may have ists, for aM, . by the end of element For example, in
undo the propagation as more events are processed. I_iet ’

us first, however, consider the simpler situation where w}gure 3a, one might not find a total matching for the sub-

L ree rooted ak, until after one sees the end of an element
cleanup of propagation is necessary, when the x-tree do€

not contain any edges labeledcestor or parent. This maIthhmgW. The propagation process remains the same,

, . except for a x-node that has an incoming or an outgoing
gg;:e;xiosnds t&Rxps that use only thehild anddescen edge labeledncestor or parent. For aM, ., the modified

When the x-tree contains onkhild and descendant steps are as follows:
constraints, any total matching at v, wherem(v) = e e If there is an outgoing edgéy, v’) labeledances-
maps all x-nodes in the subtree wto elements that lie tor or parent, and the submatching far is empty,
in the document subtree ef Since the total matching is we cannot assert that there exists no total match-

If at the end of processing the document (when we re-
ceive the end element event feoot), xaos finds that all

the submatchings oM Root root @re non-empty, we have

a total matching alRoot.

g The presence ofincestor and parent edges in the x-

E‘r.ee complicates this process because one may not be able

0> determine conclusively whether a total matching ex-

contained within the subtree ef by the time the end ele- ing atv. We, optimistically, propagate each child-
ment event foe is seen, we can determine conclusively if  matching, M, ., into the appropriate submatching
M, . represents a total matchingiatThis leads naturally of M, .. We then proceed as before. If all submatch-
to an inductive approach to building matchings. For an ings are satisfiedM,, . is propagated to its parent-
end element evert whereM,, . is a matching-structure: matchings.

1. If v is a leaf in the x-treeM,, . represents a total ® If there is an incoming edg@’, v) labeled ances-
matching at by definition ¢ has no subtrees). We  tor or parent, thenM, . may have been propagated
propagate\/lv7‘3 to the appropriate parent-matchings. optimistically to its parent-matchings. If we can

determine conclusively tha#1, . cannot represent

2. If v is not a leaf M, . represents a total matching a total matching av, we undo the propagation of
atw, if and only if, all submatchings are non-empty. M, .. The removal ofM, . from a submatching
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of a parent-matchingV, .- may result in that sub-
matching becoming empty M, .- iS no longera =
total matching at’. We then recursively undo the
propagation ofM, .- from its parent-matchings.

1000
800

E
5

4.3 Emitting Output P

At the end of processing the document, if the submatch-
iNgs of MRgoot,Root @re all non-empty, we have at least = _—
one total matching aRoot. The output is emitted by N
traversing the matching structure, and emitting an element °= = = = = = w0 w0 e e
e when we visitM,, ., whereu is the output x-node of the e

Rxp. For example, in Figure 4, we outpUts 4, when we

first visit My ¢ and W7 5, when we first visitMyy 7. Figure 5: Time in seconds on XMark-generated docu-
ments: xaos versus Xalan. The XPath expression exe-

cuted is//listitem/ancestor::category//name

5 Experimental Results

The yxaos algorithm examines each element event eIélble 3: ’;I;J(T/Ibeli of elem;arétzdlscard?d)byoc n pro-
actly once and the processing of an event involves Oﬁ:@ssmg 0 ark-generated documents
constant-time operations. The execution time ofithes Scale Doc. Size Elements % Discarded
algorithm is, therefore, linear in terms of the input docu- 03125 3 4é VB 55069 99.8 %

ment size. Furthermorg,aos stores only those elements 625 6.88 MB 103999 99.8 %
relevant to the calculation of the final solution. We would, 125 13.86 MB 210538 99.8 %
therefore, expect theaog algorithm to show better mem- o5 27.87 MB 417160 99.8 %
ory utilization than Xalan [2], which stores the whole doc- 5 55.32 MB 832911 99.8 %
umentin memory. In this section, we provi_de exper.imen— 1 111.12 MB 166311 99.8 %
tal resul_ts that validate these claims. We, first, provide re- , 222 90 MB 3337649 99.8 %
sults using documents generated by XMark [13]. To gain 4 44671 MB 6688651 99.8 %

further insight into the relative performance fios and
Xalan, we also run experiments using a custom XPath and
XML document generator.

All experiments were run on a 550 MhZ, 256 MB, Peras not being relevant. As can be seen from the results,
tium 11l box, running Linux 2.4. yaos was written in a very small percentage of elements in a document (less
C++, and we use Xalan-C++ 1.3.1. Bothvos and Xalan than .2 %) is stored and processed, resulting in a signficant
were compiled using gcc -O (version 2.92). reduction in storage requirements.

5.1 Experiments using XMark 5.2 Custom XPath generator

Using XMark, we generated documents with scale fad/e use a custom XPath generator to generate a set of ran-
tors .03125, .0625, .125, .25, .5, 1, 2, and 4, respelwm XPath expressions (of size 6 — six node tests in the
tively. These correspond to documents ranging in siegpression), and for each XPath expression, we generate
from 3.5 MB to 446 MB. We then evaluate the XPath exa random XML document based on the XPath expression.
pression{/listitem/ancestor::category//name on these doc- The generated XML document has the characteristic that,
uments, using botlyaos and Xalan. Figure 5 reports thefor large document sizes, the XPath expression will have
results of these experiments. many matches (and near matches) in the document.

Note that Xalan fails to complete on the two largest We use two versions ofaog in our comparison. The
documents (approx. 222 MB and 446 MB), and furthefirst, yaos(SAX), uses the Xerces SAX parser [3], which
more, that there is a sharp spike in going from 55 MB also used by Xalan. To factor out the costs of pars-
to 111 MB. These effects can be attributed to the meimg and building a tree from the time to evaluate an ex-
ory requirements of Xalan (the spike is the region whepeession, we also implemented a versionyafos on top
Xalan exhibits thrashing behavior in memory). On thef Xalan. xaos(DOM) builds an internal version of the
other hand,xaos scales linearly, as is expected. Table iBput document in the same way that Xalan does. We
reports the number of elements discarded by the algorittimen traverse this tree in a depth-first fashion and gener-
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ate events that a SAX parser would. By subtracting thégure 7: Searching Time in secondszog versus Xalan
parsing and tree-building time from the overall time, we
gi;?gsifoc:rate measure of the time spentin evaluatmgé%gs not perform many unnecessary traversals, the per-

. formance of the Xalan XPath engine is similar to that of
We vary the XML document size from 20,000 elements .« 5 “had” XPath expressions, such as those involv-

to 640,000 elements (200K - 6.7 MB)',At .each documepty e use of the descendant axes, its performance can be
size, we execute 10 runs of the following: 1) generate r times worse. Our XPath engine’s performance, how-

XPath expression,_Z) generate an XML document froJé-R'/er, is linear in the size of the XML document and shows
the XPath expression, and 3) evaluate the XPath eXPT&da variance

sion usingyaos and Xalan. We report the average execu-
tion time and the standard deviation of the 10 runs at each

XML document size. 6 Summary

5.2.1 Overall Execution Time We have presented a novel algorithm for handling back-
ward and forward XPath axes in a streaming fashion. Our

We first compare the performance pfos to that of us- experiments reveal that significant performance benefits

ing the Xalan XPath engine (SimpleXPathAPI). Figure &n be obtained by using thevos algorithm for evaluat-

plots the average execution time (average over the 10 rimg XPath expressions on XML documents in a streaming

at each document size) versus document size (in numighion. We are working on extending theos engine

of elements). The error bars represent the standard dewiahandle more of XPath, building on the framework we

tion from the mean. All times include the cost of parsinghave described in this paper.

As can be seen from the grapiwos(SAX) is roughly

25% faster than the Xalan XPath engine. With documents

of size 640,000 elements (6.7 MB) the average times fReferences
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