
An Algorithm for Streaming XPath Processing with Forward and
Backward Axes

Charles Barton, Philippe Charles
Deepak Goyal, Mukund Raghavachari

IBM T.J. Watson Research Center

Marcus Fontoura, Vanja Josifovski
IBM Almaden Research Center

Abstract

We present a novel streaming algorithm for evaluating
XPath expressions that use backward axes (parent and
ancestor) and forward axes in a single document-order
traversal of an XML document. Other streaming XPath
processors, such as YFilter, XTrie, and TurboXPath han-
dle only forward axes. We show through experiments that
our algorithm significantly outperforms (by more than a
factor of two) a traditional non-streaming XPath engine.
Furthermore, since our algorithm only retains relevant
portions of the input document in memory, it scales bet-
ter than traditional XPath engines. It can process large
documents; we have successfully tested documents over
1GB in size. On the other hand, the traditional XPath en-
gine degrades considerably in performance for documents
over 100 MB in size and fails to complete for documents
of size over 200 MB.

1 Introduction

XPath 1.0 [8], a language for addressing parts of XML [4]
documents, is an integral component of languages for
XML processing such as XSLT [7] and XQuery [10].
The performance of implementations of these languages
depends on the efficiency of the underlying XPath en-
gine. XPath expressions have also been used as a general-
purpose mechanism for accessing portions from XML
documents, for example, an XPath-based API is provided
in DOM 3 [15] for traversing DOM [11] trees. XPath
expressions have found use in publish-subscribe systems
as a mechanism for specifying content-based subscrip-
tions [5]. Given the central role that XPath plays in the
XML stack, algorithms for improving the performance of
evaluating common XPath expressions are essential.

In many environments, a natural way of processing
documents is tostream over them, i.e., evaluate the
query on the input document as it is parsed, storing only
portions of the document relevant to the result of the
query [1, 9, 12]. A streaming XPath engine is structured
as shown in Figure 1. An XPath expression is analyzed

XPath Expression
XML ParserXML Parser

XML Document

XPath Specific
Automaton

Specialized XPath
Processor

Parsing
Events

DOM, SAX, Custom

Results

Figure 1: Structure of a streaming XPath processor.

and represented as an automaton. The XPath engine con-
sumes events (for example, SAX events) produced by a
parser, and for each event, the automaton may make state
transitions, and if necessary, store the element. At the end
of processing the document, the XPath engine returns the
list of elements that are the result of the evaluation of the
XPath expression.

Most current XPath engines, for example, the one pro-
vided with Xalan [2], require that the entire document be
in memory before evaluating an XPath expression. For
large documents, this approach may result in unaccept-
able overhead. Furthermore, the XPath engine in Xalan
evaluates XPath expressions in a naive manner, and may
perform unnecessary traversals of the input document.
For example, consider an expression such as/descen-
dant::x/ancestor::y, which selects ally ancestors ofx el-
ements in the document. The Xalan XPath engine evalu-
ates this expression by using one traversal over the entire
document to find all thex elements, and for eachx ele-
ment, a visit to each of its ancestors to find appropriatey
elements. As a result, some elements in the document are
visited more than once.

The premise of streaming XPath is that, in many in-
stances, XPath expressions can be evaluated in one depth-
first, document-order traversal of an XML document. The
benefits of streaming XPath are twofold. First, rather than
storing the entire document in memory, only the portion
of the document relevant to the evaluation of the XPath
is stored. Second, the algorithm visits each node in the

1

document exactly once, avoiding unnecessary traversals.
In this paper, we present theχαoς1 algorithm, which

can evaluate XPath expressions containing both back-
ward (such asparent andancestor) and forward axes in
a streaming fashion. Other streaming XPath processors,
such as YFilter [9], XTrie [5], and TurboXPath [12] han-
dle only forward axes. This paper makes the following
contributions:

1. A novel streaming algorithm for handling both back-
ward and forward axes.

2. A concise representation of an XPath expression,
called X-dag (Section 3.2), where all backward con-
straints are converted into forward constraints, a key
step in making streaming XPath processing in the
presence of backward axes possible.

3. A data structure called the matching structure (Sec-
tion 3.4) that represents compactly all matchings
(Section 3.3) of an XPath expression in a document.

1.1 Related Work

Our work is most closely related to theXFilter [1], YFil-
ter [9], XTrie [5], and TurboXPath[12] systems, all of
which involve evaluation of XPath/XQuery-based queries
on streaming XML documents. XFilter, YFilter, and
XTrie are XML filtering systems where documents are
routed and filtered based on subscriptions that are ex-
pressed as queries. The TurboXPath system has been used
for XML-enabled data integration where user queries can
operate over a mixture of locally stored data in a rela-
tional database and data streamed from external sources.
The XFilter system handles simple XPath location path
expressions (straight-line path expressions without any
branching and predicates) by transforming them into a
Deterministic Finite Automaton. The YFilter system is an
extension of XFilter in which a group of simple XPath lo-
cation path expressions are combined into a single Nonde-
terministic Finite Automaton (NFA), which corresponds
to the union of these path expressions. Both XTrie and
TurboXPath can handle tree-shaped path expressions in-
volving predicates (which are internally represented as
trees called the XTrie and ParseTree respectively). In ad-
dition, TurboXPath can also handle multiple output nodes.
However, all of these systems are limited to handling loca-
tion path expressions that only contain forward axes (e.g.
child, descendant, forward-sibling). Theχαoς system im-
proves upon these systems by adding the ability to handle
both backward (e.g.parent, ancestor) and forward axes in
the context of streaming XML.

1χαoς (Xaos, pronounced Chaos) is an acronym for XML Analysis,
Optimization, and Stuff

Tozawa and Murata [14] describe a method for convert-
ing an XPath expression into modal logic formulas with
past modalities. They present an algorithm for converting
such formulas into tree automata, which can be used to
evaluate XPath expressions on an input document. Their
paper describes a theoretical approach that can handle all
XPath axes. The current status of the implementation of
their algorithm is unclear. It would be interesting to com-
pare the performance of their implementation with that of
χαoς.

TheNiagaraCQ[6] system is a continuous query sys-
tem that supports querying of distributed XML datasets
using an XML query language. Continuous queries al-
low users to receive new results as they become available.
The focus of the NiagaraCQ project is on exploiting simi-
larities in structure of queries to share computation across
groups of queries, and use of incremental group optimiza-
tion and incremental evaluation techniques. However, the
queries that they focus on involve simple structural pat-
tern matching rather than XPath/XQuery-based queries
that we deal with in this paper.

2 Background

We describe the tree model of XML documents that is
the basis of the definition of XPath. We then describe the
event stream that drives theχαoς algorithm. Finally, we
present the subset of XPath that we focus on in this paper.

2.1 Tree Model for XML Documents

An XML document can be represented as a tree, whose
nodes represent the structural components of the docu-
ment — elements, text, attributes, comments, and pro-
cessing instructions. Parent-child edges in the tree rep-
resent the inclusion of the child component in its parent
element, where the scope of an element is bounded by its
start and end tags. The tree corresponding to an XML
document is rooted at a virtual element,Root, which con-
tains the document element. We will, henceforth, discuss
XML documents in terms of their tree representation;D
represents an XML document, andVD andED denote its
nodes and edges respectively. Figure 2 illustrates the tree
representation of an XML document.

For simplicity of exposition, we focus on elements in
this paper, and ignore attributes, text nodes, etc. The tree,
therefore, consists of the virtual root and the elements of
the document. To avoid confusion between the XML doc-
ument tree and the tree representation of the XPath (de-
scribed later), we useelementsto refer to the nodes of the
XML tree. We assume that the following functions are
defined on the elements of an XML document:

2

• id : VD → Integer: Returns a unique identifier for
each element in a document.

• tag : VD → String: Returns the tag name of the
element.

• level : VD → Integer: Returns the distance of the
element from the root, wherelevel(Root) = 0.

We usexi,l to denote an element withtag = x, id =
i, level = l. For example, the elementU in Figure 2(b)
is denoted byU8,3.

2.2 Event-Based Parsing

An event-based parser, for example, a SAX parser, scans
an XML document, producing events as it recognizes el-
ement tags and other components of the document. We
register functions that are invoked by the parser on start
and end element events. Each event conveys the name
and level of the corresponding element. The production
of events is equivalent to that of a depth-first, pre-order
traversal of the document tree, where for each element, a
start element event is generated, then its subtree is pro-
cessed in depth-first order, and finally, an end element
event is generated.

2.3 XPath

The XPath language defines expressions for addressing
parts of an XML document. We focus onlocation path
expressions which evaluate to a set of elements in the doc-
ument. A location path is a structural pattern composed
of sub-expressions calledStep, joined by the ’/’ charac-
ter. Each step consists of anaxis specifier, anodetest, and
zero or more predicates. Location paths areabsoluteif
they begin with a ’/’; otherwise they arerelative. Table 1
provides the BNF for the XPath subset that we shall use
in this paper (we refer to expressions satisfying this gram-
mar as Restricted XPaths –Rxp).2

XPath expressions are evaluated relative to a context
node in the document tree. The context node for an abso-
lute location path is always the root element. To evaluate
a relative location path,Step / RelLocPath, with respect
to a context node,c, one first computesSteprelative toc,
yielding a set of elements,N . The meaning ofStep / Rel-
LocPathis the union of the sets of elements obtained by
evaluatingRelLocPathin contextd, whered ranges over
N .

The set of elements searched in the evaluation of aStep
at a context node,c, depends on its axis specifier. For ex-
ample, the result of evaluatingdescendant::section is the
subset of the proper descendants of the context node that
matchsection. While theχαoς algorithm is extensible to

2We will not use abbreviated XPath expressions in this paper.

Table 1: XPath subset addressed in paper.

AbsLocPath := ′/′ RelLocPath
RelLocPath := Step ′/′ RelLocPath | Step
Step := Axis :: NodeTest |

Step ′[′ PredExpr ′]′

PredExpr := RelLocPath and PredExpr |
AbsLocPath and PredExpr |
RelLocPath | AbsLocPath

Axis := ancestor | parent | child |
descendant

NodeTest := String

handle all thirteen axis specifiers in XPath 1.0, we focus
on four: child, descendant, parent, and ancestor.

Steps may contain predicates, which restrict the
set of elements selected. For example,descen-
dant::chapter[ancestor::book and child::table] selects all
chapter descendants of the context node that have abook
element as an ancestor and atable element as a child. Note
that eachchapter element is used as a context node in eval-
uating the subexpressions,ancestor::book andchild::table.

3 X-tree, X-dag, Matchings, and
Matching Structures

Theχαoς algorithm operates on two representations of an
XPath expression called X-tree and X-dag. The x-dag is
a key construct in our algorithm since it converts back-
ward constraints, such asparent, into forward constraints,
thus making streaming processing possible. We use an
alternate semantics of XPath expressions defined on x-
trees based on the notion ofmatchings. It can be shown
that our semantics is equivalent to the semantics provided
in the XPath 1.0 specification. The construction of the
matching-structure, a compact representation of match-
ings, is the main goal of the algorithm. We describe these
concepts in this section.

3.1 X-tree

We represent anRxp expression as a rooted tree, called
X-tree, with labeled vertices and edges,T = (VT , ET),
where the root is labeledRoot. We use the term x-node
to refer to the vertices of an x-tree. For eachNode-
Test in the expression, there is an x-node in the x-tree
labeled with the nodetest. Each x-node (exceptRoot)
has a unique incoming edge, which is labeled with the
Axis specified before theNodeTest. One of the x-nodes
is designated to be the output x-node. There are func-
tions, label : VT → String, and axis : ET →
{ancestor, parent, child, descendant} that return the

3

<X>
<Y>

<Z>
<V/>
<V/>
<W>

<W/>
</W>

</Z>
<U/>

</Y>
<Y>
<Z>

<W/>
</Z>

</Y>
</X>

Root(0)Root(0)

X (1)X (1)

Y(9)Y(9)Y(2)Y(2)

Z(10)Z(10)Z(3)Z(3) U(8)U(8)

W(11)W(11)V(4)V(4) V(5)V(5) W(6)W(6)

W(7)W(7)

(a) (b)

Figure 2: (a) An XML Document (b) Tree representation of the same document. The number in parentheses next to
the tag of each element is theid of the element.

labels associated with the x-nodes and edges respectively.
Rules for building an x-tree from anRxp are provided in
Appendix A for the interested reader. Figure 3a provides
an example of an x-tree.

3.2 X-dag

We also use a directed, acyclic graph representation of an
Rxp called an X-dag. The x-dag is obtained from the x-
tree by reformulating the ancestor and parent constraints
in the tree as descendant and child constraints. More pre-
cisely, it is a directed, labeled graph,G = (VG , EG), with
the same set of vertices asT , and edges defined as fol-
lows:

1. Edges inT labeled child or descendant are also
edges ofG.

2. For each edge inT labeledparent, there is an edge
joining the same nodes but with direction reversed
and label changed tochild. Similarly,ancestor edges
are reversed and relabeled asdescendant edges.

3. For any non-root x-nodev ∈ G having no incoming
edges, adescendant edge is added fromRoot to v.

Figure 3b gives the x-dag corresponding to the x-tree in
Figure 3a.

3.3 Matchings

Let v1 andv2 be two x-nodes in an x-treeT connected by
an edgee, and letd1 andd2 be two elements in a docu-
mentD. We say that the pair(v1, d1) is consistentwith
(v2, d2) (relative to x-treeT and documentD) if d1 and
d2 satisfy the relationaxis(e). For example, ifv1 andv2

are connected by an edge labeledancestor, thend2 must

be an ancestor ofd1 in D. A matching,m : VT → VD,
is a partial mapping from x-nodes of x-treeT to elements
of documentD such that the following conditions hold.

1. For all x-nodesv ∈ domain(m), label(v) =
tag(m(v)), i.e. all mapped vertices satisfy the node-
test.

2. For all x-nodesv1 andv2 connected by an edge inT
such thatv1, v2 ∈ domain(m), (v1,m(v1)) is con-
sistent with(v2,m(v2)).

A matching isat an x-nodev if and only if its domain
is contained in the sub-tree rooted atv. A matching atv is
total if its domain contains all the vertices of the subtree
rooted atv. It is easy to show that a document element
n is in the result of anRxp r, if and only if, there exists
a total matching atRoot for the x-treeT of r, where the
output x-node ofT is mapped ton. χαoς computes the
result defined by anRxpprecisely in this manner. It finds
all matchings fromVT to VD, and emits the document
elements that correspond to the output x-node.

3.4 Matching-Structure

The algorithm constructs a data structure called a
matching-structurewhich is a compact representation of
all total matchings atRoot of the Rxp relative to the
input document. A matching-structure,Mv,e, is asso-
ciated with x-nodev, and represents a set of matchings
at v in which v is mapped to the document elemente.
The matching-structureMv,e additionally contains a sub-
matching for every child ofv in the x-tree. A submatch-
ing at childw of v is a (possibly empty) set of matching-
structures atw. For any matching-structureMw,e′ in the
submatching ofMv,e atw, we require that(v, e) be con-
sistent with(w, e′). A matching-structureMv,e is said to

4

YY

UU WW

VV

ZZ

RootRoot

descendant

ancestor

descendant

child

child

YY

UU WW VV

ZZ

RootRoot

descendant

desc
end

ant

childchild

descendant

descen
dant

(a) (b)

Figure 3: (a) X-tree representation of/descendant::y[child::u]/descendant::w[ancestor::z/child::v] (b) X-dag represen-
tation of the same XPath expression. The circle corresponding toW has a thick edge to represent the fact that it is the
output node.

be aparent-matchingof a matching-structureMw,e′ if v
is a parent ofw in x-treeT and(v, e) is consistent with
(w, e′). If Mv,e is a parent-matching ofMw,e′ , then we
say also thatMw,e′ is achild-matchingof Mv,e.

Figure 4 shows the matching structure at the end of pro-
cessing the XPath of Figure 3 on the document in Fig-
ure 2, and the four total matchings atRoot. The result is
obtained by taking theW projection, that is{W6,4,W7,5}.

4 Theχαoς Algorithm

χαoς processes events as they are generated by an event-
based parser by operating over both the x-dag and x-tree
views of the inputRxp. At the end of processing the
document, the result of theRxp expression is encoded in
MRoot,Root. For efficiency,χαoς filters out events that do
not contribute to any matchings. Relevant events are pro-
cessed to build matching-structures. Finally,MRoot,Root

is used to emit the appropriate output. We shall describe
these three stages in this section. A walk through of the
execution of the algorithm on theRxpof Figure 3 and the
document of Figure 2 is provided in Table 2.

4.1 Filtering Events

At any point during execution,χαoς has processed a pre-
fix of the input document. An infinite number of XML
documents share the same prefix, andχαoς cannot predict
the future sequence of events that will be generated by the
parser. An element,e, is relevantif there exists some doc-
ument completion wheree participates in a matching. All
relevant elements must be processed. As events are pro-
cessed, new relevant elements may be seen, or elements

that were earlier deemed relevant may no longer be rele-
vant. The x-dag representation of theRxp is used to de-
termine if an element is relevant.

An element that does not match any x-node is not rele-
vant since it cannot participate in any matching. Letopen
elements be those elements for which we have seen a start
element event, but not an end element event. By virtue of
the depth-first manner in which events are generated, at
a start element event for elemente that matches a x-node
v, the open elements are ancestors ofe in the document.
If for some parent ofv′ of v in x-dag, there is no open,
relevant element,e′, such that(v, e) and(v′, e′) are con-
sistent, thene cannot be relevant. There is no sequence of
events that a parser can generate for which that constraint
will become true, and therefore,e cannot contribute to
any matching. For the x-dag in Figure 3b, no element that
matchesW will be relevant unless there are open relevant
elements that matchY andZ.

At every step, we maintain alooking-forset,L, which
allows us to evaluate whether the element associated with
the next start element event is relevant. The members of
L are (v ∈ VP , level) pairs, where level may be an in-
teger or∗. The elemente associated with a start element
event is relevant if and only if there exists(v, level) ∈
L, label(v) = tag(e), and (level = level(e) or level =
∗). Integer levels are used to enforce the constraint that if
(v, e) and(v′, e′) are consistent and ifaxis(v, v′) = child,
thenlevel(v′) = 1 + level(v).

4.2 Building Matching Structures

We assume from now on that all events corresponding to
elements that are not relevant have been discarded. When
χαoς processes a start element event for an elemente

5

Table 2: Walk through of evaluation of XPath of Figure 3 on document of Figure 2.Start (End): Ax,y denotes the
start (end) element event for an element,Ax,y. The Looking-for set column showsL at the end of processing the
event.

Step Event Matches Comments Looking-for Set
1 Start: Root0,0 (Root, 0) Add (Y, ∗) and(Z, ∗) to L, sinceRoot is an open, relevant

element matching their ancestors in the x-dag.
{(Y, ∗), (Z, ∗)}

2 Start: X1,1 Discarded. {(Y, ∗), (Z, ∗)}
3 Start: Y2,2 (Y, ∗) Start looking forU at level 3 sinceU is connected toY by a

child edge in the x-dag, andY is matched at level 2. Do not
addW toL because there is no open element that matches its
Z parent in the x-dag. Continue looking for(Y, ∗) because
any element with tagY in the subtree of this element will
also be a candidate for matchingY.

{(Y, ∗), (Z, ∗), (U, 3)}

4 Start: Z3,3 (Z, ∗) Start looking for(V, 4) since we have open relevant elements
matchingZ andRoot in the x-dag. We look for it at level 4
because the(Z, V) edge is labeledchild.

{(Y, ∗), (Z, ∗), (W, ∗), (V, 4)}

5 Start: V4,4 (V, 4) We stop looking for(V, 4) because until we see the end of
this element,level > 4.

{(Y, ∗), (Z, ∗), (W, ∗)}.

6 End: V4,4 (V, 4) There is a total matching atV, represented asMV,4. This
matching-structure is propagated to the appropriate sub-
matching ofMZ,3, the only parent-matching ofMV,4.

{(Y, ∗), (Z, ∗), (W, ∗), (V, 4)}.

7 Start: V5,4 (V, 4) {(Y, ∗), (Z, ∗), (W, ∗)}
8 End: V5,4 (V, 4) As before,MV,5 is added to the appropriate submatching of

MZ,3.
{(Y, ∗), (Z, ∗), (W, ∗), (V, 4)}

9 Start: W6,4 (W, ∗) {(Y, ∗), (Z, ∗), (W, ∗)}
10 Start: W7,5 (W, ∗) {(Y, ∗), (Z, ∗), (W, ∗)}
11 End: W7,5 (W, ∗) W in the x-dag has an outgoingancestor edge. All child-

matchings ofMW,7, in this case,MZ,3, are propagated into
the appropriate submatching ofMW,7. All submatchings of
MW,7 are now non-empty.MW,7 is propagated toMY,2

{(Y, ∗), (Z, ∗), (W, ∗)}

12 End: W6,4 (W, ∗) As above,MW,6 is propagated toMY,2. {(Y, ∗), (Z, ∗), (W, ∗)(V, 4)}
13 End: Z3,3 (Z, ∗) Z has an incoming edge labeledancestor. SinceMZ,3 is

satisfied, no clean up is necessary.
{(Y, ∗), (Z, ∗)(U, 3)}

14 Start: U8,3 (U, 3) {(Y, ∗), (Z, ∗)}
15 End: U8,3 (U, 3) The total matching atU,MU,8 is propagated toMY,2. {(Y, ∗), (Z, ∗), (U, 3)}
16 End: Y2,2 (Y, ∗) MY,2 is satisfied since both submatchings, corresponding to

U andW are non-empty. We propagateMY,2, and we have
a total matching atRoot.

{(Y, ∗), (Z, ∗)}

17 Start: Y9,2 (Z, ∗) {(Y, ∗), (Z, ∗), (U, 3)}
18 Start: Z10,3 (Z, ∗) {(Y, ∗), (Z, ∗), (V, 4), (W, ∗)}
19 Start: W11,4 (W, ∗) {(Y, ∗), (Z, ∗), (W, ∗)}
20 End: W11,4 (W, ∗) Again, sinceW has an outgoing edge labeledancestor, we

addMZ,10 optimistically to the appropriate submatching of
MW,11. Since this matching is now satisifed, it is propa-
gated toMY,9.

{(Y, ∗), (Z, ∗), (W, ∗), (V, 4)}

21 End: Z10,3 (Z, ∗) MZ,10 is not satisfied — the submatching forV is empty.
We undo the propagation ofMZ,10 to MW,11. Since
MW,11 now is no longer satisfied, we undo the propagation
fromMW,11 toMY,9.

{(Y, ∗), (Z, ∗), (U, 3)}

22 End: Y9,2 (Y, ∗) MY,9 is not satisfied. Nothing is propagated. {(Y, ∗), (Z, ∗)}
23 End: X1,1 Discarded. {(Y, ∗), (Z, ∗)}
24 End: Root0,0 (Root, 0) There is one entry in the submatching corresponding toY,

MY,2. MRoot,0 is satisfied.
{(Root, 0)}

6

Root, 0

Y, 2

Z, 3

W, 6U, 8 W, 7

V, 4 V, 5

Total Matchings at Root
[Root 7→ 0, Z 7→ 3, Y 7→ 2, U 7→ 8, V 7→ 4, W 7→ 6]
[Root 7→ 0, Z 7→ 3, Y 7→ 2, U 7→ 8, V 7→ 4, W 7→ 7]
[Root 7→ 0, Z 7→ 3, Y 7→ 2, U 7→ 8, V 7→ 5, W 7→ 6]
[Root 7→ 0, Z 7→ 3, Y 7→ 2, U 7→ 8, V 7→ 5, W 7→ 7]

Solution: {W6,4, W7,5 }

Figure 4: Matching Structure at the end of processing the XPath of Figure 3. The boxes represent matching-structures.
For a matching-structure,Mv,e, the top half of the box shows(v, id(e)). Each slot in the bottom half of the box
corresponds to a submatching, which is represented as a list of pointers to the child matchings.

that matches a x-node,v, it creates a matching-structure,
Mv,e, to represent the match. Note thate may match
more than one x-node in the x-tree; a matching-structure
is created for each such match. The submatchings for
these matching-structures are initially empty. Asχαoς
processes events, it stitches together these matching-
structures, so that when the end of the document is seen,
MRoot,Root encodes all total matchings atRoot in the doc-
ument.

The key step in this process ispropagation. At an end
element event for an elemente that matches x-nodev, we
attempt to determine ifMv,e represents a total matching
at v. If there is a total matching, we insertMv,e into
the appropriate submatching of its parent-matchings. This
propagation may be optimistic in that one may have to
undo the propagation as more events are processed. Let
us first, however, consider the simpler situation where no
cleanup of propagation is necessary, when the x-tree does
not contain any edges labeledancestor or parent. This
corresponds toRxp’s that use only thechild anddescen-
dant axes.

When the x-tree contains onlychild and descendant
constraints, any total matchingm at v, wherem(v) = e
maps all x-nodes in the subtree ofv to elements that lie
in the document subtree ofe. Since the total matching is
contained within the subtree ofe, by the time the end ele-
ment event fore is seen, we can determine conclusively if
Mv,e represents a total matching atv. This leads naturally
to an inductive approach to building matchings. For an
end element evente, whereMv,e is a matching-structure:

1. If v is a leaf in the x-tree,Mv,e represents a total
matching atv by definition (v has no subtrees). We
propagateMv,e to the appropriate parent-matchings.

2. If v is not a leaf,Mv,e represents a total matching
at v, if and only if, all submatchings are non-empty.

Otherwise, no total matching exists. If we had found
appropriate total matchings for each of the children
of v in the x-tree, they would have been propagated
to Mv,e by the time the end element event fore
is processed. As above, ifMv,e represents a total
matching, we propagate it to all appropriate parent-
matchings.

If at the end of processing the document (when we re-
ceive the end element event forRoot), χαoς finds that all
the submatchings ofMRoot,Root are non-empty, we have
a total matching atRoot.

The presence ofancestor and parent edges in the x-
tree complicates this process because one may not be able
to determine conclusively whether a total matching ex-
ists for aMv,e by the end of elemente. For example, in
Figure 3a, one might not find a total matching for the sub-
tree rooted atZ, until after one sees the end of an element
matchingW. The propagation process remains the same,
except for a x-node that has an incoming or an outgoing
edge labeledancestor or parent. For aMv,e, the modified
steps are as follows:

• If there is an outgoing edge(v, v′) labeledances-
tor or parent, and the submatching forv′ is empty,
we cannot assert that there exists no total match-
ing at v. We, optimistically, propagate each child-
matching,Mv′,e′ , into the appropriate submatching
ofMv,e. We then proceed as before. If all submatch-
ings are satisfied,Mv,e is propagated to its parent-
matchings.

• If there is an incoming edge(v′, v) labeled ances-
tor or parent, thenMv,e may have been propagated
optimistically to its parent-matchings. If we can
determine conclusively thatMv,e cannot represent
a total matching atv, we undo the propagation of
Mv,e. The removal ofMv,e from a submatching

7

of a parent-matchingMv′,e′ may result in that sub-
matching becoming empty —Mv′,e′ is no longer a
total matching atv′. We then recursively undo the
propagation ofMv′,e′ from its parent-matchings.

4.3 Emitting Output

At the end of processing the document, if the submatch-
ings ofMRoot,Root are all non-empty, we have at least
one total matching atRoot. The output is emitted by
traversing the matching structure, and emitting an element
e when we visitMv,e, wherev is the output x-node of the
Rxp. For example, in Figure 4, we outputW6,4 when we
first visitMW,6 andW7,5, when we first visitMW,7.

5 Experimental Results

The χαoς algorithm examines each element event ex-
actly once and the processing of an event involves only
constant-time operations. The execution time of theχαoς
algorithm is, therefore, linear in terms of the input docu-
ment size. Furthermore,χαoς stores only those elements
relevant to the calculation of the final solution. We would,
therefore, expect theχαoς algorithm to show better mem-
ory utilization than Xalan [2], which stores the whole doc-
ument in memory. In this section, we provide experimen-
tal results that validate these claims. We, first, provide re-
sults using documents generated by XMark [13]. To gain
further insight into the relative performance ofχαoς and
Xalan, we also run experiments using a custom XPath and
XML document generator.

All experiments were run on a 550 MhZ, 256 MB, Pen-
tium III box, running Linux 2.4. χαoς was written in
C++, and we use Xalan-C++ 1.3.1. Bothχαoς and Xalan
were compiled using gcc -O (version 2.92).

5.1 Experiments using XMark

Using XMark, we generated documents with scale fac-
tors .03125, .0625, .125, .25, .5, 1, 2, and 4, respec-
tively. These correspond to documents ranging in size
from 3.5 MB to 446 MB. We then evaluate the XPath ex-
pression,//listitem/ancestor::category//name on these doc-
uments, using bothχαoς and Xalan. Figure 5 reports the
results of these experiments.

Note that Xalan fails to complete on the two largest
documents (approx. 222 MB and 446 MB), and further-
more, that there is a sharp spike in going from 55 MB
to 111 MB. These effects can be attributed to the mem-
ory requirements of Xalan (the spike is the region where
Xalan exhibits thrashing behavior in memory). On the
other hand,χαoς scales linearly, as is expected. Table 3
reports the number of elements discarded by the algorithm

0

200

400

600

800

1000

1200

1400

0 50 100 150 200 250 300 350 400 450 500

Document Size (MB)

T
im

e
(s

)

Xaos Xalan

Figure 5: Time in seconds on XMark-generated docu-
ments: χαoς versus Xalan. The XPath expression exe-
cuted is//listitem/ancestor::category//name

Table 3: Number of elements discarded byχαoς in pro-
cessing of XMark-generated documents

Scale Doc. Size Elements % Discarded
.03125 3.49 MB 52069 99.8 %
.625 6.88 MB 103999 99.8 %
.125 13.86 MB 210538 99.8 %
.25 27.87 MB 417160 99.8 %
.5 55.32 MB 832911 99.8 %
1 111.12 MB 166311 99.8 %
2 222.90 MB 3337649 99.8 %
4 446.71 MB 6688651 99.8 %

as not being relevant. As can be seen from the results,
a very small percentage of elements in a document (less
than .2 %) is stored and processed, resulting in a signficant
reduction in storage requirements.

5.2 Custom XPath generator

We use a custom XPath generator to generate a set of ran-
dom XPath expressions (of size 6 – six node tests in the
expression), and for each XPath expression, we generate
a random XML document based on the XPath expression.
The generated XML document has the characteristic that,
for large document sizes, the XPath expression will have
many matches (and near matches) in the document.

We use two versions ofχαoς in our comparison. The
first, χαoς(SAX), uses the Xerces SAX parser [3], which
is also used by Xalan. To factor out the costs of pars-
ing and building a tree from the time to evaluate an ex-
pression, we also implemented a version ofχαoς on top
of Xalan. χαoς(DOM) builds an internal version of the
input document in the same way that Xalan does. We
then traverse this tree in a depth-first fashion and gener-

8

0

10

20

30

40

50

20000 120000 220000 320000 420000 520000 620000

Number of Elements

T
im

e
(s

)
Xalan (132 K/s)

Xaos (DOM) (153 K/s)

Xaos (SAX) (176 K/s)

Figure 6: Overall Time in seconds:χαoς versus Xalan

ate events that a SAX parser would. By subtracting the
parsing and tree-building time from the overall time, we
get an accurate measure of the time spent in evaluating the
expression.

We vary the XML document size from 20,000 elements
to 640,000 elements (200K - 6.7 MB). At each document
size, we execute 10 runs of the following: 1) generate an
XPath expression, 2) generate an XML document from
the XPath expression, and 3) evaluate the XPath expres-
sion usingχαoς and Xalan. We report the average execu-
tion time and the standard deviation of the 10 runs at each
XML document size.

5.2.1 Overall Execution Time

We first compare the performance ofχαoς to that of us-
ing the Xalan XPath engine (SimpleXPathAPI). Figure 6
plots the average execution time (average over the 10 runs
at each document size) versus document size (in number
of elements). The error bars represent the standard devia-
tion from the mean. All times include the cost of parsing.

As can be seen from the graph,χαoς(SAX) is roughly
25% faster than the Xalan XPath engine. With documents
of size 640,000 elements (6.7 MB) the average times are
χαoς: 39.0 seconds, Xalan XPath: 52.28 seconds. Note
the difference in the standard deviations between the two
lines (the error bars in the plot). Whereas the standard
deviation forχαoς is relatively constant, that of Xalan
XPath is fairly high. We shall discuss the cause of this
behavior in the next section.

5.2.2 Comparison Excluding Parsing Times

Excluding parsing costs, the performance of our XPath
engine is more than twice that of the Xalan engine (Figure
7). This is mainly due to avoiding unnecessary traversals
of the tree. Note that the difference in standard devia-
tion is much more apparent in this graph. The cause of
this high variance is the bimodal behavior of the Xalan
XPath engine. On “good” XPath expressions, where it

0

2

4

6

8

10

12

14

16

18

20000 120000 220000 320000 420000 520000 620000

Number of Elements

T
im

e
(s

)

Xalan Xaos (DOM)

Figure 7: Searching Time in seconds:χαoς versus Xalan

does not perform many unnecessary traversals, the per-
formance of the Xalan XPath engine is similar to that of
ours. On “bad” XPath expressions, such as those involv-
ing the use of the descendant axes, its performance can be
four times worse. Our XPath engine’s performance, how-
ever, is linear in the size of the XML document and shows
little variance.

6 Summary

We have presented a novel algorithm for handling back-
ward and forward XPath axes in a streaming fashion. Our
experiments reveal that significant performance benefits
can be obtained by using theχαoς algorithm for evaluat-
ing XPath expressions on XML documents in a streaming
fashion. We are working on extending theχαoς engine
to handle more of XPath, building on the framework we
have described in this paper.

References

[1] M. Altinel and M. Franklin. Efficient filtering of
XML documents for selective dissemination of in-
formation. InProceedings of VLDB, Cairo, Egypt,
September 2000.

[2] Apache.org. Xalan XSLT stylesheet processor.
http://xml.apache.org.

[3] Apache.org. Xerces XML parser.
http://xml.apache.org.

[4] T. Bray, J. Paoli, C. Sperberg-McQueen, and
E. Maler. Extensible Markup Language
(XML) 1.0 (second edition). Technical re-
port, W3C Recommendation, October 6 2000.
http://www.w3.org/TR/REC-xml.

9

[5] C.-Y. Chan, P. Felber, M. Garofalakis, and R. Ras-
togi. Efficent filtering of XML documents with
XPath expressions. In18th International Confer-
ence on Data Engineering. IEEE, February 2002.

[6] J. Chen, D. DeWitt, F. Tian, and Y. Wang. Nia-
garaCQ: A scalable continuous query system for in-
ternet databases. InProceedings of SIGMOD 2000,
pages 379–390, 2000.

[7] J. Clark. XSL transformations (XSLT) version 1.0.
Technical report, W3C Recommendation, Novem-
ber 16 1999. http:/www.w3.org/TR/xslt.

[8] J. Clark and S. DeRose. XML path lan-
guage (XPath) version 1.0. Technical re-
port, W3C Recommendation, November 16 1999.
http://www.w3.org/TR/xpath.

[9] Y. Diao, P. Fischer, M. Franklin, and R. To. Yfilter:
Efficient and scalable filtering of XML documents.
Demo at ICDE, February 2002.

[10] M. Fernandez, J. Marsh, and M. Nagy. XQuery
1.0 and XPath 2.0 data model. Technical
report, W3C Working Draft, April 30 2002.
http://www.w3.org/TR/xquery-datamodel.

[11] A. L. Hors et al. Document object model
(DOM) level 3 core specification. Techni-
cal report, W3C Working Draft, April 9 2002.
http://www.w3.org/TR/DOM-Level-3-Core.

[12] V. Josifovski, M. Fontoura, and A. Barta. Enabling
relational engines to query XML streams. IBM In-
ternal publication.

[13] A. Schmidt et al. The XML benchmark project.
Technical Report INS-R0103, CWI, Amsterdam,
Netherlands, April 2001.

[14] A. Tozawa and M. Murata. Tableau construction of
tree automata from queries on structured documents.
IBM Internal publication.

[15] R. Whitmer. Document Object Model (DOM)
level 3 XPath specification version 1.0. Techni-
cal report, W3C Working Draft, March 28 2002.
http://www.w3.org/TR/DOM-Level-3-XPath.

A Rules for Building an X-tree

We represent anRxp expression as a rooted treeT =
(VT , ET) called X-tree, with labeled vertices and edges.
The root is labeledRoot. For eachNodeTestin the ex-
pression, there is an x-node in the x-tree labeled with the

nodetest. Each x-node (exceptRoot) has a unique incom-
ing edge labeled with theAxisspecified before theNode-
Test. One of the x-nodes is designated to be the output
x-node. There are functions,label : VT → String, and
axis : ET → {ancestor, parent, child, descendant}
that return the labels associated with the x-nodes and
edges respectively. An x-tree-like structure is also defined
for aRelLocPath, which is called an x-forest. It consists of
two rooted trees, one rooted atRoot, and the other rooted
at a special x-node labeledcontext, which, likeRoot, has
no incoming edges. The structure corresponding to aPre-
dExprmay either be an x-tree or an x-forest, but none of
the x-nodes is designated as an output x-node. The follow-
ing rules can be used inductively (based on the structure
of theRxp) to build a x-tree from anRxp.

Step ::= Axis :: NodeTest The x-forest forStep con-
tains three x-nodes labeledRoot, context, and
NodeTest (designated as the output node), and an
edge fromcontext to NodeTest labeledAxis.

Step ::= Step1
′[′ PredExpr ′]′ Let T1 refer to the x-

forest resulting fromStep1, andT2 refer to the x-
forest or x-tree resulting fromPredExpr. The x-
forest forStep is obtained by merging the output x-
node ofT1 with the context x-node ofT2 (if any),
and merging the root x-nodes ofT1 andT2. The out-
put x-node ofT1 is designated as the new output x-
node.

RelLocPath ::= Step ′/′ RelLocPath1 Let T1 andT2

refer to the x-forests obtained fromStep and
RelLocPath1 respectively. The x-forest for
RelLocPath is obtained by merging the output x-
node ofT1 with thecontext x-node ofT2, merging
the root x-nodes ofT1 andT2, and designating the
output x-node ofT2 as the new output x-node.

PredExpr ::= RelLocPath and PredExpr1 Let T1

andT2 refer to the structures obtained fromRelLoc-
PathandPredExpr1 respectively. The x-forest for
PredExpr is obtained by merging thecontext of
T1 with thecontext of T2 (if any), and merging the
root x-nodes ofT1 andT2. There is no output vertex.

PredExpr ::= AbsLocPath and PredExpr1 similar
to the previous case.

AbsLocPath ::=′ /′ RelLocPath The x-tree is ob-
tained by mergingRoot andcontext x-nodes of the
x-forest obtained fromRelLocPath.

10

