
On XML Objects

Martin Kempa
Universität zu Lübeck

Institut für Informationssysteme
Osterweide 8

D-23562 Lübeck, Germany

kempa@ifis.uni-luebeck.de

Volker Linnemann
Universität zu Lübeck

Institut für Informationssysteme
Osterweide 8

D-23562 Lübeck, Germany

linnemann@ifis.uni-luebeck.de

ABSTRACT
In todays web applications we face the problem that there is the
world of HTML and XML on one side and the world of objects
(primarily Java objects) on the other side. Programs generating
XML and HTML, for example Java Servlets, either have to gener-
ate and analyze XML on a string-basis which is rather tedious or
have to generate object structures in the document object model or
in JAXB. This requires to switch between XML strings and corre-
sponding objects manually by programming. Moreover, the object
structure is not guaranteed to conform to an underlying document
type definition DTD or XML schema. Although the goal of JAXB
is to guarantee this validity, it is only achieved up to a certain extent.
In many cases, expensive runtime testing of validity is necessary by
using a validation method provided by JAXB. Moreover, in JAXB
XML strings and XML objects are two different things requiring to
switch between these two notions by methods called marshalling
and unmarshalling.

In this paper we propose that in object oriented programming with
XML there should be no distinction between XML documents and
XML objects. In other words, XML in an object oriented program
always denotes XML objects, i.e. generating and analyzing XML
is done conceptually only on the basis of objects.

We propose, similarly to JAXB, to have a class for every element
type of a DTD or an XML schema. In contrast to JAXB, these
classes are defined such that the generation of XML objects is done
in a syntax oriented manner allowing to check the validity of all
generated XML structures, i.e. XML objects, statically by the com-
piler. We believe that by eliminating the difference between XML
objects and XML documents and by introducing absolutely type
safe tools for generating XML objects, programming of web appli-
cations, i.e. Java Servlets, is much easier, much safer and much less
error-prone.

1. INTRODUCTION
Almost every web application is concerned with generating HTML
or XML structures. In todays tools for this purpose, there is a seri-
ous mismatch between objects in an object oriented programming
language and HTML- and XML-documents. At the time being, a
programmer has to switch between these two worlds. He can either
generate HTML or XML directly as strings which is rather tedious
because the structure is buried in the markup tags or he can gen-
erate object structures facing the problem to manually generate a
string afterwards.

When using current tools like Java Servlets [27], Java Server Pages
[15, 7] or JAXB [18], the object structure is not guaranteed to con-
form to an underlying document type definition DTD [1] or XML
schema [24]. Instead, the validity must be “proven” dynamically
by appropriate test runs. The Java Server Page given in Listing 1
illustrates this problem.

HTML
HEAD TITLE A Simple S e r v e r Page /TITLE
/HEAD

BODY
% i f (timeOfDay () = = ”AM”) %

UL
LI Good Morning /LI

/UL
% e l s e %

UL
LI Good Af te rnoon /LI

/UL
% %

/BODY
/HTML

Listing 1: Java Server Page

Besides being quite cumbersome, the language mechanism of Java
Server Pages does not guarantee the validity of the generated HTML
phrase. For example, changing the program to the one given in List-
ing 2

HTML
HEAD TITLE A Wrong S e r v e r Page /TITLE
/HEAD

BODY
% i f (timeOfDay () = = ”AM”) %

UL
Good Morning

/UL
% e l s e %

UL
Good Af te rnoon

/UL
% %

/BODY
/HTML

Listing 2: Incorrect Java Server Page

still results in a correct Java Server Page in the sense that the Server
Page processor and the Java compiler accept the program although
the program does not generate correct HTML. When using Java
Server Pages, problems of this kind have to be found dynamically
by appropriate test runs.

Although the goal of JAXB [18] is to guarantee this validity, it is
only achieved up to a certain extent. In many cases, expensive
runtime testing of validity is still necessary. Moreover, in JAXB

XML strings and XML objects are two different things requiring to
switch between these two notions by methods called marshalling
and unmarshalling.

The main objective of the work presented in this paper is to over-
come the difference between XML documents as strings and corre-
sponding objects in an object oriented programming language like
Java [3]. In other words, when using XML in an object oriented
program, it always denotes XML objects, i.e. generating and an-
alyzing XML is done conceptually only on the basis of objects.
Nevertheless, this does not mean that the programmer has to gener-
ate the object structure of an XML document manually. He can use
XML parts as texts with markup in his program and insert other
XML parts in appropriate places. This text denotes objects very
much like the string 10 denotes the natural number ten.

Similarly to JAXB, we introduce a class for every element type of a
DTD or an XML schema. In contrast to JAXB, we do not generate
these classes explicit as Java classes. Instead of that they can be
used like built-in data types. They are defined in such a way that
the generation of XML objects is done in a syntax oriented manner
allowing to check the validity of all generated XML structures, i.e.
XML objects, statically by the compiler. We believe that by elim-
inating the difference between XML objects and XML documents
and by having absolutely type safe tools for generating XML ob-
jects, programming of web applications, i.e. Java Servlets, is much
easier, much safer and much less error-prone.

This paper is organized as follows. In Section 2 we report on re-
lated work, i.e. we summarize the state of the art as far as generating
XML and HTML is concerned. Section 3 introduces XML objects
and corresponding operations for generating them. Several exam-
ples show that by using XML objects, the process of generating
XML is much more precise and much clearer than by using con-
ventional tools. Moreover, the validity of the generated XML struc-
tures is guaranteed statically by the compiler, which we present in
Section 4. No test runs or special validation methods have to be
used in order to check the validity at runtime. Section 5 gives some
implementation details. Section 6 concludes the paper and gives an
outlook on future work.

2. RELATED WORK
In this section we report on the state of the art as far as generating
XML and HTML within programs is concerned.

String Operations
The most elementary way to deal with XML documents is to use
the string operations which are provided by the programming lan-
guage, i.e. XML documents are treated as ordinary strings with-
out any structure. The most prominent representative of this tech-
nique is given by Java Servlets [27]. In former CGI Scripts [8] the
programming language Perl [25] was used. The technique of us-
ing ordinary string operations of a programming language is rather
tedious, especially when the XML document being generated is
rather static, i.e. there are only few places where dynamic parts are
inserted. String operations cannot guarantee the correctness of the
generated XML documents according to a document type defini-
tion or an XML schema, i.e. the validity of a document must be
checked dynamically by appropriate test runs.

Java Server Pages
Java Server Pages [15] are translated by a preprocessor into Java
Servlets. They allow to switch between XML parts and Java parts

for generating HTML or XML. This switching is done by the spe-
cial markings % and % . An example was given in the introduc-
tion of this paper. Compared to string operations, this technique
provides some progress especially when the XML document being
generated is rather static. Java Server Pages share with string op-
erations the disadvantage that the validity of the XML documents
has to be checked dynamically by appropriate test runs.

XSLT
XSLT [10] is used primarily to generate HTML out of XML. By
pattern matching, parts of an XML document are addressed and
corresponding HTML parts are generated. This process takes into
account only well-formed documents. The validity according to a
DTD or an XML schema has to be checked dynamically.

JavaScript
JavaScript [14] is embedded in HTML and runs on the browser
side. It allows, among others, to generate HTML parts dynamically.
This can be done either on a pure string basis or on the basis of the
document object model DOM [20]. There is no static checking of
validity.

Document Object Model (DOM)
The main purpose of the document object model DOM [20] is to
avoid generating and manipulating XML documents on a string ba-
sis by providing classes for the nodes of an XML document tree
thus allowing to manipulate XML documents by object-oriented
programming. In DOM, there is a clear distinction between XML
objects and XML documents on a string basis. This means that
the programmer has two choices: One choice is to program XML
applications in a pure object-oriented manner. This requires to gen-
erate the XML structures manually by generating every node in the
object explicitly by program. This is rather tedious especially in
cases where large XML objects are to be generated. The second
choice is to switch between XML strings and XML objects.

Because there is only one Element class for all different nodes in
an XML tree, no validity of the XML objects can be guaranteed at
compile time.

Validating Document Object Model
Validating DOM (VDOM) [12] is an extension of DOM. It pro-
vides a new distinct class for every element of a DTD. Hereby the
validity of the generated structures can be guaranteed statically at
compile time. Parameterized XML (P-XML) provides a mecha-
nism to generate XML on a string-like basis allowing to statically
guarantee the validity.

JAXB
JAXB [18] is Sun’s proposal for the integration of XML in Java.
Although there are classes for the elements of a DTD, the validity
of the generated object structures cannot be guaranteed statically in
all cases. Therefore, runtime validation is necessary. By so called
marshalling and unmarshalling a switching between string-based
XML-documents and XML object structures is necessary. Using a
slightly modified picture from [17], the main aspects of JAXB can
be illustrated by Figure 1.

Although JAXB is an important step in the direction of an object-
based generation of XML-structures, there are still a number of
disadvantages:

XML document

Java classes
DTD or

XML schema

Java objects

validate
follows

translation

Instances of

unmarshal

marshal

Figure 1: JAXB

Although the idea of JAXB is to guarantee validity of object
structures statically, this is accomplished only to a certain
extent. For lists of elements Java’s general LIST-class is
used representing lists of arbitrary objects. This means that
lists of arbitrary objects can be used in XML object struc-
tures. Therefore, marshal- and validate-methods may
run into problems which can be treated only at runtime.

The frequent case of a relatively static document with only
a few dynamically generated parts can be solved only in a
rather cumbersome way. Basically, there are two alternatives
for this case:

– Generate the whole object tree manually by program
which basically means that the programmer has to parse
the object structure manually.

– Write a document template into a string with dummy
values for the dynamically generated parts and generate
the object structure by using the unmarshal-method.
Although the template is given statically and although it
could be validated statically at compile time, it has to be
validated at runtime. This means runtime delay for the
web application and a higher programming overhead,
because appropriate exceptions have to be designed and
programmed.

CASTOR
The CASTOR project [6] has many similarities to JAXB. In con-
trast to JAXB, in CASTOR there is only one final class AnyNode.
Therefore, in CASTOR there is no compile time validation at all.
As in JAXB, switching between string-based XML documents and
AnyNode-objects is done by marshal and unmarshal. Be-
cause of the similarities between JAXB and CASTOR, we will not
go into the details of CASTOR in this paper.

XDuce
The XDuce language [9] is a functional language developed as an
XML processing language. It introduces so called regular expres-
sion types the values of which are comparable to our XML objects.
Elements are created by specific constructors and the content can
be accessed through pattern matching. XDuce supports type infer-
ence for patterns and variables and performs a subtyping analysis
to ensure validity of regular expression type instances at compile
time. The algorithm is based on regular tree automata and operates
on a further internal representation for regular expression types.

BigWig
BigWig [4] is a programming language for developing interactive
web services. It compiles BigWig source code into a combina-
tion of standard web technologies, like HTML, CGI, applets, and
JavaScript. Typed XML document templates with gaps are intro-
duced. In order to generate XML documents dynamically, gaps
can be substituted at runtime by other templates or strings. For all
templates BigWig validates all dynamically computed documents
according to a given DTD. This is done by two data flow analy-
ses constructing a graph which summarizes all possible documents.
This graph is analyzed to determine validity of those documents. In
comparison to our approach templates can be seen as methods re-
turning XML objects. The arguments of the methods correspond to
the gaps of the templates.

2.1 Evaluation
The main observation is that current tools for integrating XML into
programming languages, except XDuce and BigWig, either use
only a string-based representation of XML documents or make a
strict distinction between the string representation and the object
representation of an XML document. The programmer is forced
to switch between both representations by marshalling and unmar-
shalling.

If compared to numerical computing, this would mean that the pro-
grammer of numerical applications would be forced to switch be-
tween the string representation of numbers and the corresponding
abstract numbers. Of course, this is not the case in numerical appli-
cations. There is only the concept of abstract numbers, the string
representation is used only to denote a number, there is no string
representation of a number in the running program.

In the following section, we will show that, in analogy to num-
bers, it is possible to eliminate the difference between the string
representation of an XML document and the XML document it-
self represented as an object. For the programmer, there are only
XML objects. Like decimal notations of numbers and operations
on numbers, there are notations for creating XML objects and for
constructing new XML objects out of existing ones. As for num-
bers, the string representation of an XML object is needed only for
communicating with the outside world. Guaranteeing the validity
of XML objects according to an underlying DTD or XML schema
is an important consequence of our proposal.

3. XML OBJECTS: THE XOBE PROJECT
3.1 Overview and Simple Examples
The main aim of the XOBE-project (XML OBJECTS) is to elimi-
nate the distinction between the string representation and the object
representation of XML documents. A web service generating XML
or HTML conceptually works only with XML objects. XML struc-
tures in a program always denote object structures. It is important
that these concepts guarantee validity statically at compile time.

In order to achieve these goals, we use a DTD or an XML schema
directly as a definition of classes for XML objects. Putting in an-
other way, this means that XML objects are instances of a DTD or
of an XML schema. For every element of a DTD or of an XML
schema there is a corresponding class. XML objects as instances
of these classes are XML documents or a part thereof having the
corresponding element as the root and being valid according to the
DTD or XML schema. New XML objects can be generated by con-
structors which we call parameterized XML expressions. These ex-
pressions basically consist of valid XML where other valid XML

objects can be inserted in places which are allowed according to
the underlying DTD or XML schema. These values are separated
from the surrounding XML by braces. These XML constructors
guarantee validity statically at compile time. Figure 2 shows the
relationships between DTD or XML schema and XML objects in
XOBE.

XML objects

DTD or

XML schema

XML constructors
generated by

Instances of

Figure 2: XOBE

We will explain our concepts by examples. The first examples deal
with HTML and assume an XML schema for XHTML as given in
[22].1

The following Java method generates an HTML object containing
a counter being taken from an int-value. int-values are allowed
in places where String-values are expected according to the un-
derlying definition of XHTML. The int-value is converted auto-
matically to its decimal notation as a String-value.

p u b l i c HTML countHTML (i n t c o u n t)
HTML h ;

h = HTML
HEAD TITLE T e s t S e r v e r Page /TITLE
/HEAD

BODY
H e l l o World : You a r e number

B c o u n t /B
t o us e t h i s s e r v l e t .

/BODY
/HTML ;

re turn h ;
/ / countHTML

It should be obvious that countHTML is guaranteed statically to
generate valid HTML.

The following method shows how to use different HTML classes.
It is a XOBE solution of the Java Server Page given in Listing 1.

p u b l i c HTML t i m e s o f d a y ()
HTML html ;
LI l i s t e l e m e n t ;

i f (timeOfDay () = = ”AM”)
l i s t e l e m e n t = LI Good Morning / LI ;

e l s e
l i s t e l e m e n t = LI Good Af te rnoon / LI ;

h tml = HTML
HEAD

TITLE Times Of Day /TITLE
/HEAD

BODY
UL l i s t e l e m e n t /UL

/BODY
/HTML ;

In contrast to [22], we use upper case letters for HTML tags.

re turn h tml ;
/ / t i m e s o f d a y

Obviously, only valid HTML is generated.

For example, the following piece of program is syntactically wrong
because a TITLE object is not allowed within an UL-object accord-
ing to the underlying definition of XHTML [22].

. . .
HTML html ;
TITLE t i t l e ;

t i t l e = TITLE Wrong Program /TITLE

html = HTML
HEAD

TITLE Times Of Day /TITLE
/HEAD

BODY
UL t i t l e /UL

/BODY
/HTML ;

. . .

In JAXB, for example, in general errors of this kind can be found
only at runtime. Moreover, JAXB requires to explicitly convert
a template given in a string to objects at runtime (unmarshal-
method).

A XOBE program generates XML only by XML constructors, i.e.
there is no string representation during generation. String genera-
tion is necessary only when the document is communicated to the
outside world, for example as the result of a Java Servlet. Only for
this purpose a method toString is provided for XML objects.

For generating lists by using a loop construct or recursion, the
classes defined so far are not sufficient. We need classes for defin-
ing variables acting as a container for a list. A class for this pur-
pose for lists the elements of which are e-elements is called e*
group.2 With <> we denote the empty list. The concatenation op-
erator + can be used with the obvious semantics. Moreover, there
is a getLength-method for these classes. Of course, an e* ob-
ject can be inserted only in places where a group of the elements is
allowed according to the underlying DTD or XML schema.

The following example shows how to generate lists by using Java’s
loop constructs. We assume a nonempty array of strings. We want
to generate list elements out of the array elements.

p u b l i c HTML dynamic page (S t r i n g [] v a l u e s)
HTML html ;

LI v a l u e l i s t ;

v a l u e l i s t = ;

f o r (i n t i = 0 ; i v a l u e s . l e n g t h ; i ++)
v a l u e l i s t = v a l u e l i s t +

LI v a l u e s [i] / LI ;
/ / f o r

h tml = HTML
HEAD

TITLE L i s t o f S t r i n g s /TITLE
/HEAD

BODY

It should be noted that an extra e* group is not necessary if there
is an explicit type name in the underlying XML schema for the
group.

UL v a l u e l i s t /UL
/BODY

/HTML ;

re turn h tml ;
/ / dynamic page

In this example, JAXB would require to use the Java LIST-class
for defining variable valuelist. Because LIST-variables allow
to store list elements belonging to an arbitrary class, correct HTML
is not guaranteed statically.

Although XOBE can ensure most predicates of the property va-
lidity statically, runtime checks are necessary in some exceptions.
Similar to an array of constant length, where the index has to be in
the declared range, the number of occurrences of specific element
has to be between the values set by the attributes minOccurs and
maxOccurs in the defining XML schema. Additional runtime
checks are necessary for identity constraints, restricted string types
and facets on numeric types.

The impact of our approach on the host language Java is an XML
consistent extension of the type system. Because of the outstanding
role of XML in the web application and web services programming
world, and may be the whole software development world in the fu-
ture, this seems to be a consequent step. We believe that the trade-
offs between the extension of an existing programming language
on one hand and the approach of defining a new programming lan-
guage around XML on the other are minimal. Instead the benefits
of using already developed code are significant.

3.2 An Illustrative Example Based on XML
Schema

This section introduces a scenario of a web application using our
non-standard language extension. The language we use is an ex-
tension of Java that we described in Section 3.1.

The example presented in this section is based on a web application
implementing a shopping portal for antiquarian books and records.
The user of this application can search different book and record
catalogs, can buy books and records or can contact the antiquarian
book seller offering a particular item for further information. Many
different antiquarian book and record sellers support the online an-
tiquarian book seller application.

They send their current offerings to the antiquary web site in an
XML data format. This format is called Antiquary Offerings Markup
Language, or AOML, and is defined as follows.

schema
e l e m e n t name=” aoml ” t y p e =” aoml ”/

complexType name=” aoml ”
s equence

e l e m e n t name=” a n t i q u a r y ” t y p e =” a n t i q u a r y ”
/

e l e m e n t name=” o f f e r i n g s ” t y p e =” o f f e r i n g s ”
/

/ s equence
a t t r i b u t e name=” d a t e ” t y p e =” d a t e ”/

/complexType

complexType name=” a n t i q u a r y ”
s equence

e l e m e n t name=”name” t y p e =” s t r i n g ”/
e l e m e n t name=” a d d r e s s ” t y p e =” s t r i n g ”/
e l e m e n t name=” e m a i l ” t y p e =” s t r i n g ”/

/ s equence
/complexType

complexType name=” o f f e r i n g s ”
group r e f =” i t em ” maxOccurs=” unbounded”/

/complexType

group name=” i t em ”
cho ice

e l e m e n t name=” book ” t y p e =” book ”/
e l e m e n t name=” r e c o r d ” t y p e =” r e c o r d ”/

/ cho ice
/group

complexType name=” book ”
s equence

e l e m e n t name=” a u t h o r ” t y p e =” s t r i n g ”
minOccurs=”0 ”/

e l e m e n t name=” t i t l e ” t y p e =” s t r i n g ”/
e l e m e n t name=” c o n d i t i o n ” t y p e =” s t r i n g ”/
e l e m e n t name=” p r i c e ” t y p e =” p r i c e ”/

/ s equence
a t t r i b u t e name=” c a t a l o g ” t y p e =” s t r i n g ”/

/complexType

complexType name=” r e c o r d ”
s equence

e l e m e n t name=” a r t i s t ” t y p e =” s t r i n g ”/
e l e m e n t name=” t i t l e ” t y p e =” s t r i n g ”/
e l e m e n t name=” c o n d i t i o n ” t y p e =” s t r i n g ”/
e l e m e n t name=” p r i c e ” t y p e =” p r i c e ”/

/ s equence
a t t r i b u t e name=” c a t a l o g ” t y p e =” s t r i n g ”/

/complexType

complexType name=” p r i c e ”
s i m p l e C o n t e n t

e x t e n s i o n bas e =” d e c i m a l ”
a t t r i b u t e name=” c u r r e n c y ” t y p e =” s t r i n g

”/
/ e x t e n s i o n

/ s i m p l e C o n t e n t
/complexType

. . .
/schema

The root element of AOML is the aoml element. The type of
the aoml element is a sequence of one antiquary element and
one offerings element as well as an attribute date. The an-
tiquary element consists of information about the offering an-
tiquary kept in the elements name, address, and email. In
the offerings element the offered books and records are speci-
fied. Therefore the type of element offerings is an unbounded
choice of book and record elements. Books are described by a
sequence of elements qualifying the author, which is optional, title,
condition, and price. Analogously the records are characterized by
artist, title, condition, and price.

The following document is an example of a book list sent from one
book seller to the web application.

aoml d a t e =” 2 / 2 0 / 2 0 0 2 ”
a n t i q u a r y

name St . J u e r g e n A n t i q u a r y /name
a d d r e s s R a t z e b u r g e r A l l e e 4 0 , 2 3 5 6 2 Luebeck

/ a d d r e s s
email s t . j u e r g e n a n t i q u a r i a t @ t o n l i n e . de /

email
/ a n t i q u a r y
o f f e r i n g s

book c a t a l o g =” l i t e r a t u r e ”
a u t h o r Thomas Mann / a u t h o r
t i t l e L o t t e i n Weimar / t i t l e
c o n d i t i o n b i n d e r b l o t c h e d , p a l e back /

c o n d i t i o n
p r i c e c u r r e n c y =”EUR” 8 . 0 0 / p r i c e

/book
book c a t a l o g =” l i t e r a t u r e ”

a u t h o r Thomas Mann / a u t h o r

t i t l e Buddenbrooks / t i t l e
c o n d i t i o n b i n d e r faded , owner q u a l i f i e r

a t p r e f i x / c o n d i t i o n
p r i c e c u r r e n c y =”EUR” 25 . 00 / p r i c e

/book
/ o f f e r i n g s

/aoml

The antiquarian book seller St. Juergen Antiquary offers
two books in the catalog literature.

A second XML format called Antiquarian Catalog Markup Lan-
guage, or ACML, is used to present the current offerings to the
customer. In ACML the offerings of all sellers are joined and cat-
egorized by different catalogs. In the following the definition of
ACML is given.

schema
. . .

e l e m e n t name=” acml ” t y p e =” acml ”/

complexType name=” acml ”
group r e f =” c a t a l o g s ”/

/complexType

group name=” c a t a l o g s ”
s equence maxOccurs=” unbounded”

group r e f =” c a t i t e m ”/
/ s equence

/group

group name=” c a t i t e m ”
s equence

e l e m e n t name=” c a t a l o g ” t y p e =” c a t a l o g ”/
/ s equence

/group

complexType name=” c a t a l o g ”
s equence

e l e m e n t name=” t i t l e ” t y p e =” s t r i n g ”/
group name=” e n t r i e s ”/

/ s equence
/complexType

group name=” e n t r i e s ”
s equence maxOccurs=” unbounded”

group r e f =” c a t e n t r y ”/
/ s equence

/group

group name=” c a t e n t r y ”
s equence

e l e m e n t name=” e n t r y ” t y p e =” e n t r y ”/
/ s equence

/group

complexType name=” e n t r y ”
s equence

cho ice
e l e m e n t r e f =” book ”/
e l e m e n t r e f =” r e c o r d ”/

/ cho ice
e l e m e n t r e f =” a n t i q u a r y ”/

/ s equence
/complexType

/schema

The root element of ACML is the acml element. The type of the
acml element is an unbounded sequence of catalog elements.
The catalog element consists of information about the catalog
title kept in the title element and the entries of the catalog, con-
tained in an unbounded sequence of entry elements. In each en-
try element the offered book or record is specified together with
its offering antiquary.

The following document is an example of the interface to the user

of the web application where all the books and records are catego-
rized by catalogs. In this instance only the books from the St. Juer-
gen Antiquary are considered.

acml d a t e =” 2 / 2 0 / 2 0 0 2 ”
c a t a l o g s

c a t a l o g
t i t l e l i t e r a t u r e / t i t l e
e n t r y

book
a u t h o r Thomas Mann / a u t h o r
t i t l e L o t t e i n Weimar / t i t l e
c o n d i t i o n b i n d e r b l o t c h e d , p a l e

back / c o n d i t i o n
p r i c e c u r r e n c y =”EUR” 8 . 0 0 / p r i c e

/book
a n t i q u a r y

name St . J u e r g e n A n t i q u a r y /name
a d d r e s s R a t z e b u r g e r A l l e e

4 0 , 2 3 5 6 2 Luebeck / a d d r e s s
email s t . j u e r g e n a n t i q u a r i a t @ t

o n l i n e . de /email
/ a n t i q u a r y

/ e n t r y
e n t r y

book
a u t h o r Thomas Mann / a u t h o r
t i t l e Buddenbrooks / t i t l e
c o n d i t i o n b i n d e r faded , owner

q u a l i f i e r a t p r e f i x / c o n d i t i o n
p r i c e c u r r e n c y =”EUR” 25 . 00 / p r i c e

/book
a n t i q u a r y

name St . J u e r g e n A n t i q u a r y /name
a d d r e s s R a t z e b u r g e r A l l e e

4 0 , 2 3 5 6 2 Luebeck / a d d r e s s
email s t . j u e r g e n a n t i q u a r i a t @ t

o n l i n e . de /email
/ a n t i q u a r y

/ e n t r y
/ c a t a l o g

/ c a t a l o g s
/acml

As shown the books are now assigned to their book catalog and
each entry includes the corresponding antiquarian book seller.

In the following we present the algorithm which transforms the
AOML documents transmitted from the various connected anti-
quarian book sellers to the web application into the ACML doc-
ument. This document is the format which is presented to the user
of the application to search through the offered items. We assume
that the AOML documents exist already as aoml objects and the
system processes the resulting acml object subsequently to our al-
gorithm.

Listing 3 shows the implementation of the method asCatalogs
as a XOBE program transforming an array of aoml objects into
one acml object.

1 acml a s C a t a l o g s (aoml [] i n p u t)
2 i n t i ;
3 S t r i n g t i t l e ;
4 S t r i n g [] t i t l e s ;
5 CatMap m;
6 aoml a ;
7 c a t a l o g s c a t s ;

9 / / i n s e r t a l l o f f e r i n g s o f one a n t i q u a r y i n t o
t h e map m

10 m = new CatMap () ;
11 f o r (i = 0 ; i i n p u t . l e n g t h ; i = i + 1)
12 m = addToMap(m, i n p u t [i]) ;
13 / / f o r

15 / / g e n e r a t e t h e c a t a l o g o u t o f t h e map m
16 c a t s = ;

17 t i t l e s = m. t i t l e s () ;
18 f o r (i = 0 ; i t i t l e s . l e n g t h ; i = i + 1)
19 t i t l e = t i t l e s [i] ;
20 c a t s = c a t s + c a t a l o g
21 t i t l e t i t l e / t i t l e
22 m. g e t (t i t l e)
23 / c a t a l o g ;
24 / / f o r

26 re turn acml c a t s /acml
27 / / a s C a t a l o g s

Listing 3: Method asCatalogs

First the method iterates over the array of aoml objects received as
input parameter (input). For each aoml object the method ad-
dToMap is called, which adds the offerings of the current object to
the map m of class CatMap. The class CatMap is defined similar
to the Java class Map but uses the specialized classes String and
entries instead of the general Object for the operations get,
put, titles, and containsTitle. Using CatMap the map
m maps the offered books or records to catalog titles, which are the
keys of the map. The implementation of addToMap can be seen
in Listing 4. Second the method generates an object catalog
for every catalog registered in the map m. All catalog objects
are added to the catalogs group cats. At the end the method
returns the complete document in acml format.

In the method asCatalogs we use XOBE program constructs
for creating the group of catalogs and the acml object. First an
empty catalogs group is assigned to variable cats (16) and
second cats is extended by a catalog object for each map en-
try (20-23). Therefore XML constructors and the operation + is
used. At the end of the method yet another XML constructor is
called returning the final aoml object.

The method addToMap in Listing 4 adds the offerings of an aoml
object to a given map.

28 CatMap addToMap(CatMap m, aoml i n p u t)
29 S t r i n g c t l g ;
30 a n t i q u a r y an ;
31 o f f e r i n g s o f ;
32 i t em i tm ;

34 an = i n p u t / a n t i q u a r y ;
35 of = i n p u t / o f f e r i n g s ;

37 f o r (i n t i = 0 ; i o f / . g e t L e n g t h () ; i ++)
38 / / i t m p o i n t s t o t h e c u r r e n t i t e m
39 i tm = of / [i] ;

41 / / g e t v a l u e o f a t t r i b u t e c a t a l o g
42 i f (i tm@ ca ta log = = n u l l)
43 c t l g = ” misc ” ;
44 e l s e
45 c t l g = i tm@ ca ta log ;

47 / / remove a t t r i b u t e c a t a l o g
48 i tm@ ca ta log = n u l l ;

50 / / add e n t r y t o t h e c a t a l o g
51 i f (m. c o n t a i n s T i t l e (c t l g))
52 m. p u t (c t l g , (m. g e t (c t l g) +
53 e n t r y i tm an / e n t r y) ;
54 e l s e
55 m. p u t (c t l g , e n t r y i tm an / e n t r y) ;
56 / / f o r

58 re turn m;
59 / / addToMap

Listing 4: Method addToMap

The method iterates through the offerings of the aoml object in-

put given as parameter. For each offered item the method tries
to determine the corresponding catalog name given by the attribute
catalog. If the attribute is present the item is registered with the
value of the attribute as catalog name into the map m. If the attribute
catalog is absent the item is sorted into catalog misc. The at-
tribute catalog is removed before the item is added to the map
values. The items of one catalog are stored in an entries group.

In the example we use XPath expressions [21] to select the con-
tents of the aoml element (34,35) and the content of one offered
item (39,42,45). For the termination of the for-loop the number
of items is needed, which we receive by calling the getLength-
method (37). Further the attribute catalog is removed (48). In
the if-condition the values of the map are extended by entry ob-
jects (52-53,55) using operation + and XML constructors.

4. THE XOBE TYPE SYSTEM
As seen in the last section XOBE allows XML syntax in expres-
sions, assignments and method parameters. Consider the following
assignment as example where an expression in AOML syntax is as-
signed to variable page.

aoml page ;
o f f e r i n g s o f f e r s ;

.

.

.
page = aoml

a n t i q u a r y
name St . J u e r g e n Ant iqua ry /name
a d d r e s s R a t z e b u r g e r A l l e e 4 0 , 2 3 5 6 2

Luebeck / a d d r e s s
email s t . j u e r g e n a n t i q u a r i a t @ t o n l i n e .

de /email
/ a n t i q u a r y
o f f e r s

/aoml ;

During compilation the XOBE system verifies the correctness of
the assignment in two steps. First it determines the types of the
right and left hand side using type inference. Secondly, the sub-
type relationship of the inferred types is checked by a subtyping
algorithm.

In XOBE we formalize and represent types as regular hedge ex-
pressions representing regular hedge languages [5]. Consequently
an XML schema is formalized and represented internally by a reg-
ular hedge grammar.

Definition 1 (regular hedge grammar)
A regular hedge grammar is defined by with a set

of terminal symbols, consisting of simple type names
and a set of element names (Tags), a set of nonterminal

symbols (names of groups and complex types), a start expression
and a set of rules or productions of the form with
and is a regular hedge expression over .3

We define the regular hedge expression, referred in short as regular
expression, similar to the notation used in [23].

Definition 2 (regular hedge expression)
Given a set of terminal symbols and a set of nonter-
minal symbols, the set of regular hedge expressions is defined

We restrict to be recursive in tail position only. This ensures
regularity.

recursively as follows:

the empty set,

the empty hedge,

the simple types,

the complex types,

the elements,

the regular union operation,

the concatenation operation, and

Kleene star operation.

for all , , , .

As an example we formalize the XML schema from the last section
as regular hedge grammar as
with:

,

,

, and

.4

As in XML Schema we do not demand that the set of element
names and the set of complex types have to be disjunct.

As mentioned above XOBE infers at compile time both types of the
right and left hand sides of the assignment. Because all variables
have to be declared, the type inference of variables is simple. In our
example variable page is declared of type and variable of-
fers of type . Based on the variable types, the type of
the whole XML constructor on the right hand side can be inferred.
In the example above it is

.

After inferring the types of the left and right hand sides, the XOBE
type system checks if the type of the right hand side is a subtype of
the type of the left hand side. For this example XOBE has to check
the so-called regular inequality

where stands for the subtype relationship. Note, that the name
on the right hand side stands for the complex type . The

name on the left hand side is an element name.

Checking the subtype relationship between two regular hedge ex-
pressions is the main task in proving type correctness of XOBE pro-
grams. For this we adopt the Antimirov algorithm [2] for checking
inequalities of regular expressions and extend it to the hedge gram-
mar case. The idea behind Antimirov’s algorithm is that for every
invalid regular inequality there exits at least one reduced inequality
which is trivially inconsistent. An inequality is trivially inconsis-
tent if the empty word is in the language represented by the regular

Because the comma () is used as concatenation operation in reg-
ular expression, we use the semicolon () as separator in sets where
regular expressions appear as elements.

expression on the left hand side but not in the language represented
by the right hand side regular expression.

The algorithm operates as follows: It takes the regular inequality
to prove as argument and retrieves the leading simple type names,
complex type names and element names from the left hand side
regular expression using operation leadingNames. For each de-
termined name the algorithm tries to reduce both sides of the in-
equality by this name. The resulting reduced inequalities are sim-
pler than the starting inequality in the majority of cases and can be
checked by a recursive application of the algorithm. The algorithm
tracks already treated inequalities in a set of assumptions, which
is empty in the beginning, as in standard algorithm for subtyping
recursive types. This ensures termination if we encounter the same
inequality later on. To avoid invalid proves of subtyping, we have
to add an inequality to the set of assumptions after calculating its
reduced inequalities.

There are two different results of our recursive algorithm. First
the algorithm responds false if the inequality in question is trivially
inconsistent. To verify this property the predicate isNullable
checks the empty word inclusion. Secondly, the algorithm termi-
nates with true when it processes an inequality which is already
in the set of assumptions. This means that our algorithm cannot
produce any new inequality in this branch of recursion.

Definition 3 (subtyping algorithm)
Given a set of assumption the inequality to prove is de-
fined by the following pseudo code:

boo l prove (r s , A)
i f ((i s N u l l a b l e (r) && ˜ i s N u l l a b l e (s))

s = =)
re tu rn f a l s e ;

e l s i f ((r s) A)
re tu rn tru e ;

e l s e
ok : = t ru e ;
ns : = l ead ingNames (r) ;
f o r a l l (n ns)

pd : = pd p a r t i a l D e r i v a t i v e s (n , r
s)

A : = A r s ;
f o r a l l (() () pd)

ok : = ok && (prove (,A)
prove (,A)) ;

re tu rn ok ;
/ / e l s e

/ / prove

Listing 5: Subtyping Algorithm

Antimirov introduces so-called partial derivatives of regular ex-
pressions to express reduced regular expression. A partial deriva-
tive reduces a regular expression by a given type name or element
name. In the hedge grammar setting we modify partial deriva-
tives concerning type names and element names. For example, if
we have the regular expression
and calculate its partial derivative with respect to the given element
name , we receive the result .
The result is a set of type pairs in general, because we can get mul-
tiple derivatives for a given regular expression. The first type of the

pair is the type of the content of element . The second is
the regular expression reduced by element .

Additionally Antimirov introduces so-called partial derivatives of
regular inequalities to express reduced inequalities. In the hedge
grammar case these become more complicated. Because the partial
derivatives of regular expressions are pairs we have to perform the
set-theoretic observation of Hosoya, Vouillon and Pierce [9] for a
recursive application of our prove procedure. This transforma-
tion simplifies the set of all partial derivatives of regular inequali-
ties. We receive a set the elements of which have the form of two
inequalities conjuncted with the boolean operation or.

In the remaining section we apply our subtyping algorithm to a
small example. Consider the following hedge grammar as example

with:

,

,

, and

.

For a concise description let and
. We want to check the regular inequality ,

for which we start the subtyping algorithm with an empty set of
assumptions .

In the first recursion the algorithm calculates the sets of leading
names . Additionally the set of assumptions is en-
larged by the inequality to check .

During the calculation of partial derivatives of the inequality
the partial derivatives of the regular ex-
pression and of the regular expression

are determined. More precisely, this means

.

Because our algorithm is not suited for proving Cartesian product
subtypes we apply the following set-theoretic transformation. For
brevity, let the inequality above be

.

At first we can rewrite this inequality to

because in general, is equal to with
being the set of all ground types. After this we apply distributivity
of intersection over unions and turn the disjunctive form into the
conjunctive form. This yields

where we can separate the and types in each disjunction:

Because is one argument in each clause this inequality is in turn
equivalent to:

According to this transformation the algorithm produces the fol-
lowing 8 inequalities, which are pairwise connected with the boolean
operation or. This means that only one inequality of the pairs has
to evaluate to true.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

The inequalities 1, 5 and 3 evaluate trivially to true, while inequal-
ities 2, 6, 4 do not hold. Because inequality 7 is false, inequality 8
has to be checked in another recursion of our algorithm.

Let and for further de-
scription. For proving inequality 8 the algorithm calculates the sets
of leading names . Again the set of assumptions is en-
larged . The following partial derivatives are
generated during the algorithm:

(9)

(10)

(11)

(12)

It is easy to see, that inequality 9 holds and inequalities 10 and 11
evaluate to false. The last inequality 12 is true, because it is already
in our set of assumptions . This leads to the result, that
inequality is accepted.

Because the algorithm did not derive any inconsistent partial deriva-
tive we can accept as correct.

5. IMPLEMENTATION ISSUES
The previous sections presented the representation for the code of
XOBE programs. We now describe our XOBE architecture [13],
which is shown in Figure 3. Although it is possible to integrate the
functionality of XOBE into the Java compiler, we have chosen to
implement XOBE as a Java preprocessor. The XOBE preprocessor
consists of the following three components:

1. The XOBE parser,

2. the type checking analysis and

3. the transformation to standard Java code.

Java compiler

Java transformation

Type checking

XOBE Java parser

Java with DOM

XOBE preprocessor

XOBE program

XML schema

Figure 3: XOBE Java Architecture

The XOBE parser reads the XOBE program and converts the XML
portions of the program to an internal representation. The parser
includes in addition to a standard Java parser an XML Schema
parser and a slightly modified XML Parser. The schema parser
is necessary to scan the XML schemas imported by the XOBE pro-
gram. The XML Parser is needed to recognize the XML construc-
tors distributed over the program. Because the XML constructors
can include XML variables we have to modify the standard XML
Parser. In our implementation we utilize the Java compiler compiler
JavaCC [26] to generate the XOBE parser. Additionally we use the
XML parser xerces [16] to recognize the used XML schemas. The
internal representation of the processed XOBE program is done
with the Java tree builder JTB [19].

In the type analysis phase the preprocessor determines whether the
parsed program is well typed or not. Well-typed in XOBE means
that the processed XML objects are valid according to the declared
XML schemas. At first the type analysis phase validates the im-
ported schemas. Afterwards, the type check of Java expressions
using XML objects, like assignments or method calls, is performed
according to the description of the previous section. The type infer-
ence of XML constructors and XML variables is followed by sub-
typing proves to verify the expressions. Because the type system of
standard XML is strict and can be formalized by restricted regular
hedge expressions, we can use the regular hedge grammar based
algorithm deciding the equivalence of regular expressions for that
purpose. XML Schema weakens the strictness by introducing type
extension and type restriction, which requires a more sophisticated
type inference strategy. The detailed description of this extended
algorithm will be introduced in thesis [11].

The last task the preprocessor performs is the transformation of the
XOBE program into Java source code, which is accepted by the
standard Java compiler. For this resulting Java code several imple-
mentation alternatives exists, depending on the XML representa-
tion. We chose the standard representation of the Document Object
Model, or DOM [20], recommended by the W3Consortium. The
transformation replaces the XML constructors and XPath expres-
sions of the XOBE program with suitable DOM code. The exact
transformation rules will be presented in [11]. Please note that even
though DOM is an untyped XML implementation not guaranteeing
validity statically, the transformed XML objects in the XOBE pro-

gram are valid. This holds because our type-checking algorithm
guarantees this property. In our implementation the transformation
is performed on the internal JTB representation, where we replace
the subtrees representing XOBE constructs by newly created sub-
trees, which represent the suitable DOM code.

Using DOM is a straightforward implementation, but other imple-
mentations are possible as well. Especially we think that an im-
plementation, which enables a more structured access to XML el-
ements, would be useful. The idea of this structured access is that
the user can select the content of an element by structure defined in
the schema beside the element centric access of DOM. The struc-
ture of the content can be a nested sequence, choice or all groups.
Even DOM permits this structured selection too, if the appropri-
ate schema is available, expensive additional calculation effort is
necessary. This calculation is required because the structure of an
element isn’t stored in the DOM implementation. If the implemen-
tation considers the structure of the element content, the content
can be accessed in constant time. This accelerates the selection
by magnitude, because the DOM selection of one child element is
linear to the number of children.

Because XOBE is a statically typed system, XOBE programs have
no runtime overhead when compared to regular Java programs. The
included XML schemas are used only for compile time type check-
ing and are not preserved at runtime. However, the extra type in-
formation in an XOBE program can be used to enable program op-
timizations. For example, the attribute and tag names of elements
can be stored in the corresponding XML object classes once instead
of storing duplicates for every XML object.

6. CONCLUDING REMARKS
This paper proposed to eliminate the distinction between XML doc-
uments in string form and in object form. Web applications gener-
ating XML or HTML should have to deal only with XML objects.
A document type definition or an XML schema is used directly for
defining new classes for XML objects. XML constructors allow
to generate new XML objects either from scratch or by inserting
existing XML objects in places, which are allowed according to
the underlying DTD or XML schema. This mechanism guarantees
statically by the compiler that XML objects always contain valid
XML documents. There is no need for special runtime checking
or for extra test runs to check the validity of the generated XML
documents. These tools require to generate an XML document in
string form only when the document is communicated to the out-
side world for example as the result of a Java Servlet.

In the future, a lot of research has to be done to integrate XPath and
XQuery with XML objects smoothly. In this paper, only the basics
concerning XPath and XML objects could be given and solved. A
challenging question will be what kind of restrictions is necessary
in order to be able to guarantee the type of the result of a XQuery
statement statically and uniquely. Moreover, optimization issues
have to be looked at. For example, the compiler can prepare the
generation of XML objects out of existing ones by XML construc-
tors such that at runtime only some pointers have to be set.

7. REFERENCES
[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web,

From Relations to Semistructured Data and XML. Morgan
Kaufmann Publishers, San Francisco, California, 2000.

[2] V. Antimirov. Rewriting regular inequalities. In Reichel,
editor, Fundamentals of Computation Theory, volume 965 of

LNCS, pages 116–125. Springer Verlag Heidelberg, 1994.

[3] K. Arnold and J. Gosling. The Java Programming Language.
The Java series. Addison Wesley Longman Limited, second
edition, 1998.

[4] C. Brabrand, A. Moller, and M. I. Schwartzbach. Static
validation of dynamically generated html. In Proceedings of
Workshop on Program Analysis for Software Tools and
Engineering (PASTE 2001), June 18-19, Snowbird, Utah,
USA. ACM, 2001.

[5] A. Brüggemann-Klein, M. Murata, and D. Wood. Regular
tree and regular hedge languages over unranked alphabets:
Version 1. Technical Report HKUST-TCSC-2001-05, Hong
Kong University of Science & Technology, April 3 2001.
Theoretical Computer Science Center.

[6] ExoLab Group. Castor. ExoLab Group,
http://castor.exolab.org/, 11 December 2001.

[7] D. K. Fields and M. A. Kolb. Web Development with Java
Server Pages, A practical guide for designing and building
dynamic web services. Manning Publications Co., 32
Lafayette Place, Greenwich, CT 06830, 2000.

[8] M. Gaither. Foundations of WWW-Programming with HTML
and CGI. IDG-Books Worldwide Inc., Foster City,
California, USA, 1995.

[9] H. Hosoya, J. Vouillon, and B. C. Pierce. Regular expression
types for xml. In Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming
(ICFP ’00), Montreal, Canada, volume 35(9) of SIGPLAN
Notices, pages 11–22. ACM, September 18-21 2000. ISBN
1-58113-202-6.

[10] M. Kay. XSLT Programmer’s Reference. Wrox Press Ltd.,
Burmingham, 2000.

[11] M. Kempa. Schema-abhängige Programmierung von
XML-basierten Web-Anwendungen. PhD thesis, Institut für
Informationssysteme, Universität zu Lübeck, 2003. to
appear, in german.

[12] M. Kempa and V. Linnemann. V-DOM and P-XML –
Towards A Valid Programming Of XML-based Applications.
In A. B. Chaudhri and A. Rashid, editors, OOPSLA ’01
Workshop on Objects, XML and Databases, Tamba Bay,
Florida, USA, October 2001.

[13] J. Kramer. Erzeugung garantiert gültiger Server-Seiten für
Dokumente der Extensible Markup Language XML.
Master’s thesis, Institut für Informationssysteme, Universität
zu Lübeck, 2002. in german.

[14] Netscape Communications Corporation. JavaScript 1.1
Language Specification.
http://www.netscape.com/eng/javascript/
index.html,
1997.

[15] E. Pelegrí-Llopart and L. Cable. Java Server Pages
Specification, Version 1.1. Java Software, Sun Microsystems,
http://java.sun.com/products/jsp/download.html,
30. November 1999.

[16] T. A. X. Project. Xerces Java Parser.
http://xml.apache.org/xerces-j/index.html ,
15. November 2001. Version 1.4.4.

[17] A. Renner. Xml data and object databases: The perfect
couple? In Proceedings IEEE International Conference on
Data Engineering, pages 143–148, Heidelberg, April 2001.

[18] Sun Microsystems, Inc. The Java Architecture for XML
Binding, User Guide. http://www.sun.com, May 2001.

[19] K. Tao, W. Wang, and D. J. Palsberg. Java Tree Builder JTB.
http://www.cs.purdue.edu/jtb/, 15. May 2000.
Version 1.2.2.

[20] W3Consortium. Document Object Model (DOM) Level 1
Specification, Version 1.0. Recommendation,
http://www.w3.org/TR/1998/REC-DOM-Level-1-
19981001/, 1. October
1998.

[21] W3Consortium. XML Path Language (XPath), Version 1.0.
Recommendation, http://www.w3.org/TR/xpath,
16. November 1999.

[22] W3Consortium. XHTML 1.0: The Extensible HyperText
Markup Language, A Reformulation of HTML 4.0 in XML
1.0. Recommendation, http://www.w3.org/TR/2000/
REC-xhtml1-20000126/, 26. January
2000.

[23] W3Consortium. XML Schema: Formal Description.
Working Draft, http://www.w3.org/TR/2001/WD-
xmlschema-formal-20010925/, 25. September
2001.

[24] W3Consortium. XML Schema Part 0: Primer.
Recommendation, http://www.w3.org/TR/2001/REC-
xmlschema-0-20010502/, 2. May
2001.

[25] L. Wall and R. L. Schwartz. Programming Perl. O’Reilly &
Associates, Inc., Sebastipol, California, 1992.

[26] WebGain. Java Compiler Compiler (JavaCC) - The Java
Parser Generator.
http://www.webgain.com/products/java cc/, 2002.
Version 2.1.

[27] A. R. Williamson. Java Servlets by Example. Manning
Publications Co., Greenwich, 1999.

