Harmony

A Framework for Heterogeneous Data
Svynchronization

Michael Greenwald, Owen Gunden, Jon Moore,
Benjamin Pierce, Alan Schmitt, Stephen Tse

University of Pennsylvania

“Building the next 700 synchronizers...”

&0

<

&Nm@

AAA A/i\
S

Synchronizer

A7 A
A A /j\ /j\ AAA

A A AA ,

LS L3

AAA K§\
S

Synchronizer

AA §> AAA
A A 1%& ‘éﬁfﬁﬁﬁx

AAA K§\
S

Synchronizer

AA §> AAA
A A 1%& ‘éﬁfﬁﬁﬁx

Views

Unordered, edge-labeled trees. Formally:

V = name — V

)
Phone — 333-4444
Pat —
URL — http://pat.com
C — <
Phone — 888-9999
Chris
\ URL — http://chris.org

List encoding

[vi v2 ... vn]
)
*h — vy
r*h|—>V2
Xt — 4 *h +— v,
*t — R
\ \ *t|—>{

XML encoding

<tag attrl="vall" ... attrm="valm">
subeltl ... subeltn
</tag>

((
attrl — vall

attrm — valm
tag — < -

I\

(subelt1l)

A N

(subeltn)

\ \ -

Lenses, Formally

» Set A of abstract views

» Set C of concrete views
Pair of partial functions

» A get function [/ from C to A

» A put function [\, from Ax C to C
Lens laws

» GetPut: I\, (I "¢, ¢) =c (the put function has no side
effect)

» PutGet: [71\ (a, ¢) =a (the put function propagates
all data)

Connection to Database theory

Strongly connected to the view update problem: given an
update on some abstract view, find a translation of this
update on the concrete view

» Mmany such updates may exist

» notion of complement of a view:
> a view and its complement include all information
from the concrete view
» update under constant complement:

> the translation of an update does not modify the
complement

Some lenses

id ¢ = c
id\,(a,¢c) = a

(const vd) "¢ = v
(const v d) \ (a, ¢ if a=v and ¢+
d if a=v and ¢ =)

undef. otherwise

I
o

(k) "¢ = kU ¢
GRN(a, ¢) = IN(EN(a,17¢), ¢) if e O
I\ (kB (a,), Q) if c=Q

More lenses

(rename b) \(a, c) b=1(n) — a(n)

(rename b) ¢ = {b(n) — c(n)
{

(hoist n) ¢ = w ifC:{n|—>fU
undef. otherwise
(hoist n) \ (a, c) = {n — a

More lenses (2)

(pivot n) ¢ = {k’l—>?} if c = n'_){k'_){
U
undef. otherwise
(pivot n)\,(a, ¢c) = n'_){k'_){ if@Z{kn—m;
v
undef. otherwise

Lens combinators: xfork

m

/pa
i}
A

pc | pc

7 N

Lens combinators: xfork

(xfork pc pa l1 lI3) "¢ =
(I, Clpe) + (I2/ Clpe)
undef.
(xfork pc pa by l2) \ (a,c) =
(I N\ (alpas clpe)) + (I2 \ (alza, clpe))

undef.

if (1)

otherwise

if (2)

otherwise

Lens combinators: map

(map 1) ¢ = {n — 1,/ c¢(n) n e dom(c)
0 1N (a(n). ¢(m))
n € dom(a) N dom(c)

n— I\, (a(n), Q)
n € dom(a) \ dom(c)

(map 1) \.(a,¢) =

\

Derived lenses

fork p l; lo = xfork p p l1 [

filter p d = fork p id (const {} d)
prune n d = fork {n} id (comnst {} {n — d})
focus n d = (filter {n} d); (hoist n)

mapp p | = fork p (map /) id

dispatch || = id
dispatch (pc,pa,l) :: rest = xfork pc pa | (dispatch rest)

Derived lenses (for lists)

hd d = focus {*h} {*t — d}
tl d = focus {*t} {*h — d}

map_list [= mapp {*h} [; mapp {*t} (map_list I)

hoist_list [| = id
hoist_list p:: rest = xfork {*h} p
(hoist {*h})
(hoist {*t}; hoist_list rest)

Applications

» generic synchronizers (XML, HTML, meta, outline ..

» (mostly finished): “universal bookmark synchronizer”

» (in progress): multi-format calendar syncing (Palm,
ical, iCalendar)

» (under consideration): address books, bibtex,
structured documents

» Other suggestions welcome!!

)

Some major open questions

» Coverage of the present tree-transformation language
> characterization of expressive power
> pushing the language further (binding !)
> metatheory (type systems, algebraic theory, ...)

> generating lenses “by example” or from schemas
» Principles of n-way synchronization

» Extending the framework to other data structures
> dags (underway)
> relations, ordered lists, sets, bags, etc., etc.

» Relation between trace-based and state-based (and
timestamp-based, vector-clock-based, etc.) synch.

