
1

CS2 Spring 2005 (LN7) 1

CS2Bh: Current Technologies

Introduction to XML and Relational Databases

Spring 2005

Relational Algebra

CS2 Spring 2005 (LN7) 2

Relational Algebra

Relational algebra is a set of 6 operators that act on tables to
produce tables. Just as we operate on numbers with arithmetic,
we operate on tables with relational algebra

Key to understanding SQL and query processing, optimization

SQL is, roughly speaking, a generalization of relational algebra

Internal languages: an SQL query is rewritten as a relational-
algebra expression, which can in turn be rewritten into a more
efficient form and evaluated using a bunch of well-developed
algorithms

2

CS2 Spring 2005 (LN7) 3

Queries and query languages

Query: a question about the data in a database.
A statement requesting the retrieval of information from a database.
Example: find the names of students who are taking CS2.

Query language: language in which queries are expressed.

Query languages <> programming languages!
QLs are not intended to be used for complex calculations.
QLs support easy, efficient access to large data sets.

CS2 Spring 2005 (LN7) 4

Preliminaries

Review: a relational database is a collection of tables.
A query is applied to relation instances, and the result of a
query is also a relation instance.

Schemas of input relations for a query are fixed (the query
will run regardless of instances!)
The schema for the result of a given query is also fixed!

Determined by the query.
Example schemas:
Students (sid: string, sname: string, gpa: real)
Courses (cid: string, cname: string, credit: integer, teacher: string)
Enroll (sid: string, cid: string, grade: string)

3

CS2 Spring 2005 (LN7) 5

Example instances

3.0john004
4.0grace003
2.8mary002
3.0joe001
gpasnamesid

ACS2003
A166003
CCS2002
B166001

gradecidsid

fan4dbCS2
poe3math166

instructorcreditscnamecid

S: E:

C:

Question: both John and Joe have a GPA of 3.0. Is S legal?

CS2 Spring 2005 (LN7) 6

Relational Algebra

A set of operations (functions), each of which takes a relation (or
relations) as input and produces a relation as output.

Basic operations: using these we can build up sophisticated
database queries.

Projection
Selection
Union
Difference
Product
Renaming

Additional operations: intersection, join, division.

4

CS2 Spring 2005 (LN7) 7

Example: given S

Projection

Question:
• What is the schema of the result? Recall S has schema

Students (sid: string, sname: string, gpa: real)
• What is the query (in English)?

4.0grace003
2.8mary002
3.0joe001
gpasnamesid

4.0003
2.8002
3.0001
gpasid

Given a list of column names A and a relation R, πΑ(R) extracts
the columns in A from the relation.

πsid, gpa (S) is

CS2 Spring 2005 (LN7) 8

Example: given S1

Projection - continued

In relational algebra, the answer is always a set (has to
eliminate duplicates).
However, SQL and some other languages return, by default, a
bag (don’t eliminate duplicates).

Suppose the result of πΑ(R) has duplicate values.

πgpa (S1) is

3.0john004
4.0grace003
2.8mary002
3.0joe001
gpasnamesid

4.0

2.8

3.0

gpa

5

CS2 Spring 2005 (LN7) 9

Example: given S

Selection

Question:
• What is the schema of the result? Recall S has schema Students (sid:

string, sname: string, gpa: real)
• What is the query to find (in English)?

Given a condition C and a relation R, σC (R) extracts those rows
from the relation R that satisfy C.

σgpa >= 3.0 (S) is

3.0john004
4.0grace003
2.8mary002
3.0joe001
gpasnamesid

3.0john004
4.0grace003
3.0joe001
gpasnamesid

CS2 Spring 2005 (LN7) 10

What can go into a condition?

3.0john004

gpasnamesid

3.0john004
4.0grace003
2.8mary002
2.0john001
gpasnamesid

Condition C in σC (R) is built up from

• Boolean operations on the filed names: <. <=, =, ≠, >=, >.
Example: gpa >= 3.0, sname = “john”.

• Predicates constructed from these using ∧ (and), ∨ (or), ¬ (not).

Question: what is the result of σgpa >= 3.0 ∧ sname = “john” (S)?

given S1 σgpa >= 3.0 ∧ sname = “john” (S1) is

6

CS2 Spring 2005 (LN7) 11

Set operations

Set operations: S1 ∪ S2, S1 − S2, S1 ∩ S2.
What are these?
Condition: all these operations must be union-compatible:

Same number of fields (same arity)
‘Corresponding’ fields have the same domain (same type).

Union-compatibility is a database terminology.
What is the corresponding programming language terminology?
Having the same type!
Question: recall S and C given above. Can we write S ∪ C?
Why?
What is the schema of the result of a set operation?

CS2 Spring 2005 (LN7) 12

Set operations – union

3.0john004
4.0grace003
2.8mary002
3.0joe001
gpasnamesid

4.0peter005
3.0john004
4.0grace003
2.8mary002
3.0joe001
gpasnamesid

4.0peter005
4.0grace003
2.8mary002
3.0joe001
gpasnamesid

Given S1:

S2:

S1 ∪ S2 is:

7

CS2 Spring 2005 (LN7) 13

Set operations – set difference

3.0john004
4.0grace003
2.8mary002
3.0joe001
gpasnamesid

4.0peter005
4.0grace003
2.8mary002
3.0joe001

Gpasnamesid

3.0john004

gpasnamesid

Given S1:

S2:

S1 − S2 is:

Question: what is S2 − S1?

CS2 Spring 2005 (LN7) 14

Set operations – intersection

3.0john004
4.0grace003
2.8mary002
3.0joe001
gpasnamesid

4.0peter005
4.0grace003
2.8mary002
3.0joe001
gpasnamesid 4.0grace003

2.8mary002

3.0joe001

gpasnamesid

S1 ∩ S2 is:

Given S1:

S2:

8

CS2 Spring 2005 (LN7) 15

Set operations – intersection

In relational algebra, basic set operations are union and set
difference only. It turns out that we can implement the other set
operations using those basic operations. For example, for any
relations (sets) S1 and S2, we can already express S1 ∩ S2.

How?

S1 ∩ S2 = S1 − (S1 − S2)

However, we have to be careful. Although it is mathematically nice
to have fewer operators, operations like set differences may be
less efficient than intersection.

CS2 Spring 2005 (LN7) 16

Product

Product R × S connects two relations R and S that are not
necessarily union compatible.

4.0grace003
2.8mary002
3.0joe001
gpasnamesid

fan4dbCS2
poe3math166

instructorcreditscnamecid

Example: given S:

C:

9

CS2 Spring 2005 (LN7) 17

S × C is:

fan4dbCS24.0grace003
fan4dbCS22.8mary002
fan4dbCS23.0joe001
poe3math1664.0grace003
poe3math1662.8mary002
poe3math1663.0joe001

instructorcreditscnamecidgpasnamesid

CS2 Spring 2005 (LN7) 18

Cartesian product

Each row of S is paired with each row of R.
Schema of the result has one field per field of S and R.

Example: the schema of S × C is
(sid: string, sname: string, gpa: real,
cid: string, cname: string, credits: integer,
instructor: string)

Question: what is the primary key of R × S in general?
Cardinality. Suppose that S has n rows and R has m rows.
What is the cardinality of R × S?

10

CS2 Spring 2005 (LN7) 19

Example: given S

Product – continued

4.0grace003

2.8mary002

3.0joe001
gpasnamesid

Details may vary among systems/formalisms but a common
answer is to suffix the attribute names with 1 and 2.

What happens when we form a product of two relations with
columns having the same name?

E:

CCS2002
B166001

gradecidsid

CS2 Spring 2005 (LN7) 20

Example: S × E is

CCS20024.0grace003
CCS20022.8mary002
CCS20023.0joe001
B1660014.0grace003
B1660012.8mary002
B1660013.0joe001

gradecidsid: 2gpasnamesid:1

11

CS2 Spring 2005 (LN7) 21

Product – continued

Products are hardly used alone; they are typically used in
conjunction with a selection.

Example: σ sid:1 = sid: 2 ∧ cid = CS2 (S × E)

CCS20022.8mary002
gradecidsid: 2gpasnamesid:1

Question: what does this query do (in English)?
Suppose we want to find the names and grades of students who are

taking CS2. How to write the query?
πsname, grades (σsid:1 = sid: 2 ∧ cid = CS2 (S × E))

Cmary
gradesname

Question: why is this possible?

CS2 Spring 2005 (LN7) 22

Joins – conditional join

Questions:
What is the result schema?
Conditional join is in general more efficient than cross product. Why?

The condition C in a conditional join is usually an equality or conjunction of
equalities.

The combination of a selection and a join is so common that we
give it a special symbol (and name).

R C S is defined to be σC (R × S)

Example: S sid:1 = sid: 2 E is

CCS20022.8mary002
B1660013.0joe001

gradecidsid: 2gpasnamesid:1

12

CS2 Spring 2005 (LN7) 23

natural join

g12
c31
b21
a21
CBA

Question: what if R and S have no fields in common? -- Cartesian product!

R S : a ‘special case’ of conditional join: equality on
common fields of R and S

Equality condition only
On all common fields
Leave only one copy of these fields in the resulting relation.

d41
e21
d21
DBA

eb21
db21
ea21
da21
DCBA

R S R S

CS2 Spring 2005 (LN7) 24

Example – natural join

Question: what is S E?
Answer:

4.0grace003
2.8mary002
3.0joe001
gpasnamesid

CCS2002
B166001

gradecidsid

CCS22.8mary002
B1663.0joe001

gradecidgpasnamesid

Question: what is S C where C is an instance of
Courses (cid: string, cname: string, credits: integer, instructor: string) ?

Example: given S: E:

13

CS2 Spring 2005 (LN7) 25

Example – queries (1)

Students (sid: string, sname: string, gpa: real)
Courses (cid: string, cname: string, credits: integer, instructor: string)
Enroll (sid: string, cid: string, grade: string)

1. Find the names of Students.
πsname (Students)

2. Find the courses taught by Fan.
σinstructor = “fan” (Courses)

3. Find the titles of courses taught by Fan.
πcname (σinstructor = “fan” (Courses))
These queries involve a single relation
The result of a query is also a relation and therefore, can be used as
input of another query

CS2 Spring 2005 (LN7) 26

Example – queries (2)

Students (sid: string, sname: string, gpa: real)
Courses (cid: string, cname: string, credits: integer, instructor: string)
Enroll (sid: string, cid: string, grade: string)

Find the names of Students who are taking CS2.
Two relations. Therefore, use (natural) join or product
Fields: projection
Condition: selection

Solutions:

1. πsname (σcid = “CS2” (Students Enroll))

2. πsname (Students σcid = “CS2” (Enroll))

14

CS2 Spring 2005 (LN7) 27

renaming – another operator (1)

renaming operator:

• ρ (R, E): define temporary relation R to hold the result of query E

• ρ (R (A → B), E): in addition, rename A attribute in E as B.

Example. Find the names of Students who are taking CS2.

πsname (Students σcid = “CS2” (Enroll))

is equivalent to:

ρ (temp1, σcid = “CS2” (Enroll))

ρ (temp2, Students temp1)

πsname (temp2)

CS2 Spring 2005 (LN7) 28

renaming – another operator (2)

Students (sid: string, sname: string, gpa: real)
Courses (cid: string, cname: string, credits: integer, instructor: string)
Enroll (sid: string, cid: string, grade: string)

Consider Students × Enroll. Note we have name conflict.
(sid1 string, sname: string, gpa: real, sid2 string, cid: string,

grade: string)
To eliminate name conflict, we can do the following:

ρ (temp1 (sid → sid1), Students)

ρ (temp2 (sid → sid2), Enroll)

temp1 × temp2

15

CS2 Spring 2005 (LN7) 29

Example – queries (3)

Students (sid: string, sname: string, gpa: real)

Courses (cid: string, cname: string, credits: integer, instructor: string)

Enroll (sid: string, cid: string, grade: string)

Find the names of Students who are taking a course taught by Fan.
Information about instructor only available in Courses; so we need an
extra join. Solutions:

1. πsname (Students Enroll σinstructor = “fan” (Courses))
Remark. Associative!
R S T = (R S) T = R (S T)

2. A more efficient solution:

πsname (Students πsid (Enroll πcid (σinstructor = “fan” (Courses))))
Remark. A query optimizer can find this given the first solution.

CS2 Spring 2005 (LN7) 30

Exercises – queries

Students (sid: string, sname: string, gpa: real)
Courses (cid: string, cname: string, credits: integer, instructor: string)
Enroll (sid: string, cid: string, grade: string)

1. Find the GPAs of Grace.
2. Find the ids of the courses being taken by Grace.
3. Find the instructors of the courses being taken by Grace.
4. Find the names of students who are taking at least one course.

Solutions:

1. πgpa (σsname = “grace” Students)

2. πcid ((σsname = “grace” Students) Enroll)

3. πinstructor (Courses Enroll (σsname = “grace” Students))

4. πsname (Students Enroll)

16

CS2 Spring 2005 (LN7) 31

Example – queries (4)

Students (sid: string, sname: string, gpa: real)
Courses (cid: string, cname: string, credits: integer, instructor: string)
Enroll (sid: string, cid: string, grade: string)

Find the names of Students who are taking a course taught by Poe or Fan.

πsname (Students Enroll

(σinstructor = “poe” ∨ instructor = “fan” (Courses)))
How to do this using union?

ρ (temp, σinstructor = “poe” (Courses) ∪ σinstructor = “fan”
(Courses))

πsname (Students Enroll temp)

CS2 Spring 2005 (LN7) 32

Example – queries (5)

Students (sid: string, sname: string, gpa: real)
Courses (cid: string, cname: string, credits: integer, instructor: string)
Enroll (sid: string, cid: string, grade: string)

Find the ids of Students who are taking a course taught by Poe and a
course taught by Fan.

πsid (Enroll σinstructor = “poe” (Courses)) ∩
πsid (Enroll σinstructor = “fan” (Courses))

The following is incorrect!

πsid (Enroll (σinstructor = “poe” ∧ instructor = “fan” (Courses)))
Question: Find the names of Students who are taking a course taught by

Poe and a course taught by Fan.

πsname (Students πsid (Enroll σinstructor = “poe” (Courses)) ∩
πsid ((Enroll σinstructor = “fan” (Courses))))

17

CS2 Spring 2005 (LN7) 33

Example – queries (6)

Students (sid: string, sname: string, gpa: real)
Courses (cid: string, cname: string, credits: integer, instructor: string)
Enroll (sid: string, cid: string, grade: string)

Find the sids of Students who are not taking CS2.
Solution:

πsid (Students) − πsid (σcid = “CS2” (Enroll)

Exercise: Find the names of Students who are not taking CS2.
Solution:

ρ (temp, πsid (Students) − πsid (σcid = “CS2” (Enroll))

πsname (temp Students)

CS2 Spring 2005 (LN7) 34

Division -- introduction

Students (sid: string, sname: string, gpa: real)
Courses (cid: string, cname: string, credits: integer, instructor: string)
Enroll (sid: string, cid: string, grade: string)

Find the sids of students who are taking all courses.
1. Build a relation with all possible pairs of sids and cids.

Let Allpairs be πsid (Enroll) × πcid (Courses)
2. Find the set of (sid, cid) pairs for which sid is not taking cid.

Let temp1 be Allpairs − πsid, cid (Enroll)
3. Find the set of sids of students who are not taking some course.

Let temp2 be πsid (temp1)
4. Find the set of sids of students who are taking all courses.

πsid (Enroll) − temp2

18

CS2 Spring 2005 (LN7) 35

Division – another operator

Find the sids of students who are taking all courses.
πsid, cid (Enroll) / π cid (Courses)
In general, A / B.
• The schema of B must be a proper subset of the schema of A,

i.e., B ⊂A (check: {cid} ⊂ {cid, sid})
• The schema of the result is A − B, i.e., the set difference of the

schema of A and the schema of B (check: result is {sid})
• For every tuple t in the result and every tuple s in B, t s (t

appended onto s) is in the first relation A.

CS2 Spring 2005 (LN7) 36

sno pno
S1 P1
S1 P2
S1 P3
S1 P4
S2 P1
S2 P2
S3 P2
S4 P2
S4 P4

A

P2
pno

B1

sno
S1
S2
S3
S4

A/B1

pno
P2
P4
B2

sno
S1
S4
A/B2

pno
P1
P2
P4
B3

sno
S1
A/B3

Division – examples of A/B

19

CS2 Spring 2005 (LN7) 37

Example – queries (7)

Students (sid: string, sname: string, gpa: real)
Courses (cid: string, cname: string, credits: integer, instructor: string)
Enroll (sid: string, cid: string, grade: string)

1. Find the names of students who are taking all courses.

ρ (tempid, πsid, cid (Enroll) / π cid (Courses))

πsname (Students tempid)

1. Find the names of students who are taking all courses taught by Fan.

ρ (tempid, πsid, cid (Enroll) / π cid (σinstructor = “fan” Courses)))

πsname (Students tempid)

CS2 Spring 2005 (LN7) 38

What we can’t compute with relational algebra?

Arithmetic expressions, e.g., 4 + 3.
Aggregate operations, e.g., “the number of students who are
taking CS2”, or “the average GPA of students”.

In SQL, these are possible – SQL has numerous extensions to
relational algebra.
Recursive queries, e.g., given a relation Parent(parent, child),
compute the ancestor relation. This appears to call for an
arbitrary number of joins.

These are not possible in SQL either.
Complex structures, e.g., lists, arrays, bags, or nested relations.

SQL can’t handle complex structures either, but they are possible
in object-oriented data models and query languages.

20

CS2 Spring 2005 (LN7) 39

Summary

What are query languages?
Relational algebra. A set of operations (functions), each of
which takes a relation (or relations) as input and produces a
relation as output.
Basic operations: using these we build up queries.

Projection
Selection
Union
Difference
Product
Renaming.
Additional operations: intersection, join, Very useful.

What we cannot do with relational algebra?
SKILL: “programming” in relational algebra!

