CS2 Current Technologies note 4 CS2Bh March 4, 2005

CS2 Current Technologies note 4

Document Type Descriptors

Peter Buneman

4.1 Introduction

A Document Type Descriptor (DTD) describes the structure of an XML document. In writing
queries/stylesheets for XML we have made certain assumptions about the structure. A DTD can
express some of these assumptions.

There is some relationship between a DTD and the type system of a programming language.
For example, in Java, when you write x.f the class/type of x tells you (and the Java compiler)
that x had a data member called £. Similarly, you can use a DTD to tell you that a given kind
of element has a child element with a tag named f. However (except for a few experimental
systems) the DTD does not tell XPath, XSLT, XQuery, or anything else that processes the XML
document about the type. It is up to you — the programmer — to check that the program is
sensible with respect to the DTD.

There are other things that distinguish a DTD from a conventional type system. The DTD is
used to specify the linear structure of documents. When you write a Java class, the order in
which you declare the methods and data members is, | believe, unimportant. However the order
in which things occur in a conventional document is profoundly important.

DTDs also allow us to specify a rather primitive kind of “pointer” which allows elements of a
document to reference other elements in that document.

However, DTDs are rather weak in other respects. There is only one base type, which is PCDATA
or text. You cannot for example constrain the contents of some element to be an integer or the
textual representation of an integer. The pointers mentioned above cannot be “typed”. You
cannot constrain a pointer to point to an element with a given tag name or structure. You
cannot describe any notion of inheritance between types.

Another important thing to remember is that we type elements by their tag name. In programming
languages they are determined by some form of scoping or context. For example, the title
member of a book class in Java could have a completely different structure to the title member
of a person class. In XML specified by a DTD, all title elements must have the same structure.
There are “work-arounds” for this in DTDs, but they are not satisfactory.

Some of these deficits have been corrected in XML Schema. XML Schema can express a rather
large number of constraints. However it suffers from being too complicated, and the interaction
between the constraints you can specify in it is poorly understood. If you are courageous enough

CS2 Current Technologies note 4 CS2Bh March 4, 2005

to study XML schema, you will in any case have to understand how DTDs work, so studying
them first is a good idea.

4.2 DTDs and regular expressions

| have a 25 year old format for addresses which is easily converted into XML. If this were done,
one entry in the address book would look like this.

(person)
(name) McNeil, John (/name) must exist
(greet) Dr. John McNeil (/greet) optional
(addr) 1234 Huron Street (/addr) as many address lines as needed
(addr) Rome, OH 98765 (/addr)
(tel) (321) 786 2543 (/tel) 0 or more tel and faxes in any order
(fax) (123) 456 7890 (/fax)
(tel) (321) 198 7654 (/tel)
(email) jm@abc.com (/email)
(/person)

0 or more email addresses

The specification of this structure is via a regular expression with a somewhat changed syntax.
For example:

name to specify a name element
greet? to specify an optional (0 or 1) greet elements
name,greet? to specify a name followed by an optional greet
addrx* to specify 0 or more address lines
tel | fax a tel or a fax element
(tel | fax)* 0 or more repeats of tel or fax
emailx 0 or more email elements
So the whole structure of a person entry is specified by

name, greet?, addrx, (tel | fax)*, emailx

You should be able to describe an equivalent deterministic automaton. The W3C DTD standard
describes a restriction on DTDs — essentially a one-" character” look-ahead — that makes them
easy to parse. We do not need to worry about this restriction now.

In a DTD we specify that a person element has this structure by writing:

CS2 Current Technologies note 4 CS2Bh March 4, 2005

(!ELEMENT person (name, greet?, addrx, (fax|tel)*, emailx))

The whole DTD for the address book becomes:

(!DOCTYPE address [

(!ELEMENT addressbook (personx))

('ELEMENT person (name, greet?, addrx, (fax|tel)*, emailx))
(!ELEMENT name (#PCDATA))

(!ELEMENT greet (#PCDATA))

(!ELEMENT addr (#PCDATA))

('ELEMENT tel (#PCDATA))

('ELEMENT fax (#PCDATA))

('ELEMENT email (#PCDATA))

1)

Representing tabular data. In the coming lectures we are going to study relational databases.
The underlying idea is that we represent data as tables. For example, we might have two tables
to represent projects and employees:

Projects: Employees:
title ‘ budget ‘ manager name ‘ empid ‘ age
XML types

100000 ‘ Jane Joe ‘ 1234 ‘ 34

Now a common use for XML (in fact its raison d’'étre) is to ship data around, so we should be able
to come up with a good way of turning these tables into XML. Unfortunately there are several
ways. We could send a mixture of employees and projects:

(!DOCTYPE db [

('ELEMENT db (project | employee)*)
('ELEMENT project (title, budget, managedBy))
(!ELEMENT employee (name, empid, age))
(!ELEMENT title #PCDATA)

iy
We could group them (this may be closest in spirit to the tabular form)

(!DOCTYPE db [

('ELEMENT db (projects,employees))
('ELEMENT projects (projectx))

('ELEMENT employees (employeex))

(!ELEMENT project (title, budget, manager))
(!ELEMENT employee (name, empid, age))

1)

We could remove all the grouping tags:

(!DOCTYPE db [
('ELEMENT db) ((name, empid, age)|(title, budget, manager))*))

CS2 Current Technologies note 4 CS2Bh March 4, 2005

1)
All of these are possible, and each has its advantages.

Recursive DTDs These are surprisingly common. The current course project has one; even
the DTD for Shakespeare’s plays is recursive. Here is another (flawed) example:

('DOCTYPE genealogy [
(!ELEMENT genealogy (personx))
('ELEMENT person (

name,

dateOfBirth,

person, // mother
person // father

))

1)

It should be obvious what is intended, but can you see what is wrong with this? And how would
you fix it?

A problem we encounter when dealing with transmitting traditional data is that the order in which
we send, say, the fields of a tuple (a row of a table or a record) is immaterial. If we want to say
that an employee element contains name, age and empid elements in some order we have to say:

(ELEMENT employee (
(name, age, empid)

| (age, empid, name)
| (empid, name, age)

)

Tables with 50 columns are common! What does one do short of saying (!ELEMENT employee
ANY), which allows the employee tag to have anything you like in it. Related to this is the fact
that you cannot say (with a DTD) that an element should have at least a specified set of child

elements. This is needed for subtyping, which is common in relational databases. These issues
are fixed to some extent in XML schema.

It is common to find real DTDs going off the rails. This was taken from a repository of published
DTDs:

('ELEMENT PARTNER (NAME?, ONETIME?, PARTNRID?, PARTNRTYPE?, SYNCIND?, ACTIVE?, CURRENCY?,
DESCRIPTN?, DUNSNUMBER?, GLENTITYS?, NAME*x, PARENTID?, PARTNRIDX?, PARTNRRATG?,

PARTNRROLE?, PAYMETHOD?, TAXEXEMPT?, TAXID?, TERMID?, USERAREA?, ADDRESS*, CONTACT*))

What is wrong with this?

CS2 Current Technologies note 4 CS2Bh March 4, 2005

4.3 IDs and IDREFs — “pointer integrity”

This is a rather feeble mechanism, but we should mention it briefly. The idea is that an ID attribute
is a unique identifier or key for an element and an IDREF type is a reference or “pointer” to a
key. Look at the following example:

(family)
(person id="jane" mother="mary" father="john")
(name) Jane Doe (/name) (/person)
(person id="john" children="jane jack")
(name) John Doe (/name)
(/person)
(person id="mary" children="jane jack")
(name) Mary Doe (/name)
(/person)
(person id="jack" mother="mary" father="john")
(name) Jack Doe (/name)
(/person)
(/family)

The DTD that constrains these attributes is:

(!DOCTYPE family [
(!ELEMENT family (person)*)
(!ELEMENT person (name))
('ELEMENT name (#PCDATA))
('ATTLIST person
id 1D #REQUIRED
mother IDREF #IMPLIED
father ~ IDREF #IMPLIED
children IDREFS #IMPLIED)

e If an attribute is declared as ID the associated values must all be distinct (no confusion).

e If an attribute is declared as IDREF the associated value must exist as the value of some
ID attribute (no “dangling pointers”).

e Similarly for all the values of an IDREFS attribute

Note that ID and IDREF attributes are not typed. We can't require ID attribute to point to a
particular kind of attribute.

Some important terms. An XML document is

e well formed if it “parses” (it observes the nested tags rule, attributes are unique, etc.) and

e valid if it satisfies a DTD. It is better to say say “valid with respect to ...".

