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Why we need databases

Peter Buneman

5.1 Introduction

Imagine, if you will, that XML had been invented long before database management systems.
Would we now bother with databases? In fact our hypothesis is almost true. The language Lisp
was invented and widely used long before relational databases were thought of. Lisp, among
other things embodies a data format that is simpler and cleaner than XML, but it didn't catch
on either as a means of representing data or as a format for data transmission. There are three
reasons.

e Efficiency. All the XML tools you have been using require the whole XML document to fit
into main memory. They will simply break on large documents. There are some attempts
to build general-purpose XML query systems that will work on very large documents, but
these are all highly experimental. By contrast, relational database systems, when properly
“tuned” are quite happy to deal with terabytes of data in secondary storage. We are not
going to deal with efficiency in any detail in these lectures, but you should remember that
the way we organise secondary storage data for efficient processing is completely different
for what we do in main memory.

e Structure. XML is designed as an interchange format for data, not as a language such as
Java for designing new data types. In XML the serial structure of data is important; in
programming languages we regard the way the language represents our data in memory as
“implementation detail” and often expect that the language will do something for us (e.g.
in producing the memory representation for instances of a Java class definition.) In fact,
XML sits a bit uncomfortably between a serial format and a data specification language.
Even the designers of XML argue this point! Designing databases is extremely important,
and we shall discuss it in this thread.

e Updates and transactions, XML was not really designed to be updated; if you want to
change anything in an XML document, you simply creat a new docement. Hardly a good
way of doing things if it takes you hours of disk-boound i/o time to create a new document!

Even so, let’s suppose your bank implemented their database using XML. Somewhere there
would be an XML file containing your account identifier and your balance (among other
things). Suppose you deposit a cheque for £100 by mail and sometime later withdraw
£50 from a cash machine. It might happen that two processes, deposit and withdraw, are
simultaneously called to change the XML file. The sequence might look like this:
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withdraw opens the file and reads it into memory.
deposit  opens the file and reads it into memory.
withdraw finds your balance and subtracts £50 from it.
deposit  finds your balance and adds £100 to it.
deposit  writes out the file.

withdraw writes out the file.

ok wn =

Would you be happy? You have probably already seen that there are mechanisms for
“locking” files so that only one process can use it at once. That might keep you happy, but
would it keep your bank happy? Your bank may be processing tens or hundreds of deposits
and withdrawals a second. You can't read thorugh a file of any size a hundred times a
second. Try it! Clearly something else is needed.

This last point indicates that database systems give us more than query languages. Many real
databases are small enough to fit into main memory, so we could simply program them as
data structures in our favorite programming language, but this would not solve the problem of
concurrent access.

In this thread we are going to be mostly concerned with the basics of database design and
querying.

5.2 The relational data model

Let's start with and example of something you are — or should be — acutely familar: the XML
data set of the current homework.

<doa>
<committee>
<title> Very Important </title>
<chair> <name> A. Stoat </name> <email> ast@doa </email> ... </chair>
<secretary> <name> W. Weasel </name> <email> ww@doa </email> ... </secretary>
<members>
<member> <name> T. Feret </name> <email> feret@doa </email> ... </member>
<member> <name> T.H. Toad </name> <email> toad@doa </email> ... </member>
</members>
<subcommittees>
<committee>
<title> Administration </title>
<chair> <name> T. Feret </name> <email> feret@doa </email> ... </chair>
<secretary> <name> T.H. Toad </name> <email> toad@doa </email> ... </secretary>
<members>
<member> <name> M.R. Fish </name> <email> mrf@doa </email> ... </member>
<member> <name> M. Magpie </name> <email> mm@doa </email> ... </member>
</members>
<subcommittees> </subcommittees>
</committee>
</subcommittees>
</committee>

<committee>
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</doa>

This document was great for extracting information about committees. A simple stylesheet was all
that was required to make this information readable. It was not so good for extracting information
about people — we had to do more work using a query language to get that. However, when we
come to SQL, we are going to be doing this kind of work in any case to get answers, so maybe
we shouldn’t object — at least not on the grounds of database design.

So, returning to the second point above, what is wrong with the XML representation? There are
two very serious problems.

e Redundancy. Information on people is kept redundantly. T. Feret's email and office are
repeated everywhere T. Feret appears. This is not only wasteful of space; it is dangerous.
If we want to change T. Feret’'s email, we have to find all the places in the document we
need to do this.

e [ost information. This is the converse of redundancy. The XML document contains infor-
mation about committees and people, but unless someone is on at least one committee,
we don’t have any information on them. This seems wrong. Does a person cease to exist
if they are no longer on a committee? Maybe in the Department of Administration ...

What do we do about this? One way out is to create two XML documents — one for committees
and one for people. Or, equivalently, one document with an element for people and and another
for committees. Something like this:

<doa>
<committees>
<committee>
<title> Very Important </title>
<chair> A. Stoat </chair> <secretary> W. Weasel </secretary>
<members> <member> T. Feret </member> <member> T.H. Toad </member>
</members>
<subcommittees>
<committee>
<title> Administration </title>
<chair> T. Feret </chair>
<secretary> T.H. Toad </secretary>
<members> <member> M.R. Fish </member> <member> M. Magpie </member> </members>
<subcommittees> </subcommittees>
</committee>
</subcommittees>
</committee>

</committees>
<people>
<person>
<name> A. Stoat </name> <email> ast@doa </email> <office> 1A </office>
</person>
<person>
<name> W. Weasel </name> <email> ww@doa </email> <office> 123 </office>
</person>
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<person>

<name> T. Feret </name> <email> feret@doa </email> <office> 12B </office>
</person>
<person>

<name> T.H. Toad </name> <email> toad@doa </email> <office> 14A </office>
</person>
<person>

<name> M.R. Fish </name> <email> mrf@doa </email> <office> 12B </office>
</person>
<person>

<name> M. Magpie </name> <email> mm@doa </email> <office> 24A </office>
</person>

</people>
</doa>

What we have done here is partially to “flatten” the document. In fact, the design is now rather
satisfactory. We'd like to add the constraint that any name in the commitees section occurs in
the people section, but that's about it.

However, we might observe that the people element has a higly regular structure. It is essentially
a table — a set of records or tuples:

people:

name email office
A. Stoat ast@doa 1A
W. Weasel | ww@doa 123
T. Feret feret@doa | 12B
T.H. Toad | toad@doa 14A
M
M

.R. Fish | mrf@doa 12B
. Magpie | mm@doa 24A

The idea behind the relational model is to represent everything as a table. So we should perhaps
start with the other main kind of “thing” in our data — the committee. The rule is that the only
things we can put in the tables are “base” values, strings, integers, etc. We cannot put lists or
other tables into a table. We can start on committees as follows:

committees:
title | chair secretary

Very Important | A. Stoat | W. Weasel
Administration | T. Feret | T.H. Toad

However, this has now lost us information about members and subcommittees. To recover this
information we add two more tables:
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members: subcommitees:
committee member committee ‘ subcommittee
Very Important | T. Feret Very Important | Administration

Very Important | T.H. Toad
Administration | M.R. Fish
Administration | M. Magpie

This, then, is the idea behind relational databases — reduce everything to tables. It is clear that
the separation of a people table from the rest of the hierarchically structured document was a
good idea, but did we need to go the whole way and “flatten out” everything, This remains a
debate. Object-oriented and object-relational systems do not demand this degree of flattening,
but relational database systems have dominated the practical database market for over 20 years.
Why is this?

They are extremely simple to understand.

Query languages for them are well understood. There is an interesting and useful connection
between relational database query languages and first-order logic.

Query languages are optimisable. There is well-developed technology for this. Optimising
queries for hierarchical databases and XML is much less well-understood.

Updates and transaction processing are easier to understand and implement for relational
databases.

We should also be clear about what we mean by a table. A table consists of rows, often called
tuples. There is a clear similarity between a row and a record in a programming language. A
table is a set of rows. This means that the order of the rows is unimportant and that there are
no duplicated rows. The fact that tables are sets rather than lists is good because it allows us to
do more optimisation (we don’t have to preserve any order). It is bad because we often want to
represent order and it is clumsy to do it with tables. The best way is to add a column of integers
that indicates priority.

5.3. Database Architecture

There is a traditional “three level” approach to describing database architecture. Although it
isn't accurate, it's a good starting point.

The Physical Level This is how our tables are represented as data structures in computer
memory — main memory or secondary storage. Interestingly, the physical representation
does not look particularly “tabular”. All sorts of structures like linked lists are used at
this level. It also includes index structures (search trees and hash tables) that are used to
optimise queries.
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The Logical Level This is a particularly annoying term. It indicates that the physical level is
“illogical”. There's enough bad database design around to suggest that the logical level is
often anything but logical. A much better term would be the abstract level — the interface
we have to the database system, which is usually through a query language like SQL. This
is the level at which we understand the data to be tabular.

User Views Real-world databases typically contain hundreds, if not thousands of tables. If only
to simplify the database for the benefit of people who use only parts of it, it is useful to
give them access to only a portion of the data. Another reason is security, there may be
restrictions on who is allowed to see certain parts of the database. A view dictates what
a user or group of users can see. It is not just a subset of tables, it can be the result of a

query.

It is important to remember that databases are not built with a fixed set of applications in mind.
They are there to support a large number of applications, many of which are unknown when the
database is designed. In building a database one is usually trying to “model” some part of the
real world — people flying on aeroplanes, people ordering books, what is known about the human
genome, etc. All of these are extremely useful. What one does is to try to understand fully
the part of the real world that is important for a set of tasks or people and to come up with a
description — at the logical level — of the data of interest. This is an extremely challenging task.
It often happens that more is spent on designing a datbase than building it. The design is crucial.
Databases frequently break down as a result of bad design, and these breakdowns are enormously
costly.



