On the Data Complexity of Relative | nformation Completeness

Yang Cad”®, Ting Dend*, Wenfei Fa@®, Floris Geert$

aSchool of Informatics, University of Edinburgh, 10 Criahttreet, Edinburgh, EH8 9AB, United Kingdom
bSchool of Computer Science and Engineering, Beihang UsityeNo.37 XueYuan Road, Haidian District, Beijing, China
¢Department of Mathematics and Computer Science, Uniyes§igntwerp, Middelheimlaan 1, B-2020 Antwerpen, Belgium

Abstract

Databases in an enterprise are ofpantially closed parts of their data must be contained in master data, wlasltbmplete infor-
mation about the core business entities of the enterprigb.tils comes the need for studyirgjative information completeness
partially closed database is said todmmpletefor a queryrelative tomaster data if it has complete information to answer theyquer
i.e., extending the database by adding more tuples either doehaoge its answer to the query or makes it no longer partially
closedw.r.t. the master data. This paper investigates three problerosiatsd with relative information completeness. Given a
query@ and a partially closed databasew.r.t. master dataD,,, (1) therelative completenegzoblem is to decide whethdp

is complete forQ relative toD,,,; (2) theminimal completenegzoblem is to determine whethé&r is a minimal database that is
complete forQ relative toD,,,; and (3) thebounded extensioproblem is to decide whether it suffices to extdndy adding at
mostK tuples, such that the extension makes a partially closetbdae that is complete f@ relative toD,,,. While the combined
complexity bounds of the relative completeness problemthadninimal completeness problem are already known, neitieer
data complexity nor the bounded extension problem has liadied. We establish upper and lower bounds of these prabiem
data complexity, all matching, fap expressed in a variety of query languages.
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1. Introduction may bemissing but we cannot do much about it (see [2, 34] for
surveys). Indeed, for few sensible querig®@nd databaseb,
When we query a database, we naturally expect the databaaedding tuples td) does not change the answer@dn D.
to have complete_ information for answering our query. How- The good news is that real-life databasesreitherentirely
ever, databases in the real world are often incomplete, frorg|ssed-worldnor entirely open-world, in light of the increasing
Wh_|ch tuple_s are missing. Ind_eed, it is estlmat_e(_j that ‘tpssec use of master data managememb( [26]) systems provided
of mforma‘gon perceived as being needeq for clinical deais by, e.g.,IBM, SAP, Microsoft and Oracle. An enterprise nowa-
were missing from 13.6% to 81% of the time” [27]. days typically maintainsnaster datga.k.a. reference dajaa
This gives rise to the following question: for a given quéry  single repository of high-quality data that provides vas@p-
can its complete answer be found from an incomplete databagdications with a synchronized, consistent view of its dousi-
D? That is, the answer tQ in D remains unchanged no mat- ness entities. Master data consists of a closed-world da¢ab
ter how D is extended by adding new tuples. In other words,D,,, about the enterprise in certain aspeetg,,employees and
althoughD is generally incomplete, it still possesses sufficientproducts. Other databases of the enterprisgargally closed
information to answef). The need for studying this problem w.r.t. D,,: parts of their data are containediin,,, e.g.,employ-
is evident in practice: if> does not have complete information ees and products, while the other parts are not constrained b
for answering?, one can hardly expect that the answe€tm D,,, and are open-world.g.,product shipments.
D is complete or even correct. To understand partially closed databases, relative irderm
The traditional Closed World Assumptio@\{/A) or the Open  tion completeness has been proposed in [12] and studied
World Assumption OWA) does not help us here. Ti@wA as-  in [13, 14]. For a databasP and master datd,,, a setV’
sumes that a database contains all the tuples represeatifg r of containment constrainis used to specify thab is partially
world entities,.e.,it assumes that no tuples are missing from aconstrained byD,,,. A containment constraint is of the form
database. As remarked earlier, this rarely happens inipgact ¢(D)Cp(D,,), whereg is a query in a languagé, andp is a
The OWA assumes thatplesrepresenting real-world entities simple projection query o,,,. Intuitively, the part ofD that
is constrained by is bounded byD,,,, while the rest is open-
world. We refer to a databade that satisfies all containment
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for all database®’, Q(D)=Q(D’) aslongash C D’ andD’  the data complexity of relative information completenéssa
is also partially closedv.r.t. (D,,,V). Thatis, whenD,, is as-  fixed set of queries and a fixed set of containment constraints
serted as an “upper bound” of certain informatioTinthe an-
swer toQ) remains unchanged no matter hé@nis extended. In
other words, adding tuples t0 either does not change the an-
swer to(), or makes it no longer partially closedr.t. (D,,,, V).

It is likely to find complete answer to a query in a partially

closed databas®, even whenD is generally incomplete, as (1) The relative completeness probl¢RCP(Lq)) is to deter-
illustrated by the following example. mine, for a fixed query) in Ly and a fixed set” of contain-

ment constraints, given master dddg, and a database par-
Example 1. Consider a (simplified) product relation of Ama- tially closedw.r.t. D,,, and V', whetherD is complete forQ
zon, specified by the following schema: relative to(D,,,V). That is, we want to find out whether the
answer taQ in D is complete wherD is possibly incomplete.

Contributions. Adopting the model of relative information
completeness of [12, 14], we study ttata complexityof the
following problems associated with relative informaticont
pleteness. Lefy be a query language.

product(asin, brand, model, price, sale),

where each item is specified by its iakin), brand, model and ~ (2) The minimal completeness problgMinP(Lq)) is to de-

price. A flag sale indicates whether the item is on sale or not. ¢ide, for a fixed queny) in £, and fixedV, given D,,, and
Consider the following queries. D as above, whethdp is a minimal database partially closed

. i . ) ) w.r.t. (D, V) and is complete fof) relative to(D,,,,V'). That
(1) QueryQ; is to find all wireless reading devices that haveis, removing any tuple fron® would make it incomplete faf)

brand = "Nook” a_nd price < 150, but_arenoton sale by Sony.  g|4tive to(D,,,V). Intuitively, we want to know whetheb
The answer t@); in theproduct relation may not be complete. has redundant data when answeripgs concerned
Indeed, Nook is a brand of Sony, and Amazon may not carry '

all the products of Sony. Worse still, the answer may not eveif3) The bounded extension proble(BEP(Lq)) is to deter-
be correct: the chances are that some device foun@pjs ~ Mine, for a fixed query? in L and fixedV, given D,, and
actually on sale by Sony, when Amazon does not have complete as above and a nonnegative integerwhether there exists

information about Sony products that are on sale. an extensio)’ of D by adding at mosk’ tuples such thab” is
) ) partially closedw.r.t. D,,, andV, and moreover)’ is complete
(2) QueryQ; is the same aQ), except that it asks fdsrand = for ) relative to(D,,, V). Intuitively, whenD may not have

“Kindle” instead. In contrast t@),, we may trust the answerto  complete information to answe, we want to know whether

relation is incomplete in general, we can still find the costgl

answer to- in it. Indeed, “Kindle” is Amazon’s own brand The study of these problems helps us find out whether we can
name, and Amazon maintains complete “master data” about iget the complete answer to a set of predefined queries in a pos-
own products and their promotion sales. In other wordstivela  sibly incomplete database, what excessive data is in a asgab
to Amazon’s master data, theoduct relation is complete for ~for answering the queries, and how we can make a database
Q- provided thaiproduct contains all the information relevant complete for the queries by minimally extending the databas

to “Kindle” and sales from the master data. We parameterize each of these problems with various query

(3) QueryQ; is to find all wireless reading devices withand ~ languageq in which query and the query of containment

= “Nook” and model = “PRS-600". One can conclude that constr_aln'rq(D)gp(_Dm) in V are expr_essed. .We consider the
the answer t@); in product is complete as long as the answer f0llowing L¢, all with equality =" and inequality 7"

is nonempty, sincebfand, model — asin, price, sale) is a func- e conjunctive queriesdQ),

tional dependencyrD) defined onproduct. Note that in the

presence of th&D, when the answer t@)3 is empty, we can

makeproduct complete forQ3 by including at most one tuple
with brand = “Nook” and model = “PRS-600". In Example 2, e datalog DATALOG).
we will show that the=D given above can be expressed as three

containment constraints. (

union of conjunctive queriesJCQ),
o first-order queriesO), and

4) Complexity resultsWe establish upper and lower bounds of
these problems parameterized with these languadjesatch-

The analysis of relative information completeness has beeld for theirdata complexityWe show the following.
studied in [12, 13, 14], for combined complexity. In praetic (1) It is known that the combined complexity analyses of
one often has to deal with a predefined set of queries. Th&CP(Lg) andMinP(Ly) are undecidable [12, 13, 14], when
is, the queries are fixed, and only the underlying database8 is FO or DATALOG. We show that fixing querg) and con-
vary. For instance, the queries given in Example 1 can be igainment constraint$ does not make our lives easier here.
sued by using fixed Web forms provided by Amazon's WebThat is, the data complexity analysesREP (L), MinP(Lg)
site. In practice, when queries are fixed, so are the assdciatand BEP(L) are all undecidable whed, is either FO or
constraints. Indeed, people typically first design comstsa DATALOG. Furthermore, these complexity results are rather ro-
based on the schema of a database, and then populate and mdiust: all these problems remain undecidableHomwhen mas-
tain database instances. This highlights the need for stgdy ter dataD,,, and containment constrairitsare both absent, and
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for DATALOG when master dat®,, is absent and containment UCQ. Again, the proofs oMinP (L) in this work are rather
constraintd” are a fixed set ofDs. different from their counterparts in [13].
To the best of our knowledge, no previous work has stud-

2) In contrast, wherq is CQ or UCQ, their data complexity _ .
(2) « Q Q ey ied either the bounded extension problBEP (L) or the data

becomes much loweRCP(Lg) andMinP(Lg) are tractable; X X
while BEP is NP-complete, it becomes tractable whanis ~ COMPIexity of RCP(Lq) andMinP(Lg). A problem, referred
fixed, i.e., when the number of tuples added to databBsis to as the boundedness problem, was studied in [13], which is

bounded by a constant. Compare these with their combinelf decide, given a query, master datd),,, and a constank’,

complexity: RCP(Lo) is I14-complete forcQ and UCQ [12, whether the_re exists a partially c_Iosed databBsef size K
14], andMinP(Lq) is A%-complete forcQ andUCQ[13]. such thatD is complete forQ relative to(D,,,V). Note that
8 BEP(Lp) takes an existing databageas input and looks for

(3) The data complexity results of this paper remain unckeng pounded extensions @. The boundedness problem of [13] is
no matter whether the language for expressing qyénycon- 3 special case &EP(L,), whenD is empty. The proof of [13]
tainment constraintg(D) C p(Dr,) is CQ, UCQ, FOOr DATA-  for the boundedness problem does not carry ov&EB(L).
LOG. Indeed, (aRCP(Lgq), MinP(Lg) andBEP(Lq) are un- A few other problems were investigated in [12, 13, 14],
decidable forFO when master dat®,,, and containment con- decide,e.g.,given Q and D,,, whether there exists a par-
straints iV are absent, and f@ATALOG whenD,,, is absent  ja)ly closed database such thatis complete forQ relative to
andVis a fixed set of Ds while FDscan be expressed using  (p, | ). We do not consider those problems in this work since

in CQ. (b) WhenL, is CQor UCQ, the algorithms for the upper  {hejr data complexity analysis is not very sensible in peact
bound proofs in Section 5 have the same data complexity when
¢ is expressed iCQ, FO or DATALOG. Indeed, checking fixed Several approaches have been proposed to represent or query

containment constraints is FTIME no matter whether the con- databases with missing tuples. In [35], a complete and sensi
straints are defined with queriesi® or DATALOG. In light of (€Nt extension of an incomplete databdsés defined to be a
this, we can assumel.o.g.that containment constraints are de- databasé. such thath C 71, (D.) and D, =%, wherer is the

fined with queries in the same language that expresses query Projection operator/. is the set of attributes i, and. is a
set of integrity constraints. Complexity bounds for conmpgit

Taken together with the combined complexity bounds esthe set of complete and consistent extension® ofi.r.t. © are
tablished in [12, 13, 14], these results provide a comprehenestaplished there. A notion @pen nullis introduced in [19]
sive picture of complexity bounds for important decisionlpr  to model locally controlled open-world databases: parts of
lems in connection with relatively complete informationhé  qatabaseD, values or tuples, can be marked with open null
the combined complexity bounds BCP(Lg) andMinP(Lg)  and are assumed open-world, while the rest is closed. Rela-
have been settled in [12] and [13], respectively, no previoutional operators are extended to tables with open null galue
work has studied their data complexity. Furthermore, we argn contrast to [19], this work aims to model databases frtia
not aware of any previous work that has conside3&®(L),  constrained by master dafa,, and consistency specifications,

an interesting and practical issue. A variety of technicares  poth via containment constraints. In addition, we studyi-dec
used to prove the results, including constructive prootha-  sjon problems that are not considered in [19].

orithms and a wide range of reductions. . S
g ¢ Partially complete databasd3 have also been studied in

Related wor k. The model of relative information completeness[29], which assumes a virtual databaBg with “complete in-
was introduced in [12], which we use in this work. The com-formation”, and assumes that part Bfis known as a view of
bined complexity analysis d®RCP(L¢) was shown to be un- D.. Itinvestigates the query answer completeness problem, th
decidable fofFO andDATALOG, andII5-complete forcQand  problem for determining whether a query posedigncan be
ucQin [12, 14], referred to as the relatively complete databaseanswered by an equivalent query bnIn this setting, the prob-
problem there. In contrast, we show that while the data comlem can be reduced to query answering using views. Along the
plexity analysis oRCP(Lq) remains undecidable fatO and  same lines, [23] assumes thatontains someQviews of D...
DATALOG, it is down toPTIME for CQ andUCQ. The proofs It reduces the query answer completeness problem to the inde
for the data complexity bounds make use of the characterizat pendence problem for deciding independence of queries from
developed in [12, 14], but are more involved than their ceunt updates [24]. As opposed to [23, 29], we assume neither
parts for the combined complexity. A revisionREP(Lg)is  with complete information nor that an incomplete databBse
studied in [18] for data exchange, a very different setting; contains some views ab.. Instead, we consideD,,, as an
data complexity results are given there. “upper bound” of certain information i. Moreover, the de-
The model of [12] was extended in [13] by incorporating cision problems studied here can be reduced to neither ey qu
missing values in terms of representations systems, which wrewriting problem nor the independence problem (see below)
do not consider in this work. The combined complexity of We now clarify the difference between our decision prob-
MinP(Lg) was studied there, referred to as the minimalitylems and the independence problesrg(,[9, 24]). The latter
problem; it was shown to be undecidablef@andDATALOG, is to determine whether a que€y is independent of updates
and Af-complete forcQ andUcCQ. In this work we show that generated by another quefy*, such thafor all database®,
the data complexity analysis &flinP(Lg) remains undecid- Q(D)=Q(D®A), whereA denotes updates generatedpy.
able forFO andDATALOG, and it becomes tractable féGQand  In contrast, we study problems to decide, for a fixed qugry



(a) whether a given databaBeis relatively completev.r.t. mas-
ter data, wheré) and D,,, satisfy containment constraints,
(b) whether a giverD is a minimal witness for) to be rela-
tively complete, and (c) whethdp can be minimally extended
such that it is relatively complete f@p w.r.t. master data. Due
to the difference between the problems, results for thepgade
dence problem do not carry over to ours, and vice versa.

Databases and master data. A database is specified by a re-
lational schemaR, which is a collection of relation schemas
(R1,...,R,). Each schem®; in R is defined over a fixed set
of attributes. For each attributé of R, its domain is specified
in R, denoted bydom(A). To simplify the discussion we as-
sume that all attributes have a countably infinite domima
setting commonly adopted in database theory (seg,[2]).

A revision of the models of [23, 12, 29] has recently been A relation (instance) over a relation scheiRéA4,,...,A4,,)

introduced in [31], to study partially complete databasEse
problems investigated there are quite different flRGP (L),
MinP(Lg) andBEP(L) considered in this work.

is a finite set/ of m-arity tuplest(as,...,a,,) such that for
eachi€[1,m], a; is indom(4;). A database (instance) over a
relational schem& = (R, ..., R,) is a collection of finite sets

One may also think of an incomplete database as a “view” of /1, - -» In), Where eacti; is a relation over;.
a database with complete information. There has been a large We will use the following notion. Consider instancBs=

body of work on answering queries using vievesg(, [1, 5,

(I1,...,I,) andD'=(I,..., I},) of the same schen®. We

25, 32]), to determine certain answers [1], compute corepletsay thatD is contained inD’, denoted byD C D', if I; C I’ for
answers from views with limited access patterns [7, 25]oor t all j€[1,n]. If DC D', we say thaD’ is anextensiorof D.

decide whether views determine queries [32] or are los§iégss

Master datad.k.a.reference datap,, is specified by a rela-

This work differs from that line of research in that one maytional schem&,,,. As remarked earlier, an enterprise typically
not find a definable view to characterize a relatively conglet maintains master data that is assumed consistent and demple
database in terms of the database with complete information.apout certain information of the enterprise [8, 30]. We db no
Indeed,D is only partially constrained by master dat,, via  impose any restriction on the relational scherRaandR.,,.
containment constraints, whilB,,, itself may not contain the
complete information of the entities thatintends to represent.

There has also been work on modeling negative informatio
and incomplete information via logic programming (see [34] : .
for a survey). For instance, protected circumscriptiornuslied Let L be a query language. 8C ¢ in Lg is of the form
in [28], where databases may contain null values that are not q(R)Cp(Rm),

known.to be true or _false un.der the C.Iosed world assumptior\,\,hereq is a query inLq defined over schem®&, andp is a

The prior vv_o_rk considers nenhgr p_arua_llly complete dasaisa projection query over schenfa,,. That is,p is a query of the

nor the decision problems studied in this work. form 3% R7(, ) for some relation schem@™ in R.,,.
Representation systems have also been studied for incom- Intuitively, constraint assures thab,,, is an “upper bound”

plete informationg.g.,c-tables [20, 21]. Such systems aim to of the information extracted by(D). In other words, th€wA

represent databases with missing values rather than migsin is asserted foD,,,, which constrains the part of data identified

ples (see [2, 34] for surveys). Master data and the problemisy ¢(D) from D. More specifically, while this part oD can

investigated in this work are not considered in the priorkvor  be extended, the expansion cannot go beyond the information

There has also been recent work on consistent query answétréady inD,,. On the other hand, thewA is assumed for the
ing (e.9.,[3, 4, 6]). Thatis to decide whether a tuple is in the Part of D thatis not constrained by argC ¢.
answer to a query in every repair of a databBsavhere a re- An instanceD of R and master data instande,, of R,,
pair is a database that satisfies a given set of integrityt@ings ~ satisfyCC ¢, denoted by D, D,,,) = ¢, if ¢(D) Cp(D,y).
and moreover, minimally differs from the originBlw.r.t. some
repair model. Master dat,,, is not considered there, and we
do not consider repairs in this work. Note that most contain
ment constraints in this paper anet expressible as integrity
constraints studied for data consistency.

Partially closed database. Database® are usually partially
I;?onstrained by master daf3,,. We specified such relationship
betweenD andD,,, in terms ofcontainment constrain&CCy).

Example 2. Recall schemaroduct described in Example 1.
Suppose that there exists a master relapesduct,, spec-
ified by schemaR,,(asin, model, price, sale), which main-
tains a complete record of Kindle products. We specify a
CC ¢(product) CR,,,, whereg(product) is a query defined as
Organization. Section 2 reviews the model of relative com- q(a,m,p,s):zlb(product(a,b,m,p,s)/\b = ‘Kindle’). This
pleteness. Section 3 states the decision problems stutiedi ccassure thagroduct,, is an upper bound on the Kindle prod-
paper. Section 4 provides the undecidability resultssfomnd  yct information possibly contained in relatiproduct.

DATALOG, followed by the decidable cases 0@ anduCQ in As shown in [12, 13] and as will be seen shortly, many in-

section 5. I_:mall_yz Section 6 summarizes the main resulisef tegrity constrains commonly used in practice can be exptess

paper and identifies open questions. asCCs For example, consider a functional dependerk) (

1. (brand, model — asin, price,sale), which assures that if two

products have the same brand and model, then they refer to the

same item with the same id, price and status of sale. Assume
In this section, we review the model of relative completenesthat there exists an empty relatiproduct, in master data,,,.

proposed in [12]. We start with basic notations. Theny can be written a€Csincluded inV:
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Gasin(product) C producty, In contrast, consideR, to find all wireless reading devices
Gprice (product) C producty, that havebrand = “Nook” and price <150, but arenoton sale by
Sony. Then master dapaoduct,, does not help when we want
to makeproduct complete:product,, has no complete informa-
where tion about Sony products witbrand = “Nook”. In this case we
cannot makeroduct complete foiQ; relative to(product,,, V')
by adding tuples oproduct,, to product. O

gsate(product) C productg,

asin(b,m) = Jay,a2,p1,p2, 51,52 (product(ai,b,m,p1,s1)

Aproduct(ag,b,m, pa, s2) Aay #asz),

Relative completeness and consistency. Several classes of
constraints have been used to capture inconsistenciesain re
tional data (see.g.,[6, 10] for recent surveys), notably denial
constraints, conditional functional dependenci@slls which
are an extension of functional dependencks)), and condi-
tional inclusion dependencieSINDs, which are an extension
of inclusion dependencief\pDs)). As shown in [12, 14], de-
nial constraints an€FDscan be expressed @Csin CQ, and
CINDs can be expressed a€sin FO. Moreover, in all three
cases only an empty master data relation is required. This al
lows us to capture both data consistency and relative irderm
tion completeness in a uniform logic framework [14].

which detects violations D (brand, model — asin); similarly
one can specify the otheCs gyrice (product) C product, and
gsate (product) C producty. O

We say thatD and D,,, satisfya setl’ of CCs denoted by
(D,D,,) =V, ifforeach¢eV, (D,D,,) = ¢.

A databaseD is said to be gartially closed w.r.t.(D,,, V)
if (D,D,,)EV. Thatis, the information inD is partially
bounded byD,,, via theCCsin V.

A databaseD’ is a partially closed extensioof D w.r.t.
(D, V) if DCD"andD’ is partially closedv.r.t. (D,,,V).

Relative completeness. We are now ready to introduce the no-
tion of relative information completeness. Consider a lase
D of schemaR, master datd,,, of schemaR,,, and a sel” of

CCs such thaiD is partially closedw.r.t. (D, V). In this section, we formulate three decision problems in-con
We say thatD is complete for query) relative to(D,,,, V) nection with relative complete databases, each of themrmpara
if Q(D)=Q(D’) for every partially closed extensioD’ of  eterized by a query languagg,. Consider a query) € L,
D,i.e., DC D' such that D', D,,) EV. Theset of complete master dataD,,,, a setV of CCsdefined in terms of queries in
databasedor @ w.rt. (D,,,V), denoted byRCQ(Q, D.,,, V), Lg, and a partially closed databaBew.r.t. (D,,,V).
is the set of all complete databasesdprelative to(Dyy,, V). The first problem is referred to as thelative completeness
Intuitively, if D is complete forQ relative to(D,,,V), then  problem It is to decide whether a giveP is complete for a
no matter howD is expanded by including new tuples, as long query@ relative to(D,,,, V). The need for studying this prob-
as the extension does not violate containment constréiritse ~ lem is evident: one naturally wants to know whether one can
answer to query) remains unchanged. In other word$,has trust their databases to yield complete answers to queries.
already got complete information for answerifg
To simplify the discussion, we assume that qu@rgnd the
CCsin V' are expressed in the same langudge As remarked ) X
in Section 1, this does not lose generality. All the resulthis V of CCsin Lg, and a partially closed
paper remain the sameGf andV are expressed in the different databasd) w.rt. (D, V).
language€Q, UCQ, FO or DATALOG. QUESTION Is D in RCQ(Q, D,,,V)? That s, isD
complete forQ relative to(D,,,,V)?

3. Determining Relative I nformation Completeness

RCP(Lq): The relative completeness problem.
INPUT: A query Q€ Ly, master dataD,,,, a set

Example 3. Recall the Amazon instance gfoduct (also re-

ferred to asproduct), queries?), Q2 and@; from Example 1, To decide what data should be collected in a database in order
and master dataroduct, andCCsV' from Example 2. As o answer a quer§), we want to identify a minimal amount of
shown in Example lproduct is complete forQ, relative to  information that is complete faf). To capture this, we use a

(productm,V) if QQ(product) returns all wireless reading de- notion of m|n|ma||ty given as follows.

vices inproductm, with brand = "Kindle” and price < 150. A databaseD is calleda minimal database complete for a

ConsiderQs, to find all wireless reading devices wibhand query Q relative to (D,,,V) if it is in RCQ(Q,D,,,V) and

= “Nook” and model = “PRS-600". Suppose that there exist moreover, for anyD’ C D, D' is notinRCQ(Q, Dy, V).
such device records iproduct,,, but Qs(product) is empty.

Then product is not complete forQs;. Nonetheless, we can
make product complete forQ); by adding at most one prod-
uct with brand="Nook” and model= “PRS-600". Indeed} MinP(Lg):  The minimal completeness problem
includes theCCsencoding the=D ), assuring that there exists | INPUT: Q, Dy, V, D as inRCP.

at most one product with this brand and model. Thus the ex
pandedproduct is complete forQs relative to(producty,, V).

These suggests that we study the following problem, rederre
to as theminimal completeness problem

" QUESTION Is D aminimal database complete 1Qr
relative to(D,,,, V')?




When a databas® is not complete forQ), one naturally It is known that for thecombined complexityRCP(Lq)
wants to extend) with minimal information to make it com- andMinP(Lq) are undecidable whefig is FO or DATALOG
plete. We use\ D to denote a set of tuples to be inserted ilko  [12, 13, 14]. One might think that fixing queries and contain-
and DUAD to denote the database obtained by adding all tument constraints would make our lives easier. The resuttgsn
ples ofAD to D. Given a positive integel >1, we callAD a  section tell us, however, that these two problems remaimeund
bounded set of updatésr (Q, D,,,, V, D, K) if (a) |]AD|<K,  cidable when data complexity is concerned (Theorems 1 and 2)

and (b)DUAD is complete forQ relative to(D,,, V). Furthermore, we also show tHaEP (L) is undecidable when
There is practical need for studying the following problem, £@ iS FOOr DATALOG (Theorem 3).
referred to as theounded extension problenmdeed, this prob- In addition, the undecidability results are rather robust:

lem may assist practitioners to identify how much additiona RCP(£q), MinP(Lq) andBEP(Lq) remain undecidable for

data needs to be collected to make the database complede for FO €ven in the absence of both master data and contain-
ment constraint¥”; moreover, they are undecidable foATA-

BEP(Lq):  The bounded extension problem LOG whenD,, is absent andl” is a fixed set oFDs, which can

INPUT: Q, Dy, V andD as inRCP, and a positive be expressed &Csin CQ (see Example 2 and [12, 13, 14]).
integerk > 0. In fact, we show the undecidability & P (Lg), MinP (L)

QUESTION Does there exist a bounded set of up- andBEP(L) for these special cases in Theorems 1, 2, and 3,
datesAD for (Q, D,,,V,D,K)? respectively. Clearly, this implies the undecidability fihe

general case of these problems.

Query languages. We study these problems wheh, ranges  Deciding Relative Completeness. We start withRCP (L), the
over the following query classes (seeg.,[2], for the details):  relative completeness problem. We show that for the data com

(1) conjunctive queriesaQ), built up from atomic formulas Plexity analysisRCP(Le) is undecidable whet, is FO or
with constants and variablese., relation atoms in database PATALOG. The proofs of the undecidability of the data com-
schemaRr, equality &) and inequality £), by closing under ~Plexity analyses are rather different from their combinethe

conjunction/ and existential quantificatiof plexity counterparts givenin [12, 13, 14].

(2) union of conjunctive queriesJCQ) _Of the form@1U---U  Theorem 1. The data complexity d@CP(L,) is undecidable
Q. where for eachi<[1, k], Q; is in CQ whenL, is FO or DATALOG The problem remains undecidable
(3) first-order I(_)gic queriesF(O) built from atprnic_formulas us- o for FO, even when master dafa,, and containment con-
ing A, V, negation—, 3 and universal quantificatiort and straintsV are absent: and

(4) datalog queriesDATALOG), defined asa cpllection of ruI_es o for DATALOG even wherD,, is absent and is a fixed
p(Z)—p1(Z1),...,pn(ZTn), Where eaclp; is either an atomic set ofEDs. O

formula (a relation atom ifR, =, #) or anIDB predicate.

One might also want to consider positive existent@  Proof: We first settle the data complexity 8&CP(Lg) when
queries §FO™), which is built from atomic formulas by closing L, is FO, and then consideRCP (L) whenL is DATALOG.

undern, disjunctiqn\/ and3. Note that an_)ﬁxed JFOTquery WhenL, is FO. We show thaRCP (L) is undecidable by re-

can ble l.meIdeld mtfoh@CQ in cfonstant time. Thus i‘” the  Fiction from the embedding problem for the class of all finite

complexity results of this paper faICQ carry over to3FO™. semigroups, which is known to be undecidable [22]. To formu-
As remarked earlier, we express both the user’s qgeaynd  late the embedding problem we need the following notions.

CCsof V' in the same query languadg,, with L as one of A semigroupA is a structure of the forrd= (A, f) such
the languages given above. that A is a nonempty set, called the domain.4f and f is an
Data complexity. In the rest of the paper, we investigate the associative binary function as; this means that, for every, b,
data complexity oORCP(Lg), MinP(Lg) andBEP(Lg), i.e.,  c€A, we have thaf (f(a,b),c)= f(a, f(b,c)). A finite semi-
whenboth the queryQ and the setl’ of CCsare predefined groupis a semigroup whose domain is a finite set.pétial
and fixed while database® and master datd,, may vary  Semigrougs a structure3 of the formB = (B, g) where, as be-
(see.e.g.,[2] for details about data complexity). As mentioned fore, B is a nonempty set but nowis apartial binary function
earlier, in practice the containment constraints are gitede-  that is associative. L= (B, g) be a partial finite semigroup
fined, and users execute a fixed set of queries, while the undetnd A= (4, f) a finite semigroup. We say th# is embed-
lying databaseD and master dat®,, may vary from time to  dablein Aif BC A andf is an extension of, thatis, whenever
time. We establish the complexity of these problems in this s g(b1,b2) is defined, we have thgt(b,,ba) = g (b1, b2).

ting, whenZ, ranges over all the query languages given above. The embedding problenfor finite semigroups is to decide
whether a given partial finite semigroup is embeddable inesom

finite semigroup. This problem is undecidable [22].

Given a finite partial semigroup= (B, g), we define dixed
In this section we establish tieta complexitpf RCP(Lg), relational schemd&, a databasé® on R, afixedFO query@Q
MinP(Lg) andBEP(Lg) whenL is eitherFO or DATALOG. such thatD is partially closedw.r.t. (D,,,V'), whereD,, and

4. Undecidability Resultsfor FO and DATALOG



V are bothempty We show thatD € RCQ(Q, D, =0,V =0)  suchtha(0,a,b,c),(1,a,b,c) € I, if and only if f(a,b) =c. Let
if and only if B is not embeddable. D'=(1;). Itis easy to see thad’ is an extension oD since
B can be embedded il. Moreover, one can readily verify

(1) Let R consist of a single schem&,(A,X,Y,Z), where thatQ(D') £0 b o . .
. e . y the definition of). Obviously, as discussed
attributesA, X, Y andZ have a countably infinite domain, and above,D’ is a partially closed extension &f sinceV” is empty.

D consist of a single relatiofy, over R,, which is defined as . ; ;
. . tradicts th tion tHaE RC .
follows. For any three elementsb andc in B, there exists a is contradicts the assumption taE RCQ(Q,0,0)

tuple (0,a,b,c) in I, if g(a,b)=c. Intuitively, I, encodes the Conversely, assume thd ¢ RCQ(Q,0,0). Then there

function g of the finite partial semigrous. Extensionsy’ of  exists a partially closed extensidi’ = (1) of D such that

g are encoded by extensiofisof I, by means of tuples of the  Q(D’)#0. ThusI)(1,z,y,z) encodes an associative binary

form (1,d’,¥’,¢") such thay'(d/, b’)*c function ¢’ that is an exten5|on of, i.e., for eacha,be B,
We say that an instanck of R, is well-formedif (a) each  ¢/(a,b)=g(a,b) if g(a,b) is defined. We next construct a semi-

tuple of the form(0,a,b,c) in I; has a counterpart of the form group. A= (A, f) such that3 can be embedded id. Note that

(1,a,b,¢)in I;; and (b)I’(l T y, z) encodes an associative bi- I, is defined in terms of the functianand that even thougk

nary functlonf such thatz f(z,y). Obviously, an extension encodes a total functiod, may not contain all values ifs.

I’ of I, that is well-formed encodes an extensiory dlfiat is an Given [/ we therefore let consist of (i) all elements i3,

aSSOCIatlve binary function. (ii) all values of attributesX,Y or Z that appear in a tuple of

the form(1,a,b,c) in I, and (iii) a fresh constant that does
(2) The queng is a boolean query that encodes the conditions hot appear ins o I/, Moreover, we define a functiof such

(a) and (b) given above. It returns true on an instancg pif : T
and only if this instance is well-formed. More specificallyjs gj“("‘; ‘;)C;r_ef?:r gilgqgizlzrcfgn}ts Z:])d;(;nbx)él,_ iai)ffa((;, (l;) g; ;f
the conjunction of sub-queriég,, Q», @s, andQs, which are andg’(a,b) is not definedi(e.,a,be B, andg(a,b) andg’ (a,b)

defined as follows: are both undefined); and (¢)a,b) =a if b=¢ and f(a,b)=b
Q1 =Va,y,z (Ry(0,2,y,2) — Ry(1,,y,2)), if a=e¢. Obviously, by the definition off and f, we have that
Q2 = V2,9,2,2 (Ry(1,2,,2) ARy (1,3,y,2') > 2=2'), BC A andf is an extension of. Moreover, one can readily
verify that f is an associative binary function oh ThusA is

f:V77777R1777/\R1777 . .
Qs =Y,y 2,000 (Ry(L2,y,0) MRy (19,2, 0) A a semigroup angs can be embedded iA.

Ry(1,u,z,w)— Rg(1,z,v w))
Q4 =Va,y,2,2",y 2 (Ry(1,3,y,2) ARy (1,2",y/ , ") — WhenL, is DATALOG We showRCP(DATALOG) is undecid-
Jwr, ..., we (Ry(1,7,2",w1) ARy (1,29, ws) able by reduction from the emptiness problem for deterrmimis
finite 2-head automata, which is known to be undecidable [33]
Our proof closely follows the reduction presented in [33e@h
, rem 3.4.1], which shows that the satisfiability of the exisitd
Ry(1,2,2",w9))). fragment of transitive-closure logig;+Tc, is undecidable over
, , , . a schema having at least two non-nullary relation schenmes, o
angliar:llg//’ iffotrrgngoggitt?:r?sg) gi(\;,g% c;gg\%é % (sl;ti)sslféig dlf an dof them being a function symbol. AlthoughtTcC allows the
' negation of atomic expression as opposedATALOG, the un-

Q2(D")#0 if and only if the subsef;(1,z,y,z) encodes a decidabili i ,
p . ecidability proof only uses a very restricted form of négat
function. Furthermore, for such databaslés Q3(D")#0 if ~ which can be simulated usiné and a fixed set ofDs

and only if I;(1,x,y,2) encodes an associative function. Fi-
nally, Q4(D’) #0 if and only if for any two elements that occur ~ For readers’ convenience, we present necessary definitions
in two triples inI; (1,x,y,z), function f is defined on the val- taken from [33]. Adeterministic finite 2-head automatgor
ues of these elements and is encodeﬂ(y(rl x,y,2). In other  2-headFA for short) is a quintuplel = (S, 3, I, 5o, sacc) CON-
words, Q4(D')#0 if and only if I/(1,2,y,2) encodes a total ~sisting of a finite set of state® an input alphabet ={0,1}, an

/\Rg(l,:c,z',w;;)/\Rg(l,y,z',w4)/\Rg(1,y,y',wg,)/\
R9(17y7Zlvwﬁ)/\Rg(]vzvmlvw7)/\Rg(17z7y,7w8)/\

function. HenceQ(D’)#0 if and only if the setl/ (1,x,y,z)  initial stateso, an accepting stateco and a transition function
encodes an associative binary functjpsuch thatf(:c y) =z, ' Sx¥.x¥.— Sx{0,+1} x{0,+1}, whereX. =XU{e}.
and moreover, it is an extension @f A configuration ofA is a triple(s, w1, w9 ) € S X X* x X*, repre-

Observe that sinc& is empty, D is partially closedw.r.t. senting that4 is in states, and the first head and second head of
(D, V) and sois anyD’ of R such thatD C D’. Furthermore, A are positioned on the first symbol ©f andw-, respectively.
Q(D)=0 sinceQ, (D) =0 by the definition ofD. Onaninputstring € ¥*, A starts from the initial configuration
(s0,w,w); and the successor configuration is defined as usual.

We say thatd acceptsv if a configuration(sace wi,w=) can
be reached, based on the successor relation, from thel initia
configuration for(sp,w,w); otherwise we say thatl rejects
First assume thab e RCQ(Q,0,0). Then for each par- w. Thelanguage accepted hyt, denoted byC(.A), consists of
tially closed extensioD’ of D, Q(D’)=Q(D)=0. Suppose all strings that are accepted by, Theemptiness problem for
by contradiction that there exists a finite subgrotip= (A4, f) 2-headDFAs is to determine, given a 2-headA A, whether
such that3 can be embedded iA. Let ) be aninstance ak,  L(.A) is empty. This problem is known to be undecidable [33].

We next show that we have indeed defined a reductien,
D eRCQ(Q, D, =0,V =0) if and only if B cannot be embed-
ded in a finite semigroup.



Given a 2-hea®FA A= (S, 3, T, s¢, Sacd), we define dixed
relational schem&, empty master schenfa,,,, a databas®
onR, afixedDATALOG-query(, afixedsetV of FDsandempty
master dataD,,,. We show thatZ(.A) is empty if and only if
DeRCQ(Q,D,,=0,V).

(1) Let R consist of four relation schema®p(U,A),
RF(W,Al,Ag), RT(Bl, Bs, Sl, Ing, Ing, 527 M, Mg) and
Re(Cq,C9), where all attributes iR have a countably infi-
nite domain. Intuitively, instancel, andI; of Rp and Rp,
respectively, are to represent a string >* such that (i) el-
ements inoy—1(Ip) represent the positions in where anl
occurs, (ii)oy—o(Ip/) records those positions i that are

e By — By andB; — By, ensure thaf(by,b2) |75, 5, (I7)}
is bijection fromr g, (1) to 7, (I,), and hence condition
(e) is satisfied; and finally,

e By — By, S1,Iny,Iny, So, My, My, ensuring that condition
() is satisfied.

Recall that-Ds can be encoded b®Csin CQ together with an
empty master database (Example 2 and [12, 13, 14]).

In summary, any instande’ = (1}, I, I, I},) of R that sat-
isfiesV is well-formed, with the exception that we still need to
check for the existence of an initial and a final position it
stancel. of Rr in D'. Obviously, we have thdtD, D,,) =V

(3) We next define the query. To do this, we first

0; and (iii) I is to represent a successor relation over thesgive some auxiliary DATALOG  queries, and then show
positions. More specifically, the successor relation wél b how the non-emptiness of(.4) can be expressed in
givenbyma, a,(04,24,(Ig))UTa, 4, (04, =a,nw=1(IF))IN  terms of these queries. Lé&ip(u,a)— Rp(u,a),u=0 and
which the last part identifies the final position in the suecesIlp(u,a) < Rp(u,a),u=1. Furthermore, lefllp(a;,as)—
sor relation. This will be further explained when consider-Rr(w,a1,az),a1 #az and g(ay,az) — Rp(w,a1,az),a1 =
ing the CCs below. Furthermore, the instande of Ry is  a2,w=1. TheseDATALOG queries are to extract the strings

to encode the transitions ifi of .A. More specifically, for ~and successor relation on strings from the database irestanc
each transitiorl": (s,iny,in2) — (s’, move;,movesy), there ex-
ists a tuple(by, ba, s,iny,ing, s’,move;, moves) in I, such that
the first two attributes of all tuples ifiy result in a sequence
0—1—---—n, wheren is the number of transition ifi. That
iS, Tp, B, (IT) consists of all tuple$0,1),(1,2),...,(n—1,n).
We setlc={(0,n)}. We defineD=(Ip,Ir,I7,Ic), where
Ip and Ir areemptyinstances ofRp and Rp, respectively,
which encode aemptystring, andl and/¢ are defined above.

(2) The sel/ consists of five=Dsto assure that we only consider

well-formedinstances oR. An instanceD’ = (I}, I}, 1}, 1()
of R is well-formed if (a)oy=1(Ip) andoy—¢(Ip) are dis-

joint (i.e., a string can only have one letter at each position)

and TAL,As (UAI #Az (I;_‘)) UTA,,4, (UAlez/\W:l(I}:‘)) must

(b) be a function and (c) contain a unique tuple of the formtur

(k,k) for some constanit indicating thefinal position. We ad-
ditionally require that';. contains a tuple of the forrfw,0,1),
where 0 represents thénitial position and: is some con-
stant. Similarly, we require the presence of a tuflet, k)
in I representing thénal position, wheré: is some constant.
These two extra requirements will be assured byDREALOG-

queriesQ;n and Qs, to be defined shortly, respectively. Fur-

thermore, (dyrc, o0, =01 (C1,C5) is to contain a single value

only, (e)mg,,s,(I}) encodes a bijection, and finally, (f) there

is a unique transition i/ for each value intg, (I7.). More
specifically, the se¥” consists of the followingDs

o A—U, enforcing that for any instand®’ = (I, I}, I},
I,) of R such thaZ’ =V, condition (a) is satisfied faf},;

e A1 — Ay, ensuring thatra, 4,(I) encodes a function;
hence condition (b) is satisfied:;

e W — Ay, As, ensuring that there can be at most one U-Furthermore 5

ple with its W-attribute set tol in I;,. As a result,

Tay, A5 (04, =a,aw=1(I})) contains at most one tuple,

and condition (c) is satisfied;

e (' — (5, ensuring thatre, o0, —oI-(C1,C>) consists of
a single value only, ensuring that (d) is satisfied;

Let TC(bl,bg) <—RT(b1,b2, S, in1, ing, S/, moveq, moveg) and
TC(by,bz) «—TC(by1,b3), TC(b3,b2). That is, TC contains the
transitive closure ofrg, g, (Rr). We define

Hpost(b2) <_Tc(bl , bz)7 bl =0
IIpre(b2) —TC(b1,b2), Re(c1,b2),c1=0,

and defindIr(s,iny,ing,s’, move;, movey) as

Rt (s,in1,inz2,s’,mover, moves), o5t (b2), pre (b1).

It can be readily verified that for each extensién =
(Ip,I, I, 15) of D, if (D',D,,)EV thenIlp(D’) returns

;exactly all tuples in/z. Indeed, this follows from the fact that

by (D',D,,) =V, 7B, B, (I}) encodes a bijectiontl,,. re-
ns all transitions reachable frofn I1,,,.: returns all transi-
tions that can reach; and thatl/. contains a unique transition
for eachB;-value. Heren is the number of transitions i.

Finally, from Il we construct the following queries to rep-
resent howA run on the string encoded by, and;,: for each
11 € {E,O, 1}, 19 € {E, 0, 1}, mi € {O, +1}, andms € {O, +1},

ror . ’
Hi1,¢2,m1,m2(x,y,z,z Y2 )<—HF($,Z1,Z2,!E 7m17m2)7

d)il V12, M, M (y7 Z7y/7 Z/)7

where

iy i mama (Ys Z7y/7 Zl) —ai(i1,y),az(iz, 2),

ﬂl(mh%y,)vﬁﬂm%%z/%

and a1 (ir,y) —Hp(y,y),Op(in,y),y#y it i1=0,1;
and oy (i1,y) —Ir(y,y) if j=e; similarly for as(ia,z).
(m1,y,y)—Mp(y,y") if my=+1 and
B1(ma,y,y') —y=y" if my=0;similarly for 82(ma, z,2").
Intuitively, «;(j,y) enforcesy to be a position in the string
coded byllp(1,y) (whenj=1) or IIp(0,y) (whenj=0) that
has a successor, unlegsis the final position (whery =¢),
wherec; (j,y) demanddlr(y,y). Moreover,3;(y,y’) ensures



thaty andy’ are consecutive positions whehmakes a move
(with headi) andy =1’ otherwise.

Putting these togethen);, i,.m,.m.(¥,2,y’,2") expresses
valid moves ofA on the string encoded b}, andI}.. Then,

A

i1,12,Mm1, M2

Y ror
Ht7'an5(m7y7z7x Y, 2 )<_ Hilvi?*"”l »m2 (:c7y,z7:E Y,z )

Ht'fans(x7yvzvxlvylvzl)%HtTa”S(x7y7vauvy”v'zu)v
Htrans ("E,,7yl/72,,7x,7y/72,)
represents all possible valid transitionsdnhence, the query
Q' () =3y1y2trans(qo0,0,0, Gac Y1, y2)-

is satisfiable if and only ifZ(A) # .
Clearly, we can expre<g’ in DATALOG. Recall that we still

case ofRCP(FO) in the reduction. To give the reduction, we
first show the following lemma.

Lemma 1. For anyFO queryQ@, empty master dat®,,,, empty
V' of CCs and any databasé® that is partially closedw.r.t.
(D, V), DeRCQ(Q, D, =0,V =0) if and only if there ex-
ists a databasd)y C D such thatDgy is a minimal database
complete foiQ relative to(D,,, =0,V =0).

Lemma 1 can be easily verified as follows. First, assume
thatD e RCQ(Q, D,, =0, V =0). Then there must b®, C D
such thatDg is a minimal database complete fQr relative
to (D.,, V), by the definition of minimal relatively complete
databases. Conversely, assume that there exists a miromal ¢
plete databas®, C D for Q relative to(D,,, =0,V =0). Then

need to assure the existence of an initial and a final positiofPr any extensions), of Do, Q(Do) =Q(Dg) and(Dg, D, ) =

in well-formed instance of2x. The finalDATALOG-query Q)
is therefore defined as the conjunction@f(), Qin and Qsin,
where Qini() «— Rp(w,0,x) and Qfn() «— Rp(1,z,z) so that
initial and final positions ifp and/r are also checked.

We next show that it is indeed a reduction.
(D, D,,) EV; sinceQsin(D) =0, we have tha)(D)=10. It
remains to show thakt(.A) =0 if and only if for each partially
closed extensiod’ = (I}, 1, I}, 1,,) of D, Q(D')=0. Ob-
serve that for sucld’, the addition of extra tuples ifiy does
not affect the query results sin€gonly selects tuples already
in I, andV does not allow the addition of other tuplesiia
representing the number of transitionslin ThusI, and I}
encode a string such thatQ(D’) is nonempty if and only if
weL(A). As aresult£(A)=0 if and only if for each partially
closed extensio®’ of D, Q(D’)=0),i.e.,DeRCQ(Q,D,V).

This completes the proof of Theorem 1. O

Determining Minimal Completeness. When it comes to the
minimal complete probleriviinP (L), we show that it is also
beyond reach in practice whefy, is FO or DATALOG. In-

V. We next show thaD e RCQ(Q, D,, =0,V =0). Indeed,
for each partially extensio®’ of D, Q(D’)=Q(Dy)=Q(D),
sinceD’ and D are both extensions dp,. Thus, we have that
DeRCQ(Q, D, =0,V =0).

Recall that We next give the Turing reduction. LEMMinP(Q, D, D,,,

V) be an oracle that returns “yes” I is a minimal database
complete for a queryy relative to 0,,, V); otherwise, it re-
turns “no”. We give an algorithn§ for RCP(FO) that calls
TMMinP(Q,D,V, D,,) at mostO(2!P!) times, whereD,,, and
V' are both empty. Algorithnf2 works as follows:

1. enumerate all databasB$C D and do the following;

2. check whetheT MMinP(Q, D', D,,=0, V =0) returns

“yes”; if so return “yes”;
3. return “no” otherwise if no such’ exists.

The correctness of algorithif2 follows from Lemma 1.
Moreover,  calls TMMinP(Q, D,V, D,,) at mostO(2/”°)
times. Therefore? is a Turing reduction fronrRCP(FO) to
MinP(FO), in the absence ob,, andV. ThusMinP(FO) is
undecidable even whei,,, andV are absent.

deed, we get results similar to Theorem 1: the data comWhenLlq is DATALOG The proof is similar to its counterpart
plexity of MinP(FO) is undecidable in the absence of masterfor FO above. First, the lemma below can be easily verified.

dataD,, and CCsV (i.e., D,, =0 andV ={); and moreover,
MinP(DATALOG) is undecidable even whem,,, is absent and
V is a fixed set ofDs(i.e.,V can be expressed @Q).

Theorem 2. The data complexity dflinP (L) is undecidable

Lemma 2. For anyDATALOGqueryQ, empty master dat&,,,,
a setV of FDs, and any databasé® that is partially closed
w.r.t. (D, V), DeRCQ(Q, Dy, V) if and only if there exists
a databaseD, C D that is a minimal database complete Qr

whenL, is FO or DATALOG The problem remains undecidable relative to(D,,,V).

e for FO, even when both the master ddfg, and contain-
ment constraint$” are empty; and

e for DATALOG even wherD,,, is empty and/ is a fixed set
of FDs. O

Proof: We first studyMinP (L) whenL, is FO, and then in-
vestigate it wherL, is DATALOG.

WhenLg isFO. We show thatMinP(FO) is undecidable by
Turing reductionfrom RCP(FO) to MinP(FO). By Theorem 1,
RCP(FO) is undecidable even when master détg and con-

Itis known thatRCP(DATALOG) is undecidable whem,, is
absent and’ is a fixed set oFDs(Theorem 1). We construct a
Turing reduction from such a special caseR&iP (DATALOG)
to MinP(DATALOG) along the same lines as the one given above
for FO, which show thatMinP(DATALOG) is undecidable even
whenD,, is absent and is a fixed set ofDs.

This completes the proof of Theorem 2. O

Determining Bounded Extensions. We next study the
bounded extension probleBEP(L). Just likeRCP(Ly) and

tainment constrainty” are absent. We consider such specialMinP(Lg), we show thaBEP(L) is undecidable whefi is

9



FO or DATALOG. Moreover, we show that the problem remainsbounded set of updatésD for (Q, D, D,, =0,V =0, K) ifand

undecidable (a) foFO, when master dat&,,, and containment
constraintd/ are both absent; and (b) fDATALOG, whenV is
a fixed set ofFDsand master dat®,,, is empty. Furthermore,
all the results hold for any positive integ&r>1. We remark
thatBEP(Ly) has not been studied by previous work.

Theorem 3. The data complexity BEP(Ly) is undecidable
whenL, is FO or DATALOG The problem remains undecidable
for any positive integek > 1, and

only if 5 cannot be embedded in a finite semigroup.

Assume that there exists a bounded set of updatedor
(Q,D,D,,=0,V=0,K). ThenDUAD eRCQ(Q,0,0) and
|AD|< K. SinceQ(DUAD) is empty, we have that for each
partially closed extensio®’ of DUAD, Q(D’)=0. Along
the same line as the proof of Theorem 1 R{EP(FO), one can
prove that3 cannot be embedded in a finite semigroup.

Conversely, ifB cannot be embedded in a finite semi-
group, assume by contradiction that there exists no bounded

e for FO, even when master data and containment conset of updates\ D for (Q, D, D,, =0,V =0, K). This implies

straints are absent; and

that for each set of updatesD such that AD| < K, we have

e for DATALOG even when master data is absent and conthat(DUAD, D,,, =0) =V, Q(DUAD)=, and furthermore,

tainment constraints is a fixed setkibs. O

Proof: We first study the data complexity &EP(Lg) when
Lq is FO, and then investigate it whefy, is DATALOG.

WhenL, is FO. We show thaBEP (L) is undecidable even

there exists a partially closed extensibhof DUA D such that
Q(D') is nonempty. Along the line as the proof of Theorem 1
for RCP(FO), we can construct fron®’ a finite semigroup4
such thatB can be embedded id, contradicting the assump-
tion that8 cannot be embedded in a finite semigroup.

when both master data and containment constraints aretabseWhenﬁQ is DATALOG We next show thaBEP(DATALOG) is
by reduction from the embedding problem for the class of alijndecidable by reduction froRCP(DATALOG). The latter has

finite semigroups. We refer to the proof REP(FO) in Theo-

been shown to be undecidable in the proof of Theorem 1, even

rem 1 for the statement of the embedding problem. The redugor a fixed queryQ and databas® such thatQ (D)=, and

tion below is similar to the one given in that proof.

Given a finite partial semigroup=(B,g), we define a
databaseD and a fixed queryy in FO, and let the set” of
CCsand master dat®,,, beempty We show that for any posi-
tive integerK > 1, there exists a bounded set of updaids for
(Q,D,D,,=0,V=0,K) if and only if B cannot be embedded
in a finite semigroup.

(1) Let R consist of a single relation schenfg (A, X,Y, Z),
where attributes!, X, Y andZ all have a countably infinite do-
main. The databask of R consists of a single relatiofy over
schemaR,, encoding the given finite semigrouty as described
in the proof of Theorem 1. In additiorl, containsi +1 tuples
of the form(2,4,i,4) for all ¢ € [0, K]. Furthermore, along the
same line as the proof of Theorem 1 REP(FO), the exten-
sions ofg are encoded by tuples of the forfh,a’,b’,¢"). Ac-
cordingly, we define that an instanégof R, is well-formed if
(a) each tuple of the forr(0,a,b,c) in I has a counterpart of
the form(1,a,b,c)in I,; (b) I(1,,y,2) encodes an associative
binary function; and (c) each tuple of the forf®i,4,7) in I}
has a counterpart of the for8,i,i,4) in I .

when D,,, is empty andV is a fixed set offFDs We con-

sider this special case &CP(DATALOG). Given such an in-
stance@, D, D,, and V' of RCP(DATALOG), we construct a
fixed query@’ in DATALOG, a databasé®’, an empty master
databaseé)!, and a fixed seV’ of FDs We show that for any
integerK >1, D is inRCQ(Q, D,,, =0,V) if and only if there

exists a bounded set of updates (', D', D,, =0,V' K).

To simplify the discussion, we assume ttiat@Q andV are
defined over a relation schenig whereR consists of a single
relationR(A;,...,A;) for a constant. Indeed, the assumption
does not lose the generality, since one can always transform
arbitrary instance oRCP(DATALOG) to an equivalent one de-
fined over a single schema, as shown by the following lemma.

Lemma 3 ([14]). Forany relational schem®& = (Ry,...,R,),
there exist a single relation schem®a a linear-time computable
bijective functionhp from inst(R) to inst(R), a linear-time
computable functiothg : Lo — L such that for any instance
Z of R and any query) € Ly overR, Q(Z) =hq(Q)(hp(T)).
Here L ranges oveCQ, UCQ, FO andDATALOG andinst(R)
denotes all the instances of schefa O

(2) The queryQ is a boolean query that encodes the conditions

(a), (b) and (c), such th& returns true on an instance if and
only if this instance is well-formed. As in the proof of Theo-
rem 1 forRCP(FO), @ is the conjunction of querieQ:, @2,
Q3, Q4, andQs, where the extra quei§s; is defined as

Va (Rg(27x,x,x) —R, (3,96,:6,90)),

We next give the reduction. By Lemma 3 and Theorem 1,
we consider a databade= () and afixed DATALOG query
@ both defined over schem@( A, ..., A;) such thatQ(D) is
empty, along with empty master dafa,, and a sel” of FDs,
wherel can be taken as a constant siigandV” are fixed.

(1) Let R’ consist of two relation schemd® (G, Ay,...,4;)

which encodes condition (c). It is easy to see that, for eachiq Ry(C), whereR'(G, Ay,..., A;) extendsR with a fresh

collection AD of tuples, if AD|<K, Q(DUAD)=0 since
Qs(DUAD)=(. Furthermore, for suclAD, we have that
(DUAD, D,,) =V sinceV =.

We next show that it is indeed a reductiom,, there exists a
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attributeG that has an infinite domain, arfélz (C) is a unary
relation schema consisting of a single attribGtevith an infi-
nite domain. We denote b§(g) and Iz (c) the instances oR’
and R, respectively, wheré(g) consists of g} x I, for some



constanty in dom(G), andIg(c)={(c)} for some constant
in dom(C). In particular, we consider the database instate
of R’ consisting of the two relation& gq) and/z(cy) for some
constantgy, in dom(G) andeg in dom(C).

(2) The master dat®,,, is assumed to be an empty relation.

(3) We defind/’ such that for eachD X — A in V, there exists
anFD (G,X)— A in V' defined overR'. It is easy to verify
that the following two are equivalent: for any instantcef R
defined with constantge dom(G) andcedom(C') as above,

o (I,Dy,=0)EV;

o ((I(9)I5(0)), D} =0) V.

In particular, we have thdD’, () =V’ since(D,0) =V, for D
andD’ given above.

(4) To defineQ’, we first construct a quer§); on R’ by sub-
stituting R’ (z,¥) for each occurrence k(%) in Q, wherez is
a common variable shared across all the atom@in Obvi-
ously, for each instancé of R and anygcdom(G), Q(I) is
nonempty if and only if91 (I(g)) is nonempty. We next define

Q/(SC) — Ql(gvﬁ)vRE(I)

Intuitively, for any instancd’ of R’ and instancd g of Rg,
Q' returns the relatiod if there existsy such than(I;) is
nonempty, wherd is the subset of’ consisting of tupleg
such that[G] =g, andQ’ returns empty otherwise. As a con-
sequence, for any instandeof R, any g€dom(G), and any
nonempty instancég of Ry, the following two are equivalent:

e (1,0) =V andQ(I) is nonempty;

e ((I(9),1g),0) =V’ andQ’(I(g), I) is nonempty,
In particular,Q’ (D) =0 sinceQ(D)=10.

We next show that this is indeed a reductiae,, for any
integerK >1, D is in RCQ(Q, D,,,=0,V) if and only if there
exists a bounded set of updates (', D', D, =0,V' K).

Assume thaD is in RCQ(Q, D,,,=0,V). Recall that we
assume thaf)(D)=0. Then for any partially closed exten-
sion D" of D, we have tha)(D")=Q(D)=(. Let AD'=

(). We show thatAD’ is a bounded set of updates fp’,
D', D! =0,V K),ie., D eRCQQ,D,, =0,V'). Recall
that D' =(1(go),Ir(co)). As argued above,D’,()) =V’ and
Q'(D")=0. SinceAD’=0, it remains to show that for any
partially closed extensiofl’,Iy,) of D', Q'(I',I)=0. As-
sume by contradiction that there exists a partially closed e
tension(I’,I};) of D’ such that(I’,I;;)# D’ andQ’'(I',I};)

is nonempty. Then by the definition @', there existy e
dom(G) such that): (1) is nonempty. Thu§)( 4, ..., 4, (1}))

is nonempty, as discussed above. Obviously, . 4, ([;) is

a partially closed extension db, which contradicts the as-
sumption thatD is in RCQ(Q,0,V) sinceQ(D)=0. Hence
D'eRCQ(Q',0,V’") and AD =0 is a bounded set of updates
for (Q',D’,D.,=0,V' K), for any integerk > 1.

Conversely, assume that is not inRCQ(Q,?,V). Then
11

there exists a partially closed extensibfi=7¢ of D such that
D¢#D, (D¢, D,,) EV andQ(D¢) is nonempty. Assume by
contradiction that there exist a bounded set of updatEs =
(AI',Alg) for (Q',D',D;,=0,V',K), whereAI’ and Al
are instances oR’ and R, respectively. TheD’'UAD’ is in
RCQ(Q',D.,=0,V"). Recall thatD’ = (1(go),Ir(co)). Then
D'UAD'=(I(go)UAI',Ig(co)UAIE). By the definition of
Q', Q' (D'UAD’) must be empty, since otherwise for any
extensionl}, of Ig(co)UAIE such thatly #Ig(co)UAIE,
we have thai(I(go)UAI',Iy) is a partially closed extension
of D'UAD’, but Q' (I(go)UAI', If) =1If#Ig(co)UAIE =
Q'(D'UAD"). Now consider the following extensiofi’ =
I(go)UAT'UI®(g1) of I(go)UAI', whereg, is a fresh constant
in dom(G) but it does not appear in any tuple Ifigo ) UAT".
Obviously,D” = (I",Ig(co)UAIR) is a partially closed exten-
sion of (D'UAD') since (I(go)UAI',0) =V, (I°(g1),0) =

V' and the tuples i (go) UATI' differ in their G-attribute with
tuples in7¢(g1). We next show that)’(D”) is nonempty,
and thusD’UAD ¢RCQ(Q’,0,V"). Recall thatD®=1¢ and
Q(D°)#£0. Then as argued abov€);(7°(g1)) is nonempty,
and hence): (1], ) is not empty sincd“(g1)=1; . As are-
sult, Q’(D”) is nonempty by the definition of)’, and thus
D'UAD¢RCQ(Q’,0,V"). As a consequence, there exist no
bounded sets of updatésD’ = (AI',Alg) for (Q',D’, D},
0,V' K) for any positive integef’ > 1.

This completes the proof of Theorem 3. O

5. Decidable Casesfor CQ and UCQ

In this section we studRCP, MinP andBEP, focusing on
query languageSQ anducCQ. We show thaRCP andMinP are
both tractable (Theorem 4 and 5). In addition, we show that
BEP is NP-complete when the numbé¥ is a variable, while it
is tractable wherk is a constant (Theorem 6).

5.1. Preliminaries

Before we present the proofs, we first present some notations
of [12, 14] that will be used in the proofs in this section.

To simplify the discussion, we considen queries that are
defined over a single relation. This does not lose genetaity
Lemma 3, which we have seen in Section 4.

We represent &£Q query ) as a tableau quer{Ty,ug),
whereT,, denotes formulas id) andug is the output sum-
mary (seege.g.,[2] for details). For each variable in @, we
useeq(z) to denote the set of variablgsn @ such that=y is
induced from equalities i). In T, we represent atomic for-
mulaz =y by assigning the same distinct variable to all vari-
ables ineq(x), andx =c by substituting constant” for each
occurrence ofy in eq(x). This is well defined whe) is sat-
isfiable,i.e.,when there exists a databaBesuch that) (D) is
nonempty. Note that the size 6f, and the number of variables
in Ty are bounded by the size ¢f. We assumaev.l.0.g. that
distinct tableaus carry distinct variables.

We denote byAdom the set consisting of (a) all constants that
appear inD, D,,,,@ or V, and (b) a seNew of distinct values



not in D, D,,,@Q andV, one for each variable that is in either
Tg or in the tableau representations of the querids.in

A valuationy for variables inl, is said to bevalid w.r.t. D
if (a) for each variabley in Ty, u(y) is a value fromAdom,
and (b)Q(u(Tq)) is nonemptyj.e., 1 observes inequality con-
ditionsz £y andx # b specified inQ.

A databaseD is said to bebounded by(D,,, V) for a CQ
queryq if for each valid valuation: for variables inl, either
(DUn(Tq), Dm) =V or p(ug) € Q(D).

Now consider aUCQ query@ = Q,U---UQ,, where each
Q; is aCQ query. For eachie[l,n], we represent); as a
tableau query(T;,u;), whereT; denotes formulas id); and
1; is the output summary af);. A valuationy for @) in UCQ
is (u1,..., 1) Such that for eachie[1,n], u; is a valuation
for variables inT; and moreover, for each variablein T;,
wi(y) € Adom. The valuation isvalid w.rt. D if there exists
somej €[1,n], such that,;(x;(T;)) is nonempty,j.e., u ob-
serves inequality conditions#y andx #£ b specified inQ);.

Consider master dat®,,, and a sef” of CCs. A database
D is said to bebounded by(D,,,V) for a UCQ query Q if
for each valid valuationu= (p1,...,u,) for @, either (DU
A, D)=V, orforeach €[1,4], pi(u;) €Q(D), whereA de-
notesuy (71)U---Up(Th).

As shown in [12, 14], wher) is in CQor UCQ, this notion of

bounded databases provides us with a sufficient and negessgf,

condition for a databasP to be inRCQ(Q, D,,, V).

Example 4. The following examples illustrate the intuition be-
hind the notion of bounded databases. Recall schaotict
from Example 1. Letproduct, be the empty instance of
product. Consider &C ¢; : g(product) C producty, where

q1 (b) = 3a’la/rnlaplasla s aak+17mk+lapk+1 ) Sk+1
( /\ prOdUCt(ajabamjapjvsj)/\ /\ (aj #al))a
JE[L,k+1] JilE[L,k+1]

It asserts that each brand has at mogiroducts. Consider
query@q that is to find all products witbrand ="Kindle”. Let
D; be a database overoduct and D,,, be an empty instance
of producty, such thatQ,(D;) returnsk distinct tuples. Then
one can verify thaD; is bounded by D,,,V7) for Q4, where
V1 consists ofp;. Indeed, for any valid valuation for T, , ei-
ther (a)u(T,) contains a new tupléthat is not inD; and has
t[brand] =“Kindle”; this violates¢:, or (b) p(ug,) € Qa(D1).
Itis easy to see thdd, is complete foQ, relative to(D,,,, V7).

As another example, recall from Example 2 thB ¢:
(brand, model — asin, price, sale) on product, which can be ex-
pressed as thre€Csin CQ, denoted by, using producty.
Consider theCQ query Q3 given in Example 3, which is
to find all wireless reading devices witlrand ="Nook” and
model ="PRS-600". LetD- be an instance gfroduct such that
Q3(D3) contains one tuple. ThePs is bounded by D,,,, V%)
for Qs, since for any valid valuatiop’ for T,,, eithery’ (T, )
adds a tuple that violates ti#® ), or the addition of' (T¢,)
does not change the answer@g. Again one can see thdl,
is complete foiQ; relative to(D,,,, V2). O

12

5.2. Decidability results

We now study the data complexity BCP(Lq), MinP(Lg)
and BEP(Lg) when Lg is CQ or UCQ. We show that drop-
ping negation and recursion fdl, do make our lives easier:
RCP(Lg) andMinP(Lg) are both inPTIME, andBEP (L) is
NP-complete while it is irPTIME for a fixed K. This is in con-
trast to the undecidability results shown in the previousisa.

Problem RCP(Lg). We start with the relative completeness
problemRCP(Lg). We show that its data complexity analysis
is tractable whett ¢ is CQor UCQ. In contrast, as shownin [12,
14], the combined complexity of this problemIig-complete
for the sameC,.

Theorem 4. The data complexity oRCP(Lg) is in PTIME
whenLg is CQor UCQ. O

Proof: It suffices to show thaRCP(UCQ) is in PTIME. We pro-
vide aPTIME algorithm that returns “yes” if the given database
DisinRCQ(Q, D,,,V), and returns “no” otherwise.

The key ingredient of the algorithm is a sufficient and nec-
essary condition for characterizing what databaBeare in
RCQ(Q,D,,,V), stated in Lemma 4 below. The lemma is
taken from [12, 14], where it was verified.

Lemma4 ([12, 14]). For any UCQ query@, any master data
m, any setV of CCsin UCQ, and any partially closed
databaseD w.r.t.(D,,,V), DisinRCQ(Q, D,,, V) if and only
if D is bounded byD,,,,V) for Q. O

Capitalizing on the characterization, we next present the
PTIME algorithm, denoted bAgrcp. Given a fixedUCQ query
QR=0Q1U---UQ,, where each); is a CQ query denoted by
(T;,u;), the tableau query of);, Arcp checks whether the
given partially closed databade is bounded by D,,,,V") for
Q, based on Lemma 4. Note thatis a constant sincé is
fixed. More specifically, the algorithm works as follows:

1. for each(T;,u;) and each valid valuatiop; of T;, do the
following:
(a) IetAi =i (Tz):
(b) check whethe DUA;,D,,,) =V if so, continue;
otherwise move to the next valid valuation@f;
(c) check whethen;(u;)¢ Q(D); if so, return “no”;
otherwise move to the next valid valuation@f;
2. return “yes”.

Algorithm Agcp is correct by Lemma 4: It returns “yes” if
and only if the databasP is bounded by(D,,,V). We next
show thatAgrcp is in PTIME. SinceQ is fixed, there are only
a constant number of queri€g; in Q. Thus there are only
constantly manyZ;'s in step 1. For the same reason, there are
only polynomially many valid valuations for each quéfyin
step 1, sinceéAdom|/”:! is an upper bound on the number of
valuations and the size df;, denoted by|T;|, is a constant.
Moreover, steps 1(b) and 1(c) areRMIME sinceV and(@ are
both fixed. Thus step 1 is iIRTIME. Putting these together,
ARCP is in PTIME. O



T, product | asin | brand | model price | sale — (asin: )
z, | Nook | PRS-600| =z, | =, | ‘a4 ‘®MNita
T, : product | asin | brand model price | sale — (asin: )
o, | Kindle | Paperwhite] «/, | o | "¢~ @i Tal
D: asin brand model price | sale
ti: | BOO2MWYUFU | Nook | PRS-600 | $145| Y
ta: | BOOAWH595M | Kindle | Paperwhite| $119| Y

Figure 1: Tableau queries and the database used in Example 5.

Example5. We next illustrate howAgrcp works. Recall
from Example 1 the schemgaroduct(asin, brand, model,
price,sale) and from Example 2 th&D ¢ :(brand, model —

Theorem 5. The data complexity oMinP(Lg) is in PTIME
whenLg is CQor UCQ. O

asin, price,sale) on product which can be expressed as three Proof: We only need to show thatinP(UCQ) is in PTIME. We

CCsin CQ, denoted by/», and empty master relatidn,,,. Con-
sider theUCQ queryQs=qUq’, where

q(zq) = Fzp, x5 (product(xa,NOOk, PRS-BOOxp,xS)),
q¢'(za) = Jxp, 25 (product(z,, Kindle, Paperwhiter,, z,)),

which is to find all wireless reading devices witlhand =
“Nook” and model="PRS-600", or brand="Kindle” and
model ="Paperwhite”. LetD be as shown in Figure 1, which
consists of two tuples andt, that specify two items. Let mas-
ter dataD,, consist of the empty relatioproducty. Clearly,
Q5(D)={(B002MWYUFU), (BOOAWH595M)}.

As shown in Figure 1, queriesandq’ can be represented as
tableau querie§Ty, u,) and(Ty/,u, ), respectively. To decide
whetherD is complete forQ; relative to(D,,, =0,V2), Arcp
checks whetheD is bounded by D,,, =0, V%) for Q5. More
specifically,Arcp carries out steps 1(a)-(c) for every valid val-
uation ofT, and7, . Assumew.l.0.g.thatArcq picks (T}, u,)
first in step 1. TherAdom={B002MWYUFU, Nook, PRS-
600, $145, BOOAWH595M, Kindle, Paperwhite, $119, c,,
Cpy Csy Chyy c;, ¢}, wherec,, ¢, andc, are new constants in
New associated withe,,z, andz,, respectively. Similarly,
cy» ¢, andc correspond to the variables ifi,. (We omit
constants denoting variables ¥ for simplicity.) We assume
w.l.0.g.that variablesz,, x, andxs have an infinite domain
that containsAdom. Denote byl', the set of all valid valu-
ation p, for variables inT,, where iy (x,), pq(2p), pg(zs) €
Adom. Let Mg be the valuation i, that maps(z,,zp,xs)
to (BOO2MWYUFU, $145,Y). Obviously,u) is the only val-
uation inI'y such that(DUpY(Ty), Dyy) = Vo and ) (ug) =
(BOO2ZMWYUFU) € Q5(D), and moreover, for any other val-
uationyig in T'y, (DU (Ty), Di ) # Va.

After this, algorithmAgrcp moves to(T,, uy ), and gets sim-
ilar result as above. It returns “yes” and terminates. Thait i
concludes that databageis complete for query)s relative to
the empty master dat@,,, and theCCsin V5. O

Problem MinP(Lg). We show that dropping negation and

present eTIME algorithm to check whether a given database
D is a minimal database complete fQrrelative to(D,,,V).

To do this, we first give a sufficient and necessary condition f
characterizing minimal completeness, by the lemma below.

Lemma5. For any databaseD, UCQ query @@, master data
D,,, and any set” of CCs inUCQ such thatD is complete for
Q relative to (D,,,V), D is not minimal if and only if there
exists a tuplet€ D such thatD\ {t} is also complete fo)
relative to(D,,,V). O

We now prove Lemma 5. First assume that there exists a
tuplet € D such thatD\ {t} is in RCQ(Q, D,,,V). Then ob-
viously, D is not minimal. Conversely, suppose tHatis not
minimal. Then there exists a subge{ C D such thatD, is
in RCQ(Q, D,,,V). Observe that there must exist a subset
Dy = D\{t} for somet € D such thatD, C D, sinceD; C D,
and moreover,(D2, D,,) =V since (D,D,,)EV. Indeed,
for any containment constraigtc V', let ¢ be ¢(R) Cp(D,,),
whereq is aUCQ query. We have that(Ds) C q(D) Cp(D.,)
since D, C D andUCQ queries are monotonic. We next show
that D, e RCQ(Q, D,,,V), i.e.,for any partially closed exten-
sion D), of Do, Q(D4)=Q(D>). Indeed, for suchD), D} is
also a partially closed extension &f;, and hence@Q (D))=
Q(D1)=Q(D>) sinceD; eRCQ(Q,D,,,V). ThusDs is in
RCQ(Q, D,,,V). This concludes the proof of Lemma 5.

Based on Lemma 5, we give RTIME algorithm, denoted
by Aminp, for determining whetheD is a minimal database
complete for a query) w.r.t. D, andV/, as follows:

1. check whetheD is in RCQ(Q, D,,,V); if so, continue;
otherwise return “no”;

check whether there exists a tuple D such thatD\ {¢}
is in RCQ(Q, D, V); if s0, return “no”; otherwise return

2.

yes”.

Clearly, Ayinp is correct by Lemma 5. We now prove that
Awminp iS in PTIME. By Theorem 4, it is inPTIME to check
whether a database is in RCQ(Q, D,,, V) whenQ is a fixed
UCQ query; so step 1 is iRTIME. Moreover, step 2 is also in

recursion from queries also makes the minimal completePTIME since there are at mo&b| tuplest e D for which we

ness problemMinP(Lg) tractable, as opposed to thi%-
completeness of their combined complexity counterpafk [1
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need to check whethdp\ {t} is in RCQ(Q, D,,, V), which is
also INPTIME by Theorem 4. HencAy;,p is in PTIME.



This completes the proof of Theorem 5. O
Example 6. ConsiderQs, D, D,,, =0 and V> described in Ex-
ample 5, wheré) is complete foiQ; relative to(D,,, =0, V5).
To check whetheD is a minimal complete database 0¥,
Aminp Checks whether there exists a tupke{t,,t2} such that
D\{t} eRCQ(Qs5, Dy, V2); if s0, the algorithm returns “no”;
otherwise it returns “yes”.

Assume w.l.o.g. that the algorithm first checks whether
D\{t1}={t2} is in RCQ(Qs,Dm,V2), in step 2. Here
Adom={Nook, PRS-600, BOOAWH595M, Kindle, Paper-
white, $119,Y, c,, ¢p, ¢s, C, c;, .}, and Qs(D\{t:1}) =
{(BOOAWH595M)}. By algorithmAgcp given in Theorem 4
(for RCP(UCQ)), there exists a valid valuatiqr), of variablesin
T, wherep(zq) = ca, pg(zp)=c, andp(xs) =c,, such that
((D\{t1})Up(T,). D =0) |= V andy (ug) = (ca) € Qs(D\
{tl}). That is, (D\{tl})ﬁRCQ(Qg,, Dm,‘/g). ThenAM;np
moves toD\ {t2} ={t1}. Similarly, algorithmAgcp finds a
valid valuation, of variables inT;, witnessing that(D\
{t2})¢RCQ(Q5, D, V2). In light of these, algorithm\yi,p
returns “yes”. Thatis, it concludes th&tis a minimal database
complete forQ)s relative to(D,,,, V2). O

Problem BEP(Ly). Finally, we study the bounded extension
problemBEP(Lg). In contrast toRCP(Lg) andMinP(Lg),
BEP(Lq) is intractable wher g is CQ or UCQ. However, it

is in PTIME when K is fixed, i.e., when the number of tuples
in updatesAD is bounded by a predefined constdiit As
remarked earlier, no previous work has studied this problem

Theorem 6. WhenLg is CQ or UCQ, the data complexity of
BEP(Lg) is NP-complete; it is inrPTIME for fixed K. O

Proof: We first studyBEP (L) whenK varies, and then inves-
tigate it whenkK is fixed, forcQ anducCQ.

WhenkK varies. It suffices to show thaBEP(L) is NP-hard
whenL is CQand it is inNP for UCQ.

Lower bound We show thaBEP(CQ) is NP-hard by reduc-
tion from the AT problem, which is known to bieP-complete
(cf. [17]). An instancep of 3SAT is a formulaCy A---AC,. in
which each clausé€; is a disjunction of three variables or nega-
tions thereof taken fro’X = {x1,...,x,}. Giveny, 3SAT is to
decide whethep is satisfiablei.e., whether there exists a truth
assignment for variables i that satisfies.

Given an instance of 3SAT above, we define two fixed re-
lational schema® andR,,, a databasé® of R, master data
D,, of R,,, a fixedCQ query @ and a setl/ of fixed CCs

! . .
in CQ. We show that there exists a bounded set of updates ¢”” (i,i") =3z1, w1, 22, w2, 23, w3, w, 27, W, 25, Wh, 25, Wi, w

AD for (Q,D.,,,V,D,K) if and only if ¢ is satisfiable, where
K =r—1. Herer is the number of clauses in

(1) Let R consist of two relation schema3q(cid, X1, V4,
Xo, Vo, X3, V3, V) and R; (A, B). We define the database
D as (I¢,I), wherels is an emptyinstance of Rc and
I,={(1,0),(0,0)} is an instance oR;.

(2) Let’R,, consist of three relation schemdsy = R¢, R =
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R, andR3* = R;. We first define an instandg? of R¢. Intu-
itively, I encodes truth assignments of the clauseg.irror
reasons that will become clear later on, we assign varigbtes
negations thereof) that appear irsimgle clausewith a fixed
truth value: 1 if it concerns a variable and if it concerns a
negated variable. More specifically, I&t, (resp..X,,) denote
the set of variables (resp. negated variablesXirthat occur
in a single clause only. For each clauSe=/¢; Vv ei v es, for
i€[1,r], we include tuplesi,zx, vk, T;, Vj, Tm, Um, v) SUch
that (i) zp =/} if ¢i€X andz, =0} if (£ €X; (i) ve=1if
¢t € X, andv, =0 if £} € X,,; and (iii) 7 can be eithef or 1
if ¢4 e X\{X,UX,}. Similarly forz;, v; andx,, andv,,. We
setv=1 if the truth assignment encoded in the tuple makes
true and set =0 otherwise. Further, we define the instad¢e
of R as{(1,0),(0,0)}, i.e., I is the same a§,, and let/}"
be theemptyinstance ofRy*. We setD,,, = (I, I", I5").

(3) The set/ consists of the following 15 CC$; — ¢12:

¢1: Re C RE,
¢2: R C RY",
d3—os: q0(i,i') C Ry, pe{l,2,3},
pe—os: ¢h(i,i") € Ry, pe{l,2,3},
$9: qu(i,i') C Ry
$r0—15 1 P (i,i') C RY', p,p'€{1,2,3},p<p,

where the querieg?, ¢F andg¢??" are defined as follows: For

pe{1,2,3}, ¢%(i,7') is given by
/ / / / ! / /
32171'01722711}272371'03711}7217’wl72271'0272371'03711}
( R (i, 21, w1, 22, w2, 23, w3, W)
-/ / / / / / / / 4 -/ /
/\RC(Z )21, Wy, 29, Wy, 23, W3, W )/\(7’:7’ )/\(ZP#Zp))v

qP(i,i") is given by

!/ !/ !/ / !/ / /
ElzlathvaQaZSavawaZlvw15223w27233w33w
( R (i, 21, w1, 22, w2, 23, w3, w)
-/ ! /! / / ! !/ / . -/ /
AR (@', 21, W), 25, wh, zg, wy, w)A(i=1") A(wp #wy,)),

qv(i,1") is given by

/ / / / ! / /
32171'01722711}27Zv?nq'vv?nrwu217’wlu2271'0272371'03711}
(Rc(i7217w17227w27237w37w)
-/ / / / / / / / 3 -/ /
/\RC(Z )21, W, %9, Wy, 23, W3, W )/\(Z:Z )/\(w#w ))7
and for each paip,p’ € {1,2,3} wherep<p/,
/
( R (i, 21,w1, 22, w2, 23, w3, w) A
-/ / / / / / / /
RC(Z 7Z17w17Z27w27Z37w37w )/\
/ /
(Zp:Zp//\wp#wp/))
Note thatp, is relative to master datf?; ¢» to I7"; and¢ps—

¢15 to the empty master data instantg. Intuitively, for any
extensionD’ = (I/,,I7) of D, we have that (a)D’, D,,) = ¢1



if and only if each tuple if{, encodes one clausg of ¢ and a
truth assignmeny of variables inC;, as well as the truth value
of C; undery; (b) (D', D) =¢e ifand only if I{ =1y, i.e.,D’
keepsI; unchanged; (c}D’, D,,) E{¢s,...,¢9} if and only
if all tuples in I}, have pairwise distinctid values,i.e., they
corresponds to distinct clausesgfand finally, (d)(D’, D,,) E
{¢10,...,¢15} if and only if each pair of tuples id/, have the
same value for common variables. Thatl{s,encodes a partial
truth assignment ok’.

(4) We define the quer§ as follows:

- ) / / / / / / /
Q(’Lvl ):El Z17w13223w27237w33w7Zlaw17Z23w27Z37w3aw

(Rc(i,Zl,'[Ul,ZQ,’LUQ,Zg,’LUg,U))

ARc (i, 21, wh, 25, wh, 25, wh, w") ARy (w,w" ) Ni £4").

Intuitively, for any partially closed extensiah’ = (1;,,I]) of
D, sinceI; must be{(1,0),(0,0)} by the definition of¢,,
Q(D') returns all pairgs,i’) such that there exist two distinct
tuplest andt’ in I/, corresponding to clause&s; andC;/, re-
spectively,i.e., t[cid] =i andt[cid] =i, where the truth values

distinct clauses ofp, and moreover, for each pair of such tu-
plest andt’, they have the same value for each variable ap-
pearing in both of them. We next show thatJAD is not

in RCQ(Q, D, V). Let ik be a truth assignment of vari-
ables that agrees with the partial truth assignment starad.

Let D'=(1/,I,), wherel/, consists ofr tuples, one for each
clause inp, such that the values of the variables in these tuples
agree withul,. Obviously,D’ is a partially closed extension of
DUAD, andD'# DUAD. Note thatu’ must makep false
sincey is not satisfiable. That is, thgV] values of tuples

in I}, cannot be alll. By the definition ofQ, it can be read-

ily verified thatQ(DUAD) #Q(D'). HenceDUAD is notin
RCQ(Q,D,,,V). As a result, there exists no bounded set of
updates fof@, D,,,,V, D, K) where K =r—1.

Upper bound We show thaBEP(UCQ) is in NP by giving an
NP algorithm, which returns “yes” if there exists a bounded s
of updatesA\D for (@, D,,, V, K) and returns “no” otherwise.

By Lemma 3, we may assumel.o0.g.that databas® is an
instance of a single relation scheRgA;, ..., A,). Let NewV
be a set of-n new constants disjoint frofAidom.

of C; andC);, are not both true under the truth assignments en- The algorithm forBEP(UCQ), denoted byAgep, is as fol-

coded byt andt’, respectively. That i) returns a nonempty
result if not all clauses encodedip are true.

We now show thap is satisfiable if and only if there exists a
bounded set of updatesD for (Q, D,,,,V, D, K) for K =r—1.

Assume that is satisfiable and let% be a truth assign-
ment that makeg true. We modifyu% into a truth assignment
pk such thatul, coincides with z8 on all variables in
X\{X,uX,}, ph(2)=1if ze X, andpl (z)=0if z€ X,,.
Clearly, u}, makesy true as well. Letl/, consist of tuples
t1,...,t, in I, one for each clause ip, such that the values
of the variables in these tuples agree with. We let Ig_l
consist of the first-—1 tuplest,...,t._1 and AD:I@”.
Then|AD|< K andDUAD = (I, ). Itis easy to see that
(DUAD,D,,) [V andQ(DUAD) =1, by the definitions of
V and@. We next show that\D is a bounded set of updates
for (Q,D.,,V,D, K), i.e.,for any partially closed extensian’
of DUAD, Q(D')=Q(DUAD)=0. Observe tha{I},I;)
is the only partially closed extension d®UAD such that
(I¢,1)# DUAD, by the definitions of” and the truth assign-

lows:

1. guess an instane&®D of R with no more thank tuples,
such thatA D draws values fromhdomUNewV;

2. checkwhetheDUAD isinRCQ(Q, D,,, V); if so, return
“yes”; otherwise, reject the guess and go back to step 1.

The algorithm is indeed iNP as it involves guessing tu-
ples AD from a finite setAdomUNewV (step 1) and verify-
ing that DUAD is in RCQ(Q, D,,, V) (which is inPTIME by
Theorem 4). We next verify the correctness of the algorithm
Agep. It suffices to show that there exists a bounded set of up-
datesAD for (Q, D,,, V, K) only if there exists a bounded set
of updatesA D’ for (@, D,,, V, K) which draws values from
AdomUNewV.

Given AD we construct such &D’, as follows: Letr be
an injective function from the active domain 6fUAD (i.e.,
the set of all constants occurringInUA D) to AdomUNewV,
such thatr when restricted to elements Axdom is the identity
mapping. Note that such a function always exists skbemuU
NewV contains sufficiently many distinct values. Then, we

ment.L . Indeed, only a single tuple, corresponding to cIauséjeﬁ”eAD':{t'Z/ (r(ar),...,7(an))[t= (ala--l- ;an) €AD}.
C,, can be added in any extension. Furthermore, the trutfPbserve thafAD’|=|AD|. We claim thatAD" is a bounded

assignment encoded in this tuple is completely determifeed:
variables inX\{X,UX,}, this tuple must take the value of
such variables as encodedlé‘yl; and for variables X, U X,
we fixed the variables tb (for X,,) and0 (for X)), as encoded
in I and the definition of’. Moreover,Q(I{.,I,)=0 by

set of updates fofQ, D,,, V, K) provided thatAD is a
bounded set of updates.

We first verify thatDUAD' is partially closedwv.r.t. (D,,V).
Indeed, assume by contradiction tiiat A D is partially closed
but DUAD’ is not partially closed. This implies that one of the

the definition of@, since all the truth assignments encoded by-is violated. Assume that( DUAD') Z p(D,,) for aucQ

tuples inIj, make the corresponding clauses true. Hef\de
is a bounded set of updates {@y, D,,,,V, D, K) for K =r—1.

Conversely, assume thatis not satisfiable. Then there
exists no truth assignmenty that satisfiesp. Let AD be
an arbitrary set consisting of no more thAntuples such that
DUAD is a patrtially closed extension @. Then by the def-
inition of V', AD consists of only tuples ovdio that encodes
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queryg=q U---Ugg. Let (T;,u;) be the tableau representing
g, fori€[1,k]. Then there exists a valuatipn) = (uf,- - , uj,)

of variables inl, - - - , T}, that draws values frodUA D’ such
that i (u;) €p(D,,) for someie[1,k]. By the definition of
AD’, one can now verify that there exists a valid valuatign
of variables inT; such tha., =7ou; andu; draws values from
DUAD, and moreovef; (u; ) € p(D.,). Hence,DUAD is not



Table 1: Data complexity of relative information completes.

| Problems | Lo | Complexity |
FO
. D,,=V=0) .
3 (
RCP, MinP, BEP (Theorems 1, 2, and 3 DATALOG Undecidable
(Dm =0,V is a set of FDs)
RCP, MinP (Theorems 4, 5) CQ, UcQ PTIME
((\:/gie%ig NP-complete
BEP (Theorem 6)
€Q, UCQ PTIME
(fixed K)

partially closed, contradicting the assumption. THUSAD’
is partially closedwv.r.t. (D, V).

We next verify that DUAD’ e RCQ(Q, D,,,V). Assume
by contradiction that DUAD eRCQ(Q,D,,,V) but DU
AD'¢RCQ(Q,D,,,V). Let Q=Q,U---UQ, and denote
by (TiQ,uiQ) the tableau representing;, for eachie[1,n].
By Lemma 4, there must exist a valid vaIuatiQJb:
(o) wrt.  DUAD’ for @ such that(DUAD'U

Usepm #4(T2), D) EV andpj(u?) ¢ Q(DUAD'). By the

6. Conclusions

We have studied the data complexity of three decision
problems associated with relative information complessne
namely,RCP(L) for deciding whether a databageis com-
plete for a given fixed quer§) relative to master dat®,,, and
containment constrainig, MinP (L) for determining whether
D is a minimal database complete f@rrelative toD,,, andV/,
andBEP(Lq) for deciding whether we can complete a database
D for answering? by adding no more thai tuples toD. We

definition of AD’, one can readily verify that there exists a have studied these problems whép ranges over a variety of

valid valuationy; w.rt. DUAD for @ such thatu,=7opu;
andu; witnesses thaDUAD is not bounded byD,,,, V) for
Q. This contradicts the assumption above. Thi§)AD’ €
RCQ(Q,D,,,V).

WhenK is fixed It suffices to show thaBEP(UCQ) is in PTIME
for a constantk’ >1. Consider the algorithm given above, in
the setting whenk is fixed. Clearly, there are polynomially
many instanced D to guess in step 1 sine@ andV are both

query languages for expressing queries and containment con
straints. We have established the upper and lower bounds of
these problems, all matching, for data complexity.

The main complexity results are summarized in Table 1, an-
notated with their corresponding theorems. Putting these t
gether with the results of [12, 13, 14], our main conclus®n i
that different query languages dominate the complexitgnev
whendata complexitys concerned. Indeed, from Table 1 we

fixed andK is a constant. So we revise the algorithm such thagan see the following. (1) The data complexity analyses of

it returns “no” when all suclkAD are considered and none of
them satisfies the condition given in step 2. Otherwise uirret
“yes”. Denote byAL ., the revised algorithm above. Obviously,
algorithmA%L,, is in PTIME.

This completes the proof of Theorem 6. O

Example7. We now illustrate how algorithmAL., works.
ConsiderQs, V>, D,, =0 given in Example 5, and an empty
database)y of schemegproduct. Let K =2. Taking these as
input, AL, checks whether there exists a bounded A&
of updates for(Qs,Dy=0,D,,=0,Vo, K=2). It enumer-
ates all instanced\D of product with no more than 2 tu-
ples, by drawing values frofAddomUNewV, where Adom =
{Kindle, Paperwhite, Nook, PRS-608,, c,, cs, ¢, ¢, ci}-.
and NewV ={d;,ds,...,d1p}. For each such instanc&D,
it checks whetherDyUAD is complete forQs relative to
(D, V2). For example, consideh D, consisting of the fol-
lowing two tuples:t} ={(c,, “Nook”, “PRS-600",¢,,d1)} and
th ={(ds, “Kindle”, “Paperwhite”, ds,c.)}. Using the algo-
rithm Agcp given in the proof of Theorem 4 f&tCP(UCQ), we
can see thabyUA Dy is complete foiQs relative to(D,,, Va).

ThusAL, returns “yes”. That is, there exists a bounded se

AD, of updates fofQs, Dy, D, =0, Vo, K =2) O
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RCP(Lg), MinP(Lg) andBEP (L) are all undecidable when
Lq is FO or DATALOG. The undecidability is rather robust:
whenL, is FO, these problems remain undecidable when mas-
ter dataD,, and containment constrainis are both absent.
When it comes tMATALOG, these problems are undecidable
in the absence ab,,,, when containment constraints are fixed
FDs (2) RCP(Lg), MinP(Lg) and BEP(Lg) become sim-
pler for query languages without negation and recursionteMo
specifically, whenC, is CQ or UCQ, the data complexity anal-
yses ofRCP(Lg) andMinP (L) become tractablBEP (L)

is NP-complete, but it is iIPTIME when K is fixed.

The study of relative information completeness is stilltg i
infancy. A number of issues are targeted for future work. We
have focused on incomplete databases from which tuples may
be missing. In practice, both tuples and attribute valueg Inea
missing. Preliminary results on relative information cdexity
have been reported in [13], when both tuples and values are
missing. Nevertheless, the data complexity analyses afae|
decision problems have not been studied in that setting.

The data complexity analyses BEP(Lg), MinP(Lg) and
BEP(Lq) are beyond reach in practice whép is FO or DAT-
ALOG. A natural question is to identify special cases of these
problems that are decidable and practical. Furthermorejsie



tic algorithms are yet to be developed for analyzing thesbpr [11]
lems, ideally with certain performance guarantees. ,

Incomplete information is just one of the issues of dataqualﬁgl
ity. Other central data quality issues include data coesst,
data accuracy, data currency and entity resolution é&ge[15] [14]
for details). To make practical use of the study on data qual[—15]
ity, it is necessary to investigate the interaction amomegéhs-
sues. As shown in [12, 14], relative information complet=ne [16]
and data consistency can be supported by a uniform framework
Nevertheless, it remains to be studied whether containowent

straints can be used to specify currency constraints farclat  [1g]
rency [16] and dynamic constraints for entity resolutiof][1
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