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Abstract

The paper introduces and investigates the aggregation problem for synthesized mediators of Web
services (SWMs). An SWM is a deterministic finite-state transducer defined in terms of templates
for component services. Upon receiving an artifact, an SWM selects a set of available services
from a library to realize its templates, and invokes those services to operate on the artifact, in
parallel; it produces a numeric value as output (e.g., the total price of a package) by applying
synthesis rules. Given an SWM, a library and an input artifact, the aggregation problem is to find
a mapping from the component templates of the SWM to available services in the library that
maximizes (or minimizes) the output. As opposed to the composition syntheses of Web services,
the aggregation problem aims to optimize the realization of a given mediator, to best serve the
users’ need. We analyze this problem, and show that its complexity depends on the underlying
graph of the mediator: while it is undecidable when such graphs contain even very simple cycles, it
is solvable in single-exponential time in the size of the specification (i.e., the total size of the input
SWM, library and artifact) for SWMs whose underlying graphs are acyclic. We prove several results
of this kind, with matching lower bounds (NP and PSPACE), and analyze restrictions that lead
to polynomial-time solutions. In addition, we study the aggregation problem for nondeterministic
SWMs (NSWMs). We show that the aggregation problem for NSWMs with various underlying
graphs retains the same complexity as its deterministic counterparts. We also provide complexity
bounds for determining whether SWMs and NSWMs terminate.

Keywords:
Web services, artifacts, synthesis problem, static analysis, transducers

1. Introduction

Fundamental research on Web services has mostly focused on service models, verification and
composition. A variety of models have been proposed to specify the behaviors and interactions of
Web services, based on finite-state automata [1, 2, 3], data-driven transducers [4, 5, 6, 7, 8, 9] or
recently, artifacts [10, 11, 12, 13]. A number of verification problems have been studied to decide,
e.g., whether a transaction with certain properties can be generated by a service, or whether two
services are equivalent [2, 4, 6, 7, 8, 9, 11, 14, 15, 16]. The composition synthesis aims to determine
whether available services can be coordinated to deliver a requested service, by automatically
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Figure 1: An SWM specifying a travel planner

generating a mediator. Complexity bounds on the composition problem have been established for
various service models [1, 3, 5, 8, 17, 18].

This paper studies a problem that has not yet received much attention, referred to as the
aggregation problem for Web services. In practice a mediator is often predefined, in terms of
templates for component services. Each template indicates a service of a certain functionality
(e.g., for booking flight tickets or reserving hotel rooms), and is to be realized with an available
service. Provided that a mediator and a library of available services are already in place, a natural
question concerns how to find an optimal realization of the mediator that best serves the users’
need. That is, given user’s input, we want to generate a composite service on the fly by selecting a
set of available services from the library and realizing templates in the mediator with these services,
such that certain values representing the user’s interest are maximized (e.g., benefits) or minimized
(e.g., price). We illustrate the problem by an example.

Example 1: Consider a mediator M1 for planning a trip to Disney World. Users have two options,
as shown in Figure 1. (1) They may book a flight, reserve a hotel room, and arrange activities
separately, all by themselves. (2) Alternatively, they may opt for a cruise package, with which
the choices of hotels are limited. In either option, the users may repeatedly make reservations for
activities, e.g., Disney World, scuba, to arrange a reasonable trip schedule.

The mediator M1 is defined with component templates, e.g., flight and activity, which indicate
services with a functionality for booking a flight and an activity, respectively. Such a template is
to be realized with an available service having the required functionality. For example, flight can
be realized with one of the online ticket booking systems launched by airlines or services such as
Expedia and Priceline. Provided with travel dates, the available service that is chosen to realize
flight returns the lowest airfare and reserves a ticket.

Provided travel dates and a list of free time slots, etc, the mediator is expected to explore both
options to make a travel plan.

(1) For the first option, it ranges over available services for checking flights, hotel rooms and
activities. It picks the ones that lead to the minimum cost C1, which is the sum of the airfare, the
accommodation cost and the costs of all the activities chosen.

(2) For the second option, it ranges over cruise packages, and for each package, it inspects its
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logging constraint and finds a hotel accordingly. It inspects activities as in the first option. The
cost C2 is the sum of the prices of the cruise, logging and activities.

(3) After both C1 and C2 are computed, the mediator returns the option with min(C1, C2). The
option is reserved with the locked price [19], and recommended to the users. The users may then
either decide to purchase the package, or cancel the reservation and repeat the process again. The
actions are not committed until the users are ready to do so.

Observe that the templates in M1 may be realized with possibly multiple available services. In
this work we focus on how the mediator should realize its templates with the ones that lead to the
lowest overall cost. 2

The aggregation analysis is not only of theoretical interest. The need for it is also evident in
practice. In response to practical demand, there have been service providers looking into service
selection based on the quality of services, e.g., the Océano project at IBM [20]. However, the issue
has not yet received a formal treatment, from models for specifying aggregation syntheses to the
complexity of the related problems.

The aggregation problem is, however, nontrivial. As illustrated in Example 1, there are typically
multiple choices of available services to realize a component template. Furthermore, there is data
flow [17] among the components, i.e., the output of a component is passed as the input to another; as
a result, the realization of a component is dependent on the choice of the services for the components
that invoke it. In addition, the control flow of the mediator may be complex, e.g., represented as
a tree, DAG or a cyclic graph. These make this optimization problem rather challenging.

Contributions. We present a model to specify mediators with aggregation, formulate the aggrega-
tion problem, and establish complexity bounds on the problem for mediators of various structures,
e.g., tree, DAG or cyclic graph.

Mediators with aggregation. We present a notion of synthesized mediators for Web services (SWMs),
which extends mediators studied in [8] by incorporating aggregation synthesis. An SWM specifies
a requested service that takes an artifact as input, and returns an aggregate value at the end.
We consider artifacts that are updatable records representing the life-cycle of the processing of a
requested service (see [10, 11, 12, 21] for detailed discussions).

An SWM M is a deterministic finite-state transducer. Each state has a transition rule and
a synthesis rule. The transition rule is specified with a precondition, component templates and
successor states. Upon receiving an artifact, it checks whether the precondition is satisfied; if so
it realizes the templates with available services in a library, invokes the services to operate on the
artifact in parallel, and passes the updated artifacts downward to its successor states. The synthesis
rule computes an aggregate value. It is defined in terms of a polytime-computable function on the
aggregate values of the successor states, i.e., aggregate values are passed upward. The aggregate
value generated in the start state of M is returned as (part of) the output of the service.

A formulation of the aggregation problem. An SWM M is realized with available services in a
library L. A service in L is a function that takes an artifact as input and returns an (updated)
artifact. A realization of M in L is a mapping ρ from the templates of M to L. Substituting
service ρ(τ) for each template τ of M yields a composite service M [ρ].

To ensure that composite services generated by a realization ρ are sensible, we consider real-
ization constraints on ρ that specify what available services are allowed to realize a template.

Given an SWM M , an input artifact t, a library L, a realization constraint λ, the aggregation
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Mediators M AGP(M,L, λ, t) with fixed L with fixed M AGP(M,L, λ, t)
(the SWM case) (the NSWM case)

tree-structured NP-complete NP-complete PTIME NP-complete
(Th 5) (Th 5) (Prop 8) approximation-hard

approximation-hard approximation-hard
(Th 6) (Th 6) (Th 11)

DAG-structured PSPACE-complete PSPACE-complete PTIME PSPACE-complete
(Th 7) (Th 7) (Prop 8) (Th 11)

graph-structured undecidable undecidable undecidable undecidable
(Th 2) (Th 2) (Th 2) (Cor 10)

Table 1: Complexity bounds on the aggregation problem AGP(M,L, λ, t)

problem, denoted by AGP(M,L, λ, t), is to find a realization ρ of M in L that satisfies λ and
maximizes (or minimizes) the output of M [ρ] on the input artifact t.

Complexity bounds. The control flow of an SWM M can be depicted as a graph G(M) of a form
similar to Figure 1, in which nodes are states of M and an edge (s1, s2) indicates that s2 is a
successor state of s1. We establish lower and upper bounds on AGP(M,L, λ, t), all matching, for
M of various structures. We show that AGP(M,L, λ, t) is undecidable when G(M) is cyclic. In fact,
for every cyclic graph G, the aggregation problem is undecidable over SWMs M so that G(M) = G.
But when G(M) is not cyclic (i.e., a DAG), the aggregation problem becomes decidable. Note that
for many verification problems that ask questions about specifications (which are often expressed
in temporal logics [22]), rather than data, single-exponential running time is viewed as acceptable
(and in many cases unavoidable) [23]. We show that by forbidding cycles we get such acceptable
algorithmic solutions: the problem is PSPACE-complete in the acyclic case, and the complexity
drops further to NP-complete (but approximation-hard) when G(M) is a tree.

In light of the intractability we also study special cases of AGP(M,L, λ, t). In particular, we
give the complexity bounds for the problem when M is fixed but L varies, and when L is fixed while
M may change. The former is to cope with a set of predefined mediators when the library L may
take new services or drop obsolete services, and the latter is to accommodate the practical setting
where a relatively stable library L serves various mediators. We show that the former simplifies
the aggregation synthesis, e.g., AGP(M,L, λ, t) is in PTIME as opposed to PSPACE-complete for
DAG-structured M . In contrast, the latter does not make our lives easier: the complexity bounds
remain intact when L is fixed.

Aggregating nondeterministic mediators. In practice one often wants to use nondeterministic me-
diators. We introduce nondeterministic synthesis mediators (NSWMs) by extending SWMs, such
that each state in an NSWM may have multiple pairs of transition and synthesis rules. That is, one
is allowed to specify a variety of options for actions in a given situation. Upon receiving an artifact
in a state, one of its transition rules is nondeterministically picked and applied if its precondition
is satisfied, and its corresponding synthesis rule is used to compute the aggregate value.

We show that NSWMs do not make lives harder: AGP(M,L, λ, t) for NSWMs M has the same
complexity as its deterministic counterparts. Specifically, it is undecidable, PSPACE-complete and
NP-complete when G(M) is cyclic, a DAG and a tree, respectively. Furthermore, the complexity
results for the special cases of SWMs given above carry over to their nondeterministic counterparts.
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Termination analysis. Finally, we investigate the termination problem for NSWMs. Given an
NSWM M , an artifact t, a library L of available services and a realization constraint λ, the termi-
nation problem is to decide whether there exists a realization ρ of M in L such that ρ satisfies λ
and a run of M [ρ] terminates on the input t. We show that the problem is undecidable for SWMs

M when G(M) is cyclic, while a run of M [ρ] always terminates for NSWMs M and valid realization
ρ when G(M) is acyclic.

To the best of our knowledge, this work is a first formal treatment of aggregation syntheses of
Web services. Our results provide a comprehensive picture of complexity bounds for the aggrega-
tion problem, for deterministic and nondeterministic mediators. In addition, the proofs provide
algorithmic insight for developing effective methods to conduct the syntheses. We summarize the
main results of this work in Table 1.

Related work. This work extends [24] by including (1) the definition of nondeterministic me-
diators NSWMs, (2) the complexity bounds of the aggregation problem for various NSWMs, (3)
the termination analysis for SWMs and NSWMs, and (4) the proofs of complexity results for the
aggregation analysis of SWMs. Neither the results in Section 6 nor the proofs in Sections 4 and 5
were presented in [24].

Several algorithms have been developed for selecting available services for service composition,
based on the quality of services (QoS) [25, 26, 27, 28, 29]. Previous work on QoS differs from
this work in the following aspects. (a) The criteria for QoS focus on system issues such as service
response time, cost, reliability, availability, trust and bandwidth. In contrast, the aggregation
problem is to maximize (or minimize) certain values in an artifact representing users’ interest,
which are the data processed by the services and are returned as output. (b) The complexity of
the aggregation problem largely comes from data flow among component services, i.e., the output
of one component is treated as the input of another. In contrast, data flow is not a major issue for
previous work on QoS. (c) Previous work on QoS does not address how aggregation syntheses are
expressed in Web services. Furthermore, previous results mostly consist of heuristic algorithms for
estimating QoS and selecting available services accordingly; complexity bounds for service selection
are not studied, except in [25]. A NP-complete bound was shown in [25] for optimal selection of
available services, for pipelined (linear-structured) services based on a QoS model, in the presence
of constraints on connecting a pair of services. The QoS model and the constraints of [25] are
quite different from the aggregation syntheses and realization constraints studied in this work.
Indeed, in the QoS settings the optimal selection problem remains in NP even for DAG-structured
services [27], as opposed to the PSPACE-complete bound of this work.

Related to our work are also [30, 31]: [30] proposes an approximation algorithm to find top-k
flows of business processes w.r.t. an aggregate value, and [31] aims to find top-k execution flows
with high likelihood in a probabilistic metric. The problem for finding top-k flows is shown to be
in PTIME, NP-complete or undecidable, depending on memory bound for partial flows preceding
a given choice. It is quite different from the aggregation problem studied in this work. Indeed, (a)
[30, 31] focus on aggregate values determined by monotonic functions on weights or likelihoods that
are predefined for each edge in a flow, computed when traversing a flow. In contrast, we consider
synthesis of aggregate values upward from multiple processes that run in parallel. Our aggregate
values can only be computed after a complete run, and are determined by the data flow: the output
artifact of one service is the input of another. Hence the complexity results of [30, 31] do not carry
over to our setting, and vice versa. (b) This work provides the complexity bounds of the aggregation
problem for mediators with various underlying structures: cyclic graph, DAG or tree, which are
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not studied in [30, 31]. (c) This work provides the first complexity bounds of the aggregation and
termination problems, for mediators which nondeterministically select transition and synthesis
rules. It should be remarked that a mediator in the model of [30, 31] is specified in terms of a set
of recursively defined DAGs, in which each node (activity) has multiple implementations that can
be picked at run-time. While the nondeterministic selection of implementations for activities and
the termination of the evaluation algorithms are discussed in [30, 31], their setting is quite different
from ours and moreover, no complexity bound is given there.

A number of standards have been developed for specifying Web services, such as WSDL [32],
WSCL [33], OWL-S [34], SWFL [35] and BPEL [36]. A variety of models have also been proposed to
characterize services supported by those standards, based on finite-state automata [1, 2, 3], data-
driven transducers [4, 5, 6, 7, 8, 9] or artifacts [10, 11, 12]. The notion of SWMs is a refinement of
synthesized mediators studied in [8], which shows that its mediators are able to express automaton
and transducer abstractions of services. SWMs refine mediators of [8] by defining synthesis rules in
terms of aggregation functions. They emphasize data flow among component services, along the
same lines as [17]. Meanwhile SWMs specify control flow in terms of transitions of a transducer. To
our knowledge, (a) only [8] and the split-join operator of OWL-S [34] allow one to express synthesis
operations, and (b) no previous model supports aggregation syntheses.

As remarked earlier, several verification problems have been investigated for Web services
[2, 4, 6, 7, 8, 9, 11, 14, 15, 16, 17]. Complexity bounds have also been developed for the com-
position problem [1, 3, 5, 8, 17]. To the best of our knowledge, however, no previous work has
studied the aggregation problem. In particular, the aggregation problem is quite different from
the composition problem. The latter is a decision problem to determine whether there exists a
mediator that coordinates available services to deliver a requested service; in contrast, the former
is an optimization problem that aims to find a realization of a given mediator to maximize (or
minimize) certain values in an artifact.

An artifact is an identifiable record in which attributes may be created, updated, or deleted
[11, 10, 13, 21]. It represents the life-cycle and business-relevant data of a business entity [12]. In
this work we use artifacts to characterize input messages to a composite service, communications
between components during a run of the service, and the output of the run.

Organization. We present SWMs in Section 2, and formulate the aggregation problem in Section 3.
We establish the undecidability of the problem in Section 4. We identify decidable cases of the
aggregation problem, and provide their matching complexity bounds in Section 5. In Section 6 we
introduce NSWMs, investigate their aggregation analysis, and study the termination problem for
SWMs and NSWMs. Section 7 summarizes the main results and identifies open problems.

2. Synthesized Mediators

In this section we define the syntax and the semantics of SWMs.

2.1. Synthesized Mediators

Before we formally define SWMs, we first describe artifacts and component templates.

Artifacts and templates. SWMs will be based on artifacts, which we define, following [12], as
records specified by an artifact schema

RA = (val : Q, A1 : θ1, . . . , An : θn),
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(q1, true) → (qs, τid), (qc, τid) val(q1) ← min(val(qs), val(qc))
(qs, true) → (qf , τf ), (qh, τh), (qa, τa) val(qs) ← val(qf ) + val(qh) + val(qa)
(qa, φa) → (qa, τa), (qr, τid) /* φa is t.Tl 6= ∅ */ val(qa) ← val(qa) + val(qr)

(qc, true) → (qa, τa), (qp, τp) val(qc) ← val(qa) + val(qp)
(qp, true) → (qr, τid), (ql, τl) val(qp) ← val(qr) + val(ql)
(qf , true) → . val(qf ) ← . /* similarly for qh, ql, qr */

Figure 2: The transition rules and synthesis rules of mediator M1

where each Ai is an attribute and θi is its domain. We have a designated attribute val with the
domain Q of rational numbers (for storing aggregate values). We assume that a special symbol
⊥ is in each of the domains, denoting undefined as usual. We use I(RA) to denote the set of all
artifacts of schema RA.

We assume a countably infinite set Γ of template names for component services, ranged over
by τ . Each template denotes a service of a certain functionality.

Mediators. A synthesized mediator (SWM) is a deterministic finite-state transducer defined in
terms of component templates. When the templates are realized with available services, the SWM

coordinates those services to deliver a requested composite service. More specifically, upon receiving
an artifact, the SWM invokes the component services to operate on the artifact, and redirects it
by routing the output of one service to the input of another [36]. It generates the output of the
requested service by synthesizing certain values in the artifacts updated by the component services.

Definition 2.1: A synthesized mediator (for Web services, referred to as an SWM) over an artifact
schema RA is defined as M = (Q, δ, σ, q0), where Q is a finite set of states, q0 is the start state, δ
is a set of transition rules, and σ is a set of synthesis rules, such that for each state q ∈ Q, there
exist a unique transition rule δ(q) and a unique synthesis rule σ(q):

δ(q) : (q, φ) → (q1, τ1), . . . , (qk, τk).
σ(q) : val(q) ← Fq(val(q1), . . . , val(qk)).

Here q, q1, . . . , qk refer to states in Q, and

• for each i ∈ [1, k], τi is a template name from Γ, referred to as a component template of M ;
the set of all the templates of M is denoted by Γ(M);

• φ, called the precondition of q, is a PTIME-computable predicate over artifacts of schema
RA;

• k ≥ 0; in particular, when k = 0, the right-hand side (RHS) of the rules δ(q) and σ(q) are
empty; and

• Fq : Qk → Q is a PTIME-computable function, referred as a synthesis function, and val(q) is
the aggregate value in state q computed by Fq().

For a transition (q, φ) → (q1, τ1), . . . , (qk, τk), we call q1, . . . , qk the successor states of q carrying
templates τ1, . . . , τk, respectively. 2

Example 2: The mediator M1 described in Example 1 can be expressed as an SWM. The artifact
schema for mediator M1 consists of attributes specifying (1) departure city, travel dates, and the
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number of tickets, (2) a list Tl of free time slots to be filled, (3) a list Al of activities, initially empty,
and (4) val indicating the total cost of a trip, initially ⊥. We define mediator M1 = (Q1, δ1, σ1, q1),
where Q1 = {q1, qs, qc, qf , qh, qa, qr, qp, ql}, and q1 is the start state. The transition rules δ1 and
synthesis rules σ1 are shown in Figure 2.

In mediator M1, Γ(M1) includes templates τf , τh, τa, τp and τl. As shown in Figure 1, these
templates are to be realized with available services for checking flight, hotel, activity, cruise package
and logging, respectively. Each of these services updates certain attribute values of the artifact.
For example, τa updates attributes Al and Tl by filling a time slot with an activity. In addition,
Γ(M1) contains a dummy template τid, which simply passes artifact to its successor state without
incurring any changes.

Note that the synthesis rule for q1 is defined with aggregation operator min, while the synthesis
rule for qs is defined in terms of the sum aggregate. We shall explain the semantics of mediator
M1 in Example 3. 2

2.2. Semantics of Mediators

The semantics is defined via realizations of SWMs, which substitute available library services
for template names. Once this is done, we give two ways to present the semantics of SWMs: a
traditional, purely operational one, and an equivalent semantics that describe the run at once,
rather than via a sequence of steps.

Realizing SWMs. We view available services as functions on artifacts, i.e., functions f : I(RA)→
I(RA). We only impose a condition that such functions be tractable, i.e., PTIME-computable. We
assume there is a library L of available services to choose from. The library can be built by
leveraging techniques for Web service discovery (e.g., [37, 38]).

In a nutshell, the output of an available service is used to update attribute values of the input
artifact. The service conducts the computation based on data in its local database and the input
artifact. While in practice it may take additional input from the users, to simplify the discussion
we assume that all the input parameters are encompassed in the input artifact as attributes. This
assumption does not change the complexity bounds for the aggregation problem to be investigated.

To make a composite service, an SWM needs to be realized by substituting available library
services for its templates. Thus, we define a realization of an SWM M in library L as a mapping
ρ : Γ(M)→ L, from the set Γ(M) of templates of M to L. We denote the result of substituting a
library service ρ(τ) for each occurrence of τ in M by M [ρ], referred to as the composite service of
M realized by ρ.

To ensure that the services realized make sense, we need to impose constraints on realizations.
For instance, it is not sensible if one realizes a template intended for airfare with a service for
hotel. Thus, we define a realization constraint as a mapping λ : Γ(M) → P(L), from Γ(M) to
the powerset P(L) of L. That is, a template τ is restricted to a set λ(τ) of available services that
have the required functionality, such that τ is only allowed to be realized with a service in the
subset λ(τ) of L. That is, realization constraints classify services in the library based on their
functionality.

A realization ρ of M is said to be valid w.r.t. realization constraint λ if for each τ in Γ(M),
we have ρ(τ) ∈ λ(τ). We also say that a realization constraint λ is deterministic if it uniquely
determines the library service for each template, i.e. |λ(τ)| = 1 for all τ ∈ Γ(M).

Runs of composite service – operational semantics. A composite service M [ρ], where M is
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defined over an artifact schema RA, runs on artifacts of RA. We present two equivalent notions of
a run: one of purely operational, and the other of more denotational flavor.

For the operational notion, we define a step relation ⇒(M [ρ],t0), where t0 is an artifact. The
relation is between execution trees [5, 1]. One starts with a single-node execution tree labeled with
the triple (q0, t0,⊥), and proceeds until a terminal execution tree is reached, on which the step
relation is not applicable. Then the value of the third attribute of the root’s label in that execution
tree is the result of running the composite service, i.e., M [ρ](t0).

More precisely, in an execution tree, each node v is labeled with a triple (q, t, w), where q ∈ Q,
t is an artifact of RA, and w ∈ Q∪{⊥}. We refer to the value w as val(v). For two execution trees
ξ and ξ′, we write ξ ⇒(M [ρ],t0) ξ

′ if one of the following conditions holds.

Spawning. If there exists a leaf node v of ξ labeled with (q, t,⊥) (where the transition rule for q
is (q, φ)→ (q1, τ1), . . . , (qk, τk)) and ξ′ is obtained from ξ as follows.

• If either k = 0 or φ evaluates to false on t (i.e., either q has no successor state, or the
precondition for q does not hold), then ξ′ is obtained from ξ by setting val(v) to the
value of the val attribute of t.

• Otherwise ξ′ is obtained from ξ by spawning k children u1, . . . , uk of v, in parallel. For
each i ∈ [1, k], a distinct node ui is created as the i-th child of v. The node ui is labeled
with (qi, ρ(τi)(t),⊥), i.e., it invokes available service ρ(τi) and labels ui with the updated
artifact ρ(τi)(t).

Synthesizing. If there is no leaf node to which a transition rule applies, then ξ′ is obtained
from ξ by picking a node v labeled by (q, t,⊥) so that none of its successors u1, . . . , uk
has val(ui) = ⊥, and updating val(v) according to the synthesis rule: val(v) gets the value
Fq(val(u1), . . . , val(uk)), where Fq is the aggregate from the synthesis rule for q.

In other words, the synthesis rule is applied if val(v) = ⊥ as soon as val(ui) is available for
all i ∈ [1, k].

The run starts from an execution tree ξ0 consisting of a single root node r, labeled with q0, the
input artifact t0 and carrying val(r) = ⊥. Then an execution tree is generated top-down; spawning
new nodes stops at a node reached if either it is in a “final state” q indicated by the transition rule
of q (with an empty RHS), or its precondition φ is not satisfied. In both cases val at such a node
carries a non-⊥ value. The synthesis rule for state q is applied bottom-up to a node v labeled with
(q, t,⊥) as soon as val(ui)’s are available for all the children of v.

If the process stops, val(r) is the output. More precisely, the result of the run of M [ρ] on artifact
t0 is an execution tree ξ such that ξ0 ⇒∗ ξ and there is no distinct ξ′ such that ξ ⇒ ξ′ (here ⇒∗ is
the reflexive-transitive closure of ⇒). The output M [ρ](t0) is the content of val(r) at the root r of
the result of the run.

The process may not necessarily stop when a mediator M is “recursively defined”, i.e., when
a state in M can reach itself after one or more transitions. In other words, there may not exist a
finite execution tree ξ such that ξ0 ⇒∗ ξ and ξ cannot be further expanded via spawning. When
this happens, M [ρ](t0) is undefined. We shall study termination analysis in Section 6.

Denotational semantics. Note that while there may be multiple runs of a composite service,
their results coincide, and thus the output is uniquely defined. In fact, one can compactly repre-
sent the output of such runs by a single tree, as shown in the easily verified proposition below.
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The proposition suggests a semantics of denotational flavor, which is equivalent to its operational
counterpart given above.

Proposition 1. For a composite service M [ρ] and an artifact t0 of schema RA, the result of a run
and the output of M [ρ] on t0 are either a (Q × I(RA) × Q)-labeled tree ξ and a number w0 ∈ Q
satisfying the following conditions:

1. the root of ξ is labeled with (q0, t0, w0);
2. consider a node v of ξ labeled with (q, t, w), where (q, φ)→ (q1, τ1), . . . , (qk, τk) is the transition

rule for q;

(a) v is a leaf iff w = t.val and either φ(t) = false or k = 0;
(b) v is a non-leaf node iff it has k children labeled with (qi, ρ(τi)(t), wi) for i ∈ [1, k] so that

w = Fq(w1, . . . , wk), where Fq is the aggregate in the synthesis rule for q;

or are undefined.

Example 3: Recall mediator M1 from Example 1. Given an artifact t1 of schema R1 and a
realization ρ1, the execution tree specifying the run of M1[ρ1] on t1 is constructed as follows, as
depicted in Figure 3.

(1) It starts with a tree ξ0 consisting of only the root node r, labeled with (q1, t1, val(r) = ⊥).

(2) Since the preconditions for qs and qc are true, the tree ξ0 is expanded to ξ1 by creating two
children vs and vc for root r, labeled with (qs, t1,⊥) and (qc, t1,⊥), respectively. Note that the
dummy service τid simply passes the input artifact t1 to vs and vc.

(3) At node vs, the available services ρ1(τf ), ρ1(τh) and ρ1(τa) are invoked unconditionally, in
parallel with parameter t1 associated with vs. The tree ξ1 is expanded by creating three children
vf , vh, va for vs.

At node vf , assume that tf is the output artifact of ρ1(τf ), and tf .val is the airfare found by
ρ1(τf ) based on the data in the input artifact t1 and the local database of ρ1(τf ). Since state qf
does not have any successor state, vf does not spawn any new node, and val(vf ) is simply set to
be tf .val; similarly for vh.
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On the other hand, at node va, if the precondition φa(t1) is satisfied, service ρ1(τa) is triggered
to find an activity. It returns an artifact ta, which updates t1 by filling a free time slot with
an activity, i.e., adding the newly chosen activity to t1.Al (treated as ta.Al), and removing the
corresponding slot from t1.Tl (denoted as ta.Tl). It spawns two children v1a and vr for va, and
passes ta to them. While the node vr simply retains ta.val for synthesizing (denoted as tr.val), the
process repeats at node v1a, which invokes ρ1(τa) to select activities for the remaining time slots
in ta.Tl. The tree expands until all the free time slots are filled, i.e., when the precondition φa no
longer holds.

(4) As soon as the spawning process terminates for the subtree of va, the synthesizing phase starts
for the subtree of vs. Synthesizing val values upwards, val(va) is set to be the sum of the costs
for all the chosen activities. When val(va) is available, val(vf ) + val(vh) + val(va) is computed and
assigned as the value of val(vs), which is the cost C1 as shown in Figure 3.

(5) Similarly, at node vc two children v2a and vp are created. In particular, at node vp, service ρ1(τp)
is triggered to select a cruise package, which yields artifact tp. Based on the package selected and
its constraint on logging, a hotel is chosen by invoking service ρ1(τl), which takes tp as the input
parameter.

Along the same lines as described above, the subtree rooted at vc is completed and val(vc) is
computed. At this point val(r) can be computed, as min(val(vs), val(vc)). This yields the result of
the run, an execution tree in which no node v is labeled with val(v) = ⊥. The output M1[ρ1](t1)
of the run is val(r). 2

To sum up, a transition rule indicates a business rule, and the precondition for each state
determines whether its associated business rule should be carried out or not. An SWM specifies
the control flow in terms of its transition rules, and the data flow with artifacts. There exist
dependencies on the artifacts, e.g., the output artifact of ρ1(τp) is the input of ρ1(τl) in the example
above; that is, the choice of hotel depends on what cruise package is selected in the previous state,
as various cruise packages impose different lodging constraints. Also, to simplify the discussion, we
only take a single artifact as input and produce a single value val as output. However, the definition
of SWMs can be readily extended such that a composite service may take multiple artifacts as input
and return multiple artifacts as output (including but not limited to val), and this does not change
the results in the paper.

3. The Aggregation Problem

We now present the aggregation problem. Given an SWM M over artifact schema RA, an
artifact t of RA, a library L of available services and a realization constraint λ, the aggregation
problem is to find a realization ρ of M in L that is valid w.r.t. λ and maximizes (or minimizes)
M [ρ](t), the output of M on t.

Intuitively, given an input t and a mediator M , the aggregation synthesis is to generate a
composite service “on-the-fly” [39] that is “optimal” for user’s request, by realizing templates of
M with available services w.r.t. the user’s input. For instance, the aggregation synthesis for SWM

M1 of Example 1 is an instance of the aggregation (minimization) problem.
To study the complexity, we turn to a decision version of the problem. In such a version, we

are interested in a valid realization ρ of M in L so that M [ρ](t) ≥ B, for a predefined bound B.
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PROBLEM: AGP(M,L, λ, t)

INPUT:

1. an SWM M on artifact schema RA;

2. an artifact t of RA;

3. a library L of available services;

4. a realization constraint λ.

QUESTION: Does there exist a realization ρ ofM in L valid w.r.t. λ so thatM [ρ](t) ≥ B?

One can change the sign of all the values and aggregate functions and arrive at an equivalent
minimization problem which asks whether M [ρ](t) ≤ B. If we want to emphasize whether we refer
to the maximization (M [ρ](t) ≥ B) or minimization (M [ρ](t) ≤ B) version, we shall write AGPmax

or AGPmin, respectively.

Our goal is to investigate the complexity bounds of AGP(M,L, λ, t) for SWMs M of various
structures. More precisely, we define the mediator graph of an SWM M = (Q, δ, σ, q0), denoted by
G[M ], as a directed edge-labeled graph G[M ] = (Q,E,L) in which there is an edge (q, q′) in E
labeled with τ if q′ is a successor state of q carrying template τ , i.e., (q′, τ) is in the RHS of the
transition rule for q in M . In the sequel we simply write G[M ] as (Q,E) when L is clear from the
context. An SWM M is recursively defined if G[M ] is cyclic.

We start by showing that the general problem is undecidable even for very simple SWMs that
have a single state and whose underlying graph is a self-loop. In fact, we show that for every
graph containing a cycle, the aggregation problem for mediators with that underlying graph is
undecidable (even if some of the parameters are fixed). As an example, Figure 1 depicts an SWM

with a cyclic graph structure.
So this suggests a restriction to SWMs whose mediator graph is a DAG. We shall show that

for such SWMs the problem is decidable in PSPACE, and the further restriction to tree-structured
SWMs puts the problem in NP.

4.Aggregation Synthesis: Undecidability

In this section we show that the general problem AGP(M,L, λ, t) is undecidable, and identify
restrictions that need to be put on the parameters of the problem to achieve decidability.

Recall that the mediator graph for an SWM M is the graph G[M ] whose nodes are reachable
states of M , and which has an edge from q to q′ if q′ appears in the right-hand side of the unique
transition rule for q in M .

We then have the following undecidability result. Recall that a realization constraint λ is
deterministic if |λ(τ)| = 1 for all τ ∈ Γ(M), i.e., for each template, the library service realizing it
is uniquely determined.

Theorem 2. Let G be an arbitrary connected graph with a cycle. Then there exists an SWM M0

whose mediator graph is G, a fixed library L0 and a deterministic realization constraint λ0 such
that the problem AGP(M0, L0, λ0, t) (whose only input is t) is undecidable.

Proof. For now assume that G is the simplest possible graph with only one node and a cycle
(i.e., it has only one state q and one self-loop (q, q)).

We show the undecidability by reduction from the existence of solutions of Diophantine equa-
tions with fixed-degree and fixed number of variables. It is known that one can fix numbers d
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and k so that the following problem is undecidable: given a polynomial p(x1, . . . , xk) with integer
coefficients of degree at most d, does it have an an integer solution? That is, do there exist integers
j1, . . . , jk so that p(j1, . . . , jk) = 0. This was shown in [40], and the bounds on k and d have since
been improved, for example, to d = 4, k = 58 or d = 16, k = 29, see [41].

Let δ1, . . . , δm enumerate all the tuples of integers (n1, . . . , nk) so that
∑

i ni ≤ d. These
correspond to the monomials xn1

1 . . . xnk
k . The artifact schema RA contains attributes A1, . . . , Am,

and an extra attribute I. The idea is that the values of that attribute will be iterated, while
looking for a (code of a) solution. Note that since d and k are fixed, the number m is bounded by
a constant and can be considered to be fixed as well.

Suppose that we are given as an input a Diophantine polynomial

p(x1, . . . , xk) =
m∑
i=1

aix
δi(1)
1 . . . x

δi(k)
k ,

where for δi = (n1, . . . , nk), we denote nj by δi(j). We represent it as an artifact tp, where val is
set to 0, each Ai is set to the corresponding coefficient ai, and I is set to 0.

We construct SWM M0 as follows. It keeps iterating the value of I, viewing it as a code of a
k-tuple of natural numbers. Since k is fixed, this value can be decoded into a k-tuple in polynomial
time. We use a fixed library consisting of a single function f that increases the value of I by 1.
Then, in state q, the SWM M0 decodes the code value and computes the value of the polynomial. If
the value is 0, the val attribute is set to 0 and propagated up. Otherwise the function f is invoked
to increase the code by 1, and the process proceeds.

We now define this formally. Assume that decodek : N→ Nk is a polynomial-time computable
function that decodes a number into a k-tuple. This can be obtained by iterating the standard
coding of pairs, i.e., a one-to-one function pair : N2 → N. Then the coding of (n1, . . . , nk) is
pair(n1, pair(n2, . . . , pair(nk−1, nk) . . .)). Since the function pair and the corresponding decoding
are polynomial-time computable, and k is fixed, then decodek is computable in polynomial time.
The library L0 has only one function f which increases the value of the I attribute by 1. SWM M0

will have only one template τ , and the deterministic realization constraint is λ0(τ) = {f}. The
transition rule of q is:

(q, P 6= 0) → (q, τ)

Here P takes the value N of the I attribute and computes p(decodek(N)). Since all the coefficients
of p are present in the artifact and the degree is constant, the computation takes polynomial time.

The synthesis rule is simply val(q) ← val(q), i.e., the value is propagated all the way to the
root. It is now routine to verify that for p having an integer solution, M0 will return 0, and for p
not having a solution it will not terminate.

The graph of M0 is G, which has one node with a self-loop. If we have an arbitrary graph with
a cycle q0 → q1 → . . .→ ql−1 → q0, we simply modify the transition rule so that it cycles through
these states, i.e., the rules are (qi, P 6= 0) → (qj , τ), where j = (i + 1) mod l, with q0 being the
initial state. Then the preceding proof applies verbatim. This concludes the proof. 2

A slight modification of the proof shows the following undecidability result.

Corollary 3. The aggregation problem is undecidable even if the library, the (deterministic) real-
ization constraint, the artifact, and the cyclic mediator graph are fixed. That is, for an arbitrary
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connected graph G with a cycle, there exist a fixed library L0, a deterministic realization constraint
λ0 and an artifact t0 so that the problem AGP(M,L0, λ0, t0), whose only input is an SWM M with
the mediator graph G, is undecidable.

Proof. We follow the previous proof and remove the coefficients of the polynomial from the
artifact, and instead put attributes for the values of the decoded tuple of variables. The SWM

produces the tuple from a code and computes the polynomial in the precondition, i.e., follows a
transition rule (q, p(n̄) 6= 0) → (q, τ), where p is the Diophantine polynomial and n̄ is the k-tuple
holding the decoded values. The library contains a single function f as in the previous proof. 2

Analyzing the proof, we see that there are two main reasons for undecidability:

1. cyclicity of the mediator graph (even a single cycle leads to undecidability), and
2. the infinite domain of attribute values of the artifact.

The second constraint is essential for many applications as artifacts store numbers, dates, strings,
etc. So we need to impose restrictions on the mediator graph. As no cycles are allowed, we shall
look at mediator graphs which are DAGs and trees in the next section. But now, for completeness
only, we present a simple result for the case of fixed-size domain.

Proposition 4. When the size of the domain of each attribute of the artifact schema is fixed,
AGP(M,L, λ, t) can be solved in single-exponential time. If M and the artifact schema are fixed as
well, it is solvable in PTIME.

Proof. Let θ be an upper bound on the size of the domain. If the artifact schema contains m
attributes, we can have at most θm possible values of artifact values. Suppose τ1, . . . , τk are the
templates used in SWM M , and L is the library. The library is finite (since there are finitely
many possible artifacts) and there are at most |L|k realizations ρ of M . For each such ρ, we can
represent M [ρ] as a tree automaton AM [ρ] whose states are of the form (q, t′), where q is a state
of M and t′ is a possible value of the artifact tuple. The transitions of AM [ρ] ensure that both
transition and synthesis rules of M are respected. It is clear that the set of states of the automaton
is exponential in the size of the input of AGP(M,L, λ, t), and that the transitions can be computed
in single-exponential time. Finally, the accepting states are (q0, t

′), where val of t′ is at least B.
Then AM [ρ] accepts a tree if and only if M [ρ](t) ≥ B.

Now for each ρ, we construct AM [ρ] and test it for nonemptiness; since the latter takes polyno-
mial time in the size of the automata, and there are exponentially many ρ’s, the algorithm runs in
exponential time. The answer to AGP(M,L, λ, t) is true if and only if the language of one of the
AM [ρ]’s is nonempty.

Finally, if m (the number of attributes) is fixed, then there exists a fixed number of artifacts,
and if M is fixed, then there are polynomially many realizations ρ; in this case, the algorithm runs
in polynomial time. 2

5. Decidable Cases

In this section we identify special decidable cases of the aggregation problem. We study
AGP(M,L, λ, t) for SWMs M that are not recursively defined, i.e., when the mediator graph G(M)
of M is acyclic. As a result, one does not have to worry about the termination of runs of composite
services realized with these SWMs.

14



5.1. Tree-Structured Mediators

We start with AGP(M,L, λ, t) for tree-structured SWMs M , i.e., when G(M) is a tree.

Complexity. Our first result shows that the aggregation problem indeed becomes decidable when
G(M) is a tree. In fact, it can be solved in single-exponential time, which is acceptable for static
analysis of specifications such as SWMs.

The problem is, however, intractable even for simple “pipelined” SWMs, i.e., when G(M) has
a linear (chain) structure. More specifically, we say that M has a pipelined structure if every
transition rule of M either has an empty right-hand side, or is of the form (q, φ) → (q′, τ).
Moreover, the intractability is rather robust: it holds even if we fix the library L (which is a
reasonable assumption, as in practice, a library of available services may be relatively stable: it is
only updated periodically).

Theorem 5. AGP(M,L, λ, t) is NP-complete for tree-structured SWMs. The problem remains NP-
hard when the library L is fixed and when the mediator M has a pipelined structure.

Proof. We show that AGPmax(M,L, λ, t) and AGPmin(M,L, λ, t) are NP-complete, and are already
NP-hard even when L is fixed and when M has a pipelined structure.

(1) AGPmax(M,L, λ, t). Given M,L, λ, t and a number B, we show that it is NP-complete to
determine whether there exists a realization ρ such that ρ is valid w.r.t. λ and M [ρ](t) ≥ B.

Upper bound. We first show that for any tree-structured M , the problem is in NP, by giving an NP
algorithm for deciding whether there exists such a realization ρ. The algorithm takes two steps:
it first guesses ρ, and then checks whether ρ is valid w.r.t. λ and M [ρ](τ) ≥ B. The checking can
obviously be done in PTIME, since (a) for all templates τ in M , checking whether ρ(τ) ∈ λ(τ) is
in PTIME, (b) M [ρ](τ) can be computed in PTIME because all preconditions and synthesis rules
are defined with PTIME-computable functions, and moreover, for all templates τ in M , ρ(τ) is a
PTIME function in the library L. Hence when M has a tree structure, the problem is in NP.

Lower bound. We next show that the aggregation problem AGPmax(M,L, λ, t) is NP-hard when
L is fixed and M has a pipelined structure, by reduction from 3SAT. It is known that 3SAT is
NP-complete (cf. [42]). Given an instance ϕ of 3SAT, we construct a pipelined SWM M , a library
L of available services, a realization constraint λ, an initial artifact t and a number B, such that ϕ
is satisfiable iff there exists a realization ρ that is valid w.r.t. λ and moreover, makes M [ρ](t) ≥ B.

Assume that ϕ = C1 ∧ . . . ∧ Cn, defined with variables x1, . . . , xm, where for each i ∈ [1, n], Ci
is a clause of the form l1 ∨ l2 ∨ l3, and li is either a variable xj or its negation x̄j . We construct
Rϕ, L, M and λ as follows.

(A) The artifact schema Rϕ is defined to be (X, val), where X is to hold a binary number b1 . . . bm,
encoding a truth assignment for x1, . . . , xm, and val is to denote the truth value of ϕ. The initial
artifact t is (X = 0, val = 0).

(B) The library L consists of three services: fT , fF and f1, where (a) fT takes (X = b1 . . . bj , val)
as input, and returns t = (X = b1 . . . bj1, val), i.e., by adding 1 as the last digit of the updated
t.X, (b) similarly, fF expands t.X by adding 0 as the last digit of t.X, and (c) f1 is a constant
function that returns 1. Note that L is fixed: it is independent of ϕ.

(C) The SWM M is defined as (Q, δ, σ, q1), where the set of states Q = {qj | j ∈ [1,m + 2]}, and
the rules δ and σ are given as follows:
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(qj , true)→ (qj+1, τj),
val(qj)← val(qj+1) /* for j ∈ [1,m] */

(qm+1, φ)→ (qm+2, τv),
val(qm+1)← val(qm+2)

(qm+2, true)→ .
val(qm+2)← .

Here φ is a Boolean function (C1 ∧ . . . ∧ Cn) [x1/t.X[1]] . . . [xm/t.X[m]], where t.X[j] denotes the
j-th digit of t.X. The set Γ(M) of templates consists of τj for j ∈ [1,m] and τv.

Intuitively, δ and σ specify a control flow of a pipelined structure that generates a truth as-
signment for variables of ϕ, step by step. Specifically, in state qj for j ≤ m, the truth value of xj
is added as the last digit of t.X, by invoking either fT or fF in the library L. In state qm+1, the
precondition p evaluates the truth value of ϕ based on the last m digits of the truth assignment
t.X, in PTIME; if the condition is satisfied, t.val is changed to 1 by invoking f1; otherwise t.val
remains to be 0.

The constraint λ is defined as follows: λ(τj) = {fT , fF } for j ∈ [1,m], and λ(τv) = {f1}.

(D) The constant B is set to be 1.
We show that the construction given above is indeed a reduction. Assume that ϕ is satisfiable.

Then there exists a truth assignment µ for variables in ϕ that satisfies ϕ. Define a realization ρ such
that for all j ∈ [1,m], ρ(τj) = fT if µ(xj) = 1, and ρ(τj) = fF otherwise. Obviously M [ρ](t) = 1,
i.e., M [ρ](t) ≥ 1.

Conversely, suppose that there exists a realization ρ such that M [ρ](t) ≥ 1. Define a truth
assignment µ for ϕ such that for all j ∈ [1,m], µ(xj) = 1 if ρ(τj) = fT and µ(xj) = 0 otherwise.
Then µ satisfies ϕ.

(2) AGPmin(M,L, λ, t). The proof for the upper bound is by giving an NP algorithm. The algorithm
is the same as its counterpart for AGPmax(M,L, λ, t), except that the last step of the algorithm
inspects whether M [ρ](t) ≤ B.

The proof for the lower bound is by reduction from non-tautology, which is NP-complete
(cf. [42]). The definitions of M,L, λ, t are the same as the construction given in (1), except the
following: (a) B = 0, (b) t.val = 1 in the initial artifact, (c) the service f1 is a constant function
that returns 0, and (d) the precondition p tests whether the given instance of the non-tautology
problem evaluates to false. 2

In light of this intractability result one might be tempted to develop a PTIME approxima-
tion algorithm for the aggregation problem such that one can still efficiently find a solution with
certain performance guarantee. However, this is also infeasible. The result below shows that the
aggregation problem is not even in APX (see, e.g., [43]), the class of problems that allow PTIME
approximation algorithms with approximation ratio bounded by a constant.

We show a stronger result: AGP(M,L, λ, t) does not even allow any PTIME approximation
algorithms with approximation ratio bounded by any polynomial. Following [43], we say that an
algorithm achieves a polynomial approximation ratio nl for a maximization (resp. minimization)
problem if for every instance of the problem, it produces a solution of value at least 1

1+nlOPT, i.e.,

in the range [ 1
1+nlOPT,OPT] (resp. at most (1 +nl) OPT), where l is fixed and OPT is the value of
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the optimal solution. We refer to such an algorithm as a nl-approximation algorithm. The result
below tells us that no matter what nl is used, it is impossible to find a PTIME nl-approximation
algorithm for AGP(M,L, λ, t) unless P = NP, even for restricted L and M .

Theorem 6. Unless P = NP, there does not exist any PTIME nl-approximation algorithm for
AGP(M,L, λ, t), even when M has a pipelined structure and when L is fixed.

Proof. We show that unless P = NP, AGPmax(M,L, λ, t) and AGPmin(M,L, λ, t) do not allow any
PTIME approximation algorithms with a polynomial approximation ratio.

(1) AGPmax(M,L, λ, t). The main idea is by reduction from 3SAT: given an instance ϕ of 3SAT,
we construct in PTIME a pipelined SWM M , a library L of fixed services, a realization constraint
λ and an initial artifact t, such that (a) if ϕ is satisfiable, then there exists a realization ρ such
that M [ρ](t) = 2|X|+1, where X is the set of variables in ϕ (2|X|+1 is expressed in binary, in O(|X|)
space); and (b) otherwise for all realizations ρ, M [ρ](t) = 0.

We next give the reduction. The mediator M , library L, constraint λ and initial artifact t are
the same as their counterparts given in the proof of Theorem 5, except the following. The available
service f1 in L takes an artifact t as input, and converts the binary number t.X into binary number
Y such that Y and X have the same number of digits, and Y consists of 1 only. In addition, it sets
t.val = Y . Obviously (a) M [ρ](t) is either 0 or 2|X|+1, and (b) the service function f1 is in PTIME.

We now show the construction above is a reduction. Indeed, given any instance ϕ of 3SAT, (1)
the mediator M , λ and t can be constructed in PTIME, and the algorithm A on M,L, λ and t
is in PTIME, and (2) ϕ is satisfiable iff the algorithm returns a value no less than 1

1+nl 2
|X|+1 for

any given polynomial nl. Assume by contradiction that there exists a PTIME nl-approximation
algorithm A for the aggregation problem, then one can decide 3SAT in PTIME. Hence, such an
algorithm A cannot possibly exist unless P = NP.

Along the same lines as the proof of Theorem 5, it is straightforward to verify that if ϕ is
satisfiable, then M [ρ](t) = 2|X|+1, and otherwise M [ρ](t) = 0, as desired.

(2) AGPmin(M,L, λ, t). The proof is similar, by reduction from non-tautology. Given an instance ϕ
of the non-tautology problem, we construct in PTIME a pipelined SWM M , a realization constraint
λ and an initial artifact t, with a fixed library L of available services, such that (a) if ϕ is not a
tautology, then there exists a realization ρ such that M [ρ](t) = 2|X|+1, where X is the set of
variables in ϕ, and (b) otherwise for all realizations ρ, M [ρ](t) = 0.

This suffices. Assume that there exists a PTIME nl-approximation algorithm B for the aggre-
gation problem, then one can decide non-tautology in PTIME. Indeed, given any instance ϕ of
non-tautology, we construct M , λ and t, executes B on M,L, λ and t, in PTIME; we can conclude
that ϕ is a tautology iff the algorithm returns 0. This shows that unless P = NP, AGPmin(M,L, λ, t)
does not admit any PTIME nl-approximation algorithm.

The reduction is the same as its counterpart given in the proof of Theorem 5, except that f1 is
changed as described in (1) above. 2

5.2. DAG-Structured Mediators

We next investigate AGP(M,L, λ, t) for SWMs with a DAG structure. We show that like tree-
structured SWMs, DAG-structured SWMs simplify the aggregation analysis: AGP(M,L, λ, t) is also
decidable in this setting.
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Given Theorem 5, the best one can hope for is that AGP(M,L, λ, t) remains in NP for DAG-
structured SWMs. It turns out that for these SWMs, the complexity goes up, but the aggregation
problem is still solvable in single exponential time (in PSPACE). The PSPACE hardness bound
remains intact even for fixed library L and deterministic realization constraint λ.

Theorem 7. AGP(M,L, λ, t) is PSPACE-complete for DAG-structured SWMs. It remains PSPACE-
hard when the library L is fixed and the realization constraint λ is deterministic.

Proof. We show that AGPmax(M,L, λ, t) and AGPmin(M,L, λ, t) are in PSPACE, and are PSPACE-
hard when L is fixed. We give a proof for AGPmax(M,L, λ, t). The proof for AGPmin(M,L, λ, t) is
similar.

Upper bound. We first show that for any DAG-structured M , the problem is in PSPACE, by giving
an NPSPACE algorithm. Given M,L, λ, t and a number B, the algorithm first guesses a realization
ρ, and then checks whether ρ is valid w.r.t. λ and M [ρ](t) ≥ B.

We show that the checking can be conducted in PSPACE. Indeed, checking whether ρ is valid is
in PTIME. To check whether M [ρ](t) ≥ B, the algorithm computes M [ρ](t) as follows, constructing
the execution tree ξ of the run in stages without storing the complete tree. At each node v
of the tree labeled with (q, t, val), suppose that the transition and synthesis rules are (q, φ) →
(q1, τ1), . . . , (qk, τk) and val(q) ← Fq(val(q1), . . . , val(qk)), respectively. The algorithm inspects
the subtrees ξ1, . . . , ξk of v one by one, for the successor states q1, . . . , qk, respectively. To inspect
a subtree, it follows a depth-first traversal order, and stores only necessary information. After
a subtree ξj is checked, it retains only the val value of its root, denoted by valj , and reuses its
space to compute ξl for l > j. When all valj ’s are available, val(v) is computed by evaluating
Fq(val1, . . . , valj), and the space for storing val1, . . . , valk and the subtrees of v are released. The
process starts from the root of ξ and proceeds until M [ρ](t) is computed.

To see the space complexity of the checking, let d be the longest path in G(M), w the maximum
length of transition rules in M (the width of ξ), cL the maximum space needed for evaluating an
available service in L, and pM the maximum space for evaluating a precondition or a synthesis
function in M . Then at any stage of the computation, at most O(w ∗ d ∗ |t|) space is needed to
store necessary information for computing ξ, where w and d are linear in the size of M . In addition,
at most cL + pM space is required to evaluate preconditions and synthesis rules, where cL and pM
are polynomials since all available services in L are PTIME functions, and all preconditions and
synthesis rules are PTIME-computable. Putting these together, the algorithm is in O(w ∗ d ∗ |t|+
cL + pM ) space. Since PSPACE = NPSPACE, the problem is in PSPACE.

Lower bound. We next show that the aggregation problem AGPmax(M,L, λ, t) is PSPACE-hard
when L is fixed, λ is deterministic and M has a DAG structure, by reduction from Q3SAT.

An instance of Q3SAT is given by a well-formed quantified Boolean sentence of the form ϕ =
Q1x1Q2x2 · · ·QmxmE, where E = C1 ∧ · · · ∧ Cn is an instance of 3SAT in which all the variables
are x1, . . . , xm, and Qi ∈ {∀,∃} for i ∈ [1,m]. The Q3SAT problem is to decide, given such a
sentence ϕ, whether ϕ is valid. It is known that Q3SAT is PSPACE-complete (cf. [42]).

Given an instance ϕ of Q3SAT, we construct a DAG-structured SWM M , a fixed library L of
available services, a realization constraint λ, an initial artifact t and a number B, such that ϕ is
satisfiable iff there exists a realization ρ that is valid w.r.t. λ and makes M [ρ](t) ≥ B.

(1) The artifact schema Rϕ, initial artifact t, library L and number B are the same as their
counterparts given in the proof of Theorem 5. Recall that L is fixed: it is independent of ϕ.
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(2) The SWM M is defined as (Q, δ, σ, q1), where Q = {qj | j ∈ [1,m+ 2]}, and δ and σ are given
as follows. For each j ∈ [1,m], if the quantifier Qj is ∀, then

(qj , true)→ (qj+1, τT ), (qj+1, τF )
val(qj)← min(val1(qj+1), val2(qj+1)),

where for l ∈ [1, 2], vall(qj+1) denotes the val value of the l-th successor state.
If the quantifier Qj is ∃, then

(qj , true)→ (qj+1, τT ), (qj+1, τF ),
val(qj)← max(val1(qj+1), val2(qj+1)).

For j ∈ [m+ 1,m+ 2], we define

(qm+1, φ)→ (qm+2, τv), val(qm+1)← val(qm+2)
(qm+2, true)→ . val(qm+2)← .

The set Γ(M) has three templates τT , τF , τv.

(3) The constraint λ is defined as follows: λ(τT ) = {fT }, λ(τF ) = {fF }, and λ(τv) = {f1}. Note
that there is a unique ρ valid w.r.t. λ, i.e., λ is deterministic.

Intuitively, the SWM generates a complete binary tree of depth m to inspect all possible truth
assignments for variables in ϕ. In other words, each path of length m encodes a truth assignment
for ϕ. The end of the path is followed by a node labeled with state qm+1, in which the precondition
p evaluates the truth value of E based on the truth assignment t.X; if the condition is satisfied, t.val
is changed to 1 by invoking f1; otherwise t.val remains to be 0. The synthesis rules inspect whether
ϕ is satisfied along all paths in the execution tree of a run, by using aggregation operators. More
specifically, min is used to encode universally quantified variable xj , and assures that both truth
values for xj are inspected. On the other hand, max encodes an existentially quantified variable
xj , and takes the truth value that satisfies ϕ if there exists any.

We show that the construction given above is indeed a reduction. Observe that there is a
unique realization ρ valid w.r.t. λ. Assume that ϕ is true. It is easy to verify by induction on m
that M [ρ](t) = 1, i.e., M [ρ](t) ≥ B. Conversely, suppose that there exists a realization ρ such that
M [ρ](t) ≥ 1. One can verify that ϕ is true, again by a simple induction on m.

For AGPmin(M,L, λ, t), the upper bound proof remains unchanged. The proof for the lower
bound is the same except that B is now set to 0. Since a Q3SAT instance ϕ is a sentence with a
unique truth value, ϕ is false iff there exists a realization ρ such that M [ρ](t) ≤ 0. That is, the
reduction given above also verifies that AGPmin(M,L, λ, t) is PSPACE-hard when the library L is
fixed and λ is deterministic. 2

The case of the fixed mediator. We have seen from Theorems 2, 5, 6 and 7 that fixing library
does not make our lives easier: the lower bounds remain unchanged when the library of available
services is predefined and fixed.

Another practical setting is that a service provider often maintains a set of predefined mediators.
That is, the SWMs can be considered fixed, while the library L is periodically updated by adding
newly found available services to it, or removing obsolete services from it.
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Below we show that fixing SWMs simplifies the aggregation synthesis: the problem is in PTIME
for a fixed SWM M , when M has a tree or a DAG structure. Contrast this to Theorem 2, which
tells us that when the mediators are recursively defined, fixing both mediators and library does
not help.

Proposition 8. AGP(M,L, λ, t) is in PTIME when M is a fixed DAG-structured SWM.

Proof. Given L, λ, t and a realization ρ, it is in PTIME to compute M [ρ](t) for a fixed DAG-
structured SWM M . Indeed, it takes PTIME to construct the execution tree of the run of M [ρ] on
t, since the size of M is a constant when the SWM M is fixed.

In light of this, a PTIME algorithm for finding ρ that maximizes (or minimizes) M [ρ](t) is as
follows. For each realization ρ that is valid w.r.t. λ, computes M [ρ](t), and returns the realization
that yields the maximum (or minimum) output. The realizations can be enumerated by ranging
over all λ(τ) for each template τ in M , where |Γ(M)| is a constant when M is fixed. That is,
there are at most |L|l many realizations, where l = |Γ(M)| and it is a constant. The algorithm is
obviously in PTIME. 2

6. Nondeterministic Mediators

So far we have only considered deterministic mediators: in an SWM, each state is associated
with a unique pair of transition rule and synthesis rule. As observed in, e.g., [44], in practice
one may want to specify mediators with nondeterministic transition rules. For example, one may
want to extend the SWM M1 given in Example 2 by defining two pairs of transition and synthesis
rules for state qa with different preconditions, one for winter and the other for summer, such that
different activities can be chosen in different seasons.

In this section we first extend SWMs and define nondeterministic SWMs (NSWMs), by allowing
multiple pairs of transition and synthesis rules to be associated with each state. We then revisit the
aggregation problem for NSWMs of various structures, showing that the presence of nondeterminism
does not complicate the analysis. Finally, we formulate the termination problem, and establish its
complexity bounds, for composite services generated from NSWMs and SWMs.

6.1. Nondeterministic SWMs

We first introduce nondeterministic SWMs.

Definition 6.1: A nondeterministic synthesized mediator (for web services; NSWM) over an artifact
schema RA is defined as M = (Q, δ, σ, q0), where Q is a finite set of states, q0 is the start state, δ
is a set of transition rules, and σ is a set of synthesis rules, such that for each q ∈ Q, there exist a
nonempty set of pairs (δi(q), σi(q)) for i ∈ [1, nq], where δi(q) is a transition rule in δ and σi(q) is
a synthesis rule in σ, defined as follows:

δi(q) : (q, φi) → (qi1, τi1), . . . , (qik, τik)
σi(q) : val(q) ← Fq(val(qi1), . . . , val(qik)).

Here q, q1, . . . , qk refer to states in Q, τi’s are template names from Γ and φi is a precondition, as
given in Definition 2.1. 2

Obviously SWMs are a special case of NSWMs in which for each state q there exists a unique
pair (δ(q), σ(q)) of transition and synthesis rules, i.e., for each state q, nq = 1.
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A realization ρ for an NSWM M and the composite service M [ρ] of M realized by ρ are defined
the same as for an SWM; similarly for realization constraints λ (see Section 2).

On an input artifact t0, a run of a composite service M [ρ] of an NSWM M is, however, more
involved than its counterpart for an SWM. In each state q of M , a pair (δi(q), σi(q)) is now
nondeterministically picked among nq options, such that the transition and synthesis in this state
follow the rules δi(q) and σi(q), respectively. As a result, for the same t0 there are (possibly
exponentially many) different runs, which lead to different outputs. In other words, the results of
different runs of M [ρ] on t0 no longer converge to yield the same output.

We revise the step relation ⇒(M [ρ],t0) for M [ρ] of an NSWM M as follows. For two execution
trees ξ and ξ′, we write ξ ⇒(M [ρ],t0) ξ

′ if one of the following conditions holds.

Spawning. If there exists a leaf node v of ξ labeled with (q, t,⊥), then there exists a pair
(δi(q), σi(q)) of transition and synthesis rules defined for state q, such that ξ′ is obtained
from ξ via the rule δi(q) as described in the spawning step of Section 2.2. That is, one of the
rule pairs for q is nondeterministically chosen to expand ξ to ξ′.

Synthesizing. If there is no leaf node to which a transition rule applies, then ξ′ is obtained
from ξ by picking a node v labeled by (q, t,⊥) so that none of its successors u1, . . . , uk has
val(ui) = ⊥, and updating val(v) according to the synthesis rule σi(q) as described in the
synthesizing step of Section 2.2. Here σi(q) is the rule in the pair (δi(q), σi(q)), where δi(q)
is the transition rule chosen for spawning the children of v in the spawning phase.

If the process stops, the result of the run of M [ρ] on artifact t0 is an execution tree ξ such that
ξ0 ⇒∗ ξ and there is no distinct ξ′ such that ξ ⇒ ξ′. This yields the output of the run, which is the
value of val(r) at the root r of ξ′.

If the process does not stop, we say that the result of the run is ⊥, i.e., undefined.
Due to the nondeterministic nature of NSWM M , there are possibly multiple results of runs of

M [ρ] on the same artifact t0 and hence, a set of outputs, denoted by S(M [ρ], t0).
When it comes to the aggregation analysis, we define M [ρ](t0) to be the maximum value

(resp. minimum) in S(M [ρ], t0) for AGPmax (resp. AGPmin), assuming that ⊥ < m for any m ∈ Q.
Clearly M [ρ](t0) is well defined.

Example 4: We extend the SWM M1 to an NSWM M2 = (Q2, δ2, σ2, q2), where the set space Q2

is {q2, qs, qc, qf , qh, q1a, q2a, qr, qp, ql}, and the transition rules δ2 and synthesis rules σ2 are the same
as δ1 and σ1 shown in Figure 2, except that for q2 and qa, rules are defined as follows:

(q2, true) → (qs, τid) val(q2) ← val(qs)
(q2, true) → (qc, τid) val(q2) ← val(qc)

(qa, φ
1
a) → (q1a, τa), (qr, τid) val(qa) ← val(q1a) + val(qr)

(qa, φ
2
a) → (q2a, τa), (qr, τid) val(qa) ← val(q2a) + val(qr)

(q1a, true) → (qa, τid) val(q1a) ← val(qa)
(q2a, true) → (qa, τid) val(q2a) ← val(qa)

Here two pairs of rules are defined for the start state q2, with the same precondition, while two
pairs of rules are given for state qa, with distinct preconditions for activities in the winter and the
summer, respectively. In a run of M2[ρ] realized with ρ on an input artifact t0, one pair of the
rules for q2 is nondeterministically picked, and M2[ρ](t0) is the minimum among the outputs of all
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possible runs, for the minimization analysis. When the state qa is reached, one pair of the rules for
qa is again nondeterministically chosen, as long as the precondition φ1a (resp. φ2a) is satisfied. 2

6.2. The Aggregation Analysis of NSWMs

We now re-investigate the aggregation problem for NSWMs. For a predefined bound B and given
an NSWM M over artifact schema RA, an artifact t of RA, a library L of available services and
a realization constraint λ, the aggregation problem AGP(M,L, λ, t) is to determine whether there
exists a realization ρ of M in L such that ρ is valid w.r.t. λ and M [ρ](t) ≥ B (for maximization
AGPmax; resp. M [ρ](t) ≤ B for minimization AGPmin). In other words, it is to find realization ρ
of M in L such that ρ is valid w.r.t. λ and there exists a run of M [ρ] on t with the maximum (or
minimum) output.

The main conclusion of this section is that NSWMs do not make the aggregation analysis harder.
Indeed, the aggregation problem for NSWMs of various structures retain the same complexity as
their SWM counterparts. To verify this, we first introduce a notion of normal forms for NSWMs

and revise the notion of the mediator graphs for NSWMs.

A normal form of NSWMs. We show that every NSWM can be expressed in a “determinis-
tic” form in which each state is associated with a unique transition rule and a unique synthesis
rule. To do this we extend synthesis functions by allowing Fnq : Qk ∪ {⊥} → Q ∪ {⊥} such that
Fnq (m1, . . . ,mk) = mi, where mi is nondeterministically picked from {mi | i ∈ [1, k],mi 6= ⊥} if
the set is nonempty, and Fnq (m1, . . . ,mk) = ⊥ if for all i ∈ [1, k], mi = ⊥. We refer to Fnq as a
choice selector.

When choice selectors are used in the synthesis phase, they behave a little differently from
synthesize functions described above. More specifically, for synthesizing a node v in an execution
tree with Fnq , Fnq (m1, . . . ,mk) is assigned to val(v) if there exists a child ui of v such that val(ui) 6=
⊥. That is, even when val(uj) = ⊥ for j 6= i, i.e., when some children of v have an infinite subtree,
val(v) can still be computed via Fnq , and its value remains unchanged after a rational value is
assigned to it.

Definition 6.2: We say that an NSWM M = (Q, δ, σ, q0) is in the normal form if for each state
q ∈ Q, there exist a unique transition rule δ(q) and a unique synthesis rule σ(q) defined as follows:

δ(q) : (q, φ) → (q1, τ1), . . . , (qk, τk).
σ(q) : val(q) ← Fq(val(q1), . . . , val(qk)).

where Fq is either a synthesis function as in Definition 2.1 or a choice selector. 2

We say that two NSWMs M1 and M2 are equivalent for aggregation if for any input artifact
t, library L and realization constraint λ, there exists a realization ρ1 of M1 in L valid w.r.t. λ iff
there is a realization ρ2 of M2 in L valid w.r.t. λ such that M1[ρ1](t) = M2[ρ2](t).

One can readily verify that each NSWM M can be “normalized” to an equivalent NSWM M ′,
in PTIME. Hence the size |M ′| of M ′ is bounded by a polynomial in |M |.

Proposition 9. For every NSWM M , an equivalent NSWM in the normal form can be computed
in PTIME in |M |.

Proof. Given an NSWM M = (Q, δ, σ, q0), we construct an NSWM M ′ = (Q′, δ′, σ′, q0) as follows.
For each state q ∈ Q, suppose that q is associated with pairs (δi(q), σi(q)) of transition and synthesis
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rules for i ∈ [1, nq], where

δi(q) : (q, φi) → (qi1, τi1), . . . , (qik, τik)
σi(q) : val(q) ← Fq(val(qi1), . . . , val(qik)).

Then we introduce dummy states q1, . . . , qnq , and define a unique transition rule and a unique
synthesis rule for q and qi as follows:

δ(q): (q, true) → (q1, τid), . . . , (q
nq , τid)

σ(q): val(q) ← Fnq (val(q1), . . . , val(qn1)).

δ(qi): (qi, φi) → (qi1, τi1), . . . , (qik, τik)
σ(qi): val(qi) ← Fq(val(qi1), . . . , val(qik)).

Here Fnq is a choice selector, while Fq is a synthesis function as given in M .
Let Q′ include all the states in Q as well as all dummy states introduced for each state q ∈ Q,

and δ′ and σ′ be as defined as above. In a nutshell, M ′ enumerates all possible options of rules
for each state, while nondeterministically returns one of the synthesized values for the state via a
choice selector Fnq . It is easy to verify that M ′ and M are equivalent for aggregation. Obviously
M ′ is in the normal form and it can be computed in PTIME in |M |. 2

By Proposition 9, in the sequel we consider w.l.o.g. NSWMs in the normal form only.
The mediator graph G(M) of an NSWM M can then be defined exactly the same as its coun-

terpart for SWMs, as given in Section 3.

Complexity bounds. We are now ready to present the complexity bounds of the aggregation
analysis of NSWMs with various underlying mediator graphs. We start with AGP(M,L, λ, t) when
G(M) is a cyclic graph. Since M is also an SWM, from Theorem 2 it follows immediately that the
problem is undecidable even when M , L and λ are all fixed, and when G(M) is a graph with a
single self-loop.

Corollary 10. AGP(M,L, λ, t) is undecidable for NSWMs even when NSWM M , library L and
realization constraint λ are all fixed.

When G(M) is acyclic, AGP(M,L, λ, t) becomes decidable in single-exponential time. Indeed,
compared to Theorems 5, 6 and 7, the result below tells us that NSWMs do not make our lives
harder in this case.

Theorem 11. For NSWMs, AGP(M,L, λ, t) is

1. PSPACE-complete for DAG-structured M ;

2. NP-complete for tree-structured M ; and moreover,

3. there exists no PTIME nl-approximation algorithm for any polynomial approximation ratio
nl even when M has a pipelined structure, unless P = NP.

The lower bounds and approximation hardness remain unchanged even when library L is fixed.
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Proof. The lower bounds in (1), (2) and (3) follow from Theorems 7, 5 and and 6, respectively,
since SWMs are a special case of NSWMs. Below we verify the upper bounds of (1) and (2). We
give a proof for AGPmax(M,L, λ, t). The proof for AGPmin(M,L, λ, t) is similar.

(1) DAG-structured NSWMs. We first show that for any DAG-structured NSWM M , the problem is
in PSPACE, by giving an NPSPACE algorithm. Given M,L, λ, t and a number B, the algorithm
first guesses a realization ρ, and then checks whether (a) ρ is valid w.r.t. λ, and (b) there is a run
of M [ρ] such that the output of the run is no less than B. If so, then the algorithm returns “yes”.

We show that the checking can be done in NPSPACE. By Proposition 9, we assume that M
is in the normal form. (1) As shown in the proof of Theorem 7, it is in PTIME to check whether
ρ is valid w.r.t. λ. (2) Moreover, computing the output of a run of M [ρ] on t is in NPSPACE.
(i) As in the proof of Theorem 7, the algorithm constructs the execution tree ξ of a run in stages
without storing the complete tree. At each node v of the tree labeled with (q, t, val), the subtrees
of v are inspected one by one. After a subtree ξi is checked, only the val value of its root is retained
(denoted by vali), and its space is reused for computing other subtrees. (ii) For synthesizing at
node v, suppose that the synthesis rule for q is val(q) ← Fq(val(q1), . . . , val(qk)). Consider the two
cases of Fq: (a) when Fq is a synthesis function, val(v) is Fq(val1, . . . , valk); (b) when Fq is a choice
selector, one of val(q1), . . . , val(qk) is nondeterministically picked as the val(q) value at v. In both
cases the space for storing val1, . . . , valk and the subtrees of v is released. The process proceeds
until the output of the run is computed. As argued in the proof of Theorem 7, this can be done in
NPSPACE. Since NPSPACE = PSPACE, the algorithm is in PSPACE.

(2) Tree-structured NSWMs. We now show that for tree-structured NSWMs M , the aggregation
problem is in NP, by providing an NP algorithm. Given M,L, λ, t and a number B, the algorithm
first guesses (a) a realization ρ, and (b) a run of M [ρ] on t. It then checks whether the output of
the run is no less than B. If so, M [ρ](t) ≥ B and the algorithm returns “yes”.

By Proposition 9, we assume that M is in the normal form. Note that for a tree-structured
NSWM M , the mediator graph G(M) and the execution tree of any run of M [ρ] are isomorphic,
for any realization ρ. Hence we guess a run of M [ρ] as follows: for any node v in an execution tree
labeled with (q, t, val), suppose that the synthesis rule for q is val(q) ← Fq(val(q1), . . . , val(qk)).
If Fq is a choice selector, we nondeterministically pick val(qi) as the value of val(v) for i ∈ [1, qk].
This is independent of what realization ρ is chosen.

As shown in the proof of Theorem 5, it is in PTIME to check whether ρ is valid w.r.t. λ, and
to compute the output of the run of M [ρ] on t when M is tree structured. Thus, the algorithm is
indeed in NP, and so is the aggregation analysis of tree-structured NSWMs. 2

We have seen from Proposition 8 that for an SWM M , if M is fixed and G(M) is acyclic,
AGP(M,L, λ, t) becomes tractable. We show that it is also the case for NSWMs.

Proposition 12. For a fixed DAG-structured NSWM M , AGP(M,L, λ, t) is in PTIME.

Proof. As shown in Proposition 8, when M is fixed, (a) there exist polynomially many realizations
ρ of M in L that are valid w.r.t. λ, and (b) for each run of M [ρ] on t, its execution tree can be
constructed in PTIME. In addition, we show (c) that for each realization ρ, the number of runs
of M [ρ] on t is a constant. Indeed, by Proposition 9, we assume that M is in the normal form.
As argued in the proof of Theorem 11(2), the execution tree of each run of M [ρ] is isomorphic
to the tree obtained by unfolding G(M). Then a run of M [ρ] is determined as follows. For

24



any node v in an execution tree labeled with (q, t, val), suppose that the synthesis rule for q is
val(q) ← Fq(val(q1), . . . , val(qk)). If Fq is a choice selector, the run is decided by which val(qi) is
chosen as the value of val(v), for i ∈ [1, qk]. When M is fixed, the size of M is a constant; hence so
are the number of runs of M [ρ] for a realization ρ, and the size of the execution tree of each run.

This yields a PTIME algorithm for finding ρ such that M [ρ](t) is maximum (or minimum).
The algorithms ranges over all realizations ρ that are valid w.r.t. λ, and for each such ρ, it ranges
over all runs of M [ρ] to compute the output of the run. It returns the realization ρ and the run
that maximizes (or minimizes) M [ρ](t). From the discussion above it follows that the algorithm is
indeed in PTIME. 2

6.3. Termination Analysis

We have seen that a composite service M [ρ] generated from an NSWM or an SWM may not
terminate on an input artifact t, i.e., there exists no any finite execution tree that is the result of
a run of M [ρ] on t. In other words, M [ρ](t) is not defined. Hence it is natural to investigate the
termination problem, denoted as TMP and presented as follows.

PROBLEM: TMP(M,L, λ, t)

INPUT:

1. an NSWM M on artifact schema RA;

2. an artifact t of RA;

3. a library L of available services;

4. a realization constraint λ.

QUESTION: Does there exist a realization ρ of M in L such that ρ is valid w.r.t. λ and
M [ρ](t) is defined, i.e., a run of M [ρ] terminates?

The termination analysis is nontrivial for NSWM M when G(M) is a cyclic graph. In contrast,
it is trivial when G(M) is acyclic.

Corollary 13. For an NSWM M with mediator graph G(M), TMP(M,L, λ, t) is

1. undecidable if G(M) is cyclic, even when M is a fixed SWM, and when library L and realiza-
tion constraint λ are fixed; and

2. in linear-time if G(M) is a DAG or a tree.

Proof. (1) We show that TMP(M,L, λ, t) is undecidable by reduction from the problem of deter-
mining solutions of Diophantine equations with fixed-degree and fixed number of variables. Given
a Diophantine equation p, the reduction is the same as the one given in the proof of Theorem 2,
in which G(M0) is a self-loop, M0 is a fixed SWM, and both λ and L are fixed. As shown there, p
has a solution in Nk if and only if M0[ρ] terminates and returns 0.

(2) When G(M) is acyclic, one can verify that for any realization ρ valid w.r.t. λ, every run of M [ρ]
on an artifact t always terminates. Hence the termination problem in this case is equivalent to the
problem for checking whether there exists a realization valid w.r.t. λ, which takes linear time in
the size of Γ(M). 2
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7. Conclusion

We have given a formal treatment of the aggregation synthesis of Web service mediators, a
problem that is of practical importance but has not been adequately addressed theoretically. We
have developed a model for specifying mediators with aggregation synthesis, deterministic or non-
deterministic, and formulated the aggregation problem. We have also established matching upper
and lower bounds on the problem for mediators of various structures. In addition, we have pro-
vided complexity bounds of the termination analysis of composite services of various structures
generated from mediators.

The main results of the paper are summarized in Table 1 (Section 1). We have shown that the
problem is beyond reach in practice for recursively defined mediators, even when the mediators and
the library of available services are predefined and fixed. Nevertheless, for mediators with a DAG or
a tree structure, the problem becomes decidable in single-exponential time, which is an acceptable
complexity for static analysis problems. More specifically, the problem is PSPACE-complete for
DAG-shaped mediators, and is NP-complete for tree-shaped ones; it is even in PTIME when a
set of predefined mediators are considered, a common setting in practice. These make our lives
easier, but only to some extent: the NP-lower bound remains intact when the mediator has a
pipelined structure and the library is fixed. Worse still, the problem does not allow any PTIME
approximation algorithms with a polynomial ratio. The PSPACE lower bound is also robust: it
remains unchanged when the library is fixed.

This work is a first step toward understanding the aggregation synthesis of Web services. There
is naturally much more to be done. First, a run of a composite service generated from an NSWM

may not terminate. We are currently investigating practical restrictions on NSWMs such that
every run is guaranteed to terminate and yield a solution. Second, while the aggregation problem
is undecidable in general and is intractable for non-recursive NSWMs, we expect that practical
PTIME cases can be identified in certain specific application domains. Third, it is interesting
to revisit the composition problem when aggregation synthesis is brought into the play. That
is, we want to automatically generate mediators that coordinate available services and deliver a
requested service, with aggregation analysis that aims to best serve the users’ need. Finally, we
would like to develop efficient heuristic algorithms to realize mediators with aggregation synthesis
for specific applications. The operational semantics given in Section 2.2 provides a conceptual-level
strategy for delivering a requested service. The strategy can certainly be improved by capitalizing
on practical pruning techniques. For instance, one may employ a lazy evaluation strategy such
that if some branch already yields a larger (or smaller) value than a given bound, realizations of
the templates in other branches as well as their computation can be entirely avoided.
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