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Abstract. Parallel computation is often a must when processing large-
scale graphs. However, it is nontrivial to write parallel graph algorithms
with correctness guarantees. This paper presents the programming model
of GRAPE, a parallel GRAPh Engine [19]. GRAPE allows users to “plug
in” sequential (single-machine) graph algorithms as a whole, and it par-
allelizes the algorithms across a cluster of processors. In other words,
it simplifies parallel programming for graph computations, from think
parallel to think sequential. Under a monotonic condition, it guarantees
to converge at correct answers as long as the sequential algorithms are
correct. We present the foundation underlying GRAPE, based on simulta-
neous fixpoint computation. As examples, we demonstrate how GRAPE
parallelizes our familiar sequential graph algorithms. Furthermore, we
show that in addition to its programming simplicity, GRAPE achieves
performance comparable to the state-of-the-art graph systems.

1 Introduction

There has been increasing demand for graph computations, e.g., graph traversal,
connectivity, pattern matching, and collaborative filtering. Indeed, graph compu-
tations have found prevalent use in mobile network analysis, pattern recognition,
knowledge discovery, transportation networks, social media marketing and fraud
detection, among other things. In addition, real-life graphs are typically big, eas-
ily having billions of nodes and trillions of edges [24]. With these comes the need
for parallel graph computations. In response to the need, several parallel graph
systems have been developed, e.g., Pregel [33], GraphLab [32, 22], Trinity [42],
GRACE [47], Blogel [50], Giraph++ [44], and GraphX [23].

However, users often find it hard to write and debug parallel graph programs
using these systems. The most popular programming model for parallel graph
algorithms is the vertex-centric model, pioneered by Pregel and GraphLab. For
instance, to program with Pregel, one needs to “think like a vertex”, by writing
a user-defined function compute(msgs) to be executed at a vertex v, where v
communicates with other vertices by message passing (msgs). Although graph
computations have been studied for decades and a large number of sequential
(single-machine) graph algorithms are already in place, to use Pregel, one has to
recast the existing algorithms into vertex-centric programs. Trinity and GRACE
also support vertex-centric programming. While Blogel and Giraph++ allow
blocks to have their status as a “vertex” and support block-level communication,
they still adopt the vertex-centric programming paradigm. GraphX also recasts
graph computation into its distributed dataflow framework as a sequence of



join and group-by stages punctuated by map operations, on the Spark platform.
The recasting is nontrivial for users who are not very familiar with the parallel
models. Moreover, none of the systems provides a guarantee on the correctness
or even termination of parallel programs developed in their models. These make
the existing systems a privilege for experienced users only.

Is it possible to simplify parallel programming for graph computations, from
think parallel to think sequential? That is, can we have a system that allows users
to plug in existing sequential graph algorithms for a computational problem,
and it automatically parallelizes the computation across a cluster of processors?
Better yet, is there a general condition under which the parallelization guarantees
to converge at correct answers as long as the sequential algorithms plugged in are
correct? After all, humans find it far easier to devise sequential processes that
cope with the interference and synchronisation required in parallel algorithms.

It was to answer this question that we developed GRAPE [19], a parallel
GRAPh Engine for graph computations. The main objective of GRAPE is to
make parallel graph computations accessible to a large group of users. It allows
users to think sequential and go parallel, by parallelizing sequential graph al-
gorithms as a whole. Moreover, under a monotonic condition, it guarantees to
converge at correct answers when provided with correct sequential graph algo-
rithms. As proof of concept, GRAPE has been developed [18] and evaluated in
industry. In addition to its programming simplicity, it outperforms the state-of-
the-art parallel graph systems in scalability and efficiency.

The remainder of the paper is organized as follows. We present the parallel
model underlying GRAPE (Section 2), based on simultaneous fixpoint computa-
tion with partial evaluation and incremental computation. We then demonstrate
how our familiar sequential graph algorithms are parallelized by GRAPE (Sec-
tion 3), including single-source shortest path (SSSP), graph simulation (Sim),
connected components (CC) and minimum spanning tree (MST). In addition,
we provide an empirical study to demonstrate the scalability and efficiency of
GRAPE, compared to the state-of-the-art graph systems (Section 4). Finally, we
discuss related work and identify topics for future research (Section 5).

2 From Think Parallel to Think Sequential

We next present the programming model and parallel model of GRAPE [19].

2.1 Graphs and Graph Partition

We start with basic notations, in particular graph partitions.

Graphs. We consider graphs G = (V,E, L), directed or undirected, where (1)
V is a finite set of nodes; (2) E ⊆ V ×V is a set of edges; and (3) each node v in
V (resp. edge e ∈ E) carries L(v) (resp. L(e)), indicating its content, as found
in social networks, knowledge bases and property graphs.

We will use two notions of subgraphs. A graph G′ = (V ′, E′, L′) is called a
subgraph of G if V ′ ⊆ V , E′ ⊆ E, and for each node v ∈ V ′ (resp. edge e ∈ E′),
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L′(v) = L(v) (resp. L′(e) = L(e)). Subgraph G′ is said to be induced by V ′ if E′

consists of all the edges in G whose endpoints are both in V ′.

Partition strategy. GRAPE supports data-partitioned parallelism: it partitions
a graph G and distributes fragments of G across m processors, such that com-
putations on G can be conducted in parallel on the fragments. More specifically,
given a graph G and a number m, a graph partition strategy P partitions G
into fragments (F1, . . . , Fm) such that each Fi = (Vi, Ei, Li) is a subgraph of G,
E =

⋃
i∈[1,m]Ei, V =

⋃
i∈[1,m] Vi, and Fi resides at processor Pi for i ∈ [1,m].

GRAPE allows users to pick a strategy P to partition G, e.g., vertex-cut [30]
or edge-cut [7]. When P is vertex-cut, denote by

– Fi.O the set of border nodes v ∈ Vi such that there exists a copy of v in
another fragment Fj (i 6= j); and

– F .O =
⋃

i∈[1,m] Fi.O.

Similarly, border nodes are defined under edge-cut, which have an edge to (or
from) nodes in another fragment (see [19] for details).

We adopt vertex-cut in the sequel unless stated otherwise; the results of the
paper still hold under other partition strategies.

2.2 Programming Model

Consider a graph computation problem Q. Informally, a parallel program for Q
is a program that operates on a graph G, where G is partitioned and distributed
across a cluster of processors. Here we assume that the cluster adopts the shared
nothing architecture in which processors do not share memory or disk storage,
and the processors exchange information among themselves by message passing,
as commonly adopted nowadays. In our familiar terms, we refer to an instance
of the problem (excluding graph G) as a query Q of Q. Given a query Q ∈ Q,
the program computes the set Q(G) of answers to Q in graph G by operating
on the fragments of G in parallel with the processors.

To develop a parallel algorithm for a class Q of queries with GRAPE, one
only needs to specify the following three functions.

(1) PEval: a sequential (single-machine) algorithm for Q that given a query Q ∈
Q and a graph G, computes the answer Q(G) to Q in G.

(2) IncEval: a sequential incremental algorithm for Q that given Q, G, Q(G) and
updates ∆G to G, computes updates ∆O to the old output Q(G) such that
Q(G⊕∆G) = Q(G)⊕∆O, where G⊕∆G denotes G updated by ∆G [40].

(3) Assemble: a function that collects partial answers computed locally at each
processor by PEval and IncEval, and assembles the partial results into com-
plete answer Q(G). This function is often straightforward.

The three functions are referred to as a PIE program for Q ( PEval, IncEval
and Assemble). Note that PEval and IncEval can be any existing sequential (incre-
mental) algorithms for Q that operate on a fragment Fi of graph G partitioned
via a strategy P. Note that fragment Fi is a graph itself.
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The only additions are the following declarations in PEval.

(a) Update parameters. PEval declares status variables x̄ for a set Ci of nodes in a
fragment Fi, which store contents of Fi or intermediate results of a computation.
Here Ci is a set of nodes and edges within d-hops of the nodes in Fi.O, for an
integer d that is determined by Q. When d = 0, Ci is Fi.O.

We denote by Ci.x̄ the set of update parameters of Fi, including status vari-
ables associated with the nodes and edges in Ci. As will be seen shortly, the
variables in Ci.x̄ are candidates to be updated by incremental steps IncEval.

(b) Aggregate functions. PEval also specifies an aggregate function faggr, e.g., min
and max, for conflict resolution, i.e., to resolve conflicts when multiple processors
attempt to assign different values to the same update parameter.

Update parameters and aggregate function are specified in PEval and are
shared by IncEval. We will provide examples in Section 3.

2.3 Parallel Computation Model

We next show how GRAPE parallelizes a PIE program ρ (PEval, IncEval, Assemble)
for Q. Given a partition strategy P and PIE program ρ, GRAPE first partitions G
into (F1, . . . , Fm) with P, and distributes the fragments across m shared-nothing
virtual workers (i.e., processors) (P1, . . . , Pm), respectively. It maps m virtual
workers to n physical workers. When n < m, multiple virtual workers that are
mapped to the same worker share memory.

Note that graph G is partitioned once for all queries Q ∈ Q on G.
We start with basic ideas behind GRAPE parallelization.

(1) Given a function f(s, d) and the s part of its input, partial evaluation is to
specialize f(s, d) w.r.t. the known input s [29]. That is, it performs the part of
f ’s computation that depends only on s, and generates a partial answer, i.e., a
residual function f ′ that depends on the as yet unavailable input d. For each
worker Pi in GRAPE, its local fragment Fi is its known input s, while the data
residing at other workers is the yet unavailable input d. As will be seen shortly,
given a query Q ∈ Q, GRAPE computes Q(Fi) in parallel as partial evaluation.

(2) Workers exchange changed values of their local update parameters with each
other. Upon receiving message Mi that consists of changes to the update param-
eters at fragment Fi, worker Pi treats Mi as updates to Fi, and incrementally
computes changes ∆Oi to Q(Fi) such that Q(Fi ⊕Mi) = Q(Fi) ⊕ ∆Oi, mak-
ing maximum reuse of previous results Q(Fi). This is often more efficient than
recomputing Q(Fi ⊕Mi) starting from scratch, since in practice Mi is typically
small, and so is Oi. Better still, the incremental computation may be bounded:
its cost can be expressed as a function in |Mi|+ |∆Oi|, i.e., the size of changes
in the input and output, instead of |Fi|, no matter how big Fi is [40, 16].

Model. Given a query Q ∈ Q at the master (processor) P0, GRAPE answers Q
in the partitioned graph G following BSP [45]. It posts the same query Q to all
the workers, and computes Q(G) in three phases as follows, as shown in Fig. 1.
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Fig. 1. Workflow of GRAPE

(1) Partial evaluation (PEval). In the first superstep, upon receiving Q, each
worker Pi applies function PEval to its local fragment Fi, to compute partial
results Q(Fi), in parallel (i ∈ [1,m]). After Q(Fi) is computed, PEval generates
a message at each worker Pi and sends it to master P0. The message is simply
the set Ci.x̄ of update parameters at fragment Fi.

For each i ∈ [1,m], master P0 maintains update parameters Ci.x̄. It deduces
a message Mi to worker Pi based on the following message grouping policy. (a)
For each status variable x ∈ Ci.x̄, it collects the set Sx of values from messages of
all workers, and computes xaggr = faggr(Sx) by applying the aggregate function
faggr declared in PEval. (b) Message Mi includes only those faggr(Sx)’s such that
faggr(Sx) 6= x, i.e., only the changed values of the update parameters of Fi.

(2) Incremental computation (IncEval). GRAPE iterates the following super-
steps until it terminates. Following BSP, each superstep starts after the master
P0 receives messages (possibly empty) from all workers Pi for i ∈ [1,m]. A
superstep has two steps itself, one at P0 and the other at the workers.

(a) Master P0 routes (nonempty) messages from the last superstep to workers,
if there exist any.

(b) Upon receiving message Mi, worker Pi incrementally computes Q(Fi ⊕Mi)
by applying IncEval, and by treating Mi as updates, in parallel for i ∈ [1,m].

At the end of IncEval process, Pi sends a message to P0 that encodes updated
values of Ci.x̄, if any. Upon receiving messages from all workers, master P0

deduces a message Mi to each worker Pi following the message grouping policy
given above; it sends message Mi to worker Pi in the next superstep.

(3) Termination (Assemble). At each superstep, master P0 checks whether for
all i ∈ [1,m], Pi is inactive, i.e., Pi is done with its local computation, and there
exist no more changes to any update parameter of Fi. If so, GRAPE invokes
Assemble at P0, which pulls partial results from all workers, groups together the
partial results and gets the final result at P0, denoted by ρ(Q,G). It returns
ρ(Q,G) and terminates. Otherwise, it proceeds to the next superstep (step (2)).
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Fixpoint. The GRAPE parallelization of the PIE program can be modeled as
a simultaneous fixed point operator φ(R1, . . . , Rm) defined on m fragments. It
starts with PEval for partial evaluation, and conducts incremental computation
by taking IncEval as the intermediate consequence operator, as follows:

R0
i = PEval(Q,F 0

i [x̄i]), (1)

Rr+1
i = IncEval(Q,Rr

i , F
r
i [x̄i],Mi), (2)

where i ∈ [1,m], r indicates a superstep, Rr
i denotes partial results in step r at

worker Pi, fragment F 0
i = Fi, F

r
i [x̄i] is fragment Fi at the end of superstep r

carrying update parameters x̄i, and Mi is a message indicating changes to x̄i.
More specifically, (1) in the first superstep, PEval computes partial answers R0

i

(i ∈ [1,m]). (2) At step r+1, the partial answers Rr+1
i are incrementally updated

by IncEval, taking Q, Rr
i and message Mi as input. (3) The computation proceeds

until Rr0+1
i = Rr0

i at a fixed point r0 for all i ∈ [1,m]. Function Assemble is then
invoked to combine all partial answers Rr0

i and get the final answer ρ(Q,G).

2.4 Features of GRAPE

As outlined above, GRAPE has the following unique features.

(1) Parallel programming simplicity. GRAPE allows users to plug in sequen-
tial graph algorithms as a whole (subject to declarations of update parameters
and aggregate function in PEval), and executes these algorithms on fragmented
and distributed graphs. That is, users can “think sequential” when program-
ming with GRAPE, instead of think parallel. Moreover, a large number of se-
quential graph algorithms are already in place after decades of study, and are
well optimized. Moreover, there have been methods for incrementalizing graph
algorithms, to get incremental algorithms from their batch counterparts [6, 14].
Furthermore, as will be shown in Sections 3.2 and 3.4, it is quite straightforward
to develop IncEval by revising a batch sequential algorithm. These make parallel
graph computations accessible to college students who know conventional graph
algorithms covered in undergraduate textbooks.

This said, GRAPE cannot be used without some insight by simply plugging
in sequential algorithms without making any change. Programming with GRAPE
still requires to declare update parameters and an aggregate function.

(2) Correctness guarantees. Under a general condition, GRAPE paralleliza-
tion is guaranteed to converge at correct answers. To see this, we use the fol-
lowing notations. (a) A sequential algorithm PEval for Q is correct if given all
Q ∈ Q and graphs G, it terminates and returns Q(G). (b) A sequential in-
cremental algorithm IncEval for Q is correct if given all Q ∈ Q, graphs G, old
output Q(G) and updates ∆G to G, it computes changes ∆O to Q(G) such
that Q(G ⊕ ∆G) = Q(G) ⊕ ∆O. (c) We say that Assemble is correct for Q
w.r.t. P if when GRAPE with PEval, IncEval and P terminates at superstep r0,
Assemble(Q(F1[x̄r01 ]), . . . , Q(Fm[x̄r0m ])) = Q(G), where x̄r0i denotes the values of
parameters Ci.x̄i at round r0. (d) We say that GRAPE correctly parallelizes a
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PIE program ρ with a partition strategy P if for all queries Q ∈ Q and graphs
G, GRAPE guarantees to reach a fixed point such that ρ(Q,G) = Q(G).

As shown in [19], GRAPE correctly parallelizes a PIE program ρ for a graph
computation problem Q if (a) its PEval and IncEval are correct sequential algo-
rithms for Q, and (b) Assemble correctly combines partial results, and (c) PEval
and IncEval satisfy the following monotone condition: for all variables x ∈ Ci.x̄,
i ∈ [1,m], (a) the values of x are computed from the active domain of G, and
(b) there exists a partial order px on the values of x such that IncEval updates
x in the order of px. That is, x draws values from a finite domain (condition (a)
above), and x is updated “monotonically” following px (condition (b)).

It should be remarked that the monotonicity above is just a sufficient condi-
tion for GRAPE computations to converge, but it is not a necessary condition.
Indeed, a variety of contracting conditions have been developed for fixpoint com-
putation, e.g., [10–12]. These conditions can be adapted to GRAPE convergence
as well, in addition to the monotonic condition given above.

Moreover, it does not mean that only algorithms satisfying the monotonic
condition can be parallelized in GRAPE. As will be seen shortly, any MapReduce
algorithm can be migrated to GRAPE without extra complexity. Obviously not all
MapReduce algorithms have the monotonicity. In other words, the monotonicity
is just a condition under which one does not have to worry about convergence.

(3) Expressive power. The programming simplicity does not imply degrada-
tion in functionality of the existing systems. Following [46], we say that a parallel
model M1 can optimally simulate model M2 if there exists a compilation algo-
rithm that transforms any program with cost C on M2 to a program with cost
O(C) on M1. The cost includes computational cost and communication cost.

As shown in [19], GRAPE can optimally simulate MapReduce [13], BSP [45]
and PRAM (Parallel Random Access Machine) [46]. That is, all algorithms in
MapRedue, BSP or PRAM with n workers can be simulated by GRAPE using n
workers with the same number of supersteps and memory cost. As a consequence,
these algorithms can be migrated to GRAPE without increasing the complexity.

The result above aims to show the expressive power of GRAPE. In particular,
graph computations that have effective (e.g., bounded) incremental algorithms
may be substantially accelerated by GRAPE. Nonetheless, for algorithms that
make only one fragment active at a time, we do not expect that GRAPE speeds up
their parallel computations. A particular example is Depth First Search (DFS),
which is known to be hard to parallelize. While DFS can be parallelized by
GRAPE, GRAPE may not make it more efficient than other platforms.

(4) Graph-level optimization. GRAPE naturally inherits all optimization
strategies available for sequential graph algorithms, e.g., indexing, compression
and partitioning. Indeed, PEval and IncEval work on fragments, which are graphs
themselves. Hence prior optimization strategies developed for sequential graph
algorithms remain effective for PEval and IncEval. In contrast, these strategies
are hard to implement for, e.g., vertex-centric programs.
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(5) Reducing redundant computations. GRAPE reduces the costs of itera-
tive graph computations by using IncEval, to minimize unnecessary recomputa-
tions. We should remark that IncEval speeds up iterative computations by making
use of prior partial results Q(Fi) at each worker Pi, no matter whether IncEval is
bounded or not. Indeed, boundedness is not the only criterion for the effectiveness
of incremental algorithms. Alternative performance guarantees for incremental
graph algorithms have been developed, such as semi-boundedness [16], localiz-
able incremental algorithms and relative boundedness [14].

(6) Compatibility. To simplify the discussion, we have focused on synchronous
model BSP, when iterative computation is separated into supersteps, and mes-
sages from one superstep are only accessible in the next one. Our recent results
have shown that the programming model of GRAPE remains intact under asyn-
chronous parallel model (AP), when a worker has immediate access to incoming
messages, and when fast workers can move ahead, without waiting for strag-
glers. Moreover, the convergence condition given above can be adapted to the
asynchronous model. In other words, with GRAPE, it is no longer hard to write,
debug and analyze parallel algorithms, no matter whether under BSP or AP.

3 Programming with GRAPE

We next show how GRAPE parallelizes familiar graph algorithms, by taking
single-source shortest distance (SSSP), graph simulation (Sim), connected com-
ponents (CC) and minimum spanning tree (MST) as examples. We parallelize
these algorithms in Sections 3.1–3.4 under a vertex-cut partition. Taken together
with the parallelization of [19] under edge-cut, these show that GRAPE program-
ming works equally well under vertex-cut and edge-cut partition.

3.1 Graph Traversal

Consider Q denoting the single source shortest path problem (SSSP). It targets a
directed graph G = (V,E,L) in which for each edge e, L(e) is a positive number.
The length of a path (v0, . . . , vk) in G is the sum of L(vi−1, vi) for i ∈ [1, k]. For
a pair (s, v) of nodes, denote by dist(s, v) the shortest distance from s to v. i.e.,
the length of a shortest path from s to v. SSSP is stated as follows.

– Input: A directed graph G as above, and a node s in G.
– Output: Distance dist(s, v) for all nodes v in G.

It is known that SSSP is in O(|E|+ |V |log|V |) time [20].
For SSSP under vertex cut, GRAPE takes existing sequential (incremental)

algorithms for SSSP as PEval and IncEval, just like GRAPE under edge-cut [19].

(1) PEval. As shown in Fig. 2, PEval (lines 1-11 of Fig. 2) is verbally identical
to Dijsktra’s algorithm [20], except that it declares the following (underlined):

(a) for each node v ∈ Vi, an integer variable dist(s, v), initially ∞ (except
dist(s, s) = 0); the candidate set Ci is the set Fi.O of border nodes and
the set of updated parameters is Ci.x̄ = {dist(s, v) | v ∈ Fi.O}; and

8



Input: Fragment Fi(Vi, Ei, Li), source vertex s.
Output: A set Q(Fi) consisting of current dist(s, v) for all v ∈ Vi.

Message preamble: /* candidate set Ci is Fi.O*/

for each node v ∈ Vi, an integer variable dist(s, v);

1. initialize priority queue Que; dist(s, s) := 0;
2. for each v in Vi do
3. if v! = s then dist(s, v) := ∞;
4. Que.addOrAdjust(s, dist(s, s));
5. while Que is not empty do
6. u := Que.pop() /* pop vertex with minimal distance */
7. for each child v of u do /* only if v has not been visited */
8. alt := dist(s, u) + Li(u, v);
9. if alt < dist(s, v) then
10. dist(s, v) := alt;
11. Que.addOrAdjust(v, dist(s, v));
12. Q(Fi) := {(v, dist(s, v)) | v ∈ Vi};
Message segment: Mi := {(v, dist(s, v)) | v ∈ Fi.O};

faggr = min({dist(s, v)});

Fig. 2. PEval for SSSP

(b) an aggregate function faggr defined as min to resolve the conflicts: if multiple
values are assigned to the same dist(s, v) by different workers, the smallest
value is taken by the linear order on integers.

At the end of its process, PEval sends Ci.x̄ to master P0. At P0, GRAPE
maintains dist(s, v) for all nodes v ∈ Fi.O (i ∈ [1,m]). Upon receiving messages
from all workers, it takes the smallest value for dist(s, v) of each border node
v ∈ Ci.x̄. For each i ∈ [1,m], it finds those variables with smaller dist(s, v) for
v ∈ Fi.O, groups them into message Mi, and sends Mi to Pi.

(2) IncEval. As shown in Fig. 3, IncEval is the sequential incremental algorithm
for SSSP developed in [39], in response to changed dist(s, v) for v in Fi.O (here
Mi includes changes to dist(s, v) for v ∈ Fi.O). Using a queue Que, it starts with
Mi, propagates the changes to affected area, and updates the distances (see [40]).
The partial result is now the set of revised distances (line 11). At the end of the
process, the updated values of Ci.x̄ are sent to the master as messages, where
the aggregate function min is applied to resolve conflicts as in PEval.

Here IncEval is bounded. Following [39], it can be verified that its cost is
determined by the size of “updates” |Mi| and the changes to the output. This
reduces the cost of iterative computation of SSSP (the While and For loops).

(3) Assemble simply takes Q(G) =
⋃

i∈[1,n]Q(Fi), the union of the shortest dis-
tance for each node in V .

(4) Correctness. Termination is guaranteed since the values of update parameters
are from a finite domain and are monotonically decreasing in the process. The
correctness is assured since (a) the algorithms for PEval [20] and IncEval [40] are
correct and (b) IncEval are monotonic by taking min as faggr.
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Input: Fragment Fi(Vi, Ei, Li), partial result Q(Fi), message Mi.
Output: New output Q(Fi ⊕Mi).

1. initialize priority queue Que;
2. for each dist(s, v) in Mi do
3. Que.addOrAdjust(v, dist(s, v));
4. while Que is not empty do
5. u := Que.pop() /* pop vertex with minimum distance*/
6. for each children v of u do /* only if v has not been visited*/
7. alt := dist(s, u) + Li(u, v);
8. if alt < dist(s, v) then
9. dist(s, v) := alt;
10. Que.addOrAdjust(v, dist(s, v));
11. Q(Fi) := {(v, dist(s, v)) | v ∈ Vi};
Message segment: Mi := {(v, dist(s, v)) | v ∈ Fi.O, dist(s, v) decreased};

Fig. 3. IncEval for SSSP

3.2 Graph Simulation

We next study graph simulation, which is commonly used in social media mar-
keting [17] and social network analysis [15], among other things.

A graph pattern is a graph Q = (VQ, EQ, LQ), where (a) VQ is a set of query
nodes, (b) EQ is a set of query edges, and (c) each u in VQ carries a label LQ(u).

A graph G = (V,E,L) matches a pattern Q = (VQ, EQ, LQ) via graph simu-
lation if there exists a binary relation R ⊆ VQ × V such that

(a) for each query node u ∈ VQ, there is a node v ∈ V such that (u, v) ∈ R, and
(b) for each pair (u, v) ∈ R, (i) LQ(u) = L(v), and (ii) for each (u, u′) in EQ,

there exists (v, v′) in graph G such that (u′, v′) ∈ R.

For (u, v) ∈ R, we refer to v as a match of u. It is known that if G matches Q,
then there exists a unique maximum relation [27], referred to as Q(G). If G does
not match Q, Q(G) is the empty set. Moreover, it is known that Q(G) can be
computed in O((|VQ|+ |EQ|)(|V |+ |E|)) time [27, 15].

Graph pattern matching via graph simulation is stated as follows.

– Input: A directed graph G and a graph pattern Q.
– Output: The unique maximum relation Q(G).

GRAPE parallelizes Sim by adopting the sequential algorithm gsim for Sim
developed in [27]. It uses the initialization of gsim as PEval to generate candidate
matches sim(u) for each query node u ∈ VQ; it then uses the main loop of gsim
as IncEval, to refine sim(u) by recursively filtering out false positives in sim(u).

(1) PEval. As shown in Fig. 4, PEval adopts the initialization step of gsim. It sets
Ci to Fi.O and declares, for each query node u ∈ Vq and data node v in fragment
Fi, a status variable cnt(v,u). Here cnt(v,u) denotes the number of successors of v
that are candidate matches of u in G, defined as |{w | w ∈ post(v)∧w ∈ sim(u)}|,
where post(v) denotes the set of successors of v in G. It will be used by IncEval
to filter out invalid candidate matches of u from sim(u). PEval initializes sim(u)
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Input: Q = (VQ, EQ, LQ), and Fi = (Vi, Ei, Li).
Output: Maximum match relation sim for Q(Fi).

Message preamble: /* candidate set Ci is Fi.O */

for each node u in VQ and v in Vi, an integer variable cnt(v,u) := 0;

/* Initialize variable γ(v) = true if v has a successor in G, at loading time */
1. for each u ∈ VQ do
2. if post(u) = ∅ then
3. sim(u) := {v ∈ Vi | LQ(u) = Li(v)};
4. else sim(u) := {v ∈ Vi | LQ(u) = Li(v) ∧ γ(v) = true};
5. for each v ∈ Vi do
6. cnt(v,u) = |{w ∈ Vi | w ∈ post′(v) ∧ w ∈ sim(u)}|;
7. Q(Fi) := sim;

Message segment: Mi := {∆cnt(v,u) | u ∈ VQ ∧ v ∈ Fi.O};
faggr = sum (∆cnt(v,u));

Fig. 4. PEval for graph simulation

in the same way as sequential algorithm gsim (lines 1-4), except that it uses a
Boolean variable γ(v) to check candidate matches in Ci for sim(u), where γ(v)
is set to true if v has any successor in G and is initialized when loading the data
graph G. It also initializes cnt(v,u) as the number of “local” successors of v that
are in fragment Fi and are candidate matches of u in Fi (lines 5-6). As will be
seen shortly, we use counters cnt(v,u) to determine invalid match candidates.

We take Fi.O as Ci, and treat Ci.cnt as update parameters. After cnt(v,u)
is locally initialized in PEval, the set Ci.cnt is sent to master P0. At P0, upon
receiving messages from all workers, the changes to cnt(v,u) are aggregated using
faggr = sum to generate the global value of cnt(v,u). GRAPE then groups these
variables into message Mi and sends Mi to Pi.

(2) IncEval. As shown in Fig. 5, IncEval is a minor revision of gsim; it refines
candidate matches (lines 1-14). In particular, it uses cnt(v,u) to speedup the
refinement: if cnt(v,u) = 0, then no children of v can match u, and hence v
cannot match any query node u′ that is a parent of u in Q. The counter cnt on
v’s parents is then updated, which is used to identify more false matches. More
specifically, IncEval first updates cnt(v,u) on border nodes, by applying changes
to cnt(v,u) in the message. For each (u, v), if cnt(v,u) = 0, then there is no match
of u in post(v). Hence v cannot match any vertex in pre(u) in VQ. After false
match (u′, v) is spotted, cnt(w,u′) is reduced by 1 for all w in pre(v). This is
propagated through incoming edges iteratively, to identify more false matches.

Similar to the edge-cut version of IncEval in [16], one can verify that IncEval
is semi-bounded: its cost is decided by the size of updates Mi and changes to the
affected area necessarily checked by all incremental algorithms for Sim, rather
than by Fi. This guarantees the efficiency of IncEval for graph simulation.

(3) Assemble takes Q(G) =
⋃

i∈[1,n]Q(Fi), the union of all partial matches, i.e.,
the sim relation computed at each fragment Fi at the end of the process.
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Input: pattern Q, fragment Fi, partial result sim and message Mi.
Output: maximum match relation sim for Q and Fi ⊕Mi.

1. queue remove := ∅;
2. for each ∆cnt(v,u) in Mi do
3. cnt(v,u) := cnt(v,u) +∆cnt(v,u);
4. for each cnt(v,u) that is updated to 0 do
5. remove(u) := remove(u) ∪ {v};
6. while there exists u ∈ VQ such that remove(u) 6= ∅ do
7. for each u′ ∈ pre(u) do
8. for each w ∈ remove(u) do
9. if w ∈ sim(u′) then
10. sim(u′) := sim(u′) \ {w};
11. for each w′ ∈ pre′(w) do
12. decrease cnt(w′,u′) by 1;
13. if cnt(w′,u′) = 0 then remove(u′) := remove(u′) ∪ {w′};
14. remove(u′) := ∅;
15. Q(Fi) := sim;

Message segment:

Mi := {∆cnt(v,u) | u ∈ VQ, v ∈ Fi.O, cnt(v,u)changed};

Fig. 5. IncEval for graph simulation

(4) Correctness of the GRAPE parallelization above is warranted by monotonic
updates to Ci.cnt and by the correctness of sequential algorithm gsim [27]. More
specifically, cnt(v,u) is initially the maximum count of possible matches in post(v)
with u after the process of PEval; it is monotonically reduced in the IncEval
process, until it reaches the number of true matches in post(v) with u.

3.3 Graph Connectivity

We next study graph connectivity, for computing connected components (CC).
Consider an undirected graph G. A subgraph Gs of G is a connected com-

ponent of G if (a) it is connected, i.e., for any pair (v, v′) of nodes in Gs, there
exists a path between v to v′, and (b) it is maximum, i.e., adding any node to Gs

makes the induced subgraph no longer connected. The CC problem is as follows.

– Input: An undirected graph G = (V,E, L).
– Output: All connected components of G.

The problem is known to be in O(|G|) time [9].

GRAPE parallelizes CC as follows. It picks a sequential CC algorithm as PEval.
At each fragment Fi, PEval computes its local connected components and creates
their ids. The component ids of the border nodes are exchanged with neighbor-
ing fragments. The (changed) ids are then used to incrementally update local
components in each fragment by IncEval, which simulates a “merging” of two
components whenever possible, until no more changes can be made.

(1) PEval declares an integer status variable v.cid for each node v in fragment
Fi, initialized as its node id. As shown in Figure 6, PEval first uses a standard

12



Input: Fi = (Vi, Ei, Li).
Output: Q(Fi) consisting of v.cid for each v ∈ Vi.

Message preamble: /* candidate set Ci is Fi.I */

for each v ∈ Vi, an integer variable v.cid initialized as v’s id;

1. CC := DFS(Fi); /* use DFS to find the set of local CCs */
2. for each local component C ∈ CC do
3. add a new single root node vr;
4. vr.cid := min{v.cid | v ∈ C};
5. for each node v ∈ C do
6. link v to vr; v.root := vr; v.cid := vr.cid;
7. Q(Fi) := {v.cid | v ∈ Vi};
Message segment: Mi := {v.cid | v ∈ Fi.O};

faggr = min(v.cid);

Fig. 6. PEval for CC

sequential traversal DFS (Depth-First Search) to compute the local connected
components of Fi. For each local component C, (a) PEval creates a “root” node
vr carrying the minimum node id in C as vr.cid, and (b) links all the nodes in
C to vr, and sets their cid as vr.cid. These can be completed in one pass of the
edges of Fi via DFS. At the end of process, PEval sends {v.cid | v ∈ Fi.O} to
master P0. The set consists of the update parameters at fragment Fi.

At master P0, GRAPE maintains v.cid for each all v ∈ Fi.O (i ∈ [1,m]). It
updates v.cid by taking the smallest cid if multiple cids are received, by taking
min as faggr in the message segment of PEval. It groups the nodes with updated
cids into messages Mi, and sends Mi to worker Pi.

(2) IncEval incrementally updates the cids of the nodes in each fragment Fi upon
receiving Mi, in parallel, as shown in Figure 7. Observe that message Mi sent to
Pi consists of v.cid with updated (smaller) values. For each v.cid in Mi, IncEval
finds the root vr of v (line 3), and updates vr.cid to the smaller v.cid. IncEval
then propagates the changes from every updated root node vr to all nodes linked
to vr by changing their cids to vr.cid. At the end of the process, IncEval sends to
master P0 the updated cids of nodes in Fi.O just like in PEval.

One can verify that the incremental algorithm IncEval is bounded: it takes
O(|Mi|) time to identify the root nodes, and O(|AFF|) time to update cids by
following the direct links from the roots, where AFF consists of only those nodes
with their cid changed. Hence, it avoids redundant local traversal.

(3) Assemble merges all the nodes that have the same cid in the same connected
component, and returns all the connected components.

(4) Correctness. The process terminates as the cids of the nodes are monotonically
decreasing by faggr until no changes can be made. Moreover, it correctly merges
two local connected components by propagating the smaller cid.
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Input: Fi = (Vi, Ei, Li), partial result Q(Fi), message Mi (grouped cid).
Output: Q(Fi ⊕Mi).

/* incremental connected component (pseudo-code) */
1. ∆ := ∅;
2. for each v.cid ∈Mi do /* v ∈ Fi.O */
3. vr := v.root;
4. if v.cid < vr.cid then
5. vr.cid := v.cid; ∆ := ∆ ∪ {vr};
6. for each vr ∈ ∆ do /* propagate the change*/
7. for each v′ ∈ Vi linked to vr do
8. v′.cid := vr.cid;
9. Q(Fi) := {v.cid | v ∈ Vi};
Message segment: Mi := {v.cid | v ∈ Fi.O, v.cid decreased};

Fig. 7. IncEval for CC

3.4 Minimum Spanning Tree

Consider a connected undirected graph G = (V,E,W ), where for each edge
e = (v, v′), W (e) is a number specifying the cost to connect v and v′. A spanning
tree T of G is a subgraph of G that is a tree (i.e., an undirected graph in which
any two nodes are connected by exactly one path), and includes all the vertices
of V . A minimum weighted spanning tree T of G is a spanning tree of G such that
the total weight w(T ) = Σe∈TW (e) is minimized. To simplify the discussion, we
assume that each edge e in G has a distinct cost W (e). It is known that a unique
MST exists in such a graph G [21]. The MST problem is stated as follows.

– Input: A graph G = (V,E,W ) as described above.
– Output: The minimum spanning tree MST of G.

It is known that MST is in O(|E|+ |V | log |V |) time.

GRAPE parallelizes MST as follows. It combines Prim’s sequential MST al-
gorithm [37] and Bor̊uvka’s sequential algorithm [35] as PEval: it adopts Prim’s
algorithm to generate initial partial MSTs (i.e., sub-trees of the final MST), and
uses Bor̊uvka’s algorithm to generate messages. For IncEval, it employs Bor̊uvka’s
algorithm alone to iteratively connect those partial MSTs, forming the final MST.
It should be remarked that marrying Prim’s and Bor̊uvka’s MST algorithms is
a common practice for efficiently computing MST in parallel (see e.g., [8]).

(1) PEval. As shown in Fig. 8, PEval takes Fi.O as Ci and declares, for each
node u in Ci, a triple u.m(u, tid, e) initialized as (u, u.id,nil), where u.id is the
node id of u. It generates a set T of partial MSTs of Fi excluding border nodes
in Fi.O, using Prim′, a minor revision of Prim’s algorithm to ensure such partial
MSTs are guaranteed to be sub-trees of the global MST of G (line 1). It then
treats each border node in Fi.O as a partial MST and includes them in T as well
(line 2). For each partial MST T in T , it maintains an index for T , denoted by
T.tid, using the minimum node id of nodes in T (line 3). Such tids will be used
to combine partial MSTs by IncEval. For convenience, we also write Tu as the
unique partial MST that contains u and u.tid as Tu.tid.
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Input: Fragment Fi = (Vi, Ei,Wi).
Output: Q(Fi) consisting of all edges in partial MSTs.

Message preamble: /* Candidate set Ci is Fi.O */

for each node u ∈ Ci, a triple u.m(u, tid, e) is initialized as (u, u.id,nil).

1. T := Prim′(F ′
i ); /* F ′

i denotes Fi excluding border nodes */
2. for each v ∈ Fi.O do add Tv := ({v}, ∅) as a partial MST to T ;
3. for each partial MST T ∈ T do T.tid := minv∈T v.id;
4. for each T ∈ T do
5. e := arg min(u,v)∈Ei,u∈T,v 6∈T,u.tid6=v.tidW (u, v); /* assume e = (u, v) */
6. if u 6∈ Fi.O then add (u, v) to Tu; update Tu.tid to min(Tu.tid, v.tid);
7. else u.m := (u, u.tid, (u, v)); /* generate message for u */
8. for each u in Fi.O whose message has not been generated do
9. u.m := (u, u.tid,nil); /* generate message for u */
10. Q(Fi) := T ;

Message segment: Mi := {u.m | u ∈ Ci};
faggr = (u,minu.m[tid] u.m[tid], arg minu.m[e]W (u.m[e]))

Fig. 8. PEval for MST

It then generates messages for border nodes by using Bor̊uvka’s algorithm
(lines 4-7). Following Bor̊uvka’s algorithm, it treats each MST in T as a “virtual”
node and expands each “virtual” node, say, MST T ∈ T , with the edge e adjacent
to T that has the minimum weight among all edges connecting T and some other
MSTs in T (line 5). It merges the new edge e = (u, v) into T and updates the
MST index of T accordingly if u ∈ T and u is not a border node (line 6). When
u is a border node, PEval cannot decide whether the local minimum weighted
adjacent edge e is the global minimum edge in G for u, and hence PEval encodes
it together with u.tid in the message for u (line 7). For those border nodes whose
messages have not been generated in this way, a default message without the
adjacent edge (i.e., nil) is generated (lines 8-9).

The message for each border node u on all fragments will be gathered at
master P0. The minimum tid and the global minimum adjacent edge for u will
be deduced by faggr specified in the message segment of PEval.

(2) IncEval. Following Bor̊uvka’s algorithm, IncEval iteratively merges partial
MSTs in T . Since each message (u0, tid0, e0) for border node u0 tells us that (a)
the minimum tid for partial MSTs containing u0 on all fragments is tid0, and
(b) the global minimum weighted adjacent edge for expanding u0 is e0, IncEval
connects the partial MSTs upon receiving messages in two steps. It first updates
tids of all local MSTs with tid0 so that all MSTs containing u0 on all fragments
are assigned with the same tid (line 1-2). It further merges partial MSTs on
each fragment via the aggregated global minimum weighted adjacent edge e0 in
the message, and updates the tid accordingly (lines 3-5). It then expands each
updated MST in T and generates messages for border nodes in the same way as
PEval (lines 6-11). Note that by only connecting MSTs with distinct tids (line 4)
and using tids to choose minimum weighted adjacent edges (line 8), IncEval
ensures that no cycle is produced in the entire process of IncEval iterations.
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Input: a set of partial MST T , message Mi.
Output: Q(Fi ⊕Mi).

1. for each m = (u0, tid0, e0) ∈Mi do /* update tid’s */
2. Tu0 .tid := min(Tu0 .tid, tid0);
3. for each m = (u0, tid0, e0 = (u, v)) ∈Mi do /* merge local MSTs */
4. if e0 is in Fi and Tu.tid 6= Tv.tid then
5. merge Tu and Tv in T (denoted by T ′); T ′.tid := min(Tu.tid, Tv.tid);
6. for each T ∈ T do /* generate messages */
7. if there exists u ∈ T such that v 6∈ T , u.tid 6= v.tid and (u, v) ∈ Ei then
8. e := arg min(u,v)∈Ei,u∈T,v 6∈T,u.tid6=v.tidW (u, v); /* assume e = (u, v) */
9. for each border node u in T do u.m := (u, u.tid, (u, v));
10. for each u in Fi.O whose message has not been generated do
11. if u.tid has been changed then u.m := (u, u.tid,nil);
12. Q(Fi ⊕Mi) := T ;

Message segment: Mi := {u.m | u ∈ Ci};

Fig. 9. IncEval for MST

One can verify that the incremental IncEval is bounded: it takes O(|Mi|) time
to update the tids and merge partial MST s, and O(|AFF|) time to generate
messages, where AFF consists of border nodes in Fi.O with changed tids, and
hence, |AFF| is bounded by the changes of the output of IncEval.

(3) Assemble simply merges edges in the partial MSTs from all fragments and
returns all the edges, as the final MST.

(4) Correctness. The process terminates as the tid’s and the weights of selected
adjacent edges of border nodes for connecting MSTs are monotonically decreasing
by faggr until no changes can be made. Its correctness follows from the following:
(a) by Prim’s algorithm, PEval correctly computes MSTs of the subgraph con-
sisting of inner edges in each fragment; and (b) by Bor̊uvka’s algorithm, IncEval
correctly merges the MSTs computed by PEval into the final MST of G.

4 Experimental Study

Using real-life and synthetic graphs, we next evaluate the performance of GRAPE
for its (1) efficiency, (2) communication cost, and (3) scale-up. We compared
the performance of GRAPE with that of three state-of-the-art graph systems:
(a) Giraph [3] and synchronized GraphLabsync (PowerGraph [22]) under the bulk
synchronous parallel model (BSP), and (b) asynchronized GraphLabasync under
asynchronous model (AP) without global synchronization, when a worker has
immediate access to messages, allowing fast workers to move ahead 3.

Experimental setting. We start with our settings.

Graphs. We used four real-life graphs of different types, including DBpedia [1],
traffic [4], Friendster [2] and UKWeb [5], as shown in Table 1, such that each

3 GraphLabsync and GraphLabasync run different modes of GraphLab (PowerGraph).
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Graph Type | V | | E | Algorithm

DBpedia knowledge graph 28 million 33.4 million for Sim, MST

traffic road network 23 million 58 million for SSSP, CC, MST

Friendster social network 65 million 1.8 billion for SSSP, CC, Sim

UKWeb Web graph 133 million 5 billion for SSSP, CC, Sim

Table 1. Real-life Graph Information

algorithm was evaluated with at least two real-life graphs. We randomly assigned
weights to traffic, Friendster and UKWeb for testing SSSP and MST, and assigned
up to 50 node labels to unlabeled Friendster for testing Sim.

To test the scalability of GRAPE, we developed a generator to produce graphs
G = (V,E, L) controlled by the number |V | of nodes (up to 0.4 billion) and edges
|E| (up to 20 billion), with L drawn from an alphabet of 100 labels.

Queries. We randomly generated queries for SSSP and Sim. (a) For SSSP, we
sampled 10 source nodes from each graph G used, such that each source node
can reach 90% nodes in G. We constructed an SSSP query for each node. (b)
We generated 20 pattern queries Q for Sim, controlled by |Q| = (|VQ|, |EQ|, LQ),
where |VQ| and |EQ| denote the number of nodes and edges, respectively, using
labels LQ drawn from the graphs experimented with.

It should be remarked that GRAPE is able to load a graph G once and
process query workload (i.e., a set of queries) posed on G, without reloading G.
In contrast, Giraph and GraphLab require the graph to be reloaded each time a
single query is issued, and loading is costly over large graphs. In favor of these
systems, we exclude the loading cost when reporting the experimental results.

Algorithms. We evaluated the PIE programs developed in Section 3 for SSSP,
CC, Sim and MST on GRAPE. We used “default” code provided by Giraph and
GraphLab when it was available. Otherwise, we made our best efforts to develop
and optimize the algorithms on the competitor systems if possible (see below).

We used the degree-based hashing (DBH) [48] algorithm to partition graphs
as the default graph partition strategy. It was a state-of-the-art vertex-cut graph
partition strategy. To improve the locality of partition, we first applied Xtra-
PuLP [43] to graphs, and then took its output as the input of DBH.

We deployed these systems on an HPC cluster, and used servers with 16 cores
of 2.40GHz, 128GB memory. Each core is treated as a worker. We ran each
experiment 5 times, and the average of results is reported here.

Experimental results. We next report our findings.

Exp-1: Efficiency. We first evaluated the efficiency of GRAPE by varying the
number n of workers used, from 64 to 192, compared with Giraph, GraphLabsync

and GraphLabasync when possible. For SSSP and CC, we experimented with real-
life graphs traffic, Friendster and UKWeb; for Sim, we used Friendster, DBpedia
and UKWeb; and for MST, we used traffic and DBpedia, based on applications of
these algorithms in transportation networks, knowledge bases, Web and social
graph analysis. We do not report times that exceeded 20000s.
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Fig. 10. Performance Evaluation

(1) SSSP. We compared the efficiency of GRAPE for SSSP with that of Giraph,
GraphLabsync and GraphLabasync by using “default” code provided by these sys-
tems. The results are reported in Figures 10(a)-10(c), which tell us the following.

(a) GRAPE consistently outperforms these systems. Over traffic (resp. Friendster
and UKWeb), it is on average 15449 (resp. 21.5 and 310.8), 6261 (resp. 2.0 and
438.5) and 4026.7 (resp. 10.0 and 1749) times faster than Giraph, GraphLabsync

and GraphLabasync, respectively. Note that the improvement of GRAPE on traffic
is far more significant than on Friendster and UKWeb. This is because Giraph,
GraphLabsync and GraphLabasync adopt vertex-centric programming, which takes
more “rounds” to converge on graphs with larger diameters. For instance, on
Friendster, Giraph takes 36 rounds to converge, similarly for GraphLabsync, com-
pared with 21 rounds by GRAPE. In contrast, on traffic, a graph with larger
diameter, Giraph and GraphLabsync take 10789 and 10778 rounds, respectively,
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while GRAPE takes 31 rounds. These verify the efficiency of GRAPE as a parallel
engine for graph traversal algorithms such as SSSP.

(b) GRAPE is on average 2.0, 2.2 and 2.6 times faster on traffic, Friendster and
UKWeb, respectively, when the number n of workers varies from 64 to 192. That
is, the more workers are used, the faster SSSP runs on GRAPE.

(2) CC. We evaluated GRAPE versus Giraph, GraphLabsync and GraphLabasync us-
ing their “default” code for CC. As shown in Figures 10(d)-10(f) over traffic,
Friendster and UKWeb, respectively, (a) GRAPE substantially outperforms these
systems. When n = 192, GRAPE is on average 28787, 10960 and 3957 times
faster than Giraph, GraphLabsync and GraphLabasync over these real-life graphs,
respectively. (b) GRAPE scales well with the number of workers used: it is on
average 2.3 times faster when n varies from 64 to 192.

(3) Sim. Fixing |Q| = (6, 10), i.e., patterns Q with 6 nodes and 10 edges, we
evaluated GRAPE versus Giraph, GraphLabsync and GraphLabasync for Sim. We de-
veloped Sim algorithms for the other platforms with our best efforts since neither
Giraph nor GraphLab provides code for Sim. As shown in Figures 10(g)-10(h) over
Friendster, DBpedia and UKWeb, respectively, (a) GRAPE outperforms other sys-
tems. When n = 192, GRAPE is on average 195, 10.5 and 36.0 times faster than
Giraph, GraphLabsync and GraphLabasync over the three graphs, respectively. (b)
On average GRAPE is 2.4 times faster when n varies from 64 to 192.

(4) MST. We evaluated the efficiency of GRAPE for MST versus Giraph, with
code for MST from [25]. We did not compare with GraphLabsync and GraphLabasync

since as observed in [26], MST “cannot be implemented efficiently on GraphLab
because GraphLab does not fully support graph mutations”, e.g., deletions of
edges and vertices; such mutations are needed for an efficient implementation
of MST. As shown in Figures 10(j)-10(k) over traffic and DBpedia, respectively,
(a) GRAPE is on average 502.7 (resp. 35.75) times faster than Giraph on traffic
(resp. DBpedia), when n = 192. (b) GRAPE is on average 2.1 times faster when
n is increased from 64 to 192, i.e., GRAPE makes good use of parallelism.

Exp-2: Communication. We next report the communication costs of the sys-
tems. Different systems measure communication costs in different ways because
each system makes use of its own implementation of message blocks and pro-
tocols [26]. For a fair comparison, we monitored the system file /proc/net/dev
to report total bytes of message sent by each machine, following the practice
of [26]. This metric reveals consistent results with better insights.

The communication costs over real-life graphs are reported in Table 2, when
192 workers were used. These results tell us the following. For all these algo-
rithms, GRAPE incurs less communication costs than the other systems. On av-
erage GRAPE ships 3.9%, 3.5%, and 1.0% of data shipped by Giraph, GraphLabsync

and GraphLabasync for SSSP, 4.9%, 3.6% and 2.4% for CC, and 2.8%, 0.38% and
0.41% for Sim, respectively. For MST, the communication cost of GRAPE ac-
counts for 20.5% of Giraph. In particular, GRAPE ships only 0.2%, 0.0003% and
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Giraph GraphLabsync GraphLabasync GRAPE

SSSP

traffic 1426920 4016909 4548842 1.2

Friendster 101758 112673 377529 11840

UKWeb 89015 297179 1514413 152.6

CC

traffic 61419 266594 579265 1.66

Friendster 74864 100087 227475 11000

UKWeb 227754 202706 810039 112.9

Sim

Friendster 15901 114311 10149 1182

DBpedia 871 7213 12990 7.8

UKWeb 24158 222290 310658 4.3

MST

traffic 9300 / / 29.6

DBpedia 2701 / / 1119

Table 2. Communication cost (MB)

0.00016% of data shipped by Giraph, GraphLabsync and GraphLabasync on traffic.
This is because GRAPE converge in far less rounds than vertex-centric systems.
Among other things, GRAPE reduces communication costs by employing incre-
mental IncEval, which ships only changed values of update parameters.

Exp-3 Scale-up of GRAPE. As observed in [34], the speed-up of a distributed
system may degrade when using more workers. Thus we evaluated the scale-up
of GRAPE, which measures the degradation of speed-up when both the size of
graph G = (|V |, |E|) and the number n of workers increase proportionally. We
varied n from 16 to 256, and for each n, deployed GRAPE over a synthetic graph
of size varied from (25M, 1.25B) to (0.4B, 20B), proportional to n.

As reported in Figure 10(l) for SSSP, CC, Sim and MST, respectively, GRAPE
preserves a reasonable scale-up, all above 0.8. We did not test with single-thread
since many of the graphs are too large to fit in a single machine.

Summary. From the experimental study we find the following. (1) GRAPE
consistently outperforms the state-of-the-art systems. Over real-life graphs and
with 192 workers, compared to Giraph, GraphLabsync and GraphLabasync, GRAPE
is on average (a) 5260, 2233 and 1940 times faster for SSSP, (b) 28787, 10960
and 3957 times faster for CC, and (c) 195, 10.5 and 36.0 times faster for Sim,
respectively. It is 7187 times faster than Giraph for MST (as remarked earlier,
GraphLab does not efficiently support MST). (2) GRAPE speeds up SSSP, CC,
Sim and MST on average 2.3, 2.3, 2.4 and 2.1 times, respectively, when the
number of workers n varies from 64 to 192. (3) On average, its communication
costs account for 2.8%, 3.7%, 1.2% and 20.5% of the other systems for SSSP, CC,
Sim and MST, respectively. (4) GRAPE has a reasonable scale-up.
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These results are consistent with their counterparts reported in [19] under
edge-cut partition. Compared to GRAPE under edge-cut partition, GRAPE under
vertex-cut is on average 0.91 times slower for SSSP but is 1.21 times faster for
CC. It incurs 79% and 56% of the communication cost under edge-cut for SSSP
and CC, respectively. That is, GRAPE has comparable performance under vertex-
cut and edge-cut for SSSP and CC. The PIE program for Sim under vertex-cut
(Section 3.2) is slightly different from its counterpart under edge-cut [19]. It
employs a different version of IncEval, which has to synchronize the status of
border nodes. As a result, the PIE program for SIM under vertex-cut is 0.75
times slower and incurs on average 4 times more communications cost than its
edge-cut counterpart. As remarked earlier, MST was not studied in [19].

5 Concluding Remarks

The main objective of GRAPE is to simplify parallel programming for graph
computations, from think parallel to think sequential. It allows users to devise
existing sequential graph algorithms (with declarations of update parameters and
an aggregate function; see Section 2.2), and parallelizes the computation across
a cluster of machines. It reduces the total cost of ownership and makes paral-
lel graph computations accessible to companies that cannot afford experienced
developers who are able to write, debug and analyze parallel graph algorithms.
Moreover, GRAPE guarantees to converge at correct answers under a general
condition as long as it is provided with correct single-machine graph algorithms,
and it inherits optimization strategies developed for sequential graph algorithms.

As proof of concept (PoC), we have deployed and evaluated GRAPE at three
companies. In a large online payment company, GRAPE serves as the graph com-
puting infrastructure supporting its financial risk control system. The company
employs graphs in which vertices denote customers, and edges represent transac-
tions and associations with other customers; it needs to evaluate the customers
and assign a credit. The company used to deploy its system on Neo4j + Hive +
Spark. However, none of the systems can process the tasks alone; the workflow
spans three systems and takes 15 minutes on average for a single query. In con-
trast, GRAPE provides a unified solution for this scenario. It supports real-time
ad-hoc queries and offline complex score computation, without the need to cou-
ple with other systems. Moreover, GRAPE improves the performance of financial
risk analyses: it is 9.0 times faster in graph batch ingesting and streaming, 128.8
times faster in association analysis, and is faster by up to 5 orders of magnitude
in batch processing of real-life business applications.

GRAPE also works well for other applications. We have also carried out PoC
at a company that provides big data services, and at one of the largest telecom-
munication equipment and service companies in the world. The results are con-
sistent and very promising: GRAPE is able to perform a number of tasks that
are not supported by the state-of-the-art graph systems, and for jobs that can
also be run at other systems, it substantially outperforms the existing systems.
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To the best of our knowledge, GRAPE is the first system that is able to par-
allelize existing sequential graph algorithms as a whole, without recasting the
algorithms into a new model. Prior work on automated parallelization has fo-
cused on the instruction or operator level [41, 36] by breaking dependencies via
symbolic and automate analyses. There has also been work at a data partition
level [51], to perform multi-level partition (“parallel abstraction”) and adapt
locality-optimized access to different parallel abstraction. In contrast, GRAPE
does not require users to revise the logic of the existing algorithms. It makes
parallel computation accessible to end users, while [41, 36, 51] target experienced
developers of parallel algorithms. There have also been tools for translating im-
perative code to MapReduce, e.g., word count [38]. GRAPE advocates a different
approach, by parallelizing the runs of sequential graph algorithms to benefit from
data-partitioned parallelism, without translating the algorithms.

This paper extends [19] in the following. (a) We develop PIE algorithms for
SSSP, CC and Sim under vertex-cut, demonstrating the adaptability of GRAPE to
vertex-cut from edge-cut [19]. (b) We provide a new PIE algorithm for MST. (c)
We conduct experiments using larger graphs, and demonstrate the performance
of GRAPE under vertex-cut compared to its counterpart under edge-cut [19].

As a topic for future work, we are developing a new parallel model that sub-
sumes BSP, AP and SSP (Stale Synchronous Parallel model [28] for machine
learning with parameter servers [31, 49]) as special cases. We are currently ex-
tending GRAPE to support the new model such that it is able to automatically
switch among these models at different stages in a single execution, to optimize
performance. Another topic is to support streaming updates when answering
continuous queries for, e.g., fraud detection, beyond static graphs assumed by
existing graph systems. GRAPE is well positioned to accomplish this given that
incremental computation is built in its parallel computation model.
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