
1

Dependencies for Graphs

WENFEI FAN, University of Edinburgh, Beihang University, and Shenzhen Institute of Computing Sciences

PING LU∗, BDBC, Beihang University, China

This paper proposes a class of dependencies for graphs, referred to as graph entity dependencies (GEDs). A
GED is defined as a combination of a graph pattern and an attribute dependency. In a uniform format, GEDs
can express graph functional dependencies with constant literals to catch inconsistencies, and keys carrying

id literals to identify entities (vertices) in a graph. We revise the chase for GEDs and prove its Church-Rosser

property. We characterize GED satisfiability and implication, and establish the complexity of these problems

and the validation problem for GEDs, in the presence and absence of constant literals and id literals. We also

develop a sound, complete and independent axiom system for finite implication ofGEDs. In addition, we extend
GEDswith built-in predicates or disjunctions, to strike a balance between the expressive power and complexity.

We settle the complexity of the satisfiability, implication and validation problems for these extensions.

CCS Concepts: • Database Management→ Systems;

Additional Key Words and Phrases: Graph dependencies; Conditional functional dependencies; Keys; EGDs;

TGDs; Satisfiability, Implication, Validation; Axiom system; Built-in predicates; Disjunction

ACM Reference Format:
Wenfei Fan and Ping Lu. 2018. Dependencies for Graphs. ACM Trans. Datab. Syst. 1, 1, Article 1 (January 2018),

56 pages. https://doi.org/0000000.0000000

1 INTRODUCTION
As primitive integrity constraints for relations, functional dependencies (FDs) are found in almost

every database textbook. FDs specify a fundamental part of the semantics of data, and have proven

important in schema design, query optimization, and prevention of update anomalies. Moreover,

FDs and their extensions such as conditional functional dependencies (CFDs) [25] and denial

constraints [3] have been widely used in practice to detect semantic inconsistencies and repair

relations. Among our most familiar FDs are keys. Keys provide an invariant connection between

tuples and the real-world entities they represent, and are crucial to data models and transformations.

The need for FDs and keys is also evident in graphs. Unlike relational data, real-life graphs often

do not come with a schema, and dependencies such as FDs and keys provide one of few means

for us to specify the integrity and semantics of the data. They are useful in consistency checking,

entity resolution, knowledge base expansion, spam and fraud detection, among other things.

∗
Corresponding author

Authors’ addresses: Wenfei Fan, University of Edinburgh, 10 Crichton Street, Edinburgh, EH8 9AB, Beihang University, 37

Xue Yuan Road, Haidian District, Beijing, Shenzhen Institute of Computing Sciences, Shenzhen, China, wenfei@inf.ed.ac.uk;

Ping Lu, BDBC, Beihang University, 37 Xue Yuan Road, Haidian District, Beijing, 100191, China, luping@buaa.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0362-5915/2018/1-ART1 $15.00

https://doi.org/0000000.0000000

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

https://doi.org/0000000.0000000
https://doi.org/0000000.0000000

1:2 Wenfei Fan and Ping Lu

Example 1.1. Consider knowledge bases and social networks, which are modeled as graphs.

(1) Consistency checking. It is common to find inconsistencies in real-life knowledge bases, e.g.,
◦ psychologist Tony Gibson is credited for creating Ghetto Blaster, while the video game was

actually created by programmer Tony ‘Gibbo’ Gibson (Yago3);

◦ both Saint Petersburg and Helsinki are labeled as the capital of Finland (Yago3);

◦ all birds can fly, and moa are birds, although moa are “flightless” (DBPedia); and

◦ Philip Sclater is marked as both a child and a parent of William Lutley Sclater (DBPedia).

As shown in [30], such errors can be caught by FDs defined on graphs, referred to as GFDs.

(2) Knowledge base expansion [23]. When adding a newly extracted album to a knowledge base G,
to avoid duplicates, we need keys to identify an album entity in G, defined in terms of

ψ1: its title and the id of its primary artist, or

ψ2: its title and the year of initial release.

As shown in [23], these can be expressed as keys for graphs. Note that the title of an album and the

name of its artist cannot uniquely identify an album. For instance, an American band and a British

band are both called “Bleach”, and both bands had an album “Bleach”.

To cope withψ1, we also need a key to identify artists:

ψ3: the name of the artist, and the id of an album recorded by the artist.

As opposed to our familiar keys for relations, these keys are “recursively defined”: to identify an

album, we may need to identify its primary artist, and vice versa.

Moreover, to identify albums, we often need to repair data by using, e.g., the following FD:
ψ4: for any two albums, if their titles, types (e.g., sound track, studio album) and release types [53]

(e.g., single, EP) are the same, then initial release of the two albums are the same.

Indeed, as observed in [27], we often need to combine data repairing (fixing data values) with FDs
and identifying objects with keys. That is, to identify objects, we need to repair data, and vice versa.

(3) Spam detection. Fake accounts are common in social networks [17]. A rule for identifying spam

is as follows, which can also be expressed as an extension of FDs on graphs (see [30]).

◦ If account x ′
is confirmed fake, both accounts x and x ′

like blogs y1, . . . ,yk , x posts blog z2,

x ′
posts z1, and if both z1 and z2 have a peculiar keyword c , then x is also fake. 2

Moreover, FDs and keys help us optimize queries that are costly on large graphs in the real world

(e.g., social graph at Facebook, which has billions of nodes and trillions of edges [36]).

Keys and FDs on graphs are a departure from their relational counterparts. (1) A relational

FD R(X → Y) is defined on a relation schema R with attributes X and Y , where R specifies the

“scope” of the FD, i.e., X → Y is to be applied to tuples in an instance of R. In contrast, graphs

are semistructured and are often schemaless. To cope with this, we need a combination of (a) a

topological constraint to identify entities, to specify its “scope”, i.e., it identifies entities to which

the FD is applied; and (b) a dependency on the attributes of the entities identified. (2) Relational

FDs and keys are “value-based”, while keys and FDs for graphs are often necessarily “id-based”
as shown byψ1–ψ3 of Example 1.1. That is, they are based on node identity. In particular, if two

vertices are identified as the same entity, then they must have the same attributes and edges.

There has been work on FDs for RDF [2, 16, 19, 38, 40, 42, 56] in particular and for property

graphs [30] in general, and on keys for RDF [23]. However, many questions remain open. For

example, as opposed to relational FDs and keys, none of the FD proposals can express keys for

graphs [23], which are based on node identity and are possibly “recursively defined” (Example 1.1).

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

Dependencies for Graphs 1:3

The practical need calls for a full treatment of the topic, to answer the following questions. (1) Is

there a simple class of graph dependencies for us to uniformly express FDs and keys? (2) Can we

adapt the chase [51] to reason about the dependencies? (3) What is the complexity of fundamental

problems associated with the dependencies? (4) Is there a finite axiom system for their implication

analysis, along the same lines as Armstrong’s axioms for traditional FDs [6]? (5) How can we strike

a balance between their expressive power and complexity?

Contributions. This paper tackles these questions.
(1) GEDs. We propose a class of dependencies, referred to as graph entity dependencies and denoted

by GEDs (Section 3). A GED is a combination of (a) a graph pattern Q as a topological constraint,

and (b) a dependency X ⇒ Y with sets X and Y of equality literals, which can encode FDs. The
pattern Q identifies a set of entities in a graph, and X ⇒ Y is enforced on these entities. GEDs may

specify conditions carrying literals with constants, like relational CFDs [25]. They may carry id
literals to identify vertices in a graph, beyond equality on attribute values.

GEDs are defined on general property graphs, and can uniformly express FDs and keys on

graphs, referred to GFDs and GKeys, respectively; GFDs and GKeys correspond to the GFDs
of [30] and the keys of [23], respectively (subject to adaption of graph pattern matching with

graph homomorphism instead of subgraph isomorphism). They can express traditional FDs, CFDs
and equality-generating dependencies (EGDs [8]), when relations are represented as graphs. That

is, GEDs are able to do the job of keys, FDs, CFDs and EGDs for graph-structured data, e.g., to
specify integrity, detect inconsistencies, identify entities and optimize queries, among other things.

Better still, as a combination of GFDs and GKeys, GEDs are useful in (i) cross-device identity

matching and fraud detection by characterizing associations among entities, and (ii) graph cleaning

by interleaving data repairing with GFDs and object identification with GKeys (see Example 4.4).

(2) The chase revised. We extend the chase [51] to GEDs (Section 4). Chasing with GEDs is more

involved than with traditional FDs: it may run into conflicts introduced by id literals or constant

literals, and may “generate” new attributes when enforcing GEDs on a schemaless graph. Nonethe-

less, we show that the chase with GEDs is finite and has the Church-Rosser property. That is,

all chasing sequences of a graph (pattern) by a set of GEDs are finite and yield the same result,

regardless of the order of GEDs applied, retaining the nice features of the chase for relational FDs.

(3) Classical problems. We study three fundamental problems associated with GEDs (Section 5).

(a) The satisfiability problem is to decide, given a set Σ of GEDs, whether there exists a nonempty

finite model G of Σ that satisfies Σ, denoted by G |= Σ as usual.

(b) The implication problem is to decide whether a set Σ of GEDs entails another GED φ, denoted
by Σ |= φ, i.e., for any finite graph G, if G |= Σ, then G |= φ.

(c) The validation problem is to decide, given a finite graphG and a set Σ of GEDs, whether G |= Σ.

These problems not only are of theoretical interest, but also find practical applications. The

satisfiability analysis helps us check whether a set of GEDs (possibly discovered from “dirty”

graphs) makes sense before the GEDs are used as rules for data cleaning or query optimization. The

implication analysis serves as an optimization strategy to get rid of redundant rules. The validation

analysis can detect violations of GEDs, and catch “dirty” entities.

To understand where the complexity arises, we consider two dichotomies in the study:

◦ the presence of id literals vs. their absence, and

◦ the presence of constant values vs. their absence.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:4 Wenfei Fan and Ping Lu

Dependencies Satisfiability Implication Validation Connection with GEDs
GEDs coNP-c (Th. 5.4) NP-c (Th. 5.12) coNP-c (Th. 5.16) Q[x̄](X ⇒ Y)

GFDs coNP-c (Th. 5.4) NP-c (Th. 5.12) coNP-c (Th. 5.16) GEDs without id literals

GKeys coNP-c (Th. 5.4) NP-c (Th. 5.12) coNP-c (Th. 5.16) Q[x̄](X ⇒ x .id = y.id)
GEDxs coNP-c (Th. 5.4) NP-c (Th. 5.12) coNP-c (Th. 5.16) GEDs without constant literals
GFDxs O(1) (Th. 5.4) NP-c (Th. 5.12) coNP-c (Th. 5.16) GFDs without constant literals
GDCs Σ

p
2
-c (Th. 7.2) Π

p
2
-c (Th. 7.2) coNP-c (Th. 7.2) adding built-in predicates

GED∨s Σ
p
2
-c (Th. 7.4) Π

p
2
-c (Th. 7.4) coNP-c (Th. 7.4) disjunctive Y in Q[x̄](X ⇒ Y)

Table 1. Complexity for reasoning about GEDs

For instance,GFDs do not allow id literals and can only enforce value equality, whileGKeys support
id literals and can enforce two nodes to be the same, merging their corresponding attributes. In these

settings, we characterize GED satisfiability and implication, based on the chase. We also establish

complexity bounds of these problems for GEDs, GFDs, keys and other sub-classes, all matching, as

summarized in Table 1. As opposed to relational FDs, these problems are all intractable for GEDs.
The complexity is, however, comparable to, e.g., (a) relational CFDs, for which the satisfiability and

implication problems are NP-complete and coNP-complete, respectively [25], and (b) EGDs, for
which the implication problem is NP-complete [9, 35]. The intractability for GEDs is quite robust
even for restricted special cases such as GEDs defined with tree patterns. No prior work has studied

the complexity of the classical problems for graph dependencies with tree patterns.

(4) Finite axiomatizability. We study the finite axiomatizability of GEDs (Section 6). One naturally

wants a finite set A of inference rules that is sound and complete for the implication analysis of

GEDs, along the same lines as Armstrong’s axioms for relational FDs (see [1]). That is, for any set

Σ of GEDs and another GED φ, Σ |= φ if and only if φ is provable from Σ using A. Here we focus

on finite graphs and study finite implication, rather than unrestricted implication.

We provide a set of six inference rules for GEDs, and show that it is sound and complete for

GED implication analyses, based on the revised chase. We also show that the axiom system is

independent (non-redundant and minimal), i.e., removing any rule makes it no longer complete.

(5) Extensions. To strike a balance between the expressivity and complexity, we investigate exten-

sions of GEDs (Section 7). We extend GEDs by supporting

◦ built-in predicates =,,, <, >, ≤, ≥ (denoted by GDCs); or
◦ limited disjunction of literals (denoted by GED∨s).

To the best of our knowledge, no previous work has studied graph dependencies defined in terms

of built-in predicates or disjunction. As special cases, we can express denial constraints [3] as

GDCs with built-in predicates, disjunctive EGDs [21] as GED∨s, and “domain constraints” for

attributes of an entity to have a finite domain as both GDCs and GED∨s, among other things.

With the increased expressive power, the extensions increase the complexity of static analyses. We

show that their satisfiability and implication problems become Σ
p
2
-complete and Π

p
2
-complete, as

opposed to coNP-complete and NP-complete for GEDs, respectively. Their validation problems

remain coNP-complete, the same as for GEDs (see Table 1).

The dependency classes studied in the paper and their complexity results are summarized in

Table 1, annotated with their corresponding theorems. This work is a preliminary step toward

developing a dependency theory for graphs. The intractability results reveal the challenges

inherent to entities with a graph structure. The revised chase, characterizations of satisfiability

and implication, and axiom system provide insight into the analyses of graph dependencies.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

Dependencies for Graphs 1:5

Related work. This paper extends its conference version [29] as follows. (1) We provide stronger

lower bound results for the satisfiability, implication and validation problems for GEDs and their

special cases (Theorems 5.4, 5.12 and 5.16). More specifically, Lemmas 5.6, 5.7, 5.14, 5.15, 5.17 and

5.18 are new, establishing the intractability of these problems for GFDs, GKeys and GFDxs that
are defined with tree patterns only. (2) We provide the detailed proofs of all results, which were

not given in [29]. Some of the proofs are nontrivial and are interesting in their own right. (3) The

description of various concepts is expanded, improving the readability of the paper.

We categorize other related work as follows.

Relational dependencies. FDs were introduced in [18] and have been well studied for relations.

Armstrong’s axioms were proposed for FDs in [6], and the chase was introduced in [51]. EGDs
and TGDs were defined in [8]. There was also renewed interest in extending FDs to improve data

quality, e.g., denial constraints [3] and CFDs [25] (see [1, 22, 24] for surveys).

For relational FDs, the satisfiability, implication and validation problems are in O(1), linear
time and PTIME, respectively (cf. [1]). Similar to the strong notion of satisfiability studied in this

work, a consistency problem was shown undecidable for TGDs [35]; the implication problem is

known to beNP-complete and undecidable for EGDs and TGDs, respectively [9]; and the validation
problem was shown coNP-complete for EGDs [9] and Πp

2
-complete for TGDs [48]. The satisfiability,

implication and validation problems are NP-complete, coNP-complete and in PTIME for CFDs [25],
respectively. The satisfiability and implication problems are NP-complete and coNP-complete for

denial constraints [7], respectively. An axiom system of four rules was developed for EGDs in [50],

while TGDs are not finitely axiomatizable for finite implication. A set of four rules was shown

sound and complete for the (finite) implication analysis of CFDs [25].

GEDs carry graph patterns and id literals, and are more expressive than EGDs. Their satisfiability,
implication and validation problems are intractable. However, their static analyses bear complexity

comparable to their counterparts for denial constraints, CFDs and EGDs. Moreover, GEDs have
the finite axiomatizability and the Church-Rosser property of the chase, as for relational FDs.

One might want to encode GEDs as relational dependencies and employ relational techniques

to reason about GEDs. However, (a) id literals and graph patterns with wildcard complicate the

encoding; and (b) it is not clear what we can get from an encoding. To express GEDs we need
both EGDs and limited TGDs. Indeed, as will be shown in Sections 3 and 4, enforcing a GED
may add new attributes, beyond the capacity of EGDs. Reasoning about generic TGDs is beyond
reach [9, 35]. While some special cases have been studied (e.g., oblivious terminating TGDs and
EGDs [43, 44]), their syntactic characterization is not yet in place, and their fundamental problems

such as satisfiability and validation are still open. It is not clear whether GEDs can be expressed in

any of these special cases, and even so, what results GEDs can inherit from them. Moreover, graph

patterns in GEDs explicitly characterize associations among entities, which are useful in, e.g., fraud
detection. In addition, native graph techniques allow us to make use of, e.g., the data locality of

graph homomorphism to check GEDs and hence yield efficient implementation strategies, which

are not offered by relational reasoning methods for EGDs and TGDs. In light of these, we give a

native definition of GEDs and develop their proofs directly. (c) The chase and axiom system for

GEDs are quite different from their counterparts in the relational setting. For instance, chasing with

GEDs may expand a graph with new attributes and run into conflicts, in contrast to with EGDs.

FDs for graphs. Graph constraints are being investigated by W3C [41] and the industry (e.g., [46]).
The constraints currently supported are quite simple (e.g., uniqueness constraints, cardinality
constraints and property paths); a “standard” form of FDs is not yet in place. However, there have

been several research proposals for FDs on RDF graphs. This line of work started from [42]. It

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:6 Wenfei Fan and Ping Lu

defines keys, foreign keys and FDs by extending relational methods to RDF, and interpreting the

“scope” of an FD with a class type that represents a relation name. Using clustered values, [56]

defines FDswith conjunctive path patterns, which were extended toCFDs [38]. FDs are also defined
by mapping relations to RDF [16], with tree patterns in which nodes represent relation attributes.

As opposed to class names [42], tree patterns [16] and path patterns [38, 56], GEDs are specified
with (possibly cyclic) graph patterns with variables and node identities.

Closer to this work are [2, 19, 39, 40] for RDF. A class of EGDs was formulated in [2] in terms of

RDF triple patterns with variables, which are interpreted with homomorphism and triple embedding.

Along the same lines, FDs, tuple-generating dependencies (TGDs) and forbidding dependencies

were defined for RDF in [19]. FDs and EGDs were extended in [40] and [2] to support constants

like CFDs [25]. Chasing algorithms were developed in [2, 39, 40] for the implication analysis of

EGDs and FDs, extending relational techniques to RDF triples. The decidability of the implication

and validation problems was established in [19] for the EGDs (and hence FDs), among other things.

Finite axiom systems were provided for the EGDs, TGDs, and for EGDs and TGDs put together,
consisting of 9, 5 and 16 rules, respectively [2, 19]. Axiom systems were also provided for various

classes of FDs over relations of an arbitrary arity [39, 40], with 13 rules for the general case.

This work differs from [2, 19, 39, 40] in the following.

(1) GEDs are defined for general property graphs, not limited to RDF. (a) GEDs distinguish node

identity from value equality. Their id literals enforce that nodes identified have the same attributes

and edges. (b) GEDs can enforce generation of new attributes, a useful feature that is not supported

by [2, 19, 39, 40]. (c) GEDs can express GFDs, GKeys and forbidding dependencies in a uniform

format (Section 3). (d) GEDs support constant literals, beyond [19, 39].

(2) Our revised chase differs from the prior work in the following. (a) We study the chase of a graph

(pattern) by GEDs, not limited to the implication analysis. For instance, the chase also helps us

characterize the satisfiability analysis. (b) Chasing with GEDs has to deal with id literals, a major

cause of invalid steps. It may also add new attributes as enforced by GEDs. (c) We establish the

Church-Rosser property of the chase, which was not considered in [2, 19, 39, 40].

(3) We provide characterizations of the static analyses of GEDs, and the complexity of the satisfia-

bility, implication and validation problems for GEDs in various settings. The satisfiability problem

was not studied for EGDs or FDs of [2, 19, 39, 40]. Moreover, the complexity bounds remain to be

developed for the implication and validation problems of their EGDs and FDs.

(4) The axiom system AGED differs from [2, 19, 39, 40] in the following. (a) Besides value-based

reasoning, AGED deals with id-based deduction to enforce the semantics of node identities. (b) It

adopts graph pattern matching in property graphs, beyond RDF and relations. (c) AGED allows

attribute generation (Section 4), which is not supported by the axiom systems for EGDs and
FDs [2, 19, 39, 40]. While this can be derived from TGDs and EGDs of [19] put together, the finite
axiomatizability for finite implication of TGDs requires further investigation [9].

As remarked in Section 5, a class of keys was studied for RDF [23]. Over property graphs, a

form of GFDs [30] was defined with a graph pattern Q that is interpreted via subgraph isomorphic

mapping. These GFDs can express CFDs [25] when tuples are represented as vertices in a graph,

but cannot express keys of [23]. The satisfiability, implication and validation problems are shown

coNP-complete, NP-complete and coNP-complete, respectively, for GFDs of [30].
This work differs from the prior work [23, 30] as follows.

(1) GEDs can uniformly express GFDs and GKeys. Moreover, to simplify the definition of the

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

Dependencies for Graphs 1:7

keys of [23] and to reason about GFDs and keys in a uniform framework, GEDs adopt the graph
homomorphism semantics for graph patternmatching, as opposed to subgraph isomorphism [23, 30]

(see Section 3). That is, we consider GFDs and GKeys under the homomorphism semantics.

(2) We revise the chase for GEDs, which was not studied in [30]. A form of chase was studied for

keys [23], which is a simple special case of the general process studied here.

(3) We establish the complexity of the satisfiability, implication and validation problems for GEDs
in various settings. These were not studied in [23], and were considered for GFDs of [30] only. As
remarked earlier, we employ characterizations and proof techniques different from [30] to cope

with different semantics of graph pattern matching, e.g., the chase to prove upper bounds. We also

give lower bounds for GKeys, GFDxs and GEDxs, which were not studied before. In addition, we

show that the lower bounds of these problems remain intact for GEDs, GFDs and GKeys defined
with tree patterns only, which were not considered in [23, 30].

(4) We provide a finite axiom system for GEDs, which was not studied for GFDs and keys [23, 30].

(5) To the best of our knowledge, no previous work has studied graph dependencies defined in

terms of built-in predicates or disjunction, including [23, 30].

The chase has also been studied for relational data exchange (with source-to-target TGDs and
target disjunctive EGDs [14] or FDs [10, 45]), data repairing [34], query rewriting [20], ontology

querying [15], and optimizing SPARQL queries [54] with the constraints of [42]. In contrast, the

chase of a graph byGEDs handles attribute and label conflicts introduced by id literals, and enforces
GEDs in the absence of schema; it is quite different from the relational counterparts.

FDs for XML. Keys [12, 28] and FDs [5] were also studied for XML, which are quite different from

GEDs in formulation and semantics. Thus the results on XML do not apply to GEDs and vice versa.

Keys for XML were proposed in [12], defined in terms of paths instead of graph patterns. For

a set Σ of keys for XML, it is always possible to find an XML document satisfying Σ [13], and its

implication problem is in PTIME [13]. In contrast, the satisfiability and implication problems are

coNP-complete and NP-complete for GKeys, respectively, even for GKeys with tree patterns.

In the presence of DTDs, the satisfiability and implication problems are undecidable for XML

keys and foreign keys put together, and are NP-complete and coNP-complete [28], respectively,

when keys and foreign keys are unary [28]. These problems are in linear-time when we consider

keys under DTDs alone [28]. A form of XML keys was proposed by W3C [55], which differs from

the keys of [12] in the path languages for specifying targets [4]. In the presence of XML Schema, the

satisfiability and the implication problems are EXPTIME-hard for these XML keys [4]. In contrast,

we consider schemaless graphs since real-life graphs typically do not come with a schema.

A class of FDs was studied in [5], for which the implication problem is in PTIME even in the

presence of DTDs [5], in contrast to the NP-completeness for GFDs (even with tree patterns).

Novelty. Taken together, the novelty of this work consists of the following.

(1) This work proposes GEDs, a class of graph dependencies that is not a simple adaption of

any known class of relational dependencies to graphs, as indicated by differences in expressive

power, complexity bounds and proof techniques. GEDs are defined in terms of graph patterns

as topological constraints, to characterize associations among entities in a graph; this makes it

possible to apply native graph techniques to the analyses of the dependencies, e.g., the locality of

graph homomorphism, which is not offered by traditional techniques for relational dependencies.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:8 Wenfei Fan and Ping Lu

Fig. 1. Graph patterns

(2) As graph dependencies, GEDs are the first uniform formalism to express our familiar functional

dependencies and keys on graphs, among other things. In addition, this work makes a first effort

to provide foundations for graph dependencies that are analogous to the classical (relational)

dependencies theory, including the chase with the Church-Rosser property, a finite axiom system

that is sound, complete and independent, characterizations of the satisfiability and implication

analyses, and nontrivial complexity bounds for fundamental problems associated with graph

dependencies. Furthermore, it is the first study of graph dependencies with built-in predicates and

(limited) disjunction, and helps us strike a balance between the complexity and expressive power.

2 PRELIMINARIES
Before we define GEDs, we first review some basic notations. Assume three countably infinite sets

Γ, ϒ andU of labels, attributes and constants, respectively.

Graphs. A graphG is specified as (V ,E,L, FA), where (a)V is a finite set of nodes; (b) E ⊆ V × Γ×V
is a finite set of edges, in which (v, ι,v ′) denotes an edge from node v to v ′

, and the edge is labeled

with ι, referred to as its label; (c) each node v ∈ V has label L(v) from Γ; and (d) each node v ∈ V
carries a tuple FA(v) = (A1 = a1, . . . ,An = an) of attributes of a finite arity, where Ai ∈ ϒ and

ai ∈ U , written as v .Ai = ai , and Ai , Aj if i , j. In particular, each node v ∈ V carries a special

attribute id denoting its node identity.

That is, we consider finite directed graphs in which nodes and edges are labeled. Nodes carry

attributes for, e.g., properties, keywords and ratings, as in property graphs. Unlike relational

databases, we assume no schema for graphs. As usually found in practice, for an attribute A ∈ ϒ
and a node v ∈ V , v .A may not exist, except that v has a unique attribute v .id denoting its identity,

i.e., when two nodes have the same value for their id attribute, the two are the same node.

Graph patterns. A graph pattern is a directed graphQ[x̄] = (VQ , EQ , LQ), where (1)VQ (resp. EQ) is
a finite set of pattern nodes (resp. edges); (2) LQ is a function that assigns a label LQ (u) (resp. LQ (e))
to each node u ∈ VQ (resp. edge e ∈ EQ); and (3) x̄ is a list of distinct variables, each denoting a

node in VQ . Labels of pattern nodes and edges are drawn from Γ. We allow wildcard ‘_’ as a special

label for nodes or edges in Q .

We will use the following notion to define keys.

A patternQ2[ȳ] is a copy ofQ1[x̄] via a bijection f : x̄ 7→ ȳ ifQ2[ȳ] isQ1[x̄]with variables renamed

by f . More specifically, let Q1[x̄] = (VQ1,EQ1,LQ1) and Q2[ȳ] = (VQ2,EQ2,LQ2). Then (a) x̄ and ȳ
are disjoint, and (b) f is an isomorphism from Q1 to Q2; i.e., for each x ∈ x̄ , LQ1(x) = LQ2(f (x));
and (x1, ι,x2) is an edge in EQ1

if and only if (f (x1), ι, f (x2)) is in EQ2
, with the same label ι.

Example 2.1. Figure 1 depicts seven graph patterns, which are borrowed from [23, 30] and will

be used to specify entities and associations listed in Example 1.1. (1) Pattern Q1[x ,y] specifies
a person entity y and a product entity x , which are connected by a create edge; among other

things, Q1 can specify a video game and its creator (see Example 1.1); similarly for Q2[x ,y, z] and

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

Dependencies for Graphs 1:9

Q4[x ,y]. (2) Pattern Q3[x ,y] shows a generic is_a relationship between two entities labeled with

wildcard ‘_’ [30]. (3) PatternQ5[x ,x
′,y,y ′] consists of (a) a patternQ1

5
[x ,x ′] with variables x and x ′

,

specifying a relationship between an album entity x and an artist entity x ′
; and (b) a copyQ2

5
[y,y ′]

of Q1

5
[x ,x ′] with variables renamed; we will define a key using Q5 for knowledge base expansion;

similarly for Q6[x ,y] [30]. (4) Pattern Q7[x ,x
′, z1, z2,y1, . . . ,yk] specifies two accounts x and x ′

,

k + 2 blogs z1, z2,y1, . . . ,yk and their relationships [30]; we will use Q7 for spam detection. 2

Matches. We say that a label ι matches ι′, denoted by ι ≍ ι′, if either (a) ι and ι′ are in Γ and ι = ι′,
or (b) ι′ ∈ Γ and ι is ‘_’, i.e., the wildcard matches any label in Γ.

A match of pattern Q[x̄] in graph G is a homomorphism h from Q to G such that (a) for each

node u ∈ VQ , LQ (u) ≍ L(h(u)); and (b) for each edge e = (u, ι,u ′) in Q , there exists an edge

e ′ = (h(u), ι′,h(u ′)) in G such that ι ≍ ι′. Note that when ι is wildcard ‘_’, there may exist multiple

edges e ′ with ι ≍ ι′. The match picks one of them, and denotes it by h(ιuu′). Note that distinct

wildcards (on different edges) may have different label valuations.

Abusing the notations, we also denote the match as a vector h(x̄) if it is clear from the context,

where h(x̄) consists of h(x) for all variables x ∈ x̄ . Intuitively, x̄ is a list of entities to be identified

by pattern Q , and h(x̄) is an instantiation of x̄ in graph G, one node for each entity.

3 GRAPH ENTITY DEPENDENCIES
We now define graph entity dependencies (GEDs).

GEDs. A GED φ is defined as Q[x̄](X ⇒ Y), where Q[x̄] is a graph pattern, and X and Y are two

(possibly empty) sets of literals of x̄ . To simplify the discussion, we refer to Q[x̄] and X ⇒ Y as the

pattern and FD of φ, respectively.

A literal of x̄ is one of the following: for x ,y ∈ x̄ ,

(a) constant literal x .A = c , where c is a constant inU , and A is an attribute in ϒ that is not id;

(b) variable literal x .A = y.B, where A and B are attributes in ϒ that are not id; or

(c) id literal x .id = y.id.
Intuitively, GED φ is a combination of (1) a topological constraint imposed by graph pattern Q ,

to identify entities in a graph, and (2) an attribute dependency X ⇒ Y that subsumes an FD (to

be clarified shortly), to be applied to the entities identified by Q . Constant literals x .A = c enforce
bindings of semantically related constants, along the same lines as relational CFDs [25]. An id
literal x .id = y.id states that x and y denote the same vertex (entity).

Example 3.1. We can use GEDs as data quality rules to detect the inconsistencies and identify

entities observed in Example 1.1. These rules are borrowed from [23, 30] to show howGEDs express
the dependencies studied there. The GEDs are defined with graph patterns depicted in Fig. 1.

(1) GED φ1 =Q1[x ,y](X1 ⇒ Y1). Here X1 consists of a single constant literal x .type = “video game”,

Y1 consists of a literal y.type = “programmer”, and type is an attribute of person and product (not
shown in Q1). It states that a video game can only be created by programmers.

(2) GED φ2 =Q2[x ,y, z](∅ ⇒ y.name = z.name). It states that if a country x has two capitals y and

z, then y and z must have the same name. Here name is an attribute, X is empty, and Y consists of

a single variable literal.

(3) GED φ3 = Q3[x ,y](x .A = x .A⇒ y.A = x .A), where A is an attribute of x , e.g., can_fly. It says
that if y is_a x and if x has property A, then y inherits x .A, i.e., y also has attributeA and y.A = x .A.
Note that x and y are labeled ‘_’, representing generic entities regardless of their labels.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:10 Wenfei Fan and Ping Lu

(4) GED φ4 = Q4[x ,y](∅ ⇒ false), where false is syntactic sugar representing the Boolean constant

that can be expressed by y.A = c and y.A = d for distinct constants c and d . The GED states that

graph pattern Q4 is “illegal”, i.e., no person can be both a child and a parent of another person.

GEDs φ1–φ4 catch the semantic inconsistencies in knowledge bases described in Example 1.1.

For instance, φ3 can detect the inconsistency between birds and moa in DBPedia.

(5) The keys of Example 1.1 can also be expressed as GEDs:
For album:ψ1 = Q5[x ,x

′,y,y ′](X5 ⇒ x .id = y.id),
ψ2 = Q6[x ,y](X6 ⇒ x .id = y.id).

For artist: ψ3 = Q5[x ,x
′,y,y ′](X7 ⇒ x ′.id = y ′.id).

Here X5 consists of a variable literal x .title = y.title and an id literal x ′.id = y ′.id; X6 includes

variable literals x .title = y.title and x .release = y.release; and X7 consists of a variable literal

x ′.name = y ′.name and an id literal x .id = y.id, defined with attributes title, release, name and id.
To identify a pair of album entities x and y, we check either their title attributes and the ids of

their artists (ψ1), or their title and release attributes (ψ2). Similarly, to identify artist entities x ′
and

y ′ as required byψ1, we need to check the ids of a pair of albums they recorded (ψ3) in turn.

The FD for albums is expressed asGEDψ4 =Q6[x ,y](X8 ⇒ x .release = y.release), whereX8 con-

sists of variable literals x .title = y.title, x .type = y.type and x .release_type = y.release_type. 2

Semantics. To interpret GED φ = Q[x̄](X ⇒ Y), we use the following notations. Consider a match

h(x̄) of Q in a graph G, and a literal l of x̄ .

We say that h(x̄) satisfies l , denoted by h(x̄) |= l , if (a) when l is x .A = c , then attribute v .A exists
at node v = h(x), and v .A = c; (b) when l is x .A = y.B, then attributes A and B exist at v = h(x)
andw = h(y), respectively, and v .A = w .B; and (c) when l is x .id = y.id, then h(x) and h(y) refer to
the same node; hence, they have the same set of attributes and edges.

We denote by h(x̄) |= X if the match h(x̄) satisfies all the literals in X ; in particular, if X is ∅, then

h(x̄) |= X for any match h(x̄) of Q in G. We write h(x̄) |= X ⇒ Y if h(x̄) |= X implies h(x̄) |= Y .

A graph G satisfies GED φ, denoted by G |= φ, if for all matches h(x̄) of Q in G, h(x̄) |= X ⇒ Y .
Given the semantics, we also write Q[x̄](X ⇒ Y) as Q[x̄]

(∧
l ∈X l ⇒

∧
l ′∈Y l

′
)
.

A graph G satisfies a set Σ of GEDs if for all φ ∈ Σ, G |= φ, i.e., G satisfies each GED in Σ.

Existence of attributes. In a GED Q[x̄](X ⇒ Y), attributes are not specified in pattern Q , and we

consider schemaless graphs. For a literal x .A = c , node h(x) does not necessarily have attribute

A, to accommodate the semistructured nature of graphs. Hence, (a) when x .A = c is a literal in
X , if h(x) has no A-attribute, then h(x̄) trivially satisfies X ⇒ Y by the definition of h(x̄) |= X . (b)
In contrast, if x .A = c is in Y , then for h(x̄) |= Y , node h(x) must have A-attribute; similarly for

x .A = y.B. That is, the literals in Y can be used to enforce nodes to have certain attributes.

As a consequence, we can use, e.g., Q[x](∅ ⇒ x .A = x .A) to enforce that all entities x of “type” τ
must have an A attribute, where Q consists of a single vertex x labeled τ . This is in the flavor of

tuple generating dependencies [8], limited to attributes. Such constraints cannot be expressed as

EGDs [8] or FDs for relations and RDF [2, 19, 40, 56]. However, GEDs cannot enforce attribute x .A
to have a finite domain (e.g., Boolean) as opposed to database schema.

Special cases. We list some special cases of GEDs.

(1) GFDs. GFDs are syntactically defined as GEDs without id literals, i.e., Q[x̄](X ⇒ Y) in which

neither X nor Y contains any id literal x .id = y.id. We use the same syntax as GFDs of [30], but
interpret graph pattern matching in terms of homomorphism as opposed to isomorphism [30].

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

Dependencies for Graphs 1:11

For instance, φ1–φ4 andψ4 in Example 3.1 are GFDs, butψ1–ψ3 are not.

(2) Keys. A keyψ of [23] is defined asQ[x̄ ,xo], whereQ[x̄] is a graph pattern and xo is a designated

node in x̄ . A graph G satisfiesψ if for any two matches h(x̄) and h′(x̄) of Q[x̄] in G such that h(x̄)
and h′(x̄) are isomorphic, h(xo) and h

′(xo) denote the same node. Pattern Q is defined as a set of

RDF triples with variables and constants, and is interpreted in terms of of subgraph isomorphism.

We define a key for graphs, denoted by GKey, as a GED of the form Q[z̄](X ⇒ x0.id = y0.id),
where (a) Q[z̄] is composed of patterns Q1[x̄] and Q2[ȳ], Q2[ȳ] is a copy of Q1[x̄] via a bijection f :
x̄ 7→ ȳ (see Example 2.1), and variables in x̄ and ȳ are disjoint; (b) z̄ consists of x̄ followed by ȳ, (c)
x0 ∈ x̄ and y0 = f (x0) are designated nodes in Q , and (d) X is a set of literals of x̄ and ȳ, which can

be constant literals, variable literals, or id literals as before.

For instance,ψ1,ψ2 andψ3 of Example 3.1 are GKeys.

GKeys can be “recursively defined” in terms of id literals. A key ψ = Q[x̄ ,xo] of [23] can
be syntactically expressed as a GKey Q ′[z̄](X ⇒ x0.id = y0.id), where X consists of literals for

constant and variable bindings embedded in pattern Q ′
, and Q ′

is composed of Q and a copy of Q .

We interpret the key in terms of homomorphism instead of three isomorphic mappings [23].

It is to uniformly express keys and GFDs that we adopt the homomorphism semantics for graph

pattern matching. To illustrate this, consider GKeyψ3 given in Example 3.1. The GKey catches no

violations if it is interpreted under subgraph isomorphism. Indeed, for any match h[x̄] of pattern
Q5 in a graphG, h(x) and h(y) have to be distinct nodes as required by isomorphism. As a result,

h[x̄] ̸|= X7 and hence, h[x̄] trivially satisfiesψ3. As opposed to [23] that interprets a key with three

isomorphic mappings, we interpret GEDs with a single match of pattern, and thus isomorphism is

too strict to allow two variables to be mapped to the same node.

The example above tells us that if we adopt the isomorphism semantics, if an id literal x .id = y.id
appears in X of a GED Q[x̄](X ⇒ Y), then x and y have to be mapped to distinct nodes, and hence,

any match of Q trivially satisfies the GED. When id literals appear in Y , the issue becomes more

subtle when it comes to the satisfiability of a set Σ of GEDs (see Section 5.1), where a model of

Σ requires that every GED in Σ finds a match of its pattern, to assure that the GEDs in Σ do not

conflict with each other. Consider a GKey φ = Q[x ,y](∅ ⇒ x .id = y.id), where Q consists of

two isolated nodes, which are labeled “UoE”, a short for “University of Edinburgh”. This GKey
states that all nodes labeled “UoE” are essentially the same node. One can verify that under the

isomorphism semantics, GKeys like φ cannot find a model in any sensible graph. It is to deal with

these complications that keys defined in [23] have to adopt three isomorphic mappings.

Note that GFDs and GKeys defined in this paper are not exactly the same as the ones given

in [23, 30], since we adopt the homomorphism semantics, while [23, 30] adopt the isomorphism

semantics. Nonetheless, GFDs and GKeys under the two semantics have similar properties. In this

paper, we uniformly study the properties of GFDs and GKeys with the homomorphism semantics.

We allow id literals to appear in X such that we can continuously apply (recursively defined)

keys without physically merging the nodes in a graph G. That is, when we identify nodes u and v
in G, we do not have to immediately modify G by merging the two into one; instead, we simply

let u .id = v .id, and apply other GEDs to G, possibly capitalizing on u .id = v .id. Moreover, with id
literals in X we can easily keep track of propagation of object identification.

(3) GEDxs. We also study the class of GFDs that include no constant literals, referred to as variable
GFDs and denoted byGFDxs. For instance,φ2,φ3 andψ4 areGFDxs, butφ1 andφ4 are not. Intuitively,

(a) GFDs are an extension of relational CFDs to graphs, (b) while GFDxs extend FDs from relations

to graphs, carrying neither constant literals nor id literals.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:12 Wenfei Fan and Ping Lu

symbols notations

G = (V ,E,L, FA) a graph

Q[x̄] = (VQ ,EQ ,LQ) a graph pattern

ι ≍ ι′ a label ι matches ι′

h(x̄) a match of a graph pattern in a graph

h(ιuu′) the edge matched by the wildcard of the edge (u, _,u ′)

[x]Eq, [x .A]Eq the equivalence classes of a node x and an attribute x .A
GEq the coercion of a consistent Eq on G

Eq ⇒(φ,h) Eq′ a chase step of G by Σ at Eq
chase(G, Σ) the result of any terminal chasing sequence of G by Σ
(Eqk ,GEqk) valid chase result

⊥ the chase result is invalid

GΣ = (VΣ,EΣ,LΣ, F
Σ
A) the canonical graph of a set Σ of GEDs

GQ = (VQ ,EQ ,LQ , FA) the canonical graph of graph pattern Q
EqX the equivalence relation of X in GQ

chase(GQ , EqX , Σ) the result of the chase of GQ by Σ starting with EqX
AGED the axiom system AGED for GEDs in Table 3

ΣA ⊢ φ φ is provable from Σ using A

(y)
(y, ι,x)
x the copy of y connected to node x , which corresponds to the edge (y, ι,x).

Table 2. Notations

Similarly, we study GEDs without constant literals, referred to as variable GEDs and denoted by

GEDxs. Obviously GFDxs are a proper sub-class of GEDs. For instance,ψ1–ψ3 given in Example 3.1

are GEDxs, but they are not GFDxs.

(4) Forbidding GEDs. GEDs can express limited negation, in the form of Q[x̄](X ⇒ false). Follow-
ing [19], we refer to such GEDs as forbidding constraints.

(5) Relational dependencies. Following [30], one can show that FDs and CFDs can be expressed as

GEDs if relation tuples are represented as nodes in a graph. In fact, equality-generating dependencies
(EGDs) can be expressed asGFDs (GEDs) in the same setting. An EGD has the form ∀z̄(ϕ(z̄) ⇒ y1 =

y2), where ϕ is a conjunction of relation atoms R(w1, . . . ,wl) and equality atomswi = w j ,wi and

w j are variables in z̄, and so are y1 and y2 (cf. [1]). Each variable w corresponds to an attribute

Rw [Aw] in a relation atom of ϕ. The EGD can be expressed as a pair of GFDs:

(1) φR = QE [x̄](∅ ⇒ YR), where (a) QE is a pattern such that for each relation atom R in ϕ, there
exists a node xR ∈ x̄ in QE that is labeled with R; and QE has no edges; and (b) YR consists of

xR .AR = xR .AR for each variable x ∈ z̄, which indicates attribute R[AR]; intuitively, φR ensures

that the relations in ϕ have the attributes required; and

(2) φE = QE [x̄](XE ⇒ YE), where (a) for each equality atom wi = w j in ϕ, which corresponds

to Ri [ARi] = R j [ARj] as remarked above, XE includes a literal xRi .ARi = xRj .ARj ; and (b) YE is

xRy1
.ARy1

= xRy2
.ARy2

, which corresponds to y1 = y2. This enforces that ϕ entails y1 = y2.

The notations of the paper are listed in Table 2.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

Dependencies for Graphs 1:13

4 THE CHASE REVISITED FOR GEDS
We next revise the chase [51] for GEDs over graphs (Section 4.1), and show that chasing with GEDs
has the Church-Rosser property (Section 4.2). As will be seen in later sections, the chase helps us

characterize the static analyses of GEDs and develop a finite axiomatization for GEDs.

4.1 Chasing with GEDs
Consider a graph G = (V ,E,L, FA) and a finite set Σ of GEDs. We next study the chase of G by Σ.
Among other things, the chase can be used to (a) check the satisfiability and implication of GEDs
(see Section 5), (b) optimize pattern queries, and (c) identify entities and catch errors in graphs.

Equivalence relations. We define the chase in terms of a sequence of equivalence relations Eq on

nodes x and attributes x .A in G. For each node x in V , its equivalence class, denoted by [x]Eq, is a
set of nodes y ∈ V that are identified as x . For each attribute x .A of x , its equivalence class [x .A]Eq
is a set of attributes y.B and constants c , if x .A = y.B and x .A = c are enforced by GEDs in Σ (see

below), respectively. The relation is reflexive, symmetric and transitive, such that

(a) if node y ∈ [x]Eq, then x ∈ [y]Eq and [x]Eq = [y]Eq; intuitively, we merge [x]Eq and [y]Eq into
one; similarly, if attribute y.B ∈ [x .A]Eq, then [y.B]Eq = [x .A]Eq;

(b) if there exists attribute y.B such that y.B ∈ [x .A]Eq and y.B ∈ [z.C]Eq, then [x .A]Eq = [z.C]Eq;
similarly for constant c if c ∈ [x .A]Eq and c ∈ [z.C]Eq;

(c) if there exists node y such that y ∈ [x]Eq and y ∈ [z]Eq, then [x]Eq = [z]Eq by transitivity;

(d) if node y ∈ [x]Eq, then for each attribute y.B of y, [x .B]Eq = [y.B]Eq; similarly for each

attribute x .A of x ; intuitively, if x and y are the same node, then they have the same set of

attributes and the same corresponding attribute values.

Consistency. Inconsistencies may be introduced by id literals and constant literals when enforcing

GEDs. We say that an equivalence relation Eq is inconsistent in G if

(a) there exists node y ∈ [x]Eq such that L(x) - L(y) and L(y) - L(x) (label conflict), or
(b) there is y.B ∈ [x .A]Eq such that x .A = c and y.B = d for distinct c and d (attribute conflict).

Otherwise we say that Eq is consistent.

We use ≍ to compare labels (recall ≍ from Section 2). This is to cope with wildcards in a pattern

Q when we chase Q as a graph (see Section 5 for such examples). In this case, we treat ‘_’ in Q as a

special label. Recall that ≍ is asymmetric: x ≍ y does not mean that y ≍ x .

Coercion. When Eq is consistent in graph G, we can enforce Eq on G by merging nodes and their

corresponding attributes and edges, and by equalizing and extending attributes.

We define the coercion of a consistent Eq on G as graph GEq = (V ′,E ′,L′, F ′
A) as follows: for each

node x ∈ V , (a) xEq is a node inV
′
, denoting [x]Eq; (b) for each edge (x , ι,y) ∈ E, (xEq, ι,yEq) is in E ′

;

(c) L′(xEq) is ‘_’ if all nodes in [x]Eq are labeled ‘_’; otherwise L′(xEq) = L(z), where z ∈ [x]Eq with
L(z) , ‘_’; and (d) F ′

A(xEq) =
⋃

y∈[x]Eq FA(y), the union of the attributes of all the nodes in [x]Eq.

When Eq is consistent,GEq is well defined. In particular, when x and y are identified as the same

node, F ′
A(xEq) merges the attribute sets of x and y; moreover, if A is an attribute of both x and y,

then x .A = y.A, and hence F ′
A(xEq) is well defined. In addition, for all nodes z1, z2 ∈ [x]Eq, if L(z1) ,

‘_’ and L(z2) , ‘_’, then L(z1) = L(z2). In contrast, when Eq is inconsistent, GEq is undefined.

Chasing. We start with Eq
0
, an initial equivalence relation consisting of (1) [x]Eq

0

= {x} for each
node x ∈ V , and (2) [x .A]Eq

0

= {x .A, c} for each attribute x .A = c in FA(x) (see Example 4.1 for an

example). Each chase step i extends an equivalence relation Eqi−1
to get Eqi by applying a GED.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:14 Wenfei Fan and Ping Lu

Fig. 2. Graphs and patterns used in chasing

More specifically, we define a chase step of G by Σ at Eq as

Eq ⇒(φ,h) Eq′,

where φ = Q[x̄](X ⇒ Y) is a GED in Σ, and h(x̄) is a match of pattern Q in the coercion GEq of Eq
on graphG such that (a) h(x̄) |= X , and (b) Eq′ is the equivalence relation of the extension of Eq by

adding one literal l ∈ Y ; more specifically, l and Eq′ satisfy one of the following conditions:

(1) if l is x .A = c and c < [h(x).A]Eq, then Eq′ extends Eq by (a) including a new equivalence

class [h(x).A]Eq′ if h(x).A is not in Eq, and (b) adding c to [h(x).A]Eq′ ;

(2) if l is x .A = y.B and h(y).B < [h(x).A]Eq, then Eq′ extends Eq by adding (a) [h(x).A]Eq′ if
h(x).A is not in Eq, and (b) h(y).B to [h(x).A]Eq′ ; and

(3) if l is x .id = y.id and h(y) < [h(x)]Eq, then Eq′ extends Eq by adding h(y) to [h(x)]Eq′ .

The step is valid if Eq′ is consistent in GEq.

Note that cases (1) and (2) above may expand the set of attributes of h(x) when enforcing φ:
attribute h(x).A in Y is added if it is not already an attribute of h(x), as required by h(x̄) |= Y
(Section 3), since otherwise the chase will not lead to a graph satisfying φ (see Theorem 4.2 below).

A chasing sequence ρ of G by Σ is a sequence

(Eq
0
, . . . , Eqk),

where, for all i ∈ [0,k − 1], there exist a GED φ = Q[x̄](X ⇒ Y) in Σ and a match h of pattern Q in

coercion graph GEqi such that Eqi ⇒(φ,h) Eqi+1
is a valid chase step.

The sequence is terminal if there exist no GED φ ∈ Σ, match h of pattern Q of φ in GEqk and

equivalence relation Eqk+1
such that Eqk ⇒(φ,h) Eqk+1

is a valid chase step. More specifically, it

terminates in one of the following two cases.

(a) No GEDs in Σ can be applied to expand ρ. If so, we say that ρ is valid, and refer to (Eqk ,GEqk)

as its result. It is easy to verify that in a valid ρ, for all i ∈ [0,k], Eqi is consistent in GEqi .

(b) Either Eq
0
is inconsistent to start with (we will see such a case in Section 5.2), or there exist

φ, h and Eqk+1
such that Eqk ⇒(φ,h) Eqk+1

but Eqk+1
is inconsistent in GEqk . If so, we say

that the sequence ρ is invalid, and its result is ⊥ (undefined).

In particular, a forbidding constraintQ[x̄](X ⇒ false) can be applied onlywhenG is “inconsistent”

or “dirty”, and as a result, it makes the chasing sequence invalid.

Example 4.1. Consider graphG shown in Fig. 2, where v1 and v2 have attributes v1.A = v2.A = 1.

(1) Consider a set Σ1 consisting of a single GED ϕ1 = Q1[x ,y](x .A = y.A⇒ x .id = y.id) with Q1 in

Fig. 2. Then Eq
0
⇒(ϕ1,h1) Eq1

is a chase step, where (a) Eq
0
consists of [v]Eq

0

= {v} for v ranging

over v1,v2,v
′
1
,v ′

2
, and [v1.A]Eq

0

= [v2.A]Eq
0

= {v1.A,v2.A, 1}; (b) h1: x 7→ v1 and y 7→ v2; and (c)

Eq
1
extends Eq

0
by letting [v1]Eq

1

= [v2]Eq
1

= {v1,v2}. The coercion G1 of Eq1
on G is shown in

Fig. 2, which merges v1 and v2. One can verify that (Eq
0
, Eq

1
) is a terminal chasing sequence of G

by Σ1 since no more GEDs can be applied. Moreover, it is valid, yielding result (Eq
1
,G1).

(2) Consider Σ2 = {ϕ1,ϕ2}, where ϕ2 =Q2[x ,y, z](∅ ⇒ y.id = z.id) (Q2 in Fig. 2). Now Eq
1
⇒(ϕ2,h2)

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

Dependencies for Graphs 1:15

Eq
2
is a chase step, where h2: x 7→ v1, y 7→ v ′

1
, z 7→ v ′

2
; and (b) Eq

2
extends Eq

1
by adding v ′

2
to

[v ′
1
]Eq

1

. Then the sequence (Eq
0
, Eq

1
) is still terminal, but it is invalid since there exists a chase step

Eq
1
⇒(ϕ2,h2) Eq2

, where Eq
2
is inconsistent in G1. As shown in Fig. 2, the coercion G2 of Eq2

on G
is to merge v ′

1
and v ′

2
with distinct labels. The result of this sequence is ⊥. 2

As opposed to chase of relations or RDF with EGDs or FDs [2, 8, 19, 40], a chasing sequence with
GEDs operates on a graph (pattern), and may be invalid due to label conflicts. Moreover, it supports

“attribute generation” (cases (1) and (2) of chase steps above) to cope with schemaless graphs. In

addition, the relational and RDF chasing rules do not deal with id literals. When x .id = y.id is

enforced, all their attributes and edges have to be merged.

4.2 The Church Rosser Property
The chase with relational FDs has the Church-Rosser property (cf. [1]). We show that chasing with

GEDs retains the property. We consider finite sets Σ of GEDs, and use the following notions.

(a) Chasing with GEDs is finite, if for all sets Σ of GEDs and all graphs G, all chasing sequences of

G by Σ are finite.

(b) Chasing with GEDs has the Church-Rosser property, if for all Σ and G, all terminal chasing

sequences of G by Σ have the same result, regardless of in what order the GEDs are applied. That
is, terminal sequences are either (a) all valid with the same (Eq,GEq), or (b) all invalid with ⊥.

As opposed to chasingwith relational FDs, chasingwithGEDsmay get into conflicts. Nonetheless,

all terminal chasing sequences with GEDs still yield the same result.

Theorem 4.2. Chasing with GEDs is finite and has the Church-Rosser property. Moreover, for any
set Σ of GEDs and graphG , if there exists a valid terminal chasing sequences ofG by Σ, thenGEq |= Σ,
where (Eq,GEq) is the result of the terminal sequence. 2

By Theorem 4.2, we can define the result of chasing G by Σ as the result of any terminal chasing

sequence of G by Σ, denoted by chase(G, Σ). We say that chase(G, Σ) is consistent if there exists
such a valid terminal chasing sequence, with result (Eq,GEq). It is inconsistent otherwise, i.e., when
all terminal chasing sequences are invalid.

Proof:We show that for any set Σ ofGEDs and any graphG = (V ,E,L, FA), (1) all chasing sequences
ofG by Σ are finite; (2) all terminal sequences ofG by Σ have the same result; and (3) if there exists

a valid terminal chasing sequence of G by Σ with result (Eq,GEq), then GEq |= Σ.

(1) Any chasing sequence ρ of G by Σ is finite. Consider a chasing sequence ρ = (Eq
0
, . . . , Eqk) ofG

by Σ. Observe that for each 0 ≤ i ≤ k , Eqi consists of (a) at most |V | equivalence classes [x]Eqi for
all nodes inG , with total length |V | when all such classes are put together; (b) at most |V | · |Σ|+ |FA |
equivalence classes [x .A]Eqi for attributes, since GEDs in Σ check at most |Σ| attributes for each
node; and (c) at most |Σ| + |FA | constants, since all constants are from FA and Σ. Hence the length
|Eqi | of Eqi is at most |G | · |Σ| + 2 · |G | + |Σ| ≤ 4 · |G | · |Σ|, because each attribute x .A or constant c
appears in at most one equivalence class. Here the size of G, denoted by |G |, is the sum of |V |, |E |,
|FA |, the sizes of the labels of all vertices and edges, and the sizes of the values of all attributes.

In the chasing step Eqi−1
⇒(φ,h) Eqi , Eqi extends Eqi−1

by adding one literal l (see Section 4.1).

Assume w.l.o.g. that l is x .A = c; the proofs for the cases of x .A = y.B and x .id = y.id are

similar. Then |Eqi | ≤ |Eqi−1
| + 2. More specifically, (a) when neither c nor x .A exists in Eqi−1

,

|Eqi | = |Eqi−1
| + 2; (b) when only one of c and x .A exists in Eqi−1

, |Eqi | = |Eqi−1
| + 1; (c) when both

of c and x .A are in Eqi−1
, |Eqi | = |Eqi−1

|. That is, |Eqi | increases the size |Eqi−1
| except in case (c).

Observe that in case (c), two different equivalence classes can be merged only once. Moreover,

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:16 Wenfei Fan and Ping Lu

there exist at most 4 · |G | · |Σ| equivalence classes to process. Given that |Eqk | ≤ 4 · |G | · |Σ|, we
have that the length of ρ is bounded by 8 · |G | · |Σ|, i.e., k ≤ 8 · |G | · |Σ|. Hence ρ is finite.

(2) All terminal sequences of G by Σ have the same result. We show this by contradiction. Assume

that there exist two terminal chasing sequences ρ1 = (Eq
0
, Eq

1
, . . . , Eqk) and ρ2 = (Eq

0
, Eq′

1
, . . .,

Eq′l) such that they end up with different results. Assume w.l.o.g. that Eq
0
is consistent, since

otherwise both ρ1 and ρ2 are invalid and end up with the same result. When Eq
0
is consistent, if

Eqk and Eq′l are different, then we have that either Eqk \ Eq
′
l , ∅ or Eq′l \ Eqk , ∅. To simplify the

discussion, we also use Eq to denote the set of equality literals u = v for all u ∈ [v]Eq, i.e., x .A = c ,
x .A = y.B and x .id = y.id. We next show that if Eqk \ Eq

′
l , ∅ or Eq′l \ Eqk , ∅, then either one of

ρ1 and ρ2 is not terminal, or both ρ1 and ρ2 are invalid (and hence ρ1 and ρ2 have the same result),

a contradiction to the assumption above. To this end, we first show the following.

Lemma 4.3. If ρ1 is valid and Eq′l \ Eqk , ∅, then ρ1 is not terminal.

Proof: Assume that S = Eq′l \ Eqk , ∅. We show that there exist a GED φ = Q[x̄](X ⇒ Y) in Σ,
a match h of Q in GEqk , and an equivalence relation Eqk+1

on G such that Eqk ⇒(φ,h) Eqk+1
is

a chase step of G by Σ. Hence the valid chasing sequence ρ1 is not terminal by the definition of

terminal chasing sequences (see Section 4.1).

We define φ, h, and Eqk+1
as follows. Suppose that Eq′j (1 ≤ j ≤ l) is the first equivalence relation

in ρ2 such that S ∩ Eq′j , ∅, and Eq′j−1
⇒(φ j ,hj) Eq

′
j is the corresponding chase step in ρ2, where

φ j = Q j [x̄ j](X j ⇒ Yj) is a GED in Σ, hj is a match of Q j in GEq′j−1

, and hj (x̄ j) |= X j . Since both

sequences start with Eq
0
, we have that j > 0 and Eq′j−1

⊆ Eqk . We let φ = φ j , and define h as

follows: for each node x in Q j , if hj (x) = uEqj−1

(i.e., [u]Eqj−1

, see Section 4.1 for the definition of

the coercion of Eq on G), then h(x) = uEqk (denoting [u]Eqk); and for each edge (x1, ι,y1), because

there exists an edge (uEqj−1

,hj (ι
x1

y1
),vEqj−1

) in GEq′j−1

such that hj (x1) = uEqj−1

, hj (y1) = vEqj−1

and

ι ≍ hj (ι
x1

y1
), we define h(ιx1

y1
) = hj (ι

x1

y1
). We next show the following: (a) h is a match of Q j in GEqk ,

(b) h(x̄) |= X (i.e., X j), and (c) φ and h yield a chase step Eqk ⇒(φ,h) Eqk+1
. If these hold, then Eqk

can be further extended by another chase step. That is, ρ1 is not terminal, a contradiction.

(a) By the definitions of coercion and h, it is easy to verify that h is a match of Q j in GEqk .

(b) We now show that h(x̄) |= X (i.e., X j). For each literal l in X , (i) if l is x .A = c or x .A = y.B,

we have that h(x̄) |= l since F
Eq′j−1

A (x) ⊆ F
Eqk
A (x) and hj (x̄ j) |= X j , where F

Eq′j−1

A and F
Eqk
A are the

attribute functions for the coercions of Eq′j−1
and Eqk on G, respectively. (ii) If l is x .id = y.id,

since hj (x̄ j) |= X j , we know that hj (y) ∈ [hj (x)]Eqj−1

. Since Eq′j−1
⊆ Eqk , hj (y) ∈ [hj (x)]Eqk . By

the definitions of GEqk and h, we have that h(x) and h(y) are the same node in GEqk , i.e., h(x̄) |= l .
Putting these together, we can conclude that h(x̄) |= X .

(c) Given these, we show that ρ can be extended by a chase step Eqk ⇒(φ,h) Eqk+1
, and thus is not

terminal. As each chase step only adds one literal, assume w.l.o.g. thatv .A = c is the literal added by
the chase step Eq′j−1

⇒(φ j ,hj) Eq
′
j , i.e., {v .A = c} ∈ S ∩ Eq′j ; the proofs for the cases of v .A = v

′.B
and v .id = v ′.id are similar. Let Eqk+1

be the equivalence relation that extends Eqk with v .A = c .
From statements (a) and (b) above, we know that Eqk ⇒(φ,h) Eqk+1

is a chase step. 2

Using Lemma 4.3, we now continue with the proof of statement (2) of Theorem 4.2. It suffices to

consider the following two cases: (a) both ρ1 and ρ2 are valid but have different results; and (b) one

of them is valid and the other is not. We show that both cases lead to contradiction.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

Dependencies for Graphs 1:17

Fig. 3. Graph for repairing

In case (a), by Lemma 4.3, we must have that Eq′l \ Eqk = ∅ and Eqk \ Eq′l = ∅ since otherwise

one of the two sequences is not terminal. However, from these it follows that Eqk = Eq′l , i.e., ρ1

and ρ2 end up with the same result, a contradiction to the assumption.

In case (b), assume w.l.o.g. that ρ1 is valid but ρ2 is not. We show that ρ1 must be invalid as well.

Since ρ2 is invalid, there exist a GED φ = Q[x̄](X ⇒ Y) in Σ and a match h of Q in GEq′l
such that

Eq′l ⇒(φ,h) Eq′l+1
, h(x̄) |= X and Eq′l+1

is inconsistent inGEq′l
, where Eq′l+1

extends Eq′l by adding

a literal l from Y . By Lemma 4.3, Eq′l ⊆ Eqk . As in the proof of Lemma 4.3, one can verify that h
is also a match of Q in GEqk and h(x̄) |= X . Thus Eqk ⇒(φ,h) Eqk+1

is a chase step, where Eqk+1

extends Eqk by adding literal l . Since Eq′l+1
has conflicts and Eq′l ⊆ Eqk , we have that Eqk+1

also

has conflicts, which contradicts the assumption that ρ1 is valid.

(3) If there exists a valid terminal chasing sequence ρ of G by Σ, then GEq |= Σ, where (Eq,GEq) is

the result of ρ. We prove this by contradiction. Suppose that GEq ̸ |= Σ. Then there exist a GED
φ1 = Q1[x̄1](X1 ⇒ Y1) in Σ and a match h1 of Q1 in GEq such that h1(x̄1) |= X1, but h1(x̄1) ̸|= Y1, i.e.,
there exists a literal l in Y1 such that h1(x̄1) ̸|= l . Then Eq ⇒(φ1,h1) Eq

′
is a chase step, where Eq′ is

the equivalence relation of the extension of Eq by adding h1(l) (see Section 4.1), and h1(l) is the
literal obtained by replacing each node x with h1(x) in l . This contradicts the assumption that ρ is

a valid terminal chasing sequence. Therefore, GEq |= Σ.

This completes the proof of Theorem 4.2. 2

Since the chase has the Church-Rosser property, we can use it in consistency checking, entity

resolution, knowledge base expansion, graph repairing and fraud detection, among other things.

Example 4.4. Consider graph G = (V ,E,L, FA) shown in Fig. 3. It consists of three artists (ar1,

ar2, and ar3) and four albums (al1, al2, al3, and al4). Moreover, artists ar2 and ar3 have the same

name, and all albums have the same title. We chase G with GEDsψ1–ψ4 given in Example 3.1.

A chasing sequence is as follows: (1) merge al1, al2 and al3 using GKeys ψ1; (2) add attribute

al3.release = 1998 to album al3 by applying GFD ψ4 to al3 and al4; (3) merge al3 and al4 with

GKeysψ2; and (4) merge ar2 and ar3 using GKeysψ3. We finally obtain the coercion G ′
shown in

Fig. 3. Note that before step (1), node al3 has neither attribute type nor attribute release_type, and
we hence cannot apply GFDψ4 to al3 and al4. But after step (1), attributes type and release_type
are added to al3, which are inherited from al1 and al2, respectively. Then we can apply ψ4, and

further apply GKeysψ3 to merge ar2 and ar3. One can verify that all chasing sequences result in

G ′
. This process shows that to clean graph G, we need a combination of GFDs and GKeys. 2

5 REASONING ABOUT GEDS
We next study three fundamental problems associated with GEDs and their sub-classes identified

in Section 3. We characterize their static analyses and establish their complexity in various settings

(Sections 5.1 and 5.2). We also investigate their validation problem (Section 5.3).

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:18 Wenfei Fan and Ping Lu

Fig. 4. The satisfiability of GEDs

5.1 The Satisfiability Problem
We study a strong notion of satisfiability. Consider a set Σ of GEDs. A model of Σ is a graphG such

that (a) G |= Σ, and (b) for each Q[x̄](X ⇒ Y) in Σ, Q has a match in G.

Intuitively, if Σ has a model, then the GEDs in Σ are sensible and do not conflict with each other.

Hence we can apply these GEDs without worrying about their conflicts.

The satisfiability problem for GEDs is stated as follows.

◦ Input: A finite set Σ of GEDs.
◦ Question: Does there exist a model of Σ?

We say that Σ is satisfiable if it has a model.

For relational FDs, the satisfiability problem is trivial: for any set Σ of FDs, there always exists a
nonempty relation that satisfies Σ (cf. [24]). When it comes to GEDs defined on graphs, however,

the satisfiability analysis becomes more intriguing.

Example 5.1. (1) Consider a set Σ1 consisting of

ϕ1 = Q1[x ,y, z](x .A = x .B ⇒ y.id = z.id), ϕ2 = Q2[x1,y1, z1,x2,y2, z2](∅ ⇒ x1.A = x1.B),

where patterns Q1 and Q2 are depicted in Fig. 4 (ignore GΣ1
for the moment, which will be used

later in Example 5.3). One can verify that each of ϕ1 and ϕ2 has a model when they are taken

separately; however, Σ1 does not have a model. To see this, consider a homomorphism f from Q2

to Q1, mapping x1 and x2 to x , y1 and y2 to y, and z1 and z2 to z. Hence for any match h of Q1 in a

graph G, the composition of h and f makes a match of Q2 in G. When taken together, however, ϕ1

and ϕ2 require us to merge two nodes y and z with distinct labels (label conflict).

(2) GEDs may interact with each other even when their patterns are not homomorphic. To see this,

consider Σ2 consisting of ϕ1 and ϕ
′
2
= Q ′

2
[x̄](∅ ⇒ x1.A = x1.B), where pattern Q ′

2
extends Q2 by

adding a connected componentC2, as shown in Fig. 4. Obviously,Q1 is not homomorphic toQ ′
2
and

vice versa. However, Σ2 is not satisfiable. To see this, suppose by contradiction that Σ2 has a model

G, in which Q ′
2
has a match h2(x̄). Then for any match h1 of Q1 in G, we can construct a match h′

2

of Q ′
2
such that (a) over C2, h

′
2
is the same as h2, and (b) over Q2, h

′
2
is the composition of h1 and

f given above. Then the same conflict emerges as in (1). Note that some nodes of Q1 and Q
′
2
are

mapped to the same vertices in a graph. Indeed, the satisfiability problem only requires that each

pattern in Σ has a match in the graph, while these matches do not have to be disjoint. 2

Characterization. We develop a sufficient and necessary condition to characterize the satisfiability

of a set Σ of GEDs. Consider a set Σ of GEDs φi = Qi [x̄i](Xi ⇒ Yi) for i ∈ [1,n], where Qi =

(Vi ,Ei ,Li). Assume w.l.o.g. that Vi and Vj are disjoint if i , j, after naming the nodes in Qi .

The canonical graph GΣ of Σ is defined to be a graph (VΣ,EΣ,LΣ, F
Σ
A), where VΣ is the union of

Vi ’s, and similarly for EΣ and LΣ; but F
Σ
A is empty. Intuitively, GΣ is the union of all graph patterns

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

Dependencies for Graphs 1:19

in Σ, in which patterns from different GEDs are disjoint. To simplify the presentation, we use GQi

to denote the subgraph of GΣ corresponding to the pattern Qi of GED φi = Qi [x̄i](Xi ⇒ Yi) in Σ.

We chase the pattern graphGΣ with Σ, and characterize the satisfiability of Σ based on the chase.

Theorem 5.2. A set Σ of GEDs is satisfiable if and only if chase(GΣ, Σ) is consistent. 2

Example 5.3. Recall the set Σ1 of GEDs from Example 5.1. Its canonical graph is the union GΣ1

of Q1 and Q2 shown in Fig. 4. One can verify that chase(GΣ1
, Σ1) is inconsistent, i.e., there exists a

terminal chasing sequence ofGΣ1
by Σ1 with result ⊥. This confirms the observation of Example 5.1

that Σ1 is not satisfiable. Similarly one can see that chase(GΣ2
, Σ2) is also inconsistent, for Σ2. 2

Proof:We show that a set Σ of GEDs is satisfiable if and only if chase(GΣ, Σ) is consistent.

(⇐) Assume first that chase(GΣ, Σ) is consistent. Let (Eq,GEq) be the result of chasingGΣ by Σ. We

construct a model G of Σ from GEq, by assigning attribute values. Suppose that GEq = (V ,E,L, F
Eq
A).

We defineG = (V ,E,L, FA), with the same setsV and E of nodes and edges and the same labeling L,
except that each wildcard ‘_’ inGEq is replaced by a new label #A, while FA is populated as follows.

(1) For each x .A = c in F
Eq
A , add x .A = c to FA.

(2) For each x .A = y.B in F
Eq
A , if there exists a constant c such that c ∈ [x .A]Eq or c ∈ [y.B]Eq,

then add x .A = c and y.B = c to FA; otherwise add x .A = d and y.B = d to FA and Eq for

some fresh distinct constant d to instantiate the attributes in [x .A]Eq and [y.B]Eq when these

equivalence classes contain no constants, i.e., when their attributes are not yet instantiated.

Since chase(GΣ, Σ) is consistent, G is well defined. Moreover, since GEq is the coercion of Eq on

GΣ, by the definition of GΣ, for any GED φ = Q[x̄](X ⇒ Y) in Σ, there exists a match hφ of Q in

GEq: x 7→ xEq (i.e., [x]Eq; see Section 4 for the definition of coercion); this can be verified just like in

Lemma 4.3. By the definition ofG ,G andGEq are isomorphic, except that wildcard ‘_’ is replaced by

#A. Hence hφ is also a match of Q in G. Thus each pattern Q in Σ has a match in G. Note that only
wildcard ‘_’ in pattern Q can match ‘_’ in graph GEq (and #A in G).

It remains to show that G |= Σ. Suppose by contradiction that there is a GED φ = Q[x̄](X ⇒ Y)
in Σ such that G ̸ |= φ. That is, there exists a match h of Q in G such that h(x̄) |= X but h(x̄) ̸|= Y .
SinceG andGEq are isomorphic (except that wildcard ‘_’ is replaced by #A), one can verify that h is

a match of Q in GEq such that h(x̄) |= X but h(x̄) ̸|= Y , i.e., GEq ̸ |= φ. This contradicts Theorem 4.2,

which assures that GEq |= Σ since chase(GΣ, Σ) is consistent. Therefore, Σ is satisfiable.

(⇒) Now assume that Σ is satisfiable. Consider a terminal chasing sequence ρ = (Eq
0
, . . . , Eqk) of

GΣ by Σ. We show that ρ is valid, and hence that chase(GΣ, Σ) is consistent by Theorem 4.2. We

first identify a property of ρ, and then use the property to show that chase(GΣ, Σ) is consistent.

(1) We first identify a property of ρ. Since Σ is satisfiable, there exists a model G = (V ,E,L, FA)
of Σ such that for any GED φ ′ = Q ′[x̄ ′](X ′ ⇒ Y ′) in Σ, there exists a match hφ ′ of Q ′

in G. By
combining these matches, we obtain a mapping h from GΣ to G. That is, for each node x ∈ VΣ, if x
is in pattern Q ′

, then h(x) = hφ ′(x). It is a homomorphism from GΣ to G by the definition of GΣ, in

which different patterns of Σ are disjoint. We show the following property.

For all i ∈ [0,k], h(VΣ) |= Eqi , i.e., h(VΣ) |= l for all literals l in Eqi by taking each

v ∈ [u]Eqi as a literal u = v , denoting x .A = c , x .A = y.B or x .id = y.id.
To simplify the presentation, we use h(VΣ) to denote h(z̄), where z̄ consists of all variables in VΣ,

and h(VΣ) |= l is defined along the same lines as h(x̄) |= l given in Section 3. We also use h(l) to
denote the literal obtained by replacing each variable x with h(x) in l .

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:20 Wenfei Fan and Ping Lu

We prove this property by induction on i as follows. Obviously, this holds in the base case, i.e.,
h(VΣ) |= Eq

0
, where Eq

0
includes [x]Eq

0

= {x} for any node x in GΣ, and F Σ
A is empty in GΣ.

Assume that for any j (0 ≤ j ≤ i − 1), h(VΣ) |= Eqj . We show that h(VΣ) |= Eqi . Since ρ is a

chasing sequence, there exist a GED φ1 = Q1[x̄1](X1 ⇒ Y1) in Σ and a match h1 ofQ1 inGEqi−1

such

that Eqi−1
⇒(φ1,h1) Eqi , where Eqi extends Eqi−1

by adding a literal l ∈ Y1. That is, h1(x̄1) |= X1

and h1(l) < Eqi−1
. To show that h(VΣ) |= Eqi , it suffices to show that h ◦h1 is a match ofQ1 inG and

h ◦ h1(x̄1) |= X1. Here h ◦ h1 is a mapping from Q1 to G defined as follows: for each node u in Q1,

h ◦h1(u) = h(v), where h1(u) = vEqi−1

. Since h(VΣ) |= Eqi−1
, h ◦h1 is well defined. If h ◦h1(x̄1) |= X1,

then h ◦ h1(x) |= Y1 since G |= φ. From this it follows that h(VΣ) |= h1(l), and thus h(VΣ) |= Eqi .
By the definitions of coercion and h ◦ h1, one can easily verify that h ◦ h1 is a match of Q1 in G.

We next show that h ◦ h1(x̄1) |= X1, i.e., for all literals l ∈ X1, h ◦ h1(x̄1) |= l . We verify this based

on different cases of l as follows. (a) When l is x .A = c . Letv = h1(x). Then by h1(x̄1) |= X1, we have

that c ∈ [v .A]Eqi−1

. By h(VΣ) |= Eqi−1
, node v ′ = h(v) = h ◦ h1(x) has attribute A, and v

′.A = c in
G. That is, h ◦ h1(x̄1) |= l . (b) When l is x .A = y.B. Let v = h1(x) and v

′ = h1(y). From h1(x̄1) |= X1

it follows that v .A ∈ [v ′.B]Eqi−1

. Since h(VΣ) |= Eqi−1
, we have the following: h(v) = h ◦ h1(x) and

h(v ′) = h ◦h1(y) have attributesA and B, respectively, and moreover, (h ◦h1(x)).A = (h ◦h1(y)).B in

G . Hence, h ◦ h1(x̄1) |= l . (c) When l is x .id = y.id. Let v = h1(x) and v
′ = h1(y). Since h1(x̄1) |= X1,

v ′ ∈ [v]Eqi−1

. From h(VΣ) |= Eqi−1
it follows that h(v) and h(v ′) are the same node in G. That is,

h ◦ h1(x) and h ◦ h1(y) are the same node in G. Hence h ◦ h1(x̄1) |= l .

Putting these together, we can conclude that h ◦ h1(x̄1) |= X1. Thus h(VΣ) |= Eqi for all i ∈ [0,k].

(2) Based on the mapping h, we next show that chase(GΣ, Σ) is consistent. By the definition of

GΣ, it is easy to verify that Eq
0
is consistent. Thus it suffices to show the following: (†) if there

exist φ = Q2[x̄2](X2 ⇒ Y2) in Σ and a match h2 of Q2 in GEqk such that Eqk ⇒(φ,h2) Eqk+1
and

Eqk+1
is inconsistent inGEqk , thenG ̸ |= φ, whereG is the model of Σ mentioned in (1) above. For if

statement (†) above holds, then it contradicts the assumption that G is a model of Σ.

Along the same lines as the proof for (1) above, one can verify that h ◦ h2 is a match of Q2 in G.
Then it suffices to show that h◦h2(x̄2) |= X2, but h◦h2(x̄2) ̸|= Y2. For if these hold, thenG ̸ |= φ. Since
h(VΣ) |= Eqk , an argument similar to the one for (1) can verify that h ◦ h2(x̄2) |= X2. To show that

h ◦ h2(x̄2) ̸|= Y2, note that Eqk+1
is inconsistent in GEqk , and Eqk+1

extends Eqk by adding a literal

l ∈ Y2. Assume w.l.o.g. that l is x1.id = y1.id, where x2 = h2(x1), y2 = h2(y1), y2 ∈ [x2]Eqk+1

but

L(h(x2)) - L(h(y2)) and L(h(y2)) - L(h(x2)); the proofs for the other cases of conflicts are similar.

Then, since G is well defined, h(x2) and h(y2) cannot be the same node in G. We can conclude that

h ◦ h2(x̄2) ̸|= (x1.id = y1.id) because h(x2) and h(y2) are distinct nodes. Hence h ◦ h2(x̄2) ̸|= Y2. 2

Complexity. Capitalizing on Theorem 5.2, we next establish the complexity of the satisfiability

problem for GEDs and its sub-classes. We refer to GED Q[x̄](X ⇒ Y) as a tree-pattern GED if Q is

a tree. We say that Σ is a set of GEDs with tree patterns if each GED in Σ is a tree-pattern GED.

Theorem 5.4. The satisfiability problem is
◦ coNP-complete for GEDs, GFDs, GKeys and GEDxs; and
◦ it is in O(1) time for GFDxs.

The problem remains coNP-hard for sets of GEDs, GFDs, GKeys and GEDxs with tree patterns. 2

Theorem 5.4 tells us the following. (1) The intractability of the satisfiability analysis is rather

robust: it arises either from constant literals in GFDs, or from id literals in GKeys and GEDxs. As
will be seen in the proof, the problem is coNP-hard even when Σ consists of a fixed number of

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

Dependencies for Graphs 1:21

GEDs, and when all graph patterns that appear in Σ are trees. (2) In the absence of constant and id
literals, the problem is trivial: any set of GFDxs can find a model.

For relational EGDs, a consistency problem was shown coNP-complete [35]; that problem is to

decide, given a database D and a set Σ of EGDs, whether the database D can be extended to a new

database D1 such that D1 satisfies Σ. It is quite different from the satisfiability problem studied in

this paper. The satisfiability problem for relational CFDs is NP-complete [25]. A close examination

reveals that it is intractable only under a database schema that requires attributes to have a finite

domain, e.g., Boolean [25]. It is in PTIME in the absence of finite-domain attributes. As remarked in

Section 3, while GEDs can express CFDs when relations are represented as graphs, GEDs cannot
enforce an attribute to have a finite domain. The satisfiability problem for GEDs is intractable
in the absence of finite-domain attributes. Hence its intractability is not inherited from CFDs, as
indicated by the difference between coNP-complete and NP-complete (unless P = NP).

Proof: We first show that any set Σ of GFDxs is satisfiable. We then show that the satisfiability

problem is coNP-complete for GEDs, GFDs, GKeys and GEDxs with tree patterns.

(1) GFDxs. It suffices to show that chase(GΣ, Σ) is consistent, by Theorem 5.2. Observe that GFDxs
only deduce literals of the form x .A = y.B, with neither constants nor id literals. Hence any

equivalence relation Eq generated in a chasing sequence is consistent (see Section 4 for consistency).

In other words, the chase leads to no conflicts. Thus chase(GΣ, Σ) is consistent for Σ.

(2) GEDs, GFDs, GKeys and GEDxs. We show that the satisfiability problem is in coNP for GEDs,
and is coNP-hard for GFDs and for GKeys without constant literals, all with tree patterns. These

suffice since GKeys without constant literals are a special case of GEDxs and GEDs.

Upper bound. We give an NP algorithm to check, given a set Σ of GEDs, whether Σ is not satisfiable:

(1) construct GΣ;

(2) guess a chasing sequence Eq
0
⇒(φ1,h1) Eq1

⇒(φ2,h2) . . . ⇒(φk ,hk) Eqk of GΣ by Σ such that

its number of steps k ≤ 8 · |Σ|2;
(3) for each i (0 ≤ i ≤ k − 1), check whether Eqi ⇒(φi+1,hi+1) Eqi+1

is a chase step; if not, reject

the guess; continue otherwise;

(4) for each i (0 ≤ i ≤ k − 1), check whether Eqi ⇒(φi+1,hi+1) Eqi+1
is invalid; if any of them is

invalid, return true.
We guess h1, . . . ,hk without constructingGEq

0

, . . . ,GEqk−1

, respectively. We first guess mappings

h′
1
, . . . ,h′

k in GΣ, and then define hi (x) = h′
i (x)Eqi−1

(i.e., [h′
i (x)]Eqi−1

; see Section 4 for GEqi−1

) for

i ∈ [1,k]. That is, x is mapped to the equivalence class of h′
i (x) in Eqi−1

. Then hi is a mapping from

the pattern of φi to GEqi−1

. Indeed, by the definition of GEqi−1

, nodes in GEqi−1

are defined as xEqi−1

for each x ∈ VΣ (i.e., [x]Eqi−1

), where VΣ is the set of nodes in GΣ. Here Eq0
consists of [x]Eq

0

= {x}
for each x ∈ VΣ. The correctness of the algorithm follows from Theorems 4.2 and 5.2. For its

complexity, step (1) is in PTIME by the definition of GΣ. By Corollary 5.5 below, steps (3) and (4)

are also in PTIME. Thus the algorithm is in NP, and the satisfiability problem is in coNP for GEDs.

Corollary 5.5. (1) Given a graphG and an equivalence relation Eq in a chasing sequence ofG by a
set Σ of GEDs, it is in PTIME to decide whether Eq is consistent inG . (2) For a GED φ = Q[x̄](X ⇒ Y),
a graph G , a match h of Q in G , and two equivalence relations Eq and Eq′ in a chasing sequence of G
by Σ, it is in PTIME to determine whether Eq ⇒(φ,h) Eq′ is a valid chase step. 2

Proof: (1) From the proof of Theorem 4.2 we can see that |Eq| ≤ 4 · |G | · |Σ|. Hence the three
conditions for Eq to be consistent can be checked in PTIME (see Section 4 for consistency).

(2) To check whether Eq ⇒(φ,h) Eq′ is valid, it suffices to do the following:

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:22 Wenfei Fan and Ping Lu

Fig. 5. The graph patterns of φ1 in the proof of Lemma 5.6

(a) construct GEq;

(b) check whether h is a match of Q in GEq, where Q is the pattern of φ;
(c) check whether h(x̄) |= X ;

(d) check whether there is a literal l in Y such that h(l) is not in Eq, and Eq′ is Eq ∪ {h(l)};
(e) check whether Eq′ is consistent in GEq.

Since |Eq| ≤ 4 · |G | · |Σ|, all these steps can be done in PTIME. Thus it is in PTIME to check whether

a chase step Eq ⇒(φ,h) Eq′ is valid. 2

Lower bound. We first settle the lower bound for the satisfiability analysis of GFDs of a restricted
form. The proof is quite different from the one given in [30], since we adopt graph homomorphism

for the semantics of GFDs in this work, and consider tree-pattern GFDs.

Lemma 5.6. The satisfiability problem is coNP-hard for GFDs with tree patterns. 2

Proof: We show the satisfiability problem is coNP-hard by reduction from the complement of the

3SAT problem, which is known to be NP-complete (cf. [32]). The 3SAT problem is to decide, given

a 3SAT formula ψ = C1 ∧ . . . ∧ Cn with variables in {x1, . . . ,xm}, whether there exists a truth

assignment of {x1, . . . ,xm} such thatψ is true. HereCi is in the form of l1 ∨ l2 ∨ l3, where l1, l2 and
l3 are variables or their negations from {x1, . . . ,xm}.

Given a 3SAT formulaψ , we construct a set Σ of GFDs such that all patterns in Σ are trees. We

show that Σ is satisfiable if and only ifψ is not satisfiable. The set Σ consists of two GFDs φ1 and φ2.

The construction ensures that if Σ is not satisfiable, then we can apply φ2 to the pattern of φ1, and

further deduce a satisfying truth assignment ofψ , i.e.,ψ is satisfiable; conversely, ifψ is satisfiable,

then there exists a satisfying truth assignment ofψ , and we can apply φ2 to the pattern of φ1 and

deduce inconsistency, i.e., Σ is not satisfiable. More specifically, Σ consists of the following GFDs.

(1) The firstGFDφ1 is used to encode Boolean domains of all variables and all satisfying assignments

for formulas l1 ∨ l2 ∨ l3. Specifically, φ1 = Q1[x̄1](∅ ⇒ r 1.A = 1 ∧ Y1 ∧ Y2 ∧ Y 1

1
∧ . . . ∧ Y 7

1
), where

(a) as shown in Fig. 5,Q1 = (V1, E1, L1), andV1 = {r 1,x1

1
,x1

2
,y1

1
,y1

2
, . . . ,y1

7
}; it consists of the root

r , two nodes x1

1
and x1

2
to encode the Boolean domain, and seven nodes for the satisfying truth

assignments of clauses Ci ; E1 = {(r 1, 1,x1

1
), (r 1, 0,x1

2
), (r 1, l1,y

1

1
), . . . , (r 1, l7,y

1

7
)}; as shown in

Fig. 5, these form a tree with r as the root, and all edges have distinct labels; and moreover,

L1(r
1) = ψ , L1(x

1

1
) = L1(x

1

2
) = v , L1(y

1

1
) = L1(y

1

2
) = . . . = L1(y

1

7
) = l ; and

(b) the literals inφ1 are partitioned into three parts: (i) the first part has only one literal (r
1.A = 1);

it sets the A attribute of the root to be 1; (ii) the second part consists of four literals to

enforce the Boolean domain of variables; that is, Y1 = ((x1

1
.A = 1) ∧ (x1

1
.B = 0)) and

Y2 = ((x1

2
.A = 0) ∧ (x1

2
.B = 1)); we use x1

1
.B or x1

2
.B to represent the negation of the variable;

(iii) the last part consists of 7 groups of literals, each of which corresponds to one satisfying

assignment of clauses Ci (i ∈ [1,n]); that is, Y 1

1
= ((y1

1
.A = 1) ∧ (y1

1
.B = 1) ∧ (y1

1
.C = 1)), . . . ,

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

Dependencies for Graphs 1:23

Y 7

1
= ((y1

7
.A = 0) ∧ (y1

7
.B = 0) ∧ (y1

7
.C = 1)); intuitively, for a conjunct Ci = l1 ∨ l2 ∨ l3, we

use the attributes A, B and C to represent the values of l1, l2 and l3, respectively;

(2) The second GFD φ2 = Q2[x̄2]((Y1 ∧ . . . ∧ Yn) ⇒ (r 2.A = 2)) encodesψ , where

(a) Q2 = (V2, E2, L2) is shown in Fig. 5; here V2 = {r 2,x2

1
, . . . ,x2

m ,y
2

1
,y2

2
, . . . ,y2

n}, rep-

resenting the root, m variables, and C1, . . . ,Cn , respectively; E2 = {(r 2,‘_’,x2

1
), . . . ,

(r 2,‘_’,x2

m), (r
2,‘_’,y2

1
), . . . , (r 2,‘_’,y2

n)}; as shown in Fig. 5, these make a tree with r 2
as the

root; and L2(r
2) =‘_’, L2(x

2

j) = v for j ∈ [1,m], and L2(y
2

i) = l for i ∈ [1,n]; and

(b) the literals in Y1, . . . ,Yn are used to check whether a given truth assignment µX makes ψ
true. Note that when φ2 is applied, there exists a match of nodes x2

1
, . . . , x2

m , which encodes a

truth assignment µX of {x1, . . . ,xm}. Each set Yi (i ∈ [1,n]) of literals encodes the bindings
of variables in one conjunctCi inψ . For example, letCi = x1 ∨ ¬x2 ∨ x3. Then the literals for

the node y2

i are Yi = (y2

i .A = x1.A) ∧ (y2

i .B = x2.B) ∧ (y2

i .C = x3.A).

Intuitively, to check whether µX makes Ci true, we only need to check whether y2

i “matches”

one of y1

1
, . . . , y1

7
in Q1, which encode all possible satisfying truth assignments of a clause.

Consider the node y2

i above as an example. When x1 = 1, x2 = 1 and x3 = 1 in µX , since µX
satisfies Ci , we have that y

2

i .A = 1, y2

i .B = 0, and y2

i .C = 1, i.e., y2

i matches y1

5
. Then when all

of y2

1
, . . . , y2

n match one of y1

1
, . . . , y1

7
, we can conclude that µX makesψ true.

The canonical graph GΣ of Σ consists of two disjoint components: GQ1
and GQ2

corresponding

to Q1 and Q2, respectively. Observe the following. (1) Since the labels of the edges in GQ1
are in

{1, 0, l1, . . . , l7}, and the edges in GQ2
are labeled wildcard ‘_’, Q1 finds no match in GQ2

. (2) Since

φ1 and φ2 do not carry id literals, no chasing sequence ofGΣ by Σ can identify two distinct nodes in

GΣ. Moreover, (3) since GQ1
and GQ2

are disjoint while each of GQ1
and GQ2

is connected, a chase

step is taken only when there exists either a match of Q1 in GQ1
, or a match of Q2 in GQ1

or GQ2
.

One can verify that Σ is not satisfiable if and only ifψ is satisfiable (details in the appendix). 2

We next show that the satisfiability problem for a special case of GKeys is also intractable.

Lemma 5.7. The satisfiability problem is coNP-hard for GKeys that are defined with tree patterns
and do not contain constant literals. 2

Proof: This can be verified by reduction from the complement of 3-colorability problem, which is

known to be NP-complete [32]. The 3-colorability problem is to decide, given an undirected graph

G, whether there exists a 3-coloring ν of G such that for each edge (u,v) in G, ν (u) , ν (v). The
problem is NP-complete even when G is a connected graph [33].

Consider a given connected undirected graphG = (V ,E), where |V | =m. We construct a set Σ
of GKeys such that the pattern of each GKeyψ in Σ is a tree, and thatψ does not contain constant

literals. We show that Σ is not satisfiable if and only if G has a proper 3-coloring.

The reduction is a little involved. We use three groups of GKeys to represent the graph patterns

depicted in Fig. 6, which are to represent a proper 3-coloring and the structure of G, respectively.
The construction of Q1

1
(resp. Q1

2
) is straightforward: nodes labeled r , д, and b form a clique, and

all these nodes have one edge leading to a node labeled 0 (resp. 1). The pattern Q1

3
is constructed

as follows: Q1

3
consists of all the nodes in G and an additional node x0, each undirected edge in

G is represented by two directed edges, and all the nodes in G have one edge leading to x0. In

these patterns, all edges are labeled 1, except the ones leading to x1

0
, x2

0
and x0, which are labeled

0. Intuitively, when there exists a 3-coloring of G, we can use the GKeys corresponding to Q1

3
to

identify the two nodes labeled 0 and 1 in Q1

1
and Q1

2
, respectively, and deduce inconsistency.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:24 Wenfei Fan and Ping Lu

. .

.

.

. .

.

.

.

.

.

Fig. 6. Graph patterns encoded by the set Σ of GKeys in the proof of Lemma 5.7

. .

.

.

. .

.

.

. .

.

.

.

.
.

.

.

..

...

.

.

.
..
.

.

.

..

.

.

.

.

.

.

.

..

.

Fig. 7. The graph patterns encoded by φ1 in the proof of Lemma 5.7

Since we can only use GKeys with tree patterns, the main difficulty of the construction is how to

represent these patterns by trees. We solve this problem by using the spanning trees of the graphs,

and by using other groups of GKeys or sets of literals to recover the patterns.

Below we define GKeys in Σ group by group, consisting of 15 GKeys in total.

(1) We start with a group of 7 GKeys to encode pattern Q1

1
depicted in Fig. 6, which is in turn used

to encode a proper 3-coloring. More specifically, we use the tree pattern Q1 of one GKey to encode

the main structure of Q1

1
, and another 6 GKeys to “recover” the cyclic pattern Q1

1
.

Pattern Q1 is constructed in two steps. We first compute a spanning tree of Q1

1
regardless of

the directions of the edges (see Q ′
1
in Fig. 7 for an example). We then recover all the edges of Q1

1

(e.g., Q ′′
1
in Fig. 7). To cope with tree patterns, some edges are encoded with multiple edges in Q ′′

1
,

e.g., seven edges in Q ′′
1
for the edge in Q1

1
from the node labeled д to the node labeled 0.

More specifically, the first GKey φ1 is defined asQ1[x̄ , ȳ](∅ ⇒ x1

0
.id = (x1

0
)′.id), whereQ1 is com-

posed of patternsQ ′′
1
[x1

0
, x̄1, x̄

′
1
] andQ ′′

2
[(x1

0
)′, x̄2, x̄

′
2
], andQ ′′

2
[(x1

0
)′, x̄2, x̄

′
2
] is a copy ofQ ′′

1
[x1

0
, x̄1, x̄

′
1
].

The pattern Q ′′
1
[x̄] = (V1, E1, L1) is defined as follows.

(a) The node set V1 = {x1

0
,x1

1
,x1

2
,x1

3
} ∪V 0

1
∪V 1

1
∪V 1

2
∪V 1

3
, where (i) {x1

0
,x1

1
,x1

2
,x1

3
} is the set of

nodes in Q1

1
denoting the 3 colors, and (ii) V 0

1
, V 1

1
, V 1

2
and V 1

3
contain 15, 5, 5 and 5 copies of

x1

0
,x1

1
,x1

2
and x1

3
, respectively. The node copies are created as follows. Consider the node xr

labeled r . For each (u, ι,v) in Q1

1
, we make two copies of the edge, one attached to u, and the

other connected to v . Since xr has five edges, there are 5 copies of xr ; similarly for the nodes

labeled д or b. Moreover, we connect each copy with a node labeled 0, which will be used to

recover the pattern Q1

1
. This explains why we need 15 copies of x1

0
.

To simplify the presentation of literals, we use, e.g., (x1

1
)
(x 1

1
,0,x 1

0
)

x 1

0

to denote the copy of x1

1

connected to node x1

0
, which corresponds to the edge (x1

1
, 0,x1

0
).

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

Dependencies for Graphs 1:25

Fig. 8. The graph patterns for recovering φ1

(b) The edge set E1 = {(x1

2
, 0,x1

0
), (x1

1
, 1,x1

2
), (x1

2
, 1,x1

3
)} ∪ E1

0
∪ E1

1
∪ E1

2
∪ E1

3
, where (i) {(x1

2
, 0,x1

0
),

(x1

1
, 1,x1

2
), (x1

2
, 1,x1

3
)} is the set of edges of the spanning tree of Q1

1
picked, and (ii) E1

0
, E1

1
,

E1

2
and E1

3
are the sets of copies of the other edges of Q1

1
corresponding to V 0

1
, V 1

1
, V 1

2
and

V 1

3
, respectively, as shown in Fig. 7. We use, e.g., ((x1

2
)
(x 1

2
,1,x 1

3
)

x 1

3

, 1,x1

3
), to denote the copy of

the edge (x1

2
, 1,x1

3
) connected to node x1

3
, and ((x1

2
)
(x 1

2
,1,x 1

3
)

x 1

3

, 0, (x1

0
)
(x 1

2
,1,x 1

3
)

x 1

3
,x 1

2

) to denote the edge

between the copy (x1

2
)
(x 1

2
,1,x 1

3
)

x 1

3

and the corresponding node labeled 0, denoted by (x1

0
)
(x 1

2
,1,x 1

3
)

x 1

3
,x 1

2

.

(c) Labeling L1 is given as follows: for each nodev ∈ {x1

0
}∪V 0

1
, L1(v) = 0; for eachv ∈ {x1

1
}∪V 1

1
,

L1(v) = r ; for each v ∈ {x1

2
} ∪V 1

2
, L1(v) = д; and for each v ∈ {x1

3
} ∪V 1

3
, L1(v) = b.

This completes the construction of the first GKey.

Next, we show how to recover the pattern Q1

1
. Note that although the nodes in Q1

1
have distinct

labels, we cannot simply merge nodes with the same labels, since Q1

2
also has these labels. The

trick is to only allow nodes in Q1

1
to be labeled 0. Hence we add the following six GKeys:

φ0,0
1
= Q0[x0, z0,y0,x

′
0
, z ′

0
,y ′

0
](y0.id = z ′

0
.id⇒ x0.id = x ′

0
.id), (1)

φ0,1
1
= Q ′

0
[x0, z0,y0,x

′
0
, z ′

0
,y ′

0
](y0.id = z ′

0
.id⇒ x0.id = x ′

0
.id), (2)

φi
0
= Q i

0
[x0,y0,x

′
0
,y ′

0
](x0.id = x ′

0
.id⇒ y0.id = y ′0.id) for i ∈ [1, 3], (3)

where Q0, Q
′
0
and Q i

0
are the patterns given in Fig. 8. Note that Q0 and Q

′
0
differ in the directions of

edges between z0 and y0 and between z ′
0
and y ′

0
. Intuitively, φ0,0

1
and φ0,1

1
are used to merge nodes

with label 0; and φ1

0
, φ2

0
and φ3

0
are to merge nodes with the same labels r , д and b, respectively.

We now illustrate how to recover Q1

1
by using these GKeys. We show how to merge those nodes

labeled 0. It is easy to see that once all nodes labeled 0 are merged (by applying φ1

0
, φ2

0
and φ3

0
), we

can recover pattern Q1

1
. To simplify the presentation, we name the nodes inGQ ′′

1

as shown in Fig. 9.

Observe that there are three types of copies of the node labeled 0: (1) the copy connected to the

original nodes in Q1

1
, e.g., x10,x20, and x30; (2) the copy connected to the nodes that have edges

linked to the original nodes in Q1

1
, e.g., x3, x4; and (3) the copy connected to the nodes that have

edges linked from the original nodes in Q1

1
, e.g., x6, x8. We merge all these nodes with node x31.

Here we only show how to merge x10 and x31; the other nodes can be merged similarly. To merge

x10 and x31, we can apply φ0,0
1

and the following match h1: x0 7→ x10, y0 7→ x11, z0 7→ x1, x
′
0
7→ x31,

y ′
0
7→ x21, and z

′
0
7→ x11. Since h1(z

′
0
) = h1(y0) = x11, by φ

0,0
1
, we have that h1(x0) = h1(x

′
0
). That is,

x10.id = x31.id. After merging x10 and x31, we obtain the pattern Q ′′′
1

given in Fig. 9.

One can verify that if chase(GΣ, Σ) is consistent, then Q1

1
is a subgraph of GEq, where (Eq,GEq)

is the result of chasing GΣ by Σ, and Σ contains φ0,0
1
, φ0,1

1
and φi

0
for i ∈ [1, 3].

(2)We next define seven keys to encode Q1

2
. The construction is similar to the one for Q1

1
, except

that all the nodes labeled 0 in the patterns are replaced by nodes labeled 1. We define

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:26 Wenfei Fan and Ping Lu

. .

.

.

.

.
.

.

.

..

...

.

.

.
..
.

.

.

..

.

.

.

.

.

.

.

..

.

. .

.

.

.

.
.

.

.

..

..

.

.

.
..
.

.

.

..

.

.

.

.

.

.

.

..

.

Fig. 9. recovering φ1

φ0,0
2
= Q ′′

0
[x0, z0,y0,x

′
0
, z ′

0
,y ′

0
](y0.id = z ′

0
.id ⇒ x0.id = x ′

0
.id), (4)

φ0,1
2
= Q ′′′

0
[x0, z0,y0,x

′
0
, z ′

0
,y ′

0
](y0.id = z ′

0
.id⇒ x0.id = x ′

0
.id), (5)

(φi
0
)′ = (Q i

0
)′[x0,y0,x

′
0
,y ′

0
](x0.id = x ′

0
.id⇒ y0.id = y ′0.id) for i ∈ [1, 3], (6)

where Q ′′
0
, Q ′′′

0
and (Q i

0
)′ are patterns obtained from Q0, Q

′
0
and Q i

0
depicted in Fig. 8 by replacing

nodes labeled 0 by nodes labeled 1, respectively.

Similar to (1), one can verify that if chase(GΣ, Σ) is consistent, then Q1

2
is a subgraph of GEq,

where (Eq,GEq) is the result of chasing GΣ by Σ, and Σ consists of φ0,0
2
, φ0,1

2
and (φi

0
)′ for i ∈ [1, 3].

(3) The last group consists of a single GKey φ3, to encode the structure ofQ
3

1
, which in turn encodes

graph G. More specifically, φ3 = Q[x̄2](X ⇒ x0.id = x ′
0
.id), where Q consists of a pattern Q ′

and

its copyQ ′′
, and can be constructed along the same lines asQ1

1
andQ1

2
. We omit the details here. In

the following, we only show the literals in X , which are used to recover the structure of Q3

1
from Q .

Here we use literals to recover Q3

1
, rather than GKeys as we did for Q1

1
and Q1

2
.

From the constructions in (1) and (2) above, we can see that to recoverQ3

1
, we only need to merge

the copies of nodes with the original ones. Employing the notations for copies given earlier, we

can define the set X of literals as follows. Suppose that E2 is the set of edges in Q1

3
. Given an edge

(u, ι,v) in E2, there are two copies of this edge, one of which is connected to u, and the other is

connected to v . Meanwhile, we connect two copies of node x0 to these copies of u and v . Then X is∧
(u, ι,v)∈E2

(
((u)(u, ι,v)v .id = u .id) ∧ ((v)(u, ι,v)u .id = v .id) ∧ ((x0)

(u, ι,v)
u,v = x0.id) ∧ ((x0)

(u, ι,v)
v,u = x0.id)

)
.

One can verify that (GQ)EqX is unique, and it contains Q1

3
as a subgraph. Therefore, if there exists a

match of Q in a graph G ′
such that h(x̄2) |= X , then we can deduce a match of Q1

3
in G ′

.

One can show that Σ is not satisfiable if and only ifG has a proper 3-coloring (see the appendix).2

This completes the proof of Lemma 5.7 and the proof of Theorem 5.4. 2

5.2 The Implication Problem
A set Σ of GEDs implies another GED φ, denoted by Σ |= φ, if for all graphsG , ifG |= Σ thenG |= φ.
We consider finite implication, when G is finite.

The implication problem for GEDs is as follows:
◦ Input: A finite set Σ of GEDs and another GED φ.
◦ Question: Does Σ |= φ?

As remarked earlier, the implication analysis helps us optimize data quality rules and graph pattern

queries in practice, among other things.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

Dependencies for Graphs 1:27

Fig. 10. The implication of GEDs

Characterization. We characterize the implication Σ |= φ as follows. Assume φ = Q[x̄](X ⇒ Y),
where pattern Q = (VQ ,EQ ,LQ). We use the following notations.

(a) The canonical graph of Q is GQ = (VQ ,EQ ,LQ , FA), where FA is empty, along the same lines

as GΣ (Section 5.1).

(b) We use EqX to denote the equivalence relation of X in GQ , such that for any literal l in X ,
v ∈ [u]Eq, where l is u = v , denoting x .A = c , x .A = y.B or x .id = y.id. Moreover, EqX
contains [x]EqX = {x} for each x ∈ VQ .

(c) We use chase(GQ , EqX , Σ) to denote the result of the chase of GQ by Σ starting with EqX .
Note that it is inconsistent if EqX is inconsistent (see Section 4).

(d) We say that a literal l can be deduced from an equivalence relation Eq if v ∈ [u]Eq, where l is
u = v . That is, the equality specified by l can be deduced from the transitivity of equality

literals, and the semantics of id literals in Eq. We say that a set Y of literals can be deduced
from Eq if each literal of Y can be deduced from Eq.

Theorem 5.8. For a set Σ of GEDs and a GED φ = Q[x̄](X ⇒ Y), Σ |= φ if and only if either (1)
chase(GQ , EqX , Σ) is inconsistent; or (2) chase(GQ , EqX , Σ) is consistent and Y can be deduced from
chase(GQ , EqX , Σ). 2

Intuitively, if chase(GQ , EqX , Σ) is inconsistent, then for all graphs G |= Σ and for all matches

h(x̄) of pattern Q in G , h(x̄) ̸|= X . Condition (1) covers this case. Otherwise, if chase(GQ , EqX , Σ) is
consistent, condition (2) ensures that Y is a logical consequence of Σ, Q and X .

Example 5.9. Consider a set Σ1 = {ϕ1,ϕ2} and φ:

ϕ1 = Q1[x1,x2](x1.A = x2.A⇒ x1.id = x2.id), ϕ2 = Q2[x1,x2](x1.B = x2.B ⇒ x1.A = x1.B),
φ = Q[x1,x2,x3,x4](X ⇒ Y),

where Q , Q1 and Q2 are shown in Fig. 10, X = (x1.A = x3.A ∧ x2.B = x4.B), and Y = (x1.id =
x3.id ∧ x2.id = x4.id). Canonical graph GQ has the same form as pattern Q of Fig. 10. Then

chase(GQ , EqX , Σ) yields all literals in Y , and Σ |= φ. Note that x3 and x4 have distinct labels, and

each is identified with a node labeled ‘_’: x3 ∈ [x1]Eq and x4 ∈ [x2]Eq, where Eq is the result of the

chase. This explains why we use ≍ when comparing labels (see Section 4). 2

Theorem 5.8 tells us that to decide whether Σ |= φ, it suffices to chase the canonical graphGQ of

pattern Q . Again we chase a graph pattern GQ with GEDs.

Proof: To verify the characterization, we prove two lemmas. Consider a terminal chasing sequence

(Eq
0
= EqX , Eq1

, . . . , Eqk) of GQ by Σ starting with EqX , where GQ is the canonical graph of Q .

Lemma 5.10. For graph G and match h(x̄) of Q in G, if G |= Σ and h(x̄) |= X , then h(x̄) |= Eqk . 2

Lemma 5.11. When chase(GQ , EqX , Σ) is consistent, Y can be deduced from chase(GQ , EqX , Σ) if
and only if for any graph G and any match h of Q in G, if h(x̄) |= Eqk , then h(x̄) |= Y . 2

The proofs of Lemmas 5.10 and 5.11 are in the electronic appendix.

Using Lemmas 5.10 and 5.11, we prove Theorem 5.8 as follows.

(⇐)We consider two cases, when chase(GQ , EqX , Σ) is inconsistent and when chase(GQ , EqX , Σ)

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:28 Wenfei Fan and Ping Lu

is consistent. First consider inconsistent chase(GQ , EqX , Σ). If EqX is inconsistent, then obviously

Σ |= φ, since for any graph G and any match h of Q in G, h(x̄) ̸|= X . Hence we assume w.l.o.g. that
EqX is consistent. Then for any graph G such that G |= Σ, if there exists a match h of Q in G such

that h(x̄) |= X , then h(x̄) |= Eqk by Lemma 5.10. Since chase(GQ , EqX , Σ) is inconsistent, one can
verify that G ̸ |= Σ along the same lines as the proof of Theorem 5.2, a contradiction. Hence Σ |= φ.

Now consider the case when chase(GQ , EqX , Σ) is consistent, from which Y can be deduced.

Then for any graph G such that G |= Σ and any match h of Q in G such that h(x̄) |= X , we have
that h(x̄) |= Eqk by Lemma 5.10. Since Y can be deduced from chase(GQ , EqX , Σ), from Lemma 5.11

it follows that h(x̄) |= Y . Therefore, Σ |= φ.

(⇒) Conversely, assume that Σ |= φ. We show that if chase(GQ , EqX , Σ) is consistent, then Y
can be deduced from chase(GQ , EqX , Σ). By Lemma 5.11, it suffices to show that for any graph

G = (V ,E,L, FA) and any match h of Q in G, if h(x̄) |= Eqk , then h(x̄) |= Y .
Given such G and h, we next show that h(x̄) |= Y . Since h(x̄) |= Eqk and EqX ⊆ Eqk , we have

that h(x̄) |= EqX . That is, h(x̄) |= X . We consider two cases. (a) IfG |= Σ, then h(x̄) |= Y since Σ |= φ
and h(x̄) |= X . (b) If G ̸ |= Σ, we show that there exists a subgraph Gh of G such that Gh |= Σ, h
is also a match of Q in Gh , and moreover, h(x̄) |= Eqk . From these we can get h(x̄) |= Y . Let Q =

(VQ ,EQ ,LQ). We define Gh = (V ′,E ′,L′, F ′
A) as follows:

• V ′ = {h(x) | x ∈ VQ };

• E ′ = {(h(y1),h(ι
y1

y2
),h(y2)) | (y1, ι,y2) ∈ EQ };

• for each node x in VQ , L
′(h(x)) = L(h(x)); and

• for each node x ∈ VQ , F
′
A(h(x)) = FA(h(x)).

Obviously, Gh is a subgraph of G, and h is also a match of Q in Gh . Moreover, h(x̄) |= Eqk still

holds. We show that Gh |= Σ by contradiction. Suppose that Gh ̸ |= Σ. Then there exist a GED
φ1 = Q1[x̄1](X1 ⇒ Y1) in Σ, and a match h1 of Q1 in Gh such that h1(x̄1) |= X1, but h1(x̄1) ̸|= Y1.

Then along the same lines as the proof of Theorem 5.2, we can show that the chasing sequence

(Eq
0
= EqX , Eq1

, . . . , Eqk) is either not terminal or invalid, which contradicts the assumption that

chase(GΣ, EqX , Σ) is consistent. Therefore, Gh |= Σ. 2

Complexity. Based on the characterization, we settle the complexity of GED implication.

Theorem 5.12. The implication problem is NP-complete for GEDs, GFDs, GKeys, GFDxs and
GEDxs. The problem remains NP-hard for GEDs, GFDs, GKeys, GFDxs, GEDxs with tree patterns. 2

As opposed to Theorem 5.4, the implication analysis for GFDxs is NP-hard, in the absence

of constant and id literals, although chase(GQ , EqX , Σ) is always consistent in this case. This is

because to check whether Y can be deduced from chase(GQ , EqX , Σ), we need to examine all

possible homomorphic mappings of patterns of Σ in GQ . The intractability remains intact even

when Σ consists of a single GED, and when GEDs of Σ and φ are defined with tree patterns.

Note that the implication for CFDs is coNP-complete [25], for the same reason as for the satisfia-

bility analysis. While the implication problem for EGDs is NP-complete [9], the proofs are quite

different, especially for the upper bound for GEDs and lower bound for GKeys, in the presence of

id literals. Note that the implication problem for GEDs is not a dual of the satisfiability problem

studied in Section 5.1, since that problem additionally requires the existence of pattern matches.

Proof: It suffices to show that the implication problem is in NP for GEDs, and is NP-hard for

GFDxs and GKeys with tree patterns. Indeed, GFDxs are a special case of GFDs, GEDxs and GEDs.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

Dependencies for Graphs 1:29

Upper bound. Given a set Σ of GEDs and a GED φ = Q[x̄](X ⇒ Y), we develop an NP algorithm

to check whether Σ |= φ. The algorithm works as follows:

(1) construct the canonical graph GQ of Q and the equivalence relation EqX of X ;

(2) guess a chasing sequence Eq
0
= EqX ⇒(φ1,h1) Eq1

⇒(φ2,h2) . . . ⇒(φk ,hk) Eqk of GQ by Σ
such that its number of steps k ≤ 8 · |φ | · |Σ|;

(3) for each i (0 ≤ i ≤ k − 1), check whether Eqi ⇒(φi+1,hi+1) Eqi+1
is a chase step; if not, reject

the guess; continue otherwise.

(4) for each i (0 ≤ i ≤ k − 2), check whether each chase step Eqi ⇒(φi+1,hi+1) Eqi+1
is valid; if

not, reject the guess; continue otherwise;

(5) check whether Eqk is inconsistent, if so, return true; otherwise, continue;
(6) check whether Y can be deduced from Eqk , if so, return true.

We guessh1, . . . ,hk in the sameway as in the proof of Theorem 5.4. The correctness of the algorithm

is assured by Theorem 4.2 and the characterization given in Theorem 5.8. In particular, it is easy to

verify the bound on the lengths of chasing sequences given in the proof of Theorem 4.2 still holds

when we start with EqX instead of Eq
0
.

For its complexity, note that step (1) is in PTIME, which follows from the definitions of GQ and

EqX . By Corollary 5.5, steps (3), (4) and (5) can be done in PTIME. Step (6) is also in PTIME by the

following corollary. Therefore, the algorithm is in NP and so is the implication problem for GEDs.

Corollary 5.13. Given a graph G, a set X of literals, and an equivalence relation Eq on G in a
chasing sequence of G by Σ, it is in PTIME to check whether X can be deduced from Eq. 2

Proof: Since |Eq| ≤ 4 · |G | · |Σ|, it is in PTIME to check the following conditions: for each literal

l in X , (a) when l is x .A = c (resp. x .A = y.B), whether (i) c ∈ [x .A]Eq (resp. x .A ∈ [y.B]Eq); or
(ii) c ∈ [x .A]Eq (resp. x .A ∈ [y.B]Eq) can be deduced by the closure of Eq under the reflexivity,

symmetry and transitivity, as well as the semantics of id literals; and (b) when l is x .id = y.id,
whether y ∈ [x]Eq. Hence, it is in PTIME to check whether X can be deduced from Eq. 2

Lower bound. As remarked earlier, we show that the implication problem is NP-hard for GFDxs
and GKeys with tree patterns. We start with GFDxs.

Lemma 5.14. The implication problem is NP-hard for GFDxs with tree patterns. 2

Proof: We show that the implication problem is NP-hard by reduction from the 3SAT problem (see

the proof of Lemma 5.6 for 3SAT). Given a 3SAT formulaψ , we construct a set Σ of GFDxs and a

GFDx φ such that all patterns in Σ∪ {φ} are trees. We show that Σ |= φ if and only ifψ is satisfiable.

The construction is almost the same as the one for Lemma 5.6, except that we need to remove all

constant literals from the GFDs. We introduce two additional nodes to represent constants 0 and 1.

The set Σ consists of only one GFDx φ1, which is to encode the structure ofψ (see the appendix). 2

We next show that the implication problem is also intractable for GKeys with tree patterns. We

show a stronger result: the intractability holds even when GKeys contain no constant literals.

Lemma 5.15. The implication problem is NP-hard for GKeys with tree patterns, even in the absence
of constant literals. 2

Proof: This is also verified by reduction from the 3-colorability problem (see the proof of Lemma 5.7

for the problem statement). Given a connected undirected graph G = (V ,E), we construct a set
Σ of GKeys and another GKey φ such that Σ |= φ if and only if G has a proper 3-coloring. The

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:30 Wenfei Fan and Ping Lu

construction is similar to the proof of Lemma 5.7, except that we do not need the second group of

GKeys, which is used to deduce inconsistency in the satisfiability analysis (see the appendix). 2

This completes the proof of Theorem 5.12. 2

5.3 The Validation Problem
The validation problem for GEDs is stated as follows.

◦ Input: A finite set Σ of GEDs and a graph G.
◦ Question: Does G |= Σ?

As remarked earlier, the validation analysis is the basis of inconsistency and spam detection, to

find violations of GEDs in a knowledge base or a social graph, among other things.

While the validation problem for relational FDs and CFDs is in PTIME, it is harder for GEDs
unless P = NP. Like the implication problem, the validation analysis is intractable even for GFDxs,
which are an extension of relational FDs that carry neither constant literals nor id literals. The

intractability remains intact when Σ consists of a single GFDx or a single GKey defined with a tree

pattern, and even when graph G is a tree.

Theorem 5.16. The validation problem is coNP-complete for GEDs, GFDs, GKeys, GFDxs and
GEDxs. The problem remains coNP-hard for GEDs, GFDs, GKeys, GFDxs and GEDxs with tree
patterns, even when the given graph G is a tree. 2

The result is a bit surprising since it is in PTIME to decide, given graphs Q andG , whether there
exists a homomorphism from Q to G when Q is a tree. As will be seen in the proof below, the

presence of attribute dependencies X ⇒ Y in GEDs makes the analysis harder. Indeed, we can

encode the complement of 3SAT using a set Σ of GFDxs with tree patterns in Σ and a tree G, and
encode the complement of H -coloring problem using GKeys with tree patterns and a tree G [37].

Proof:We show that the validation problem is in coNP for GEDs, and is coNP-hard for GFDxs and
GKeys with tree patterns, when graph G is a tree. These suffice since GFDxs are a special case of
GFDs, GEDxs and GEDs. Hence GFDxs and GKeys cover all the cases of Theorem 5.16.

Upper bound. We give an NP algorithm to check, given a graph G and a set Σ of GEDs, whether
G ̸ |= Σ. The algorithm works as follows:

(1) guess a GED φ = Q[x̄](X ⇒ Y) in Σ, and a mapping h from Q to G;
(2) check whether h is a match; if not, reject the current guess; otherwise continue;

(3) check whether h(x̄) |= X , but h(x̄) ̸|= Y ; if so, return true.
The correctness of the algorithm follows from the semantics of GEDs. For its complexity, step (2) is

obviously in PTIME. Step (3) is also in PTIME since |X | + |Y | ≤ |Σ|. Therefore, the algorithm is in

NP, and hence the validation problem is in coNP for GEDs.

Lower bound. We next show that the validation problem is coNP-hard for GFDxs and GKeys with
tree patterns, whenG is a tree. We start with the intractability of the validation problem for GFDxs.

Lemma 5.17. The validation problem is coNP-hard for GFDxs with tree patterns, even when the
given graph G is a tree. 2

Proof: This is verified by reduction from the complement of the 3SAT problem. Given a 3SAT
formulaψ , we construct a set Σ of GFDxs and a graph G1, which are also trees. The construction

and the proof are similar to those given for Lemma 5.14 (see the appendix for a proof). 2

We next prove the intractability of the validation problem for a special case of GKeys.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

Dependencies for Graphs 1:31

Lemma 5.18. The validation problem is coNP-hard forGKeys with tree patterns, even in the absence
of constant literals, and even when the given graph G is a tree. 2

Proof: We prove this by reduction from the complement of the H -coloring problem, which is

NP-complete [37]. For a fixed graph H , the H -coloring problem is to decide, given a graph G,
whether there exists a homomorphism fromG to H . It remains NP-complete even when H is a tree.

Given graphG , we construct a graphG1 and a set Σ of GKeys such thatG1 and the patterns in Σ
are all trees. Moreover, we show thatG1 ̸ |= Σ if and only if there exists a homomorphism fromG to

H . In the construction, we adopt the tree H given in Fig. 6 of [37] (see the appendix for a proof). 2

This completes the proof of Theorem 5.16. 2

Tractable cases. The main conclusion of this section is that the intractability of the analyses of

GEDs is quite robust. As shown above, even for GEDs defined in terms of tree patterns, the satisfia-

bility, implication and validation problems remain intractable. Nonetheless, the static analyses of

GEDs are no harder than their counterparts for, e.g., relational CFDs [25].

There are tractable cases that allow us to make practical use of GEDs. For example, one may

consider a set Σ of GEDs in which graph patterns have a size at most k , for a predefined bound k .
This is practical. Indeed, real-life graph patterns often have a small size [11, 31, 47]: 98% of SPARQL

queries have no more than 4 nodes and 5 edges, and single-triple patterns account for 97.25%

of patterns in SWDF and 66.41% of DBPedia [31]. One can readily verify that the satisfiability,

implication and validation problems for GEDs are in PTIME when patterns have a bounded size k .
Indeed, when the sizes of patterns in a set of GEDs are bounded by a constant k , we can enumerate

all possible matches of the patterns in PTIME; from this it is easy to develop PTIME algorithms for

checking the satisfiability, implication and validation ofGEDs. In addition, it has been shown in [26]
that under the subgraph isomorphism semantics for pattern matching, for GFDs with k-bounded
patterns, both the satisfiability problem and the implication problem are fixed-parameter tractable,

and the validation problem is co-W[1]-hard; moreover, all these problems are also in PTIME.

6 FINITE AXIOMATIZABILITY
We next study the finite axiomatizability of GEDs. We naturally want a finite set A of inference

rules to characterize GED implication, along the same lines as Armstrong’s axioms for relational

FDs [6]. As observed in [1], the finite axiomatizability of a dependency class is a stronger property

than the existence of an algorithm for testing its implication. An axiom system reveals insight of

logical implication, and can be used to generate symbolic proofs.

For a set Σ of GEDs and a GED φ, a proof of φ from Σ using inference rules of A is a sequence

φ1, . . . , φn = φ,

such that each φi either is a GED in Σ, or a GED deduced from φ j ’s by applying an inference rule

(or axiom) in A, for j < i (see [1] for details about proofs).

We say that φ is provable from Σ using A, denoted by Σ ⊢A φ, if there exists a proof of φ from Σ
using A. We write it as Σ ⊢ φ when A is clear from the context.

We say that for GEDs, an inference system A is

◦ sound if Σ ⊢A φ implies Σ |= φ;
◦ complete if Σ |= φ implies Σ ⊢A φ;

for all GED sets Σ and GEDs φ; and
◦ independent if for any rule r ∈ A, there exist GEDs Σ and φ such that Σ ⊢A φ but Σ ̸⊢A\r φ.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:32 Wenfei Fan and Ping Lu

GED1 Σ ⊢ Q[x̄](X ⇒ X ∧Xid), whereXid is
∧
i ∈[1,n](xi .id = xi .id), and x̄ consists of xi for all i ∈ [1,n].

GED2 If Σ ⊢ Q[x̄](X ⇒ Y) and literal (u .id = v .id) ∈ Y , then Σ ⊢ Q[x̄](X ⇒ u .A = v .A) for all attributes
u .A that appear in Y .

GED3 If Σ ⊢ Q[x̄](X ⇒ Y) and (u = v) ∈ Y , then Σ ⊢ Q[x̄](X ⇒ v = u).

GED4 If Σ ⊢ Q[x̄](X ⇒ Y), (u1 = v) ∈ Y and (v = u2) ∈ Y , then Σ ⊢ Q[x̄](X ⇒ u1 = u2).

GED5 If Σ ⊢ Q[x̄](X ⇒ Y) and EqX ∪ EqY is inconsistent, then Σ ⊢ Q[x̄](X ⇒ Y1) for any set Y1 of

literals of x̄ .

GED6 If Σ ⊢ Q[x̄](X ⇒ Y), EqX ∪ EqY is consistent, Σ ⊢ Q1[x̄1](X1 ⇒ Y1), and if there exists a match

h of Q1 in (GQ)EqX∪EqY such that h(x̄1) |= X1, then Σ ⊢ Q[x̄](X ⇒ Y ∧ h(Y1)).

Table 3. Axiom system AGED for GEDs

Here A \ r denotes A excluding r. That is, removing any rule from A would make it no longer

complete. We remark that we focus on finite implication, considering finite graphs.

We refer to A as a finite axiom system or a finite axiomatization of GEDs if A is sound, complete

and independent for GEDs. Following [1], we say that GEDs are finitely axiomatizable if there
exists a finite axiomatization of GEDs.

Inference rules. We give a set AGED of rules for GEDs in Table 3, in which we denote by (a) Q[x̄]
a pattern; (b) X a set of literals of x̄ ; (c) h(X) the set of literals obtained by substituting h(x) for all
variables x in X , for a match h ofQ in a graph; (d)GQ the canonical graph of patternQ (Section 5.2);

(e) EqX the equivalence relation of a set X of literals in GQ ; and (f) (GQ)Eq the coercion of Eq on

GQ (Section 4). The consistency of an equivalence relation Eq is defined in Section 4. To simplify

the presentation, we allow c = x .A as a literal in intermediate results of a proof, for constant c .

Recall that Armstrong’s axioms consist of three rules for relational FDs: reflexivity, augmentation

and transitivity [6]. Four rules are needed for each of CFDs [25] and EGDs [50]. In contrast, AGED
has six rules forGEDs over graphs (Table 3), to deal with the semantics of id literals, the consistency

of literals, and graph pattern matching for GEDs over graphs. In fact, reflexivity, augmentation and

transitivity can be deduced from AGED, as shown below.

Lemma 6.1. The axiom system AGED has the following properties.

(a) [Reflexivity] If Σ ⊢ φ, φ = Q[x̄](X ⇒ Y) and Y1 ⊆ Y , then Σ ⊢ Q[x̄](X ⇒ Y1), where Y1 is a set
{ui = vi | i ∈ [1,n]} of literals that are also in Y .

(b) [Augmentation] If Σ ⊢ φ1, then Σ ⊢ φ, where φ1 = Q[x̄](X ⇒ Y) and φ = Q[x̄](XZ ⇒ YZ).
(c) [Transitivity] If Σ ⊢ φ1 and Σ ⊢ φ2, then Σ ⊢ Q[x̄](X ⇒ Z), where φ1 = Q[x̄](X ⇒ Y) and

φ2 = Q[x̄](Y ⇒ Z). 2

Proof: (a) We first prove the following property: When X ∪ Y is inconsistent, by GED5, Σ ⊢

Q[x̄](X ⇒ Y1). When X ∪ Y is consistent, we have

(1) Q[x̄](X ⇒ Y) φ
(2) Q[x̄](X ⇒ (v1 = u1)) (1) and GED3

(3) Q[x̄](X ⇒ (u1 = v1)) (2) and GED3

. . .

(2n+1) Q[x̄](X ⇒ (un = vn)) (2n) and GED3

(2n+2) Q[x̄](X ⇒ (u1 = v1)(u2 = v2)) (3), (5) and GED6

. . .

(3n) Q[x̄](X ⇒ Y1) (3n-1), (2n+1) and GED6

To simplify the presentation, we denote this property as GED7 and apply it in proofs, although

GED7 is not one of the rules in AGED.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

Dependencies for Graphs 1:33

(b) Recall the augmentation rule of Armstrong’s axioms: if X ⇒ Y then XZ ⇒ YZ for any Z .
Analogously, consider φ1 = Q[x̄](X ⇒ Y), where Σ ⊢ φ1, and GED φ = Q[x̄](XZ ⇒ YZ). We show

that Σ ⊢ φ using AGED as follows. First consider the case when EqX ∪ EqZ is consistent:

(1) Q[x̄](XZ ⇒ XZ ∧ Xid) GED1

(2) Q[x̄](XZ ⇒ XZ) (1) and GED7

(3) Q[x̄](X ⇒ Y) φ1

(4) Q[x̄](XZ ⇒ XYZ) (2), (3) and GED6

(5) Q[x̄](XZ ⇒ YZ) (4) and GED7

When EqX ∪ EqZ is inconsistent, the proof consists of steps (1) and (2) above, followed by:

(3) Q[x̄](XZ ⇒ YZ) (2) and GED5

(c) Let Σ ⊢ φ1 and Σ ⊢ φ2, where φ1 = Q[x̄](X ⇒ Y) and φ2 = Q[x̄](Y ⇒ Z). We show that

Σ ⊢ Q[x̄](X ⇒ Z) using AGED. When EqX ∪ EqY is consistent, we have the following:

(1) Q[x̄](X ⇒ X ∧ Xid) GED1

(2) Q[x̄](X ⇒ X) (1) and GED7

(3) Q[x̄](X ⇒ Y) φ1

(4) Q[x̄](X ⇒ XY) (2), (3) and GED6

(5) Q[x̄](Y ⇒ Z) φ2

(6) Q[x̄](X ⇒ XYZ) (4), (5) and GED6

(7) Q[x̄](X ⇒ Z) (6) and GED7

If EqX is inconsistent, the proof has steps (1), (2) and the following:

(3) Q[x̄](X ⇒ Z) (2) and GED5

If EqX ∪ EqY is inconsistent, it has steps (1)–(3) and the following:

(4) Q[x̄](X ⇒ XY) (2), (3) and GED6

(5) Q[x̄](X ⇒ Z) (4) and GED5

These prove the transitivity, and hence the Armstrong’s axioms also hold for GEDs. 2

Axiomatization. We show that GEDs are finitely axiomatizable.

Theorem 6.2. The set AGED of rules in Table 3 is sound, complete and independent for GEDs. 2

Proof:We show that AGED is sound, complete, and independent one by one.

Soundness. We first show that the axiom system AGED is sound, i.e., every GED derived from Σ
usingAGED is also implied by Σ. More specifically, we show that if Σ ⊢ φ, then Σ |= φ. Suppose that
Σ ⊢ φ, where φ = Q[x̄](X ⇒ Y). We show that Σ |= φ. When chase(GQ , EqX , Σ) is inconsistent, we
have that Σ |= φ by Theorem 5.8. In the following, we only consider the casewhen chase(GQ , EqX , Σ)
is consistent. Below we verify the soundness of AGED by induction on the length of the proof

φ0, . . . , φn = φ of φ from Σ using AGED, by using Theorem 5.8.

Base case: GED1. This is one of the base cases (the other base case corresponds to citing a GED
from Σ and is trivial). Since x1, . . . ,xn are all variables in x̄ , and Xid consists of x .id = x .id only, it

is easy to verify that Σ |= Q[x̄](X ⇒ X ∧ (x1.id = x1.id) ∧ . . . ∧ (xn .id = xn .id)).

Suppose that the soundness holds on proofs of length i or less. We next show that it also holds

on proofs of length i + 1. Consider step i + 1 of the proof with one of the following rules.

GED2: Assume that Σ ⊢ Q[x̄](X ⇒ Y1). We show that Σ |= Q[x̄](X ⇒ (u .A = v .A)), where u .id =
v .id is in Y1. By the inductive hypothesis, Σ |= Q[x̄](X ⇒ Y1). Since chase(GQ , EqX , Σ) is consistent
and Y1 can be deduced from chase(GQ , EqX , Σ), u and v must refer to the same node since the id
literal u .id = v .id is in Y1. By Theorem 5.8, we can conclude that Σ |= Q[x̄](X ⇒ (u .A = v .A)).

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:34 Wenfei Fan and Ping Lu

GED3 and GED4: The proofs are similar to the one for GED2. We omit the details here.

GED5: Assume that Σ ⊢ Q[x̄](X ⇒ Y ′) and EqX ∪ EqY ′ is inconsistent. By the inductive hypothesis,

Σ |= Q[x̄](X ⇒ Y ′). To verify that Σ |= Q[x̄](X ⇒ Y1), it suffices to show that chase(GQ , EqX , Σ)
is inconsistent, by Theorem 5.8. We prove this by contradiction. Suppose that chase(GQ , EqX , Σ)
is consistent. By Σ |= Q[x̄](X ⇒ Y ′) and Theorem 5.8, Y ′

can be deduced from chase(GQ , EqX , Σ).
Thus EqX ∪ EqY ′ can be deduced from chase(GQ , EqX , Σ), and chase(GQ , EqX , Σ) is inconsistent.
Thus by condition (1) of Theorem 5.8, Σ |= Q[x̄](X ⇒ Y1).

GED6: Assume that Σ ⊢ Q[x̄](X ⇒ Y ′), EqX ∪ EqY ′ is consistent, and Σ ⊢ Q1[x̄1](X1 ⇒ Y1). By

the inductive hypothesis, we have that Σ |= Q[x̄](X ⇒ Y ′) and Σ |= Q1[x̄1](X1 ⇒ Y1). Since

chase(GQ , EqX , Σ) is consistent, let chase(GQ , EqX , Σ) be (Eq,GEq). By the inductive hypothesis

and Theorem 5.8, Y ′
can be deduced from Eq. We prove the soundness by contradiction. Suppose

that Σ ̸ |= Q[x̄](X ⇒ Y ′ ∧ h(Y1)). Along the same line as the proofs of Lemma 4.3 and Theorem 5.2,

we can construct a graphG and a match h1 ofQ1 inG such thatG |= Σ, h1(x̄1) |= X1, but h1(x̄1) ̸|= Y1.

That is,G |= Σ, butG ̸ |= Q1[x̄1](X1 ⇒ Y1). Then Σ ̸ |= Q1[x̄1](X1 ⇒ Y1), a contradiction. From this it

follows that Σ |= Q[x̄](X ⇒ Y ′ ∧ h(Y1)), i.e., the proof with its last step using GED6 is also sound.

Hence the soundness holds for proofs of arbitrary lengths to derive φ from Σ using AGED.

Completeness. We next show that every GED implied by Σ can also be derived from Σ using

AGED. More specifically, we show that if Σ |= Q[x̄](X ⇒ Y), then Σ ⊢ Q[x̄](X ⇒ Y). It suffices

to show the following. Suppose that (Eq
1
= EqX , Eq2

, . . . , Eqk) is a terminal chasing sequence of

GQ by Σ, denoted by ρ, where for each i ∈ [1,k − 1], Eqi ⇒(φi ,hi) Eqi+1
is a valid chase step, and

φi = Qi [x̄i](Xi ⇒ Yi). Then we claim the following.

Claim 1: For each Eqi (1 ≤ i ≤ k), Σ ⊢ Q[x̄](X ⇒ Eqi).

Claim 2: If there exist a GED φ in Σ and a match h such that Eqk ⇒(φ,h) Eqk+1
and Eqk+1

is
inconsistent in GEqk , then Σ ⊢ Q[x̄](X ⇒ Eqk+1

).

The detailed proofs of these claims can be found in the electronic appendix.

With these claims, we can verify Σ ⊢ Q[x̄](X ⇒ Y) as follows. Given that Σ |= Q[x̄](X ⇒ Y),
by Theorem 5.8, we consider the following two cases: (a) chase(GQ , EqX , Σ) is inconsistent; or (b)
chase(GQ , EqX , Σ) is consistent and Y can be deduced from chase(GQ , EqX , Σ). In case (a), if EqX is

inconsistent, then Σ ⊢ Q[x̄](X ⇒ Y) byGED1 andGED5. When EqX is consistent, by claim (2) above,

there exists an inconsistent Eqk+1
such that Σ ⊢ Q[x̄](X ⇒ Eqk+1

). Since Eqk+1
is inconsistent,

EqX ∪ Eqk+1
is also inconsistent. Then Σ ⊢ Q[x̄](X ⇒ Y) by GED5. In case (b), let (Eq,GEq) be the

result of a valid terminal chasing sequence. Then by Theorem 4.2, Eq = Eqk , and Y can be deduced

from Eq by Theorem 5.8. By claim (1), Σ ⊢ Q[x̄](X ⇒ Eq). Since Y can be deduced from Eq, we can
show that Σ ⊢ Q[x̄](X ⇒ Y) by applying GED1, GED2, GED3, GED4 and GED6. More specifically,

Σ ⊢ Q[x̄](X ⇒ Y) is verified as follows (to save space, below we combine multiple steps into one):

(1) Q[x̄](X ⇒ X ∧ Xid) GED1

(2) Q[x̄](X ⇒ Eq
1
) (1), GED2, GED3, GED4, and GED6

(3) Q1[x̄1](X1 ⇒ Y1) φ1 used in chase step Eq
1
⇒(φ1,h1) Eq2

(4) Q[x̄](X ⇒ Eq
2
) (2), (3), GED6, and GED7

(5) Q[x̄](X ⇒ Eq′
2
) (4), GED2, GED3, GED4, and GED6

. . .

(3k-3) Qk−1
[x̄k−1

](Xk−1
⇒ Yk−1

) φk−1
used in chase step Eqk−1

⇒(φk−1
,hk−1

) Eqk
(3k-2) Q[x̄](X ⇒ Eqk) (3k-3), (3k-4), GED6, and GED7

(3k-1) Q[x̄](X ⇒ Eq′k) (3k-2), GED2, GED3, GED4, and GED6

(3k) Q[x̄](X ⇒ Y) (3k-1), and GED7

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

Dependencies for Graphs 1:35

Here GED7 is the property proved in Lemma 6.1, which we use here to simplify the presentation; φi
is theGED used in the chase step Eqi ⇒(φi ,hi) Eqi+1

(i ∈ [1,k−1]) for computing chase(GQ , EqX , Σ),
and Eq′i (i ∈ [2,k]) denotes the closure of Eqi under the reflexivity, symmetry and transitivity and

the semantics of id literals. In the proof of Claim 1, we will show how to compute Eq
1
from X by

using rules in AGED; similarly for Eq′i . These verify that Σ ⊢ Q[x̄](X ⇒ Y). 2

Independence. We next show that we cannot remove any rule from AGED. More specifically, we

show that for any rule r ∈ AGED, there exist a set Σ of GEDs and a GED φ such that Σ ⊢AGED φ but

Σ ̸⊢AGED\r φ. That is, Σ and φ witness the necessity of rule r .

We verify this statement for each rule of AGED as follows.

GED1. Let Σ = ∅ and φ = Q1[x](∅ ⇒ x .id = x .id), where Q1 consists of a single node x . It is easy
to see that Σ ⊢AGED φ by using GED1. Now consider AGED \ r, where r stands for GED1. Then

Σ ̸⊢AGED\r φ. Indeed, all the rules in AGED \ r require as a precondition that there exists another

GED φ1 such that Σ ⊢ φ1. When Σ = ∅, we cannot derive any GED from Σ without using GED1,

i.e., no rule in AGED \ r can be applied. Thus Σ ̸⊢AGED\r φ. This shows the independence of GED1.

GED2. Let Σ = ∅ and φ = Q2[x ,y](X ⇒ Y), where Q2 consists of two isolated nodes, X is (x .id =
y.id) ∧ (x .A = 2), and Y is y.A = x .A. Then Σ ⊢AGED φ with GED1 and GED2. In contrast, consider

AGED \ r, where r stands for GED2. Since Σ = ∅, and neither y.A = x .A nor x .A = y.A is in X , no
rules in AGED \ r can derive y.A = x .A, i.e., Σ ̸⊢AGED\r φ. Thus GED2 is independent.

GED3. Consider Σ = ∅ and φ = Q3[x ,y](x .A = y.B ⇒ y.B = x .A), whereQ3 consists of two isolated

nodes, which are labeled with τ1 and τ2, respectively. Then Σ ⊢AGED φ by using GED1 and GED3.

Now consider AGED \ r, where r is GED3. Then no rule in AGED \ r allows us syntactically deduce

y.B = x .A. In particular, GED6 does not apply since there exists only one match of Q3 in GQ3
. That

is, Σ ̸⊢AGED\r φ. Hence GED3 is independent.

GED4. Consider Σ = ∅ and φ = Q4[x ,y, z]((x .A = y.B) ∧ (y.B = z.C) ⇒ x .A = z.C), where Q4

consists of three isolated nodes, which are labeled with τ1, τ2 and τ3, respectively. Then Σ ⊢AGED φ
by using GED1 and GED4. In contrast, consider AGED \ r, where r is GED4. One can verify that

Σ ̸⊢AGED\r φ. Indeed, since there exist no id literals in Σ and φ, one cannot derive x .A = z.C by

applying GED1 or GED2. Because the literals in φ are consistent, we cannot apply GED5. Moreover,

since Σ = ∅ and there exists only one match of Q4 in GQ4
, applying GED6 cannot deduce new

literals. In addition, there exist no other GEDs containing literals like x .A = z.C and z.C = x .A in

Σ; hence we cannot derive x .A = z.C using GED3. Therefore, GED4 is independent.

GED5. Let Σ = ∅ and φ = Q5[x]((x .A = 1) ∧ (x .A = 2) ⇒ x .A = 3), where Q5 consists of a single

node. Then Σ |=AGED φ by using GED1 and GED5. Similar to the analysis of GED4, one can see that

no rule in AGED \ r can derive x .A = 3, where r stands for GED5, since there exists no constant 3

in Σ or (x .A = 1) ∧ (x .A = 2). Therefore, Σ ̸⊢AGED\r φ. This justifies the independence of GED5.

GED6. Define Σ = {φ1}, φ1 = Q ′
6
[x ,y](∅ ⇒ x .id = y.id) and φ = Q6[x ,y](X ⇒ Y), where both Q6

and Q ′
6
consist of two isolated nodes of label τ , X is x .A = 1 and Y is y.A = 1. Then Σ ⊢AGED φ with

GED1, GED2, GED4 and GED6. However, no rule inAGED \ r can derive y.A = 1, where r is GED6,

since y.A appears in neither X nor Σ. Thus Σ ̸⊢AGED\r φ. Hence GED6 is independent. 2

This completes the proof of Theorem 6.2. 2

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:36 Wenfei Fan and Ping Lu

7 EXTENSIONS OF GEDS
We next extend GEDs by supporting built-in predicates (Section 7.1) or disjunctions (Section 7.2).

We show that the extensions complicate the static analyses. We defer the proofs of the results of

this section to the electronic appendix due to the space constraint.

7.1 Denial Constraints for Graphs
We extend GEDs with built-in predicates, referred to as graph denial constraints, denoted by GDCs.

GDCs. A GDC ϕ is defined as Q[x̄](X ⇒ Y), where Q is a pattern, and X and Y are sets of literals

of one of the following forms: (a) x .A ⊕ c , (b) x .A ⊕ y.B, for constant c ∈ U , and non-id attributes

A,B ∈ ϒ, and (c) x .id = y.id; here ⊕ is one of built-in predicates =,,, <, >, ≤, ≥.

Along the same lines as GEDs, we define G |= ϕ for a graph G; similarly for other notions.

Obviously GEDs are a special case of GDCs when ⊕ is equality ‘=’ only. One can verify that GDCs
can express denial constraints of [3] when relation tuples are represented as vertices in a graph.

Example 7.1. Denial constraints can be used to enforce domain constraints and catch spam.

(1) We can express “domain constraints” as GDCs, to enforce each node of “type” τ to have an

attribute with a finite domain (e.g., Boolean) as follows:
ϕ1: Qe [x](∅ ⇒ x .A = x .A), ϕ2: Qe [x](x .A , 0 ∧ x .A , 1 ⇒ false).

Here Qe consists of a single node labeled τ , ϕ1 is a GED that enforces each τ -node x to have an

A-attribute, and ϕ2 ensures that x .A can only takes values 0 or 1.

(2) GDC φ7=Q7[x ,x
′, z1, z2,y1, . . . ,yk](X8 ⇒ Y8) specifies the spam-detection rule of Example 1.1.

Here Q7 is the pattern given in Fig. 1, X8 consists of x
′.is_fake=1, z1.keyword=c , z2.keyword=c ,

yi .content,yj .content for any i,j (i, j ∈ [1,k]), where c is a constant; and Y8 consists of a single lit-

eral x .is_fake=1. The GDC says that for accounts and blogs matchingQ7, if account x
′
is confirmed

fake and if both blogs z1 and z2 contain a peculiar keyword c , then x is also a fake account.

Note that this rule cannot be expressed by GEDs under the homomorphism semantics, since we

can no longer enforce k blogs to be distinct as opposed to isomorphism semantics in [30]. 2

Complexity. The increased expressive power of GDCs comes with a price. Recall that the sat-

isfiability, implication and validation problems for GEDs are coNP-complete, NP-complete and

coNP-complete, respectively. In contrast, the static analyses of GDCs have a higher complexity

unless P = NP, although their validation problem gets no harder.

Theorem 7.2. The satisfiability, implication and validation problems for GDCs are Σp
2
-complete,

Π
p
2
-complete and coNP-complete, respectively. 2

The lower bounds of these problems remain intact when Σ consists of a fixed number of GDCs
with variable and constant literals only, without id literals. The proof of Theorem 7.2 is more

involved than their counterpart for GEDs (Theorems 5.4, 5.12 and 5.16).

Proof: (1) To prove the upper bound of the satisfiability problem, we establish a small model

property, as opposed to the proof of Theorem 5.4 that is based on the chase. We show that if a set Σ
of GDCs has a model, then it has a model of size at most 4 · |Σ|3. The proof requires attribute value
normalization and is more involved than its counterpart for Theorem 5.4. Based on the property,

we give an Σ
p
2
algorithm to check whether a given set of GDCs is satisfiable.

We show the lower bound by reduction from a generalized graph coloring problem (GGCP) [49,
52]. GGCP is to decide, given two undirected graphs F = (VF ,EF) andG = (VG ,EG), whether there

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

Dependencies for Graphs 1:37

exists a two-coloring of F such that G is not a monochromatic subgraph of F . A monochromatic

subgraph of F is a subgraph in which nodes are assigned the same color. The problem is Σ
p
2
-complete

when G is a complete graph and F contains no self cycles [49].

The reduction is a little complicated.We use a set Σ of fourGDCs to encode 2-coloring, monochro-

matic G and graph F . These GDCs use constant and variable literals with , and ≤, but employ no

id literals. One of them is a forbidding constraint of the form Q[x̄](X ⇒ false).

(2) For implication, we also show a small model property: if Σ ̸ |= φ, then there exists a graph Gh
such that |Gh | ≤ 2 · |φ | · (|φ | + |Σ| + 1)2, Gh |= Σ and Gh ̸ |= φ. Based on the small model property,

we give an Σ
p
2
algorithm to check whether Σ ̸ |= φ. The lower bound is verified by reduction from

the complement of GGCP, using a set Σ of three GDCs of the form above.

(3) For validation, the lower bound follows from Theorem 5.16 since GEDs are a special case of
GDCs. For the upper bound, we use the algorithm for checking G ̸ |= Σ developed for GEDs in the

proof of Theorem 5.16. We show that the algorithm also works for GDCs and remains in NP. 2

7.2 Adding Disjunction
We next extend GEDs by adding limited disjunctions.

GED∨s. A GEDψ with disjunction, denoted by GED∨
, has the same syntactic formQ[x̄](X ⇒ Y) as

GEDs, but Y is interpreted as the disjunction of its literals. That is, for a match h(x̄) ofQ in a graph

G, h(x̄) |= Y if there exists a literal l ∈ Y such that h(x̄) |= l . Hence we also writeψ as

Q[x̄]
(∧

l ∈X l ⇒
∨

l ′∈Y l
′
)
.

The other notions (e.g., satisfiability and implication) remain the same as their GED counterparts.

GED∨s subsume GEDs. Each GED Q[x̄](X ⇒ Y) can be expressed as a set of Q[x̄](X ⇒ l) of
GED∨s, one for each l ∈ Y . In contrast, some GED∨s are not expressible as GEDs.

Example 7.3. Recall GDCs from Example 7.1 that enforce x .A to be Boolean. It is expressible as:

ψ : Qe [x](∅ ⇒ x .A = 0 ∨ x .A = 1).

This GED∨
specifies a domain constraint, to ensure that each τ -node x has an A-attribute and

moreover, that x .A can only take Boolean values. 2

Complexity. Disjunctions also complicate the static analyses but do not make the validation

analysis harder. The lower bounds remain intact when Σ consists of a fixed number of GED∨s with
constant and variable literals only, in the absence of id literals.

Theorem 7.4. The satisfiability, implication and validation problems for GED∨s are Σp
2
-complete,

Π
p
2
-complete and coNP-complete, respectively. 2

Proof: The proof is similar to the one for Theorem 7.2. For satisfiability (resp. implication), the

upper bound is also verified by means of a small model property, and the lower bound by reduction

from (resp. the complement of) GGCP, by using a set Σ consisting of three GED∨s. 2

8 CONCLUSION
We have proposed GEDs, which can uniformly express GFDs and keys for graphs. For GEDs, we
have revised the chase with the Church-Rosser property, provided characterizations for their static

analyses, settled the complexity of their satisfiability, implication and validation problems in various

settings (Table 1), and shown the finite axiomatizability of their finite implication. We have also

studied extensions of GEDs with built-in predicates or disjunction.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:38 Wenfei Fan and Ping Lu

There is naturally much more to be done. One topic for future work is to identify practical special

cases in which the satisfiability, implication and validation problems are tractable. Another topic

is to develop parallel scalable algorithms for reasoning about GEDs, to warrant speedup with the

increase of processors. A third topic is to develop effective methods to repair graph-structured

data after semantic inconsistencies are detected by, e.g., GEDs. It is also interesting to study other

practical forms of graph dependencies, e.g., an extension of TGDs to graphs.

ACKNOWLEDGMENTS
Fan and Lu are supported in part by 973 Program 2014CB340302, ERC 652976, NSFC 61421003,

EPSRC EP/M025268/1, Foundation for Innovative Research Groups of NSFC, Joint Lab between

Edinburgh and Huawei, and Beijing Advanced Innovation Center for Big Data and Brain Computing.

REFERENCES
[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases. Addison-Wesley.

[2] Waseem Akhtar, Alvaro Cortés-Calabuig, and Jan Paredaens. 2010. Constraints in RDF. In SDKB. 23–39.
[3] Marcelo Arenas, Leopoldo Bertossi, and Jan Chomicki. 1999. Consistent Query Answers in Inconsistent Databases. In

PODS.
[4] Marcelo Arenas, Jonny Daenen, Frank Neven, Martin Ugarte, Jan Van Den Bussche, and Stijn Vansummeren. 2014.

Discovering XSD keys from XML data. ACM Transactions on Database Systems (TODS) 39, 4 (2014), 28.
[5] Marcelo Arenas and Leonid Libkin. 2002. A Normal Form for XML Documents. In PODS. 85–96.
[6] William Ward Armstrong. 1974. Dependency Structures of Data Base Relationships. In IFIP Congress. 580–583.
[7] Marianne Baudinet, Jan Chomicki, and Pierre Wolper. 1999. Constraint-Generating Dependencies. JCSS 59, 1 (1999),

94–115.

[8] Catriel Beeri and Moshe Y. Vardi. 1981. The Implication Problem for Data Dependencies. In Automata, Languages and
Programming. 73–85.

[9] Catriel Beeri and Moshe Y. Vardi. 1981. On the Complexity of Testing Implications of Data Dependencies. Technical
Report. The Hebrew University of Jeruslem.

[10] Angela Bonifati, Ioana Ileana, and Michele Linardi. 2016. Functional Dependencies Unleashed for Scalable Data

Exchange. In SSDBM. 2:1–2:12.

[11] Angela Bonifati, Wim Martens, and Thomas Timm. 2017. An Analytical Study of Large SPARQL Query Logs. PVLDB
11, 2 (2017), 149–161.

[12] Peter Buneman, Susan B. Davidson, Wenfei Fan, Carmem S. Hara, and Wang Chiew Tan. 2001. Keys for XML. In

WWW. 201–210.

[13] Peter Buneman, Susan B. Davidson, Wenfei Fan, Carmem S. Hara, and Wang Chiew Tan. 2003. Reasoning about Keys

for XML. Inf. Syst. 28, 8 (2003), 1037–1063.
[14] Marco Calautti, Sergio Greco, Cristian Molinaro, and Irina Trubitsyna. 2016. Exploiting Equality Generating Depen-

dencies in Checking Chase Termination. PVLDB 9, 5 (2016), 396–407.

[15] Andrea Calì and Andreas Pieris. 2011. On Equality-Generating Dependencies in Ontology Querying - Preliminary

Report. In AMW.

[16] Diego Calvanese, Wolfgang Fischl, Reinhard Pichler, Emanuel Sallinger, and Mantas Simkus. 2014. Capturing Relational

Schemas and Functional Dependencies in RDFS. In AAAI.
[17] Qiang Cao, Michael Sirivianos, Xiaowei Yang, and Tiago Pregueiro. 2012. Aiding the Detection of Fake Accounts in

Large Scale Social Online Services. In NSDI. 197–210.
[18] E. F. Codd. 1972. Relational Completeness of Data Base Sublanguages. In: R. Rustin (ed.): Database Systems: 65-98,

Prentice Hall and IBM Research Report RJ 987, San Jose, California (1972).
[19] Alvaro Cortés-Calabuig and Jan Paredaens. 2012. Semantics of Constraints in RDFS. In AMW. 75–90.

[20] Alin Deutsch, Alan Nash, and Jeffrey B. Remmel. 2008. The Chase Revisited. In PODS. 149–158.
[21] Ronald Fagin, Phokion G Kolaitis, Renée J Miller, and Lucian Popa. 2005. Data Exchange: Semantics and Query

Answering. Theoretical Computer Science (2005), 89–124.
[22] Ronald Fagin and Moshe Y. Vardi. 1984. The Theory of Data Dependencies - An Overview. In ICALP. 1–22.
[23] Wenfei Fan, Zhe Fan, Chao Tian, and Xin Luna Dong. 2015. Keys for graphs. PVLDB 8, 12 (2015), 1590–1601.

[24] Wenfei Fan and Floris Geerts. 2012. Foundations of Databases. Morgan & Claypool Publishers.

[25] Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. 2008. Conditional Functional Dependencies for

Capturing Data Inconsistencies. TODS 33, 1 (2008).

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

Dependencies for Graphs 1:39

[26] Wenfei Fan, Chunming Hu, Xueli Liu, and Ping Lu. 2018. Discovering Graph Functional Dependencies. In SIGMOD.
427–439.

[27] Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, and Wenyuan Yu. 2011. Interaction between Record Matching and

Data Repairing. In SIGMOD. 469–480.
[28] Wenfei Fan and Leonid Libkin. 2002. On XML Integrity Constraints in the Presence of DTDs. J. ACM 49, 3 (2002),

368–406.

[29] Wenfei Fan and Ping Lu. 2017. Dependencies for Graphs. In PODS. 403–416.
[30] Wenfei Fan, Yinghui Wu, and Jingbo Xu. 2016. Functional Dependencies for Graphs. In SIGMOD.
[31] Mario Arias Gallego, Javier D Fernández, Miguel A Martínez-Prieto, and Pablo de la Fuente. 2011. An Empirical Study

of Real-World SPARQL Queries. In USEWOD workshop.
[32] Michael Garey and David Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H.

Freeman and Company.

[33] Michael R Garey, David S. Johnson, and Larry Stockmeyer. 1976. Some Simplified NP-Complete Graph Problems.

Theoretical computer science 1, 3 (1976), 237–267.
[34] Floris Geerts, Giansalvatore Mecca, Paolo Papotti, and Donatello Santoro. 2013. The LLUNATIC Data-Cleaning

Framework. PVLDB 6, 9 (2013), 625–636.

[35] Marc H Graham, Alberto O Mendelzon, and Moshe Y Vardi. 1986. Notions of Dependency Satisfaction. Journal of the
ACM (JACM) 33, 1 (1986), 105–129.

[36] Ivana Grujic, Sanja Bogdanovic-Dinic, and Leonid Stoimenov. 2014. Collecting and Analyzing Data from E-Government

Facebook Pages. In ICT Innovations.
[37] Wolfgang Gutjahr, Emo Welzl, and Gerhard Woeginger. 1992. Polynomial Graph-Colorings. Discrete Applied Mathe-

matics 35, 1 (1992), 29–45.
[38] Binbin He, Lei Zou, and Dongyan Zhao. 2014. Using Conditional Functional Dependency to Discover Abnormal Data

in RDF Graphs. In SWIM. 1–7.

[39] Jelle Hellings, Marc Gyssens, Jan Paredaens, and Yuqing Wu. 2014. Implication and Axiomatization of Functional

Constraints on Patterns with an Application to the RDF Data Model. In FoIKS.
[40] Jelle Hellings, Marc Gyssens, Jan Paredaens, and Yuqing Wu. 2016. Implication and Axiomatization of Functional and

Constant Constraints. Ann. Math. Artif. Intell. 76, 3-4 (2016), 251–279.
[41] Holger Knublauch and Dimitris Kontokostas. 2017. Shapes Constraint Language (SHACL). W3C Working Draft. (Feb.

2017). https://www.w3.org/TR/shacl/#dfn-shacl-instance.
[42] Georg Lausen, Michael Meier, and Michael Schmidt. 2008. SPARQLing Constraints for RDF. In EDBT. 499–509.
[43] Bruno Marnette. 2009. Generalized Schema-Mappings: From Termination to Tractability. In PODS. 13–22.
[44] Bruno Marnette and Floris Geerts. 2010. Static Analysis of Schema-Mappings Ensuring Oblivious Termination. In

ICDT. 183–195.
[45] Bruno Marnette, Giansalvatore Mecca, and Paolo Papotti. 2010. Scalable Data Exchange with Functional Dependencies.

PVLDB 3, 1 (2010), 105–116.

[46] Neo4j Team. 2017. The Neo4j Developer Manual v3.1 (Chapter 3.5.2: Constraints). (2017).

http://neo4j.com/docs/developer-manual/current/.
[47] François Picalausa and Stijn Vansummeren. 2011. What Are Real SPARQL Queries Like?. In Proceedings of the

International Workshop on Semantic Web Information Management, SWIM 2011, Athens, Greece, June 12, 2011. 7.
[48] Reinhard Pichler and Sebastian Skritek. 2011. The Complexity of Evaluating Tuple Generating Dependencies. In ICDT.

244–255.

[49] Vladislav Rutenburg. 1986. Complexity of Generalized Graph Coloring. In MFCS. 573–581.
[50] Fereidoon Sadri. 1980. Data Dependencies in the Relational Model of Databases, a Generalization. Ph.D. Dissertation.

Princeton Unversity.

[51] Fereidoon Sadri and Jeffrey D. Ullman. 1980. The Interaction between Functional Dependencies and Template

Dependencies. In SIGMOD. 45–51.
[52] Marcus Schaefer and Christopher Umans. 2002. Completeness in the Polynomial-Time Hierarchy: A Compendium.

SIGACT news 33, 3 (2002), 32–49.
[53] Schema.org. 2018. MusicAlbum. (2018). Canonical URL: http://schema.org/MusicAlbum.

[54] Michael Schmidt, Michael Meier, and Georg Lausen. 2010. Foundations of SPARQL Query Optimization. In ICDT.
4–33.

[55] Henry S. Thompson, David Beech,MurrayMaloney, andNoahMendelsohn. 2004. XML Schema Part 1: Structures Second

Edition. W3C Recommendation. (Oct. 2004). http://www.w3.org/TR/xmlschema-1/#cIdentity-constraint_Definitions.

[56] Yang Yu and Jeff Heflin. 2011. Extending Functional Dependency to Detect Abnormal Data in RDF Graphs. In ISWC.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

http://www.w3.org/TR/xmlschema-1/#cIdentity-constraint_Definitions

1:40 Wenfei Fan and Ping Lu

APPENDIX: PROOFS
More details of the proof of Lemma 5.6
It remains to prove the correctness of the construction. That is to show that Σ is not satisfiable if

and only ifψ is satisfiable.

(⇒) First assume that Σ is not satisfiable. Then by Theorem 5.2, chase(GΣ, Σ) is inconsistent.
Consider a terminal chasing sequence (Eq

0
, . . . , Eqk) ofGΣ by Σ. Since chase(GΣ, Σ) is inconsistent,

there exist a GFD φ = Q(x̄)(X ⇒ Y) in Σ and a match h ofQ inGΣ such that Eqk ⇒(φ,h) Eqk+1
and

Eqk+1
is inconsistent in GEqk . Moreover, GFDs do not contain id literals; hence there exists a node

x in GΣ such that both x .A = 1 and x .A = 2 are deduced from Eqk+1
(see Section 4).

By the properties of GΣ mentioned above, Eqk+1
is inconsistent only if there exist a match h of

Q2 in GQ1
such that h(x̄2) |= Y1 ∧ . . . ∧ Yn , where x̄2 are variables in Q2, and a match of Q1 in GQ1

;

indeed, a match of Q2 in GQ2
does not lead to conflict, and Q1 does not have a match in GQ2

. Based

on h, we construct a truth assignment ν ofψ as follows: for each node x ∈ {x2

1
, . . . ,x2

m} in Q2, ν (x)
is 1 or 0 if h(x) is x1

1
or x1

2
inQ1, respectively. By the definition ofGQ1

and h(x̄) |= Y1 ∧ . . .∧Yn , it is
easy to verify that ν is a truth assignment ofψ . Therefore, ν is a truth assignment that satisfiesψ .

(⇐) Conversely, assume that there exists a truth assignment ν that satisfiesψ . We show that there

exists a chasing sequence ρ: (Eq
0
, Eq

1
) of GΣ by Σ, and a chase step Eq

1
⇒(φ2,h) Eq2

such that Eq
2

is inconsistent in GEq
1

. Then by Theorems 4.2 and 5.2, Σ is not satisfiable. We give ρ as follows.

(a) The first step of ρ applies φ1 to GQ1
. It enforces all nodes in GQ1

to have the required attribute

values, e.g., r 1.A = 1. Since all edges in GQ1
have distinct labels, only one such application exists.

(b) The second step is Eq
1
⇒(φ2,h) Eq2

, which applies φ2 to GQ1
, and leads to inconsistency. Here

the match h is defined as follows: (1) h(r 2) = r 1
, i.e., the root of Q2 is mapped to the root of GQ1

;

(2) for each node x2

i ∈ {x2

1
, . . . ,x2

m} (for i ∈ [1,m]), h(x2

i) is x
1

1
or x1

2
in GQ1

when ν (xi) is 1 or

0, respectively; and (3) for the other node y2

i (for i ∈ [1,n]), suppose that Ci is l1 ∨ l2 ∨ l3, h(y
2

i)

is mapped to the node y1
in Q1 such that y1.A = ν (l1), y

1.B = ν (l2), and y
1.C = ν (l3). Here ν (l)

is defined as follows: if l = xi , then ν (l) = ν (xi); otherwise, ν (l) = ¬ν (xi). Since all the nodes

in GQ1
labeled l have distinct values of attributes A, B, and C , h is well defined and is unique.

Moreover, Eq
2
extends Eq

1
by adding 2 ∈ [r 1.A]Eq

2

. We can verify that h is a match of Q2 in GΣ,

and Eq
1
⇒(φ2,h) Eq2

is a chase step. However, from Eq
1
and Eq

2
we deduce that both r 1.A = 1 and

r 1.A = 2, a conflict. Therefore, Eq
2
is inconsistent. That is, chase(GΣ, Σ) is inconsistent. 2

More details of the proof of Lemma 5.7
It remains to prove that Σ is not satisfiable if and only if G has a proper 3-coloring.

(⇒) First assume that Σ is not satisfiable. Then by Theorem 5.2, chase(GΣ, Σ) is inconsistent. Mean-

while, from the construction, there exists a chasing sequence (Eq
0
, . . . , Eqk) such thatGQ1

1

andGQ1

2

are subgraphs ofGEqk . By Theorem 4.2, there exists a terminal chasing sequence (Eq
0
, . . . , Eqk , Eqk+1

,
. . . , Eql) of GΣ by Σ. Moreover, one can see that GQ1

1

and GQ1

2

are also subgraphs of GEql . Indeed,

since Eql gis consistent, and the labels of nodes in GQ1

1

or GQ1

2

are distinct, we know that no node

in GQ1

1

or GQ1

2

can be further merged. Since GQ1

1

and GQ1

2

are subgraphs of GEqk , and Eqk ⊆ Eql ,
we have that GQ1

1

and GQ1

2

are also subgraphs of GEql .

Since chase(GΣ, Σ) is inconsistent, there exist φ = Q[x̄](X ⇒ Y) in Σ and a match h of Q in

(GΣ)Eql such that Eql ⇒(φ,h) Eql+1
and Eql+1

is inconsistent in GEql . By the definition of Σ, the
conflict can only be introduced by two nodes x and y of GΣ such that y ∈ [x]Eql+1

but the labels

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

Dependencies for Graphs 1:41

of x and y are distinct. A closer examination reveals that Eql+1
can be inconsistent only if there

exists either a match h of the two patterns Q ′
and Q ′′

of Q in GQ1
and GQ2

, respectively, such that

h(x̄) |= X , or a match of the two patterns Q ′
and Q ′′

in Q in GQ2
and GQ1

, respectively, such that

h(x̄) |= X . By restricting h to nodes in Q1

3
and Q2

3
, we can obtain a match of Q1

3
and Q2

3
in GQ1

and

GQ2
, respectively, or a match of Q1

3
and Q2

3
in GQ2

and GQ1
, respectively. Indeed, any other match

does not lead to conflict. Moreover, Q1

3
is connected since G is connected, and hence it can only be

mapped to either GQ1

1

or GQ1

2

, not to both of them; similarly for Q2

3
. Here we consider w.l.o.g. the

case when there exists a match h of Q1

3
and Q2

3
in GQ1

1

and GQ1

2

, respectively.

We can deduce a 3-coloring ν of G as follows: for each node x ∈ V , if h(x) = x1

1
, then ν (x) = r ;

if h(x) = x1

2
, then ν (x) = д; and if h(x) = x1

3
, then ν (x) = b. Here V is the set of nodes in Q1

3
,

which correspond to nodes inG . Note that no node in V can be mapped to x1

0
by h, since x1

0
has no

outgoing edge. By the definitions of GQ1

1

, Q1

3
and h, one can verify that ν is a 3-coloring of G.

(⇐) Conversely, assume that ν is a 3-coloring of G. It suffices to show that there exists a chasing

sequence ρ = (Eq
0
, . . . , Eqk) of GΣ by Σ, and a chase step Eqk ⇒(φ,h) Eqk+1

such that Eqk+1
is

inconsistent in GEqk . For if it holds, then by Theorems 4.2 and 5.2, Σ is not satisfiable.

More specifically, consider ρ as the sequence (Eq
0
, . . . , Eqk) such thatGQ1

1

andGQ1

2

are subgraphs

ofGEqk . The existence of such a sequence is ensured by the definition of the first and second groups

of GKeys, and can be verified along the same lines as above. The last step is defined as follows:

Eqk ⇒(φ3,h) Eqk+1
, which applies φ3 to GQ1

and GQ2
, and deduces the inconsistency. The match

h is defined as follows: h(x0) = h((x0)
(u, ι,v)
u,v) = h((x0)

(u, ι,v)
v,u) = x1

0
and h(x ′

0
) = h((x ′

0
)
(u, ι,v)
u,v) =

h((x ′
0
)
(u, ι,v)
v,u) = x2

0
for all edge (u, ι,v) in G; for each other node x in Q1

3
in Q ′

, if ν (x) = r , then

h(x) = h((x)
(x, ι,y)
y) = x1

1
; if ν (x) = д, then h(x) = h((x)

(x, ι,y)
y) = x1

2
; if ν (x) = b, then h(x) =

h((x)
(x, ι,y)
y) = x1

3
; similarly for each other node in Q ′′

. One can verify that h is a match of Q in GQ1

1

and GQ1

2

such that h(x̄2) |= X . As mentioned above, from h we can obtain a match of Q1

3
and its

copy in GQ1

1

and GQ1

2

, respectively. As a result, Eqk+1
deduces x1

0
.id = x2

0
.id. However, the label of

x1

0
is ‘0’, while the label of x2

0
is ‘1’, i.e., label conflict. We can conclude that Eqk+1

is inconsistent. 2

More details of the proof of Theorem 5.8
It remains to show the following two lemmas.

Lemma 5.10. For graph G and match h(x̄) of Q in G, if G |= Σ and h(x̄) |= X , then h(x̄) |= Eqk .

Lemma 5.11. When chase(GQ , EqX , Σ) is consistent, Y can be deduced from chase(GQ , EqX , Σ) if
and only if for any graph G and any match h of Q in G, if h(x̄) |= Eqk , then h(x̄) |= Y .

We next prove Lemmas 5.10 and 5.11.

Proof of Lemma 5.10. Suppose that G |= Σ and h(x̄) |= X . Then EqX is consistent. We show that

for all i (i ∈ [0,k]), h(x̄) |= Eqi by induction on i . The proof is similar to the one for Theorem 5.2

about the property of terminal chasing sequences. From this it follows that h(x̄) |= Eqk . 2

Proof of Lemma 5.11. We verify the sufficient and necessary condition as follows.

(⇒) Suppose that Y can be deduced from chase(GQ , EqX , Σ). For any graph G and any match

h of Q in G such that h(x̄) |= Eqk , we show that h(x̄) |= Y . More specifically, for any literal

l ∈ Y , we show that h(x̄) |= l as follows. When l is x .A = c , since l can be deduced from Eqk ,
we have that c ∈ [x .A]Eqk , i.e., x .A = c can be deduced from the transitivity of equality literals,

and the semantics of id literals in Eqk . Denote x0.A0 as x .A. Then there exist equality literals

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:42 Wenfei Fan and Ping Lu

x0.A0 = x1.A1,x1.A1 = x2.A2, . . . ,xn .An = c such that for each xi .Ai = xi+1.Ai+1 (i ∈ [0,n − 1]),

either xi .Ai = xi+1.Ai+1 exists in Eqk , or xi .id = xi+1.id is in Eqk and Ai = Ai+1. Moreover,

xn .An = c is also in Eqk . From h(x̄) |= Eqk and the semantics of id literals, we know that h(x̄) |=
(x0.A0 = x1.A1),h(x̄) |= (x1.A1 = x2.A2), . . . , andh(x̄) |= (xn .An = c). By the transitivity of equality
literals, we know that h(x̄) |= (x0.A0 = c), i.e., h(x̄) |= (x .A = c). Hence h(x̄) |= l . The proofs are
similar when l is x .A = y.B or x .id = y.id. Then we can conclude that h(x̄) |= Y .

(⇐) Conversely, suppose that for any graph G and any match h of Q in G, if h(x̄) |= Eqk , then
h(x̄) |= Y . We prove that Y can be deduced from chase(GQ , EqX , Σ) by contradiction. Assume

that there exists a literal l in Y such that l cannot be deduced from chase(GQ , EqX , Σ). Then we

construct a graphG and a match h of Q inG such that h(x̄) |= Eqk , but h(x̄) ̸|= l , which contradicts

the assumption that for any graph G and any match h of Q in G, if h(x̄) |= Eqk , then h(x̄) |= Y .

Graph G = (V ,E,L, FA) is constructed in the same way as its counterpart given in the proof of

Theorem 5.2, except here that we use the equivalence relation Eqk (see the proof of Theorem 5.2

for details). Intuitively, the set of nodes in G contains vEqk for every node v in Q (denoting [v]Eqk ;
see Section 4); and the attributes are enforced by Eqk . Since chase(GQ , EqX , Σ) is consistent, G is

well defined. We define the mapping h from Q to G such that for each node x ∈ VQ , h(x) = xEqk
(i.e., [x]Eqk). By the definition of G, it is easy to verify that h is a match of Q in G.

We show that (a) h(x̄) |= Eqk , but (b) h(x̄) ̸|= l . To prove (a), for any literal l1 in Eqk , we show
that h(x̄) |= l1. When l1 is x .A = c , by the construction ofG , there exists an attribute A of node xEqk
such that xEqk .A = c in G . Since h(x) = xEqk , we have that h(x̄) |= (x .A = c). The proofs are similar

for the cases when l1 is x .A = y.B or x .id = y.id. Hence, h(x̄) |= Eqk .
To prove (b), consider first the case when l is x .A = c , and l cannot be deduced from Eqk by the

transitivity of equality literals and the semantics of id literals in Eqk . By the construction of G,
we have that either node xEqk does not have attribute A or xEqk .A , c in G. Hence h(x̄) ̸|= Y . The
proofs are similar for the cases when l is x .A = y.B or x .id = y.id. 2

Proof of Lemma 5.14
We show the implication problem is NP-hard by reduction from the 3SAT problem (see the proof of

Lemma 5.6 for 3SAT). Given a 3SAT formulaψ , we construct a set Σ of GFDxs and a GFDx φ such

that all patterns in Σ are trees. We show that Σ |= φ if and only ifψ is satisfiable.

The construction is almost the same as the one given in Lemma 5.6, except that we need to

remove all constants from the GFDs. To this end, we introduce two additional nodes to represent

the constants 0 and 1. The set Σ consists of only one GFDx φ1, which is used to encode the structure

ofψ . More specifically, φ1 = Q1[x̄1]((Y1 ∧ . . . ∧ Yn) ⇒ (r 1.A = r 1.B)), where

(a) Q1 = (V1, E1, L1) as depicted in Fig. 11, where V1 = {r 1,x1

1
, . . . ,x1

m ,y
1

1
,y1

2
, . . . ,y1

n}, and E1 =

{(r 1,‘_’,x1

1
), . . . , (r 1,‘_’,x1

m), (r
1,‘_’,y1

1
), . . . , (r 1,‘_’,y1

n)}; these form a tree with root r 1
; we let

L1(r
1) =‘_’, L1(x

1

1
) = . . . = L1(x

1

m) = v , L1(y
1

1
) = L1(y

1

2
) = . . . = L1(y

1

n) = l ; and

(b) the literals in Y1, . . . ,Yn are to check whether a given truth assignment µx satisfiesψ . The
construction is the same as the one given in the proof of Lemma 5.6. For example, let

Ci = x1 ∨ ¬x2 ∨ x3. Then the literals for the node y1

i are defined as follows: Yi = (y1

i .A =
x1.A) ∧ (y1

i .B = x2.B) ∧ (y1

i .C = x3.A). The other conjuncts can be constructed similarly.

We next define the GFDx φ, which is used to encode the Boolean domain of each variable and all

satisfying assignments of Ci (i ∈ [1,n]). The construction is almost the same as the one given in

the proof of Lemma 5.6, except that we replace the two constants 1 and 0 by two attributes c1.A
and c0.A, respectively. More specifically, φ = Q[x̄](Y1 ∧ Y2 ∧ Y 1

1
∧ . . . ∧ Y 7

1
⇒ (r .A = r .B)), where

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

Dependencies for Graphs 1:43

Fig. 11. The tree patterns in the proof of Lemma 5.14

(1) pattern Q = (V , E, L) as shown in Fig. 11, where V = {r , c0, c1,x1,x2,y1,y2, . . . ,y7} and

E = {(r , 0, c0), (r , 1, c1), (r , 1,x1), (r , 0,x2), (r , l1,y1), . . . , (r , l7,y7)}; these make a tree with r as
the root; moreover, L(r) = ψ , L(c0) = 0, L(c1) = 1, L(x1) = L(x2) = v , L(y1) = L(y2) = . . . =
L(y7) = l ; and

(2) the literals in Y1 ∧ Y2 ∧ Y 1

1
∧ . . . ∧ Y 7

1
are almost the same as their counterparts in the proof

of Lemma 5.6, except that we do not use constant literals. To cope with Boolean values, we

use two attributes c0.A and c1.A to represent 0 and 1, respectively.

More specifically, the literals in Y1 ∧Y2 ∧Y 1

1
∧ . . . ∧Y 7

1
are partitioned into two parts: (a) the

first part consists of four literals, which are used to enforce the domain of variables. That

is, Y1 = ((x1.A = c1.A) ∧ (x1.B = c0.A)) and Y2 = ((x2.A = c0.A) ∧ (x2.B = c1.A)). These
literals ensure that when a node corresponding to a variable matches x1, the variable is set 1;

otherwise, if it matches x2, then the variable is set 0. Meanwhile, we also use x1.B or x2.B to

represent the negation of the variable. (b) The second part consists of 7 groups of literals,

each of which encodes a satisfying truth assignment of Ci (i ∈ [1,n]). More specifically,

Y 1

1
= ((y1.A = c1.A) ∧ (y1.B = c1.A) ∧ (y1.C = c1.A)), . . . , Y

7

1
= ((y7.A = c0.A) ∧ (y7.B =

c0.A) ∧ (y7.C = c1.A)). Intuitively, for a conjunct Ci = l1 ∨ l2 ∨ l3, we use the attributes A, B
and C to represent l1, l2 and l3, respectively.

One can verify that a chase step can only be taken when there exists a match of Q1 in GQ , along

the same lines as the proof of Lemma 5.6.

We next show that Σ |= φ if and only if the 3SAT formulaψ is satisfiable.

(⇒) First assume that Σ |= φ. Since both φ and GEDs of Σ are GFDxs, it can be readily verified

that chase(GQ , EqX , Σ) is always consistent, along the same lines as the proof for the satisfiability

of GFDxs (see the proof of Theorem 5.4). Then by Theorem 5.8, we can deduce r .A = r .B from

chase(GQ , EqX , Σ). Therefore, there exists a match h of Q1 in GQ such that h(x̄1) |= Y1 ∧ . . . ∧ Yn .
Based on h, we can construct a satisfying truth assignment ν of ψ as follows: for each node

x ∈ {x1

1
, . . . ,x1

m} in Q , ν (x) is 1 if h(x) is x1 in Q1, and ν (x) is 0 if h(x) is x2. Similar to the proof for

Lemma 5.6, we can verify that ν is indeed a truth assignment that satisfiesψ .

(⇐)Conversely, assume thatν is a truth assignment that satisfiesψ . We show that there exists a valid

chase step Eq
0
⇒(φ1,h) Eq1

such that r .A = r .B in GEq
1

. As mentioned above, chase(GQ , EqX , Σ) is
always consistent. Hence by Theorem 5.8, Σ |= φ.

It remains to define the chase step Eq
0
⇒(φ1,h) Eq1

. Since Σ consists of only one GFDx, we only

need to define the match h, which is almost the same as as its counterpart given in the proof of

Lemma 5.6. More specifically, we define h as follows: (1) h(r 1) = r , i.e., the root of Q1 is mapped

to the root of GQ ; (2) for each node x ∈ {x1

1
, . . . ,x1

m}, h(x) is x1 or x2 in GQ when ν (x) is 1 or 0,

respectively; and (3) for each other node y1

i (i ∈ [1,n]), suppose thatCi is l1 ∨l2 ∨l3, h(y
1

i) is mapped

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:44 Wenfei Fan and Ping Lu

to the node y such that y.A = cν (l1).A, y.B = cν (l2).A, and y.C = cν (l3).A. Here ν (l) is defined as

follows: if l = xi , then ν (l) = ν (xi); otherwise if l = ¬xi , then ν (l) = ¬ν (xi). Since all the nodes in
GQ have distinct values of attributes A, B, and C with respect to c1.A and c0.A, h is well defined

and is unique. Moreover, Eq
1
extends Eq

0
by adding r .B ∈ [r .A]Eq

1

. Based on these, we can verify

that h is a match of Q1 in GQ , and Eq
0
⇒(φ2,h) Eq1

is a valid chase step.

Therefore, r .A = r .B can be deduced from chase(GQ , EqX , Σ). By Theorem 5.8, Σ |= φ. 2

Proof of Lemma 5.15
This is also verified by reduction from the 3-colorability problem (see the proof of Lemma 5.7 for

the problem statement). Given a connected undirected graph G = (V ,E), we construct a set Σ of

GKeys and another GKey φ. We define Σ = {φ3} ∪ {φ0,0
1
,φ0,1

1
,φ1

0
,φ2

0
,φ3

0
} and φ = φ1, where φ1, φ3,

φ0,0
1
,φ0,1

1
,φ1

0
,φ2

0
, and φ3

0
are GKeys given in the proof of Lemma 5.7:

φ1 = Q1[x̄](∅ ⇒ x1

0
.id = (x1

0
)′.id),

φ3 = Q[x̄](X ⇒ x0.id = x ′
0
.id),

φ0,0
1
= Q0[x0, z0,y0,x

′
0
, z ′

0
,y ′

0
](y0.id = z ′

0
.id⇒ x0.id = x ′

0
.id),

φ0,1
1
= Q ′

0
[x0, z0,y0,x

′
0
, z ′

0
,y ′

0
](y0.id = z ′

0
.id⇒ x0.id = x ′

0
.id),

φi
0
= Q i

0
[x0,y0,x

′
0
,y ′

0
](x0.id = x ′

0
.id⇒ y0.id = y ′0.id) for each i ∈ [1, 3].

Intuitively, φ3 encodes the structure ofG , while the other GKeys encode a 3-coloring. These GKeys
bear tree patterns, and do not contain constant literals. Then along the same lines as the proof of

Lemma 5.7, one can verify that Σ |= φ if and only if G has a proper 3-coloring.

Note that we do not need the second group of GKeys for encoding Q1

2
in the proof of Lemma 5.7,

which is used to deduce inconsistency in the satisfiability analysis. 2

Proof of Lemma 5.17
This is verified by reduction from the complement of the 3SAT problem (see the proof of Lemma 5.6

for 3SAT). Given a 3SAT formula ψ , we construct a set Σ of GFDxs with tree patterns and a

graph G1, which is also a tree. Here we adopt the same set Σ of GFDxs as defined in the proof of

Lemma 5.14, which consists of a single GFDx φ1 = Q1[x̄](X1 ⇒ r 1.A = r 1.B). We define graph G1

as the canonical graph (GQ)EqX of GFDx φ = Q[x̄](X ⇒ r .A = r .B), which is a tree. Intuitively, φ1

encodes the structure of ψ , and G1 encodes all possible satisfying assignments. Then along the

same lines as the proof of Lemma 5.14, one can verify that G1 ̸ |= Σ if and only ifψ is satisfiable. 2

Proof of Lemma 5.18
We prove this by reduction from the complement of the H -coloring problem, which is NP-complete

[37]. For a fixed graph H , the H -coloring problem is to decide, given a graph G, whether there
exists a homomorphism from G to H . It remains NP-complete even when H is a tree.

We adopt the tree H given in Fig. 6 of [37], as shown in Fig. 12. Here T1, . . . , T7 in H are

abbreviations of trees. As mentioned in [37], the tree H has 287 nodes. Each tree Ti (i ∈ [1, 7]) is
connected to the other edges in H by connecting the nodes labeled x and y.

Given graphG , we construct a graphG1 and a set Σ of GKeys such that bothG1 and the patterns

in Σ are all trees. We show that G1 ̸ |= Σ if and only if there exists a homomorphism from G to H .

Graph G1 is constructed from H as follows, as shown in Fig 13: (1) we label all edges in H with

0; (2) we add two new edges (with two new nodes) to each node in H , and label these edges with

1; and (3) we label all the nodes with v . Compared to H , we add two nodes to each vertex in H .

To simplify the presentation, for each node v in H , we denote by v[0] and v[1] the two newly

added nodes for v . In Fig. 13, we only show how to process T1; the trees T2, . . . ,T7 can be handled

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

Dependencies for Graphs 1:45

. . . .

.

.

.

.

.

.

.

. . .

.

. . .

.

.

. . . .

.

. . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

...

.........

........

....

.....

.......

......

......

.....

.......

.........

....

........

.....

Fig. 12. The patterns used in Lemma 5.18

. . .

.

. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

...

.........

..

.

.

.

..

.

..

.

.

..

.

.

..

.

.
.

.

. .

.
.

.

.

. .

.

.

..

.

.

.

.

..
.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.. .

. ..

.

Fig. 13. The graph G1

similarly. We list all the edges labeled 1, and all the other edges are labeled 0. Obviously, G1 is also

a tree. We will see that the new nodes for each node in H are used to deduce whether G1 |= Σ.

We next define Σ to encode G. We first modify the graph G as we did for H , by labeling each

edge, adding new nodes for each node in G, and labeling the nodes. Denote the resulting graph as

G ′
. Similar toG1, for each node v inG , denote by v[0] and v[1] the two newly added nodes for v in

G ′
(those not in G). Then Σ consists of only one GKey φ = Q[x̄][X ⇒ x .id = x ′.id], where Q and

X are constructed fromG ′
by using the same method given in the proof of Lemma 5.7, x is a newly

added node for a node n in G ′
, and x ′

is the copy of x , i.e., x and x ′
are the designated nodes in Q

(here Q consists of two copies Q ′
1
and Q ′

2
of a pattern Q ′

, x is a designated node in Q ′
1
, and x ′

is in

Q ′
2
corresponding to x ; see the definition of GKeys in Section 3). Such nodes x and x ′

exist by the

construction of G ′
. More specifically, φ is defined from G ′

as follows: (1) compute one spanning

tree of G ′
; (2) copy its adjacent edges for each node in G ′

by adding new nodes; and (3) use literals

in X to merge all the newly added nodes in step (2) with the original ones.

Moreover, when there exists a homomorphism h1 from G to H , we can deduce a violation as

follows. Suppose that v = h1(n) for some node n in G. Then we have that v is a node in H . Recall

that v[0] and v[1] are the two newly added nodes for v . Then we can define a match h such that

h(x̄) |= X , h(x) = v[0] and h(x ′) = v[1]. By φ, we know that h(x).id = h(x ′).id. However, v[0] and
v[1] are two distinct nodes in G1; hence a contradiction.

We are ready to show that G1 ̸ |= Σ if and only if there exists a homomorphism from G to H .

(⇒) Suppose that G1 ̸ |= Σ. Then there exists a match h of Q in G1 such that h(x̄) |= X . Since
h(x̄) |= X , we can get a homomorphism from G to H , by restricting h to the nodes of G in Q . Note

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:46 Wenfei Fan and Ping Lu

that the nodes in G cannot be mapped to the new nodes in G1 (those not in H), since these new

nodes have edges with label 1, while the edges in G are labeled 0.

(⇐) Suppose that h1 is a homomorphism fromG to H . Then we can construct a match h ofQ inG1

such that h(x̄) |= X , but h(x) and h(x ′) are distinct nodes. That is, h(x̄) ̸|= φ, and thus G1 ̸ |= Σ.

The match h is constructed as follows. Suppose that Q consists of Q1
and its copy Q2

. For each

node nv in Q1
, if nv is a node in G, then h(nv) = h1(nv); if nv is a copy of node n′v in G, then

h(nv) = h1(n
′
v); if nv is n′v [0] or n

′
v [1] (the two newly added nodes for n′v) for node n′v in G,

then h(nv) = h1(n
′
v)[0]. For each node nv in Q2

, h is defined similarly, except that when nv is

n′v [0] or n
′
v [1], we let h(nv) = h1(n

′
v)[1]. Note that for each nv of a copy of node n′v in G, we set

h(nv) = h1(n
′
v). Hence h(x̄) |= X . Since h1 is a homomorphism fromG to H , it is easy to verify that

h is a match of Q in G1 such that h(x̄) |= X . However, since x is a newly added node, h(x) = nv [0]
for some node nv in H , and h(x ′) = nv [1]. Obviously, nv [0] and nv [1] are distinct nodes, and we

have that h(x).id , h(x ′).id. From h(x̄) |= X , we have that h(x̄) ̸|= φ. That is, G1 ̸ |= Σ. 2

More details of the proof of Theorem 6.2
For the correctness of Theorem 6.2, it remains to show the following two claims.

Claim 1: For each Eqi (1 ≤ i ≤ k), Σ ⊢ Q[x̄](X ⇒ Eqi).

Claim 2: If there exist a GED φ in Σ and a match h such that Eqk ⇒(φ,h) Eqk+1
and Eqk+1

is
inconsistent in GEqk , then Σ ⊢ Q[x̄](X ⇒ Eqk+1

).

We next prove these two claims.

Proof of Claim (1). We show that for each Eqi (1 ≤ i ≤ k), Σ ⊢ Q[x̄](X ⇒ Eqi). This can be verified

by induction on the length of ρ. For the base case Eq
1
= EqX , we show that Σ ⊢ Q[x̄](X ⇒ EqX)

by using GED1, GED2, GED3, GED4, GED5 and GED6. When EqX is inconsistent, we know that

ρ consists of only EqX , and no chase step can be carried out since (GQ)EqX is undefined. Then

Σ ⊢ Q[x̄](X ⇒ EqX) can be verified as follows.

(1) Q[x̄](X ⇒ X ∧ Xid) GED1

(2) Q[x̄](X ⇒ EqX) (1), and GED5

When EqX is consistent, then EqX is computed from X as follows, by reflexive, symmetric and

transitive relations, as well as the semantics of id literals.

(1) Q[x̄](X ⇒ X ∧ Xid) GED1

(2) Q[x̄](X ⇒ (x1.A1 = y1.A1)) (1), x1.A1 ∈ X , x1.id = y1.id, and GED2

. . .

(n+1) Q[x̄](X ⇒ (xn .An = yn .An)) (1), xn .An ∈ X , xn .id = yn .id, and GED2

(n+2) Q[x̄](X ⇒ (v1 = u1)) (1), (u1 = v1) ∈ X , and GED3

. . .

(n+m+1) Q[x̄](X ⇒ (vm = um)) (1), (um = vm) ∈ X , and GED3

(n+m+2) Q[x̄](X ⇒ (v1

1
= v1

3
)) (1), (v1

1
= v1

2
), (v1

2
= v1

3
) ∈ X , and GED4

. . .

(n+m+k+1) Q[x̄](X ⇒ (vk
1
= vk

3
)) (1), (vk

1
= vk

2
), (vk

2
= vk

3
) ∈ X , and GED4

(n+m+k+2) Q[x̄](X ⇒ X ∧ Xid ∧ (x1.A1 = x1.A1)) (1), (2) and GED6

. . .

(2(n+m+k)+1) Q[x̄](X ⇒ X ∧ Xid ∧ (x1.A1 = x1.A1) ∧ . . . ∧ (xn .An = xn .An) ∧ (v1 = u1)∧

. . . ∧ (vm = um) ∧ (v1

1
= v1

3
) ∧ . . . ∧ (vk

1
= vk

3
)) (2(n+m+k)), (n+m+k+1) and GED6

Here x1.A1, . . . ,xn .An are all attributes appearing in X ; the literals in X are enumerated as ui = vi
for all i ∈ [1,m]; and (vi

1
= vi

2
) and (vi

2
= vi

3
) for i ∈ [1,k] are to represent transitivity relationships

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

Dependencies for Graphs 1:47

that appear in X . In the proof, steps (2)-(n+1) are for the computation of reflexive relations and the

semantics of id literals, steps (n+2)-(n+m+1) for symmetric relations, and steps (n+m+2)-(n+m+k+1)

for transitivity. Steps (n+m+k+2)-(2(n+m+k)+1) combine all the intermediate results together. Steps

(n+1)-(n+m+k+1) also handle the literals generated in previous steps (not shown).

Suppose that for any j (1 ≤ j ≤ i − 1), Σ ⊢ Q[x̄](X ⇒ Eqj). For the induction step, we show that

Σ ⊢ Q[x̄](X ⇒ Eqi). Since there exist a GED φ1 = Q1[x̄1](X1 ⇒ Y1) in Σ and a match h1 of Q1 in

(GQ)Eqi−1

such that Eqi−1
⇒(φ1,h1) Eqi , h1(x̄1) |= X1. Since EqX ⊆ Eqi−1

, the equivalence relation of

(EqX ∪ Eqi−1
) remains unchanged in Eqi−1

. Hence h1 is also a match of Q1 in (GQ)EqX∪Eqi−1

. Since

φ1 ∈ Σ, by the definition of proofs, Σ ⊢ φ1. Then by GED6, Σ ⊢ Q[x̄](X ⇒ Eqi−1
∧ h(Y1)). Note that

Eqi is the equivalence relation extending Eqi−1
∪ {l}, where l is a literal in h(Y1) by the definition

of the chase step. Then using GED7, we can prove that Σ ⊢ Q[x̄](X ⇒ Eqi−1
∧ l), where GED7 is

the property proved in Lemma 6.1. That is, Σ ⊢ Q[x̄](X ⇒ Eqi). 2

Proof of Claim (2). We show that if there exist φ and h such that Eqk ⇒(φ,h) Eqk+1
and Eqk+1

is

inconsistent in GEqk , then Σ ⊢ Q[x̄](X ⇒ Eqk+1
). Recall that ρ is a terminal chasing sequence

of GQ by Σ, and ρ is (Eq
1
= EqX , Eq2

, . . . , Eqk). Assume w.l.o.g. that Eqk is consistent, since

Eqk ⇒(φ,h) Eqk+1
is a chase step (although invalid; see Section 4). Then by the definition of

terminal chasing sequences, Eqi (i ∈ [1,k]) is also consistent. Suppose that h(l) is the literal added
in the chase step Eqk ⇒(φ,h) Eqk+1

, i.e., Eqk+1
is the equivalence relation of Eqk ∪ {h(l)}, and

φ = Q1[x̄1](X1 ⇒ Y1) is the GED used in the step. Then Σ ⊢ Q[x̄](X ⇒ Eqk+1
) is verified as follows:

(1) Q[x̄](X ⇒ Eqk) claim (1)

(2) Q1[x̄1](X1 ⇒ Y1) φ
(3) Q[x̄](X ⇒ Eqk ∧ h(Y1)) (1), (2), and GED6

(4) Q[x̄](X ⇒ Eqk+1
) GED5

Observe the following. (a) Since Eqk is consistent and EqX ⊆ Eqk , EqX ∪ Eqk (for step (1) above) is

also consistent, and hence we can apply GED6 in step (3). (b) Since Eqk+1
is inconsistent, Eqk+1

is

the equivalence relation of Eqk ∪ {h(l)}, and h(l) ∈ h(Y1), we have that Eqk ∧ h(Y1) is inconsistent,

and thus we can apply GED5 in step (4). These give us Q[x̄](X ⇒ Eqk+1
).

Putting these together, we can conclude that if Σ |= Q[x̄](X ⇒ Y), then Σ ⊢ Q[x̄](X ⇒ Y). 2

Proof of Theorem 7.2
Proof: We show that the satisfiability, implication and validation problems for GDCs are Σ

p
2
-

complete, Π
p
2
-complete and coNP-complete, respectively.

(1) The satisfiability problem for GDCs. The proof is a little involved. We first show that the

satisfiability problem for GDCs has a small model property. Based on this property, we then give an

Σ
p
2
algorithm to check whether a set Σ of GDCs is satisfiable. Finally, we show that the satisfiability

problem is Σ
p
2
-hard.

The small model property. We show that if a set Σ of GDCs is satisfiable, then Σ has a model Gh of

size O(4 · |Σ|3). That is, there exists a graphGh such that |Gh | ≤ 4 · |Σ|3,Gh |= Σ, and for any GDC
φ = Q[x̄](X ⇒ Y) in Σ, there exists a match hφ of Q in Gh .

Since Σ is satisfiable, there exists a graph G = (V ,E,L, FA) such that G |= Σ, and for each GDC
φ = Q[x̄](X ⇒ Y) in Σ, there exists a match hφ ofQ inG . We constructGh based onG as follows. (a)

We first deduce a subgraph G ′
h of G by combining matches hφ for every φ ∈ Σ, such that G ′

h has at

mostO(|Σ|) nodes; and (b) we then revise the attributes ofG ′
h to deduceGh such that |Gh | ≤ 4 · |Σ|3

and Gh |= Σ, by normalizing attribute values in G ′
h .

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:48 Wenfei Fan and Ping Lu

(a) We deduce G ′
h as follows. Recall the canonical graph GΣ = (VΣ,EΣ,LΣ, F

Σ
A) of Σ (see Section 5.1).

It is the union of patterns in Σ, in which different patterns are disjoint. We define a mapping h
from GΣ to G: for each node x ∈ VΣ, if x is in VQ for some GDC φ ′ = Q[x̄](X ⇒ Y) in Σ, then
h(x) = hφ (x), where VQ is the set of nodes in Q . We define G ′

h as the subgraph of G “induced by” h.

That is, G ′
h = (Vh ,Eh ,Lh , F

h
A), where

• Vh = {h(x) | x ∈ VΣ}, where VΣ is the set of nodes in GΣ;

• Eh = {(h(y1),h(ι
y1

y2
),h(y2)) | (y1, ι,y2) ∈ EΣ}, where EΣ is the set of edges in GΣ;

• Lh is such defined that for each node x in Vh , Lh(x) = L(x); and

• we define FhA by taking attributes that only appear in Σ: for each GDC φ = Q[x̄](X ⇒ Y) in
Σ, and each match hφ of Q in G ′

h , if hφ (x̄) |= X in G, then for each literal l in X or Y ,

– if l is of the form x .A ⊕ c , then FhA(v).A = FA(v).A, where v = hφ (x); and

– if l is x .A ⊕ y.B, then FhA(v).A = FA(v).A and FhA(v
′).B = FA(v

′).B, where v = hφ (x) and
v ′ = hφ (y).

This is well-defined since G |= Σ. Note that we cannot directly copy the attributes in FA(x)
for each node x ∈ Vh , since there is no bound on the number of attributes in FA(x).

Then |Vh | ≤ |Σ| and the number of attributes in G ′
h does not exceed |Σ|2 (see a proof below).

(b) Having defined G ′
h , we reviseG

′
h to get Gh . That is, we “normalize” the values of attributes in

Gh , so that Gh does not contain unboundedly large attribute values. The challenge is to ensure

that Gh |= Σ after the values are changed (normalized). To simplify the discussion, we refer to

values on which the built-in predicates <, >, ≤, ≥ are defined as numeric values, and those on which

only = and , are defined as non-numeric values. We normalize attribute values by distinguishing

numeric values from non-numeric values as follows. (i) Suppose that all numeric values in G ′
h are

a1, . . . ,an with a1 < a2 < . . . < an . We normalize those values of a1, . . . ,an that do not appear in

Σ, such that their values are bounded. LetM and N be the maximum and minimum numbers in Σ,
respectively. If there exist no numeric values in Σ, assume w.l.o.g. thatM = N = 0. Let a1, . . . ,ai
be the values smaller than N , and aj , . . . ,an be the values larger than M . Then we replace ak
(k ∈ [1, i]) with N − (i + 1)+k , and replace al (l ∈ [j,n]) withM + l ; the values in the range [N ,M]

remain unchanged as they may fall into Σ. One can verify that the normalization does not change

the relative ordering of the numeric values, since ⊕ is among =,,, <, >, ≤, ≥. (ii) Suppose that
l1, . . . , lm are all the non-numerical values that are in G ′

h but are not in Σ. We pick distinct new

small values b1, . . . ,bm that do not appear inG ′
h , and replace li by bi (i ∈ [1,m]). Denote the graph

obtained by normalizing G ′
h as Gh = (Vh ,Eh ,Lh , F

h
A) with normalized FhA . One can verify that after

the normalization, no attribute value in Gh is larger than 2 · |Σ|.

Along the same lines, we normalize labels such that no label has size larger than Σ (see below).

We next show that Gh is a model of Σ with a bounded size. First, it is easy to show that for each

GDC φ = Q[x̄](X ⇒ Y) in Σ, there exists a match hφ of Q in G, since h is a match of GΣ in G.

We next prove that Gh |= Σ by contradiction. Suppose that that Gh ̸ |= Σ. Then there exist a

GDC φ = Q[x̄](X ⇒ Y) in Σ and a match hφ of Q in Gh such that hφ (x̄) |= X but hφ (x̄) ̸|= Y .
By the definition of Gh , hφ is also a match of Q in G. Moreover, for each node x in Gh and each

attribute A of x , FhA(h(x)).A inherits FA(h(x)).A subject to value normalization that preserves the

relative ordering of the values. Therefore, we also have that hφ (x̄) |= X and hφ (x̄) ̸|= Y in G , which
contradict the assumption that G |= Σ. Hence Gh |= Σ.

We now show that |Gh | ≤ 4 · |Σ|3. Observe that following: (a) |Vh |+ |Eh | ≤ |Σ|, since the numbers

of nodes and edges in Gh are no larger than their counterparts in GΣ; (b) Lh has |Vh | + |Eh | labels,

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

Dependencies for Graphs 1:49

and each label has size at most Σ; (c) for each node x ∈ Vh , the number of attributes in FhA(x) is

at most |Σ|, since we add FhA(x).A only if x .A appears in some GDC φ; (d) the total number of

attributes in FhA is at most |Σ|2 by (a) and (c); and (e) the size |FhA | ≤ 2|Σ|3, since each attribute value

is at most 2 · |Σ|. From these we know that the size |Gh | ofGh is at most 2|Σ|3 + |Σ|2 + |Σ| ≤ 4|Σ|3.2

Upper bound. Based on the small model property, we give an Σ
p
2
algorithm to check whether a given

set Σ of GDCs is satisfiable, as follows:
(1) guess a graph G = (V ,E,L, FA) such that |G | ≤ 4 · |Σ|3, and for each GDC φ = Q[x̄](X ⇒ Y)

in Σ, guess a mapping hQ from VQ to V , where VQ is the set of nodes in Q ;

(2) check whether hQ is a match of Q in G for each GDC φ = Q[x̄](X ⇒ Y) in Σ; if so, continue;
otherwise reject the current guess;

(3) check whether G |= Σ; if so, return true.
The correctness of the algorithm follows from the small model property. For its complexity, step (2)

is in PTIME, and step (3) is in coNP (see the proof for the validation problem for GDCs to be given

shortly). Therefore, the algorithm is in Σ
p
2
, and so is the satisfiability problem for GDCs. 2

Lower bound. We show that the satisfiability problem is Σ
p
2
-hard for GDCs by reduction from the

generalized graph coloring problem, denoted by GGCP, which is Σ
p
2
-complete [49, 52]. GGCP is

to decide, given two undirected graphs F = (VF ,EF) and G = (VG ,EG), whether there exists a

two-coloring of F that does not contain a monochromatic G as a subgraph. A monochromatic

subgraph of F is a subgraph in which nodes are assigned the same color. It is known that GGCP
remains Σ

p
2
-complete when G is a complete graph and F contains no self cycles [49].

Given two undirected graphs F = (VF ,EF) and G = (VG ,EG), where G is complete and F does

not contain self cycles, we construct a set Σ of GDCs such that Σ is satisfiable if and only if there

exists a 2-coloring of F that does not contain a monochromatic G as a subgraph.

We use two groups of GDCs to encode GGCP, one to check 2-coloring, and the other to check

the relationship between F and G. We associate an attribute C with each node, denoting its color.

(a) In the first group, we use a GDC to ensure that each node has a C attribute in the range of

[1, 2], and another GDC to ensure that the C-attribute, if it exists, must carry a value of either 1

or 2. (b) The second group checks the existence of a monochromatic subgraph G and encodes the

structure of F . In addition, we address the following issues: (i) the patterns in Σ are directed graphs,

while F and G are undirected; and (ii) the matches for GDCs are homomorphic mappings, while

GGCP requires subgraph isomorphism. For (i), we can use two directed edges to represent one

undirected edge in F andG . For (ii), since F contains no self cycles andG is complete, we have that

a homomorphism h from G to F is an isomorphism from G to a subgraph of F . Indeed, if h is not

one-to-one, i.e., if two nodes u and v in G are mapped to the same node in F by h, then F must

contain a self cycle since G is complete, a contradiction.

Based on the observations, we define the set Σ of GDCs as follows, partitioned into two groups.

(1) The first group consists of two GDCs, to encode the coloring of the vertices. More specifically,

◦ φ1 = Q1[x]
(
∅ ⇒ (1 ≤ x .C) ∧ (x .C ≤ 2)

)
, where Q1[x] = (V1, E1, L1), V1 = {x}, E1 = ∅, and

L1(x) =‘0’; it assures that every node has a C-attribute; and

◦ φ2 = Q2[x]
(
(x .C , 1) ∧ (x .C , 2) ⇒ (x .C = 1) ∧ (x .C = 2)

)
, or equivalently, φ2 =

Q2[x]
(
(x .C , 1) ∧ (x .C , 2) ⇒ false) as a forbidding constraint, where Q2[x] = (V2, E2,

L2), V2 = {x}, E2 = ∅, and L2(x) =‘0’. It says that if a node x has a C-attribute x .C , then x .C
must be either 1 or 2.

These GDCs enforce that each node is colored 1 or 2. Note that φ2 is a forbidding constraint.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:50 Wenfei Fan and Ping Lu

(2) The second group of Σ also has twoGDCs. One is to check whether there exists a monochromatic

G. It is defined as φ3 = Q3[x0,x1, . . . ,xn]
(
(x1.C = x2.C) ∧ . . . ∧ (xn .C = x1.C) ⇒ x0.C = 1

)
, where

n is the number of nodes in G, and Q3[x0,x1, . . . ,xn] = (V3, E3, L3) such that

• V3 = VG ∪ {x0}, i.e., the nodes of VG are encoded by x1, . . . ,xn , and x0 encodes an additional

node v0;

• E3 = {(u, 0,v), (v, 0,u) | (u,v) ∈ EG } ∪ E0, where E0 = {(x1, 1,x0), . . . , (xn , 1,x0)}; i.e., it
includes all the edges in G plus an edge from each node of G to x0; and

• for each vertex xi ∈ V3, L3(xi) =‘0’.

Intuitively, GDC φ3 encodes the structure of G. It also ensures that if all the nodes in G have the

same color, then the color of x0 must be 1. Note that node x0 is not a vertex in G. It differs from
the other nodes in the following: (a) it has no outgoing edges, and (b) all the edges going to it are

labeled with ‘1’, while all the other edges are labeled with ‘0’.

The otherGDC in the group is used to encode the structure of F . We defineφ4 = Q4[x
1

0
,x2

0
,x1, . . . ,

xm](∅ ⇒ x1

0
.C = 2), wherem is the number of nodes in F , and Q4[x̄] = (V4, E4, L4) such that

• V4 = VF ∪ {x1

0
,x2

0
}, including all the nodes in F and two additional nodes x1

0
and x2

0
;

• E4 = {(u, 0,v), (v, 0,u) | (u,v) ∈ EF } ∪ E0 ∪ {(x1

0
, 2,x2

0
)}, where E0 = {(x1, 1,x

1

0
), . . . , (xn , 1,

x1

0
)}; i.e., it includes all the edges in F , one edge from each node of F to x1

0
, and an additional

edge (x1

0
, 2,x2

0
); and

• for each node x ∈ V4, L4(x)=‘0’.

The construction of φ4 is the same as φ3 except that we add an extra node x2

0
and an extra edge

(x1

0
, 2,x2

0
). Observe that there exists no match of Q4 inGQ3

, whereGQ3
is the canonical graph of Q3

in φ3 (see Section 5.2). Indeed, Q4 has an edge labeled ‘2’, which does not appear in Q3. We will use

this property to check whether a 2-coloring of F does not contain a monochromatic G.

This completes the construction of Σ. In summary, Σ consists of four GDCs with constant literals

and variable literals. None of them contains id literals. One of them is a forbidding constraint.

We next show that Σ is satisfiable if and only if there exists a 2-coloring of F that does not contain

a monochromatic G as a subgraph.

(⇒) First assume that Σ is satisfiable. Then there exists a graphG ′ = (V ,E,L, FA) such thatG ′ |= Σ,
and for anyGDC φ = Q[x̄](X ⇒ Y) in Σ, there exists a match hφ ofQ inG ′

. Based on the match hφ4

of Q4 in G
′
, we can define a 2-coloring ν of F as follows: for each node x ∈ VF , let ν (x) = hφ4

(x).C .
Note that φ1 and φ2 can be applied to all nodes hφ4

(x), and hence hφ4
(x).C is defined for all nodes

hφ4
(x) in G ′

. Hence ν is a 2-coloring by φ1 and φ2 in Σ. That is, ν is well defined. Moreover, by the

definition of φ4, hφ4
(x1

0
).C must be 2, since hφ4

(x̄) |= (x1

0
.C = 2).

We next show that the 2-coloring ν of F does not contain a monochromatic G as a subgraph.

Suppose by contradiction thatG is a monochromatic subgraph in the 2-coloring ν , which is mapped

to F via mapping hI . We show that hφ4
(x1

0
).C much be 1, and hence yields a contradiction to

hφ4
(x1

0
).C = 2 determined by hφ4

above. To prove that hφ4
(x1

0
).C = 1, we apply φ3 to G ′

. More

specifically, we construct a mapping h = hφ4
◦ h′

I from Q3 to G
′
, where h′

I extends hI by letting

h′
I (x0) = x1

0
, where x0 is not in G. Here hφ4

◦ h′
I is the composition of two homomorphic mappings

hφ4
and h′

I , and hence is a homomorphism from Q3 to G
′
. We will show below that h is a match of

Q3 in G
′
and h(x̄) |= (x1.C = x2.C) ∧ . . . ∧ (xn .C = x1.C). Since G

′ |= φ3, we have that h(x0).C = 1.

That is, hφ4
(x1

0
).C = hφ4

◦ h′
I (x0).C = h(x0).C = 1.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

Dependencies for Graphs 1:51

It remains to show that h = hφ4
◦ h′

I is a match of φ3 in G ′
and hφ4

◦ h′
I (x̄) |= (x1.C = x2.C) ∧

. . . ∧ (xn .C = x1.C). By the definition of hI , it is easy to see that h′
I actually makes a match of Q3

in GQ4
, where GQ4

is the canonical graph of Q4. Because hφ4
is a match of Q4 in G ′

, hφ4
◦ h′

I is a

match of Q3 in G ′
. Moreover, since h′

I is the match of Q3 in GQ4
that makes G a monochromatic

subgraph in ν , we have that hI (x1).C = hI (x2).C = . . . = hI (xn).C , where x1, . . . ,xn are nodes in

VG . Therefore, hφ4
◦h′

I (x1).C = hφ4
◦h′

I (x2).C = . . . = hφ4
◦h′

I (xn).C . That is, hφ4
◦h′

I (x̄) |= (x1.C =
x2.C) ∧ . . . ∧ (xn .C = x1.C).

Taken together, these verify that there exists a 2-coloring ν of F does not contain amonochromatic

G as a subgraph.

(⇐) Conversely, assume that ν is a 2-coloring of F that does not contain a monochromatic G as a

subgraph. Based on ν , we construct a modelG ′
of Σ, and hence show that Σ is satisfiable. We define

G ′ = (V ,E,L, FA) as follows:

• V = Vφ1
∪Vφ2

∪Vφ3
∪Vφ4

, such that Vφi and Vφ j are disjoint if i , j;

• E = Eφ1
∪ Eφ2

∪ Eφ3
∪ Eφ4

; note that there exist no edges between nodes in Vφi and Vφ j if
i , j;

• L is defined as follows: for each node x in V , L(x) =‘0’; and

• FA is given as follows: for each node x in V , we consider the following cases:

- if x ∈ Vφ1
or x ∈ Vφ2

, then FA(x).C = 1;

- for all x ∈ Vφ3
, if x , v1 and x , x0, then FA(x).C = 2; otherwise, FA(x0).C = FA(x1).C = 1;

and

- for x ∈ Vφ4
, if x , x1

0
and x , x2

0
, then FA(x).C = ν (x); otherwise, FA(x

1

0
).C = FA(x

2

0
).C = 2.

We show that G ′
is a model of Σ. By the definitions of V and E, for any GDC φ = Q[x̄](X ⇒ Y)

in Σ, there exists a match hφ of Q in G ′
. We show that G ′ |= Σ. Suppose by contradiction that

G ′ ̸ |= Σ. Then there exist a GDC φ = Q[x̄](X ⇒ Y) and a match h of Q in G ′
such that h(x̄) |= X

and h(x̄) ̸|= Y . Observe the following. (a) Since for each node x in G ′
, x .C is either 1 or 2, we have

thatG ′ |= φ1 andG
′ |= φ2. (b) Since there exists only one edge (x

1

0
, 2,x2

0
) inG ′

, and x1

0
.C = x2

0
.C = 2,

for any match h of φ4 inG
′
, we have that h(x1

0
).C = h(x2

0
).C = 2. That is,G ′ |= φ4. (c) Then we must

have that G ′ ̸ |= φ3 since G
′ ̸ |= Σ. Denote by Gφ1

, Gφ2
, Gφ3

and Gφ4
the sub-graphs of G ′

induced by

Vφ1
, Vφ2

, Vφ3
and Vφ4

, respectively. Observe that GQ3
is connected; hence Q3 can only be mapped to

a connected subgraph in G ′
. That is, each match of Q3 in G ′

is contained in one of Gφ1
, Gφ2

, Gφ3

andGφ4
. It is easy to see thatGφ1

|= φ3 andGφ2
|= φ3. Moreover, one can verify thatGφ3

|= φ3 since

Gφ3
does not contain self cycles. Hence ifG ′ ̸ |= φ3, then the only possibility is thatGφ4

̸ |= φ3. That

is, there exists a match h of Q3 in Gφ4
such that h(x̄) |= (x1.C = x2.C) ∧ . . . ∧ (xn .C = x1.C), but

h(x0).C , 1. However, by the construction of Q3, this implies that Gφ4
contains a monochromatic

G as a subgraph. Hence the 2-coloring ν of F contains a monochromatic G as a subgraph, a

contradiction to the assumption. Thus G ′ |= Σ. That is, Σ is satisfiable. 2

(2) The implication problem for GDCs. We now study the implication problem. Similar to the

satisfiability problem, we first establish a small model property, and then use this property to prove

the upper bound. After these, we show that the implication problem is Π
p
2
-hard for GDCs.

The small model property. We prove the following property: given a set Σ of GDCs and a GDC
φ = Q[x̄](X ⇒ Y), if Σ ̸ |= φ, then there exists a graph Gh such that |Gh | ≤ 2 · |φ | · (|φ | + |Σ| + 1)2,

Gh |= Σ, and Gh ̸ |= φ. That is, there exists a small witness for Σ ̸ |= φ.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:52 Wenfei Fan and Ping Lu

If Σ ̸ |= φ, then there exists a graphG = (V ,E,L, FA) such thatG |= Σ butG ̸ |= φ. ByG ̸ |= φ, there
exists a match h of Q in G such that h(x̄) |= X , but h(x̄) ̸|= Y . We construct Gh as follows. (a) We

first deduce a subgraph G ′
h of G from match h, such that G ′

h has at most O(|φ |) nodes; and (b) we

then normalize the attributes of G ′
h to deduce Gh such that |Gh | ≤ 2 · |φ | · (|φ | + |Σ| + 1)2, i.e., Gh

has a bounded size. Moreover, we show that Gh |= Σ and Gh ̸ |= φ.

The construction of Gh is similar to its counterpart given above for the satisfiability problem.

Recall the canonical graph GQ = (VQ ,EQ ,LQ , FA) of Q of φ (Section 5.2). Observe that the match h
of Q in G also makes a mapping from GQ to G. We define G ′

h as the subgraph of G “induced by” h.

That is, G ′
h = (Vh ,Eh ,Lh , F

h
A), where

• Vh = {h(x) | x ∈ VQ }, i.e., it includes matches of nodes of GQ only;

• Eh = {(h(y1),h(ι
y1

y2
),h(y2)) | (y1, ι,y2) ∈ EQ }, with the matches of edges in EQ ;

• Lh is defined as follows: for each node x in Vh , Lh(x) = L(x); and

• FhA is defined in the same way as its counterpart for satisfiability; for each GDC φ1 =

Q1[x̄1](X1 ⇒ Y1) in Σ ∪ {φ} and each match hφ1
of Q1 in G ′

h (if it exists), if hφ1
(x̄1) |= X1 in

G, then for each literal l in X1 ∪ Y1,

– if l is x .A⊕ c , then FhA(v) is defined and it takes the value of FA(v).A, wherev = hφ1
(x); and

– if l is x .A ⊕ y.B, then FhA(v).A and FhA(v
′).B are defined and they have the corresponding

values of FA(v).A and FA(v
′).B, respectively, where v = hφ1

(x) and v ′ = hφ1
(y).

This is well-defined since FhA(·) inherits values from FA(·) of G.

We normalize the attribute values and labels of G ′
h in the same way as for its counterpart in the

satisfiability proof, such that the sizes of the attribute values in Gh are bounded by 2 · (|φ | + |Σ|),
and no label has size larger than |φ | + |Σ|. We defineGh = (Vh ,Eh ,Lh , F

h
A) to beG

′
h with normalized

attributes and labels.

We next show the following: (a) Gh |= Σ, (b) Gh ̸ |= φ; and (c) |Gh | ≤ 2 · |φ | · (|φ | + |Σ| + 1)2.

(a) We first show that Gh |= Σ. Assume that Gh ̸ |= Σ by contradiction. Then there exist a GDC
φ1 = Q1[x̄1](X1 ⇒ Y1) in Σ and a match hφ1

of Q1 in Gh such that hφ1
(x̄1) |= X1 but hφ1

(x̄1) ̸|= Y1.

By the definition of Gh , hφ1
is also a match of Q1 in G. Moreover, for each node x ∈ Vh and each

attributeA of x , FhA(h(x)).A inherits FA(h(x)).Awith value normalization that preserves the relative

ordering of the values. Thus we also have that hφ1
(x̄1) |= X and hφ1

(x̄1) ̸|= Y in G. That is, G ̸ |= φ1,

a contradiction to the assumption that G |= Σ. Hence Gh |= Σ.

(b) Along the same lines as (a) above, we can verify that Gh ̸ |= φ.

(c) We show that |Gh | ≤ 2 · |φ | · (|φ | + |Σ| + 1)2. Observe that following: (i) |Vh | + |Eh | ≤ |φ |, since
Gh uses the same sets of nodes and edges of GQ ; (ii) Lh is bounded by |Vh | + |Eh | and hence is at

most |φ |; its total size is bounded by |φ | · (|φ | + |Σ|); (iii) for each node x ∈ Vh , F
h
A(x) has at most

|φ | + |Σ| attributes by the definition of FhA; hence the total number of attributes in FhA is at most

|φ | · (|φ | + |Σ|); and (iv) the size |FhA | ≤ 2 · |φ | · (|φ | + |Σ|)2, since each attribute value has size at

most 2 · (|φ | + |Σ|). Therefore, the size |Gh | ofGh is at most 2 · |φ | · (|φ | + |Σ|)2 + |φ | + |φ | · (|φ | + |Σ|)
≤ 2 · |φ | · (|φ | + |Σ| + 1)2. 2

Upper bound. Based on the small model property, we develop an Σ
p
2
algorithm that, given any set Σ

of GDCs and another GDC φ, checks whether Σ ̸ |= φ, as follows:

(1) guess a graph G = (V ,E,L, FA) such that |G | ≤ 2 · |φ | · (|φ | + |Σ| + 1)2, and a mapping hQ
from VQ to V , where VQ is the set of nodes in Q ;

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

Dependencies for Graphs 1:53

(2) check whether hQ is a match of Q in G; if so, continue; otherwise reject the current guess;

(3) check whether h(x̄) |= X and h(x̄) ̸|= Y ; if so, continue; otherwise reject the current guess;

(4) check whether G |= Σ; if so, return true.
The correctness of the algorithm is assured by the small model property. For its complexity, step (2)

is in PTIME, by the definition of matches. Step (3) is in PTIME, since |X | + |Y | ≤ |φ |. Step (4) is in

coNP (see the proof for the validation problem for GDCs). Therefore, the algorithm is in Σ
p
2
, and

the implication problem is in Π
p
2
. 2

Lower bound. We show that the implication problem is Π
p
2
-hard for GDCs by reduction from the

complement of GGCP (see GGCP in the proof of the satisfiability problem). Given two undirected

graphs F = (VF ,EF) and G = (VG ,EG), where G is complete and F does not contain self cycles,

we construct a set Σ of GDCs and another GDC φ such that Σ ̸ |= φ if and only if there exists a

2-coloring of F that does not contain a monochromatic G as a subgraph.

We borrow some constructions from the lower bound proof for GDC satisfiability. Recall φ1, φ2,

φ3 and φ4 given there. We define Σ = {φ1,φ2,φ3}, which encodes 2-coloring of nodes and checks

the existence of a monochromatic G. We define φ = Q[x1

0
,x1, . . . ,xm](∅ ⇒ x1

0
.C = 1) to encode

graph F , where Q[x̄] = (V , E, L),

• V = VF ∪ {x1

0
}; as opposed to φ4 in the satisfiability proof, we use a single extra node x1

0
;

• E = {(u, 0,v), (v, 0,u) | (u,v) ∈ EF } ∪ E0, where E0 = {(x1, 1,x
1

0
), . . . , (xn , 1,x

1

0
)}, simpler

than its counterpart in φ4; we encode an undirected edge with two directed edges, and

• for each node x ∈ V , L(x)=‘0’.

Intuitively, if Σ ̸ |= φ, then there exist a graph G ′ |= Σ and a match h of Q in G ′
such that

h(x1

0
).C , 1. Moreover, from h we can deduce a 2-coloring ν of F . By G ′ |= φ1 and G ′ |= φ2,

h(x1

0
).C = 1 or h(x1

0
).C = 2. In addition, φ3 allows us to deduce the existence of a 2-coloring of F

that does not contain a monochromaticG as a subgraph. Indeed, consider the 2-coloring ν deluded

and assume by contradiction that ν contains a monochromaticG as a subgraph. Then by combining

this 2-coloring (homomorphism) and h, we can get a match h′
of Q3 in G

′
such that h′(x0) = h(x

1

0
),

where Q3 is the pattern of φ3 in Σ. Since G ′ |= φ3, we have that h(x
1

0
).C = 1, which contradicts the

assumption that Σ ̸ |= φ and hence h(x1

0
).C , 1. Conversely, if there exists a 2-coloring of F that

does not contain a monochromatic G as a subgraph, then we can construct a graph G1 such that

G1 |= Σ and G1 ̸ |= φ. That is, Σ ̸ |= φ.

We next formalize this intuition and show that Σ ̸ |= φ if and only if there exists a 2-coloring of F
that does not contain a monochromatic G as a subgraph.

(⇒) First assume that Σ ̸ |= φ. We show that there exists a 2-coloring ν of F that there does not

contain a monochromatic G as a subgraph. By Σ ̸ |= φ, there exists a graph G ′ = (V ,E,L, FA) such
thatG ′ |= Σ andG ′ ̸ |= φ. SinceG ′ ̸ |= φ, there exists a match h ofQ inG ′

such that h(x̄) ̸|= (x1

0
.C = 1).

Based on h, we define a 2-coloring ν of F such that for each node x ∈ VF , ν (x) = h(x).C . By the

definitions of φ1 and φ2, we know that h(x).C is defined and has value 1 or 2. Thus ν is well defined.

Moreover, h(x1

0
).C = 2, since h(x̄) ̸|= (x1

0
.C = 1). It remains to show that ν does not contain a

monochromatic G as a subgraph.

Assume by contradiction that there exists a monochromatic G as a subgraph in the 2-coloring ν .
Then we show that h(x1

0
).C must be 1, which contradicts that h(x1

0
).C = 2 as argued above. To see

this, it suffices to apply φ3. That is, we construct a match h′
ofQ3 inG

′
such that h′(x0) = h(x

1

0
), and

h′(x̄) |= (x1.C = x2.C) ∧ . . .∧ (xn .C = x1.C). For if it holds, then h(x
1

0
).C = h′(x0).C = 1 byG ′ |= φ3.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:54 Wenfei Fan and Ping Lu

The match h′
can be constructed as follows. Let hI be the mapping of G in F such that G is a

monochromatic subgraph in ν . Let h′ = h ◦h′
I , where h

′
I extends hI by letting h′

I (x0) = x1

0
, where x0

is not inG . Here h ◦h′
I is the composition of two homomorphic mappings h fromQ (encoding F) to

G ′
and h′

I fromG (encoded byQ3) to F , and is hence a homomorphism fromQ3 toG
′
. Then we only

need to show that h′(x̄) |= (x1.C = x2.C) ∧ . . . ∧ (xn .C = x1.C). Since hI is the match of Q3 in GQ
such that G is a monochromatic subgraph in ν , we have that hI (x1).C = hI (x2).C = . . . = hI (xn).C ,
where GQ is the canonical graph of Q of φ. Hence h ◦ hI (x1).C = h ◦ hI (x2).C = . . . = h ◦ hI (xn).C .
That is, h ◦ h′

I (x̄) |= (x1.C = x2.C) ∧ . . . ∧ (xn .C = x1.C). This leads to h(x
1

0
).C = 1 and h(x1

0
).C = 2,

a contradiction. Thus ν does not contain a monochromatic G as a subgraph.

(⇐) Conversely, assume that ν is a 2-coloring of F that does not contain a monochromatic G as a

subgraph. Based on ν , we construct a graph G ′
such that G ′ |= Σ but G ′ ̸ |= φ. That is, Σ ̸ |= φ.

We next construct G ′
. Recall the canonical graph GQ = (VQ ,EQ ,LQ , FA) of the pattern Q of φ

(Section 5.2). The graph G ′
is almost the same as GQ , except that it carries attributes, while GQ has

an empty set of attributes. More specifically, G ′ = (V ′,E ′,L′, F ′
A) is defined as follows:

• V ′ = VQ , consisting of all nodes in VQ ;

• E ′ = EQ , the same set of edges as in GQ ;

• for each node xi ∈ V ′
, L′(xi)=‘0’; and

• F ′
A is defined as follows: for each node x inV ′

, if x , x1

0
, then F ′

A(x).C = ν (x); and F
′
A(x

1

0
).C =

2.

Note that G ′ ̸ |= φ since Q has a match in G ′
but F ′

A(x
1

0
).C = 2. It remains to show that G ′ |= Σ.

Assume by contradiction that G ′ ̸ |= Σ. Recall that Σ = {φ1,φ2,φ3}. Since for each node x in

G ′
, x .C is either 1 or 2, we have that G ′ |= φ1 and G ′ |= φ2. Hence if G ′ ̸ |= Σ, then it must be

the case that G ′ ̸ |= φ3. Therefore, there exists a match h1 of Q3 in G ′
such that h1(x̄) |= (x1.C =

x2.C) ∧ . . . ∧ (xn .C = x1.C). One can verify that h1(Q3) is a monochromatic subgraph of G ′
, since

G is complete and F does not contain self cycles, along the same lines as the argument for its

counterpart given in the proof of the satisfiability problem. By the construction of φ3, Q3 encodes

G . As a result, G ′
contains a monochromatic G as a subgraph. Hence the 2-coloring ν of F contains

a monochromatic G as a subgraph, which contradicts the assumption. Therefore, G ′ |= Σ.

Putting these together, we have that Σ ̸ |= φ. 2

(3) The validation problem for GDCs. Finally, we show that the validation problem is coNP-
complete for GDCs. The lower bound follows immediately from Theorem 5.16, since GEDs are a
special case of GDCs. For the upper bound, for a graphG and a set Σ of GDCs, the algorithm given

in the proof of Theorem 5.16 can still check whether G ̸ |= Σ. Moreover, the algorithm remains in

NP since given a GDC φ = Q[x̄](X ⇒ Y) in Σ and a match h of Q inG , it is still in PTIME to check

whether h(x̄) |= X but h(x̄) ̸|= Y . Hence the validation problem for GDCs is in coNP. 2

This completes the proof of Theorem 7.2. 2

Proof of Theorem 7.4
We show that the satisfiability, implication and validation problems for GED∨s are Σp

2
-complete,

Π
p
2
-complete and coNP-complete, respectively. The proof is similar to the proof of Theorem 7.2

and hence, below we just highlight the difference in the two proofs.

(1) The satisfiability problem for GED∨s. Similar to GDCs, we first show that the satisfiability

problem for GED∨s has a small model property. Based on this, we give an Σ
p
2
algorithm to check

whether a set Σ of GED∨s is satisfiable. Finally, we show that the satisfiability problem is Σ
p
2
-hard.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

Dependencies for Graphs 1:55

The small model property. We show that if a set Σ of GED∨s is satisfiable, then Σ has a modelGh of

sizeO(4 · |Σ|3). To this end, we use the sameGh constructed in the proof of Theorem 7.2, which has

sizeO(4 · |Σ|3). Moreover, for each GED∨ φ = Q[x̄](X ⇒ Y) in Σ, there exists a match hφ of Q inG .

We next show that Gh |= Σ. Suppose by contradiction that Gh ̸ |= Σ. Then there exist a GED∨

φ = Q[x̄](X ⇒ Y) in Σ and a match hφ of Q in Gh such that hφ (x̄) |= X but hφ (x̄) ̸|= Y . That is, for
all literals l in X (resp. in Y), hφ (x̄) |= l (resp. hφ (x̄) ̸|= l). By the definition of Gh (see details of Gh
in the proof of Theorem 7.2), hφ is also a match of Q in G. Moreover, the normalization process

in the construction of Gh preserves the equality of attribute values. Hence for all literals l in X
(resp. in Y), we also have that hφ (x̄) |= l (resp. hφ (x̄) ̸|= l) inG . Putting these together, we have that
hφ (x̄) |= X and hφ (x̄) ̸|= Y in G, which contradict the assumption that G |= Σ. Hence Gh |= Σ. 2

Upper bound. Given the small model property, we give an Σ
p
2
algorithm to check whether a set Σ

of GED∨s is satisfiable. In fact, the algorithm for checking the satisfiability of GDCs still works
on GED∨s. Moreover, it is in Σ

p
2
, since it is in coNP to check whether a graph satisfies a set of

GED∨s (see the proof for the validation problem to be given below); that is, the checking step of

the algorithm is in coNP. Hence the satisfiability problem for GED∨
is in Σ

p
2
. 2

Lower bound. We show that the satisfiability problem is Σ
p
2
-hard for GED∨s by reduction from the

generalized graph coloring problem (GGCP) (see the proof of Theorem 7.2 for GGCP). Given two

undirected graphs F = (VF ,EF) and G = (VG ,EG), where G is complete and F does not contain

self cycles, we construct a set Σ of GED∨s such that Σ is satisfiable if and only if there exists a

2-coloring of F that does not contain a monochromatic G as a subgraph.

To define Σ, we revise the GDCs φ1, φ2, φ3 and φ4 given in the lower bound proof of Theorem 7.2

for the satisfiability problem of GDCs. Observe that φ3 and φ4 are GED∨s. Moreover, since φ1 and

φ2 are used to ensure that all nodes are 2-colored, we can use the following single GED∨
instead:

φ ′
1
= Q1[x]

(
∅ ⇒ (x .C = 1) ∨ (x .C = 2)

)
,

where Q1[x] = (V1, E1, L1), V1 = {x}, E1 = ∅, and L1(x) =‘0’. Intuitively, this GED∨
alone ensures

that each vertex has a color attributeC and its value must be either 1 or 2. We define Σ = {φ ′
1
,φ3,φ4}.

Then similar to the proof of Theorem 7.2, one can verify that Σ is satisfiable if and only if there

exists a 2-coloring of F that does not contain a monochromatic G as a subgraph.

The reduction uses threeGED∨s defined in terms of variable literals and constant literals, without

id literals. No forbidding constraints are needed. 2

(2) The implication problem for GED∨s. We next show that the implication problem is Π
p
2
-

complete. We start with a small model property of the implication problem for GED∨s.

The small model property.We show that given a set Σ ofGED∨s and anotherGED∨ φ = Q[x̄](X ⇒ Y),

if Σ ̸ |= φ, then there exists a graphGh such that |Gh | ≤ 2 · |φ | · (|φ | + |Σ| + 1)2,Gh |= Σ andGh ̸ |= φ.
We use the same Gh constructed in the proof of Theorem 7.2 for the implication analysis of GDCs,
which satisfies the bound on the size.

It remains to show that Gh |= Σ and Gh ̸ |= φ. We first show that Gh |= Σ. Assume that Gh ̸ |= Σ
by contradiction. Then there exist a GED∨ φ1 = Q1[x̄1](X1 ⇒ Y1) in Σ and a match hφ1

of Q1 in

Gh such that hφ1
(x̄1) |= X1 but hφ1

(x̄1) ̸|= Y1. That is, for all literals l in X1 (resp. all literals l in Y1),

hφ1
(x̄) |= l (resp. hφ1

(x̄) ̸|= l). By the definition of Gh , hφ1
is also a match of Q1 in G. Moreover,

the normalization in the construction of Gh preserves the equality of attribute values. As a result,

for all literals l in X1 (resp. all literals l in Y1), we also have that hφ (x̄) |= l (resp. hφ (x̄) ̸|= l) in G.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:56 Wenfei Fan and Ping Lu

Therefore, hφ1
(x̄1) |= X1 and hφ1

(x̄1) ̸|= Y1 in G. That is,G ̸ |= φ1, a contradiction to the assumption

that G |= Σ. Hence Gh |= Σ. Along the same lines, we can verify that Gh ̸ |= φ. 2

Upper bound. Leveraging the small model property, we develop an Σ
p
2
algorithm to check whether

Σ ̸ |= φ. The algorithm is the same as its counterpart given in the proof of Theorem 7.2 for implication.

It remains in Σ
p
2
since it is in PTIME to check whether a mapping from a pattern to a graph is a

match, and whether a match satisfies a GED∨
. Moreover, it is in coNP to check whether a graph

satisfies Σ (see the proof of the validation problem for GED∨s below). Hence the problem for the

implication analysis of GED∨s is in Π
p
2
. 2

Lower bound. We show that the implication problem is Π
p
2
-hard for GED∨s by reduction from the

complement of the generalized graph coloring problem (GGCP). Given two undirected graphs

F = (VF ,EF) andG = (VG ,EG), whereG is complete and F does not contain self cycles, we construct

a set Σ of GED∨s and another GED∨ φ such that Σ |= φ if and only if for any 2-coloring of F , it
contains a monochromatic G as a subgraph.

Recall φ ′
1
, φ3 and φ4, the GED∨s defined in the lower bound proof of the satisfiability problem for

GED∨s given above.We define the set Σ = {φ ′
1
,φ3}, andGED∨ φ = Q[x0,x1, . . . ,xm](∅ ⇒ x1

0
.C = 1)

to encode graph F , where Q[x̄] = (V4, E4, L4),

• V4 = VF ∪ {x1

0
};

• E4 = {(u, 0,v)(v, 0,u) | (u,v) ∈ EF } ∪ E0, where E0 = {(x1, 1,x
1

0
), . . . , (xn , 1,x

1

0
)}; and

• for each node x ∈ V4, L4(x)=‘0’.

Similar to the lower bound proof of Theorem 7.2 for the implication problem for GDCs, one can
verify that Σ |= φ if and only if for each 2-coloring of F , it contains a monochromatic G. 2

(3) The validation problem for GED∨s. We show that the validation problem is coNP-complete

for GED∨s. For the lower bound, as observed in Section 7.2, each GED φ can be expressed as a

set Σφ of GED∨s of cardinality bounded by |φ |, and each GED∨
in Σφ has size at most |φ |. That

is, Σφ |= φ and φ |= ϕ for each ϕ ∈ Σφ , and |Σφ | ≤ |φ |2. Hence as an immediate consequence of

Theorem 5.16, the validation problem is coNP-hard for GED∨s.
For the upper bound, an algorithm is developed in the proof of Theorem 5.16 that, given a graph

G and a set Σφ of GEDs, checks whetherG ̸ |= Σ. The algorithm also works on GED∨s and remains

in NP. Indeed, given GED∨ φ = Q[x̄](X ⇒ Y) in Σ and a mapping h from Q to G, it is in PTIME to

check whether h is a match of Q in G , and whether h(x̄) |= X but h(x̄) ̸|= l for each l ∈ Y . Thus the
validation problem remains in coNP for GED∨s.

This completes the proof of Theorem 7.4. 2

Received February 2007; revised March 2009; accepted June 2009

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Graph Entity Dependencies
	4 The Chase Revisited for GEDs
	4.1 Chasing with GEDs
	4.2 The Church Rosser Property

	5 Reasoning about GEDs
	5.1 The Satisfiability Problem
	5.2 The Implication Problem
	5.3 The Validation Problem

	6 Finite Axiomatizability
	7 Extensions of GEDs
	7.1 Denial Constraints for Graphs
	7.2 Adding Disjunction

	8 Conclusion
	Acknowledgments
	References

