
38

Parallelizing Sequential Graph Computations

WENFEI FAN∗, University of Edinburgh, Beihang University, and Shenzhen Institute of Computing Sciences

WENYUAN YU, JINGBO XU, JINGREN ZHOU, XIAOJIAN LUO, QIANG YIN, Alibaba Group
PING LU, BDBC, Beihang University
YANG CAO, RUIQI XU, University of Edinburgh

This paper presents GRAPE, a parallel GRAPh Engine for graph computations. GRAPE differs from prior

systems in its ability to parallelize existing sequential graph algorithms as a whole, without the need for

recasting the entire algorithms into a new model. Underlying GRAPE are a simple programming model, and a

principled approach based on fixpoint computation that starts with partial evaluation and uses an incremental

function as the intermediate consequence operator. We show that users can devise existing sequential graph

algorithms with minor additions, and GRAPE parallelizes the computation. Under a monotonic condition, the

GRAPE parallelization guarantees to converge at correct answers as long as the sequential algorithms are

correct. Moreover, we show that algorithms in MapReduce, BSP and PRAM can be optimally simulated on

GRAPE. In addition to the ease of programming, we experimentally verify that GRAPE achieves comparable

performance to the state-of-the-art graph systems, using real-life and synthetic graphs.

CCS Concepts: • Information systems → Database management system engines; Parallel and dis-
tributed DBMSs;

Additional Key Words and Phrases: Graph computations; parallel graph query engines; parallelizing sequential

algorithms; convergence; simulation

ACM Reference Format:
Wenfei Fan, Wenyuan Yu, Jingbo Xu, Jingren Zhou, Xiaojian Luo, Qiang Yin, Ping Lu, and Yang Cao, Ruiqi Xu.

2000. Parallelizing Sequential Graph Computations. ACM Trans. Datab. Syst. 0, 0, Article 38 ( 2000), 41 pages.
https://doi.org/0000000.0000000

1 INTRODUCTION
Several parallel systems have been developed for graph computations, e.g., Pregel [50], GraphLab
[49], Giraph++ [63] and Blogel [71]. These systems, however, require users to recast graph algorithms

into their models. While graph computations have been studied for decades and a number of

sequential (single-machine) graph algorithms are already in place, to use Pregel, for instance, one

has to “think like a vertex” and recast the existing algorithms into a vertex-centric model; similarly

∗
Corresponding author

Authors’ addresses: Wenfei Fan, University of Edinburgh, 10 Crichton Street, Edinburgh, UK, EH8 9AB, Beihang University,

37 Xue Yuan Road, Haidian District, Beijing, China, 100191, Shenzhen Institute of Computing Sciences, Shenzhen, China,

wenfei@inf.ed.ac.uk; Wenyuan Yu, Jingbo Xu, Jingren Zhou, Xiaojian Luo, Qiang Yin, Alibaba Group, 969 West Wen Yi Road,

Yu Hang District. Hangzhou, China, 311121, {wenyuan.ywy,xujingbo.xjb,jingren.zhou,lxj193371,qiang.yq}@alibaba-inc.com;

Ping Lu, BDBC, Beihang University, 37 Xue Yuan Road, Haidian District, Beijing, China, 100191, luping@buaa.edu.cn; Yang

Cao, Ruiqi Xu, University of Edinburgh, 10 Crichton Street, Edinburgh, UK, EH8 9AB, {yang.cao,ruiqi.xu}@ed.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2000 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0362-5915/2000/0-ART38 $15.00

https://doi.org/0000000.0000000

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.

https://doi.org/0000000.0000000
https://doi.org/0000000.0000000


38:2 W. Fan et al.

System Category Time(second) Communication(MB)
Giraph vertex-centric 434.0 113411.1

GraphLab vertex-centric 41.7 106756.3

Blogel block-centric 112.3 123377.0

GRAPE semi-auto parallelization 24.3 14744.8

Table 1. Graph traversal on parallel systems

when programming with other systems. The recasting is nontrivial for people who are not very

familiar with the parallel models. This makes these systems a privilege for experienced users only.

Is it possible to have a system such that we can provide sequential (single-machine) graph algo-

rithms as a whole (subject to minor changes), and it parallelizes the computation across multiple pro-

cessors, without drastic degradation in either performance or functionality of the existing systems?

GRAPE. To answer this question, we develop GRAPE, a parallel GRAPh Engine for graph com-

putations such as graph traversal, graph pattern matching, graph connectivity and collaborative

filtering. Using our familiar terms, we refer to a graph computation problem Q as a class of queries,

and an instance Q of Q as a query of Q. GRAPE differs from prior graph systems in the following.

(1) Ease of programming. GRAPE supports a simple programming model. For a class Q of graph

queries, users only need to provide (existing) sequential (incremental) algorithms for Q with minor

additions. There is no need to revise the logic of the existing algorithms, and it substantially reduces

the efforts to “think parallel”. This makes parallel graph computations accessible to a large group

of users who know conventional graph algorithms covered in undergraduate textbooks.

(2) Termination and correctness. GRAPE parallelizes the sequential algorithms based on a combi-

nation of partial evaluation and incremental computation. It guarantees to converge at correct

answers under a monotonic condition, as long as the sequential algorithms provided are correct.

(3) Graph-level optimization. GRAPE naturally inherits all optimization strategies available for

sequential algorithms and graphs, e.g., indexing, compression and partitioning. In contrast, these

strategies are hard to implement for vertex-centric programs.

(4) Scalability. The ease of programming does not imply performance degradation compared with

the state-of-the-art systems, e.g., vertex-centric Giraph [6] (Pregel) and GraphLab, and block-

centric Blogel. For instance, Table 1 shows the performance of the systems for single source

shortest-path queries (SSSP) over Friendster [4], a social network with 65 million users and 1.8
billion relationships (edges), using 192 processors, GRAPE outperforms Giraph, GraphLab and

Blogel in both response time and communication costs (see Section 7 for more results).

A principled approach. To see how GRAPE achieves these, we present its underlying principles.

Consider a graph G that is partitioned into fragments (F1, . . . , Fn), and distributed across n pro-

cessors (P1, . . . , Pn), where Fi resides at Pi for i ∈ [1,n], respectively. Given a query Q ∈ Q and a

fragmented graph G, GRAPE computes the answer Q(G) to Q in G based on the following.

Partial evaluation. Given a function f (s,d) and the s part of its input, partial evaluation is to

specialize f (s,d) with respect to the known input s [42]. That is, it performs the part of f ’s
computation that depends only on s , and generates a partial answer, i.e., a residual function f ′ that
depends on the as yet unavailable input d . For each processor Pi in GRAPE, its local fragment Fi
is its known input s , while the data residing at other processors accounts for the yet unavailable
input d . GRAPE computes Q(Fi ) at all processors Pi ’s in parallel as partial evaluation.
Incremental computation. Graph computations are often iterative. If Q(G) cannot be obtained in

one step by combining partial results Q(Fi ), GRAPE exchanges selected partial results as messages

between processors, and computes Q(Fi ⊕Mi ), by treating messageMi to Pi as updates to certain

status variables associated with nodes and edges in Fi . It incrementally computes changes ∆Oi

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



Parallelizing Sequential Graph Computations 38:3

Fig. 1. Programming Interface of GRAPE
to Q(Fi ) such that Q(Fi ⊕ Mi ) = Q(Fi ) ⊕ ∆Oi , making maximum reuse of previous results Q(Fi ).
Here (1) Mi is a message designated to worker Pi , where fragment Fi resides; (2) Fi ⊕ Mi is the

abbreviation of the following steps: (a) deduce the change ∆Fi to Fi fromMi (we will show how to

deduce the change in Section 3.2); and then (b) apply the change ∆Fi to fragment Fi ; and (3) Q(Fi )
⊕ ∆Oi is to apply the change ∆Oi to the old result Q(Fi ). It is to minimize the use of notations that

we reload the notation ⊕; it will be clear from the context what operation ⊕ means. Incremental

computation is often more efficient than recomputing Q(Fi ⊕Mi ) starting from scratch, since in

practiceMi is typically small, and so is Oi . Better still, it may be bounded: its cost depends only on

the sizes of the changesMi to input Fi and changes ∆Oi to output Q(Fi ), not on the size |Fi | of the
entire fragment Fi [29, 57], minimizing unnecessary recomputation.

Workflow. Based on partial evaluation and incremental computation, GRAPE works as follows.

(1) Plug. GRAPE offers a simple programming interface as shown in Figure 1. For a class Q of graph

queries, developers need to specify three functions: PEval, IncEval and Assemble in the algorithm

panel. PEval and IncEval are (often existing) sequential (single-machine) algorithms for Q, for partial

evaluation and incremental computation, respectively; and Assemble is typically straightforward

(see examples shortly). These can be picked from a library of graph algorithms; the only addition is

a specification of messages for communication between processors.

(2) Play. In the configuration panel, users may pick such a specification (PEval, IncEval and
Assemble) registered for Q, a graph G, a graph partition strategy and a number n of processors to

work with (Figure 1). Given a query Q ∈ Q and a partitioned graph G, GRAPE parallelizes PEval,
IncEval and Assemble across n processors, and computesQ(G) in three phases as shown in Figure 2.

(a) Each processor Pi first executes PEval against its local fragment Fi , to compute partial answer
Q(Fi ) in parallel. This facilities data-partitioned parallelism via partial evaluation.
(b) Then each processor Pi may exchange partial results with other processors via synchronous

message passing under BSP [65]. Upon receiving messageMi , processor Pi incrementally computes

local answer Q(Fi ⊕ Mi ) by IncEval, operating on its local fragment Fi “updated” byMi .

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



38:4 W. Fan et al.

Q

(F )1Q (F )1

coordinator

P

n

Fig. 2. Workflow of GRAPE

(c) The incremental step iterates until no further updatesMi can be made to any Fi . At this point,
Assemble pulls partial answers Q(Fi ⊕ Mi ) from Pi for i ∈ [1,n] and assembles Q(G).

That is, GRAPE parallelizes sequential algorithms as a whole, and computes a simultaneous

fixpoint by taking IncEval as the intermediate consequence operator. It guarantees to reach a

fixpoint under a monotonic condition if the sequential algorithms are correct for Q. Moreover, it

minimizes iterative recomputation by using IncEval, and supports graph-level optimization on Fi .

Example 1.1. Consider Single Source Shortest Path (SSSP), a routine graph computation problem.

Given a directed graph G with edges labeled with positive weights, and a source node s in G (as a

queryQ), the goal is to findQ(G) including the shortest distance dist(s,v) from s to all nodesv inG .

Using GRAPE, one can pick our familiar Dijkstra’s algorithm [32] as PEval, and a bounded se-

quential incremental algorithm of [56, 57] as IncEval. The algorithm of [56] essentially propagates

changes to vertices or edges to other vertices in the graph following an order defined on some “keys”

of the affected vertices. Similarly, the algorithm by [57] handles unit changes to graphs. The only

addition to GRAPE is that for each fragment Fi , a variable dist(s,v) of positive numbers is declared

for each node v , initially ∞ (except dist(s, s) = 0). As shown in Figure 2, PEval first computes

Q(Fi ); it then repeats incremental steps IncEval to computeQ(Fi ⊕Mi ), where messagesMi include

updated (smaller) dist(s,u) (due to new “shortcut” from s) for border nodes u, i.e., nodes with edges

across different fragments. GRAPE guarantees the termination of the fixpoint computation, when

no more dist(s,v) can be changed to a smaller value. At this point, Assemble takes a union ofQ(Fi )
as Q(G), which is provably correct (see Section 3 for details).

That is, we take sequential algorithms as PEval, IncEval and Assemble, and specify variables

dist(s,v) for updating border nodes. GRAPE takes care of details such as message passing, load

balancing and fault tolerance. There is no need to recast the algorithms into a new model. 2

Contributions. We propose GRAPE, which suggests a new approach to parallelizing (existing)

sequential graph algorithms, from foundation to implementation.

(1) We introduce the parallel model of GRAPE, based on a fixpoint of partial evaluation and

(bounded) incremental computation (Section 3). We also present the programming model ofGRAPE.
We show how GRAPE takes existing sequential graph algorithms as input, and parallelizes the

entire algorithms, in contrast to parallelization of instructions or operators [53, 58].

(2) We prove two fundamental results (Section 4): (a) Assurance Theorem guarantees that for

all queries Q ∈ Q and graphs G, GRAPE converges at correct answers Q(G) under a monotonic

condition as long as its input sequential algorithms are correct, and (b) Simulation Theorem shows

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



Parallelizing Sequential Graph Computations 38:5

that MapReduce [22], BSP (Bulk Synchronous Parallel) [65] and PRAM (Parallel Random Access

Machine) [66] can be optimally simulated by GRAPE. As a consequence, algorithms developed for

existing graph systems can be migrated to GRAPE without increasing complexity bounds.

(3) As examples, we show that a variety of graph computations can be readily parallelized byGRAPE
(Section 5). These include graph traversal (single-source shortest path queries SSSP), graph pattern

matching (via graph simulation Sim and subgraph isomorphism SubIso), connected components

(CC), and collaborative filtering (CF, as an example of machine learning). We show how GRAPE
easily parallelizes their sequential algorithms with minor revisions.

(4) We outline an implementation of GRAPE (Section 6). We show how GRAPE supports paralleliza-

tion, message passing, fault tolerance and consistency. We also show how easilyGRAPE implements

graph-level optimization strategies such as indexing, compression and dynamic grouping, since

the sequential algorithms directly operate on fragments of a graph, which are graphs themselves.

These are not supported by the state-of-the-art vertex-centric and block-centric systems.

(5) We experimentally evaluate GRAPE (Section 7), compared with (a) Giraph, an open-source ver-

sion of Pregel, (b) GraphLab, another vertex-centric system, and (c) Blogel, the fastest block-centric
system we are aware of. Over real-life graphs, we find that in addition to the ease of programming,

GRAPE achieves comparable performance to the state-of-the-art systems. For instance, (a) on a

US road network traffic [2], GRAPE is on average 14842, 3992 and 756 times faster than Giraph,
GraphLab and Blogel for SSSP, respectively, with 192 processors, due to the large diameter of the

graph. (b) On other real-life graphs excluding traffic, GRAPE is on average 484, 36 and 15 times

faster than Giraph,GraphLab and Blogel for SSSP, 151, 6.8 and 16 times for Sim, 149.3, 34.2 and 9.6
times for SubIso, and 4.6, 2.6 and 12.4 times for CF, respectively, when the number of processors

ranges from 64 to 192. (b) In the same setting (excluding traffic), GRAPE ships on average 0.07%,

0.12% and 1.7% of the data shipped across machines by Giraph, GraphLab and Blogel for SSSP,
0.89%, 0.14% and 4.9% for Sim, 0.18%, 0.23% and 0.11% for SubIso, 5.6%, 43.3% and 3.2% for CF,
respectively. When traffic is also included, GRAPE outperforms these systems by up to 6 orders of

magnitude in communication cost for SSSP. (c) Incremental steps effectively reduce the cost and

improve the performance of Sim by 9.6 times on average. (d) Optimization strategies for sequential

algorithms remain effective for GRAPE and improve Sim by 20% on average.

Related work. This paper extends its conference version [31] as follows. (1) We provide proofs

of Assurance Theorem and Simulation Theorem (Section 4). (2) We develop algorithms for graph

simulation Sim, subgraph isomorphism SubIso, connected components CC, and collaborative

filtering CF (Section 5). The details of the algorithms were not included in [31]. (3) We re-conduct

all experiments of [31] by using larger graphs and more processors, to evaluate the scalability of

GRAPE with the size of datasets and the parallel scalability with the number of processors, as well

as the communication costs. We also add a COST [51] analysis of GRAPE (Section 7).

The other related work is categorized as follows.

Parallel graph systems. Several parallel models have been studied for graph computations, e.g.,
PRAM [66], BSP [65] and MapReduce [22]. PRAM abstracts parallel RAM access over shared

memory. A large collection of parallel graph algorithms are in place for PRAM. These algorithms

may need to be optimized for the shared-nothing architecture that is widely used today. MapReduce

makes parallel computation accessible to a large number of users, but may not be very efficient

for iterative graph computations due to its blocking nature and I/O costs. BSP has proven more

appropriate for graph computations. It models parallel computations in supersteps (including local

computation, communication and a synchronization barrier) to synchronize communication among

workers, such that messages from one superstep are accessible in the next one. Alternatively, AP

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



38:6 W. Fan et al.

(Asynchronous Parallel) model allows a worker to have immediate access to incoming messages.

Vertex-centric models [6, 49, 50] execute local computations defined at each vertex in parallel.

Several parallel graph systems have been developed under these models. Pregel [50] (Giraph [6])

implements BSP with vertex-centric programming, where a superstep executes a user-defined

function at each vertex in parallel. GraphLab [49] supports both BSP and AP with vertex-centric

programming. Block-centric systems [63, 71] extend vertex-centric programming to blocks, to

exchange messages among blocks and reduce communication costs. Giraph++ [63] supports graph-

centric programming to open up subgraphs to be programmed against. Blogel [71] allows blocks to

have their status as a “vertex” and supports block-level communication. Nonetheless, both Giraph++

and Blogel still adopt the vertex-centric style programming paradigm.

Popular parallel graph systems also include GraphX [34], GRACE [67], GPS [59], Mizan [46],

Pregel+ [72] (see [70] for a recent survey). GraphX [34] recasts graph computation into its distributed

dataflow framework as a sequence of join and group-by stages punctuated by map operations, on

Spark platform. GRACE [67] provides an operator-level, iterative programming model to enhance

BSP with asynchronous execution. It provides a scheduler to control the order of vertex computation

in a block. The system works in single-machine environment, with a focus on improving main

memory utilization. GPS [59] implements Pregel with extended APIs and partition strategies. It

advocates an optimization strategy such that algorithms can “post” messages, for a vertex to send

the same message to all of its neighbors, by partitioning the neighbors of high-degree nodes across

different processors (via their mirrored nodes). Mizan [46] optimizes Pregel with dynamic load

balancing based on run-time monitoring of vertex computation. Pregel+ [72] introduces optimized

message reduction similar to GPS but with an additional cost model to trade off mirroring and

message combining costs. Both Mizan and Pregel+ are based on Pregel’s model.

All these systems require recasting of existing sequential algorithms into a new model. For

example, synchronous vertex programs are required by Pregel-like systems [6, 46, 50, 59, 63, 72].

Sequential algorithms need to be recast to Gather-Aggregate-Scatter (GAS) vertex programs in

GraphLab [49]. When it comes to block-centric models [63, 71], sequential algorithms have to be

recast to block-level programs that treat each subgraph as a single vertex.

This work aims to show that it is possible to parallelize existing sequential graph algorithms

as a whole, without recasting the algorithms into a new model. GRAPE can simplify parallel

programming and make parallel graph computations accessible to a large group of users, without

drastic degradation in performance or functionality. To this end,GRAPE adopts the synchronization

mechanism of BSP for its simplicity. As opposed to the prior systems, (a) GRAPE parallelizes

sequential algorithms based on fixpoint computation with partial evaluation and incremental

computation. (b) Following data-partitioned parallelism, given a partitioned graph, GRAPE allows

workers to operate on different fragments in parallel, and exchanges among workers only the

updated values of the status variables associated with border nodes. In contrast, for iterative

computations, MapReduce needs to repartition graph and ship its entire state in each round [50]. (c)

The vertex-centric model of Pregel (synchronized) is a special case of GRAPE, when each fragment

is limited to a single vertex. The communications of Pregel are via “inter-processor” messages,

and a message from a node often has to go through several supersteps to reach another node.

GRAPE reduces excessive messages and scheduling cost of Pregel, since communications within

the same fragment are local. GRAPE also facilitates graph-level optimization methods that are

hard to implement in vertex-centric systems; similarly for GraphLab (asynchronized). (d) Closer

to GRAPE are block-centric models [63, 71]. However, the programming interface of [63] is still

vertex-centric, and [71] is a mix of vertex-centric and block-centric programming (V-compute and

B-compute). The B-compute interface is essentially vertex-centric programming, by treating each

block as a vertex. Users have to recast existing sequential algorithms into a new model. In contrast,

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



Parallelizing Sequential Graph Computations 38:7

GRAPE takes sequential algorithms PEval and IncEval from GRAPE library, and applies them to

blocks in parallel without recasting. (e) None of the prior systems uses (bounded) incremental

steps to speed up iterative computations. (f) To the best of our knowledge, none of these systems

provides assurance on termination and the correctness of parallel graph computations.

Partial evaluation has been studied for certain XML [19] and graph queries [29]. There has also

been a host of work on incremental graph computation (e.g., [24, 29, 57]). This work makes a first

effort to provide a uniform model by combining partial evaluation and incremental computation

together, to parallelize sequential graph algorithms as a whole.

Parallelization of graph computations. A number of algorithms have been developed in MapReduce,

vertex-centric models and others [29, 73]. In contrast, GRAPE aims to parallelize existing sequential

graph algorithms, without revising their logic and work flow. Moreover, parallel algorithms for

MapReduce, BSP (vertex-centric or not) and PRAM can be easily migrated to GRAPE (Section 4.2).

Prior work on automated parallelization has focused on the instruction or operator level [54, 58]

by breaking dependencies via symbolic and automatic analyses. There has also been work at data

partition level [75], to perform multi-level partition (“parallel abstraction”) and adapt locality-

optimized access to different parallel abstraction. In contrast, GRAPE aims to parallelize sequential

algorithms as a whole, and make parallel computation accessible to end users, while [54, 58, 75]

target experienced developers of parallel algorithms. There have also been tools for translating

imperative code to MapReduce, e.g., word count [55]. GRAPE advocates a different approach, by

parallelizing the runs of sequential graph algorithms to benefit from data-partitioned parallelism,

without translation. This said, the techniques of [54, 55, 58, 75] are complementary to GRAPE.
Simulation results. Prior work has mostly focused on simulations between variants of PRAM with

different memory management strategies, to characterize bounds of slowdown for deterministic or

randomized solutions [38]. There has also been recent work on simulation of PRAM on MapReduce

and BSP [43]. In particular, [43] defines a frameworkMRC for MapReduce computations and shows

that a large class of PRAM algorithms can be efficiently simulated byMRC with certain restrictions.

This work extends [31] by providing optimal deterministic simulation results of MapReduce, BSP

and PRAM on GRAPE, adopting the notion of optimal simulations of [66].

2 PRELIMINARIES
We start with a review of basic notations.

Graphs. We consider graphs G = (V ,E,L), directed or undirected, where (1) V is a finite set of

nodes; (2) E ⊆ V ×V is a set of edges; (3) each nodev inV (resp. edge e ∈ E) carries L(v) (resp. L(e)),
indicating its content, as found in social networks, knowledge bases and property graphs.

We use two notions of subgraphs. A graphG ′ = (V ′,E ′,L′) is called a subgraph ofG if V ′ ⊆ V ,
E ′ ⊆ E, and for each node v ∈ V ′

(resp. edge e ∈ E ′
), L′(v) = L(v) (resp. L′(e) = L(e)). A subgraph

G ′
is said to be induced by V ′

if E ′
consists of all the edges in G whose endpoints are both in V ′

.

Partition strategy. Given a graph G and a numberm, a graph partition strategy P partitions G
into fragments F = (F1, . . . , Fm) such that each Fi = (Vi ,Ei ,Li ) is a subgraph of G, E =

⋃
i ∈[1,m] Ei ,

V =
⋃

i ∈[1,m]Vi , and Fi resides at processor Pi for i ∈ [1,m]. In vertex partition (a.k.a. edge-
cut) [12, 18]), a cut edge from fragment Fi to Fj has a copy in each of Fi and Fj . Denote by

◦ Fi .I (resp. Fi .O
′
) the set of nodes v ∈ Vi such that there exists an edge (v ′,v) from (resp.

(v,v ′) to) a node v ′
in Fj (i , j);

◦ Fi .O (resp. Fi .I
′
) the set of nodes v ′

in some Fj (i , j) such that there exists an edge (v,v ′)

from (resp. (v ′,v) to) v ∈ Vi ; and

◦ F .O =

⋃
i ∈[1,m] Fi .O , F .O

′
=

⋃
i ∈[1,m] Fi .O

′
, F .I =

⋃
i ∈[1,m] Fi .I , F .I

′
=

⋃
i ∈[1,m] Fi .I

′
.

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



38:8 W. Fan et al.

symbols notations

Q a class of graph queries

Q a query Q ∈ Q

G graph, directed or undirected

P0, Pi P0: coordinator; Pi : workers (i ∈ [1,n])

P graph partition strategy

GP the fragmentation graph of G via partition strategy P

Fi the i-th fragment of graph G via partition strategy P

Vi ,Ei vertex set and edge set of fragment Fi , respectively

F fragmentation (F1, . . . , Fn ) of graph G

Mi messages designated to worker Pi
Fi ⊕ Mi fragment Fi updated with messageMi

Table 2. Notations

We refer to those nodes in Fi .I ∪ Fi .O
′
as the border nodes of fragment Fi w.r.t. partition strategy P.

Note that F .I = F .O and F .I ′ = F .O ′
.

In edge partition (a.k.a. vertex-cut) [47], the cut vertices are called entry vertices and exit vertices
for the partitions, which correspond to the sets F .O ∪ F .I ′ and F .I ∪ F .O ′

, respectively. In

general, a border node is a vertex that relates to vertices or edges in two different fragments.

The fragmentation graph GP of G via P is an index such that given each border node v in Fi .I
(resp. Fi .O

′
) (i ∈ [1,m]),GP(v) retrieves a set of {j |v ∈ Fj .O} (resp. {j |v ∈ Fj .I

′}). As will be seen

shortly, we will make use of GP to deduce the directions of messages.

The notations of this paper are summarized in Table 2.

3 PROGRAMMINGWITH GRAPE
Below we first introduce the parallel model of GRAPE. We then show how to program with GRAPE.
Following BSP [65], GRAPE works with a coordinator P0 and a set ofm workers P1, . . . , Pm .

3.1 The Parallel Model of GRAPE
Given a graph partition strategy P and sequential algorithms PEval, IncEval and Assemble for
a class Q of graph queries, GRAPE parallelizes the computations as follows. It first partitions

graph G into fragments F = (F1, . . . , Fm) with strategy P, and distributes the fragments acrossm
shared-nothing virtual workers (P1, . . . , Pm). It mapsm virtual workers to n physical workers such

that fragment Fi resides at worker Pi for i ∈ [1,m]. When n < m, multiple virtual workers mapped

to the same worker share memory. It also constructs fragmentation graphGP . Note that graphG is

partitioned once for all queries Q ∈ Q posed on graph G.

Parallel model. Given a query Q ∈ Q, GRAPE computes answer Q(G) to Q in the partitioned

graph G, as shown in Figure 2. Upon receiving Q at coordinator P0, GRAPE posts the same query

Q to all the workers. To simplify the discussion, here we adopt synchronous message passing

following BSP [65]. We will show how GRAPE implements point-to-point communication in

Section 6. Furthermore, GRAPE also works under asynchronous parallel models [27].

Its parallel computation consists of the following three phases.

(1) Partial evaluation (PEval). In the first superstep, upon receiving query Q , each worker Pi com-

putes partial result Q(Fi ) locally at its fragment Fi using PEval, in parallel (for i ∈ [1,m]). It also

identifies and initializes a set of update parameters for each Fi that records the status of cer-

tain nodes, e.g., border nodes. At the end of the process, it generates a message from the update

parameters at each Pi , and sends it to coordinator P0 (see Section 3.2 for update parameters).

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



Parallelizing Sequential Graph Computations 38:9

(2) Incremental computation (IncEval). GRAPE iterates the following supersteps until it terminates.

Each superstep consists of two steps, one at the coordinator P0 and the other at the workers.

(2.a) Coordinator. Coordinator P0 checks whether for all i ∈ [1,m], worker Pi is inactive, i.e., Pi is
done with its local computation and there exists no pending message designated for Pi . If so,
GRAPE invokes Assemble and terminates (see below). Otherwise, P0 composes a message

Mi by aggregating messages from the last superstep (see details shortly), sendsMi to worker

Pi for i ∈ [1,m], and triggers the next superstep.

(2.b) Workers. Upon receiving message Mi , worker Pi incrementally computes Q(Fi ⊕ Mi ) with

IncEval, by treating Mi as updates, in parallel for all i ∈ [1,m]. Here Fi ⊕ Mi denotes the

fragment Fi that is updated with messageMi , i.e., Fi after its update parameters are changed

with the values inMi . At the end of the process, IncEval automatically finds the changes to

the update parameters in each Fi , and sends the changes as a message to coordinator P0 (see

Section 3.3 for details).

GRAPE supports data-partitioned parallelism by partial evaluation on local fragments, in parallel

by all workers. Its incremental step (2.b) speeds up iterative graph computations by reusing the

partial results from the last superstep, to minimize unnecessary recomputation.

(3) Termination (Assemble). The coordinator P0 decides to terminate the process if there exists

no more change to any update parameters (see (2.a) above). If so, P0 pulls partial results from all

workers, and computes Q(G) by invoking Assemble. It returns query answer Q(G).

We will show in Section 4 that the parallel process converges at correct answers under a mono-

tonic condition as long as the sequential algorithms PEval, IncEval and Assemble are correct;

moreover, the simple parallel model does not lose expressive power.

3.2 PEval: Partial Evaluation
We now introduce the programming model of GRAPE. GRAPE provides a programming interface

for users to extend (existing) sequential algorithms with message declarations. GRAPE registers

the algorithms as stored procedures in its API library (Figure 1), and maps them to a query class Q.

More specifically, for a class Q of graph queries, one only needs to provide three core functions

PEval, IncEval and Assemble (see the Plug Panel in Figure 1), referred to as a PIE program. These

are conventional (existing) sequential algorithms, and can be picked from Library API of GRAPE.
We next elaborate the three functions in a PIE program.

Function PEval takes a query Q ∈ Q and a fragment Fi of G as input, and computes partial

answers Q(Fi ) at worker Pi in parallel for all i ∈ [1,m]. It may be any existing sequential algorithm

for Q. One only needs to extend it with the following additions:

◦ partial result kept in a designated variable; and

◦ message specification as its interface to IncEval.
Communication among workers is conducted via message passing. Messages are defined in terms

of update parameters of each fragment Fi as follows.

(1) Message preamble. Function PEval (a) declares status variables x̄ associated with vertices and

edges for each fragment Fi , and (b) specifies a set Ci of nodes and edges relative to Fi .I or Fi .O
′

w.r.t. each fragment Fi . The status variables associated withCi are denoted byCi .x̄ , and are referred
to as the update parameters of Fi . The variables are declared and initialized in PEval. At the end of

PEval, it sends the values of Ci .x̄ to coordinator P0.

Intuitively, variables in Ci .x̄ are the candidates to be updated by incremental steps. In other

words, messagesMi to worker Pi are updates to the values of variables in Ci .x̄ .

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



38:10 W. Fan et al.

More specifically, in GRAPE, Ci is specified by an integer d and S , where S is either Fi .I or Fi .O
′
.

That is, Ci is the set of nodes and edges within d-hops of nodes in S . In most cases d = 0 and Ci is

Fi .I or Fi .O
′
. However, in some applications one needs d ≥ 0, e.g., subgraph isomorphism (SubIso,

see Section 5.1). In such cases Ci may include nodes and edges from other fragments Fj of G.

A messageMi is a set of key-value pairs ⟨x , val⟩, where x is a status variable declared inCi .x̄ and

val is its value. GRAPE supports arbitrarily typed status variables, e.g., val ofMi can be a numeric

value (e.g., in the algorithm for SSSP in Example 3.1), a multi-set of tuples ⟨r , key, value⟩ (in the

simulation of MapReduce in the proof of Theorem 4.2), or even a user defined structure (a class).

(2) Message segment. PEval specifies function aggregateMsg, to resolve conflicts when multiple

messages from different workers attempt to assign different values to the same update parameter

(variable). When such a strategy is not provided, GRAPE picks a default exception handler.

(3) Message grouping. GRAPE deduces updates toCi .x̄ for i ∈ [1,m], and treats them as messages

exchanged among workers. More specifically, at coordinator P0, GRAPE identifies and maintains

Ci .x̄ for each worker Pi . Upon receiving messages from Pi ’s, GRAPE works as follows.

(a) Identifying Ci . It deduces Ci for i ∈ [1,m] by referencing fragmentation graph GP , and Ci

remains unchanged in the entire process. It maintains update parameters Ci .x̄ for Fi .

(b) ComposingMi . For messages from each Pi , GRAPE does the following:

(i) it identifies variables in Ci .x̄ with changed values;
(ii) it deduces the designations Pj of the messages by referencing the fragmentation graphGP ;

if P is edge-cut, the variable tagged with a node v in Fi .I will be sent to worker Pj if v is

in Fj .O (i.e., if j is in GP(v)); similarly for v in Fi .O
′
; if P is vertex-cut, it identifies nodes

shared by Fi and Fj (i , j); and

(iii) it combines all changed variable values designated to Pj into a single message Mj , and

sendsMj to worker Pj in the next superstep for all j ∈ [1,m].

If a variable x is assigned a set S of values from different workers, function aggregateMsg is

applied to S to resolve the conflicts, and its result is taken as the value of x . When a node v has

copiesvi ∈ Fi andvj ∈ Fj residing in different fragments, e.g.,whenv is a border node in Fi .O∩Fj .I
(i , j), vi .x and vj .x are treated as the same status variable x and are assigned the same value.

These are automatically conducted byGRAPE, which minimizes communication costs by passing

only updated variable values. To reduce the workload at the coordinator, alternatively each worker

may maintain a copy of GP and deduce the designation of its messages in parallel (see Section 6).

Example 3.1. We show how GRAPE parallelizes SSSP (see Example 1.1). Consider a directed

graph G = (V ,E,L) in which for each edge e , L(e) is a positive number. The length of a path

(v0, . . . ,vk ) inG is the sum of L(vi−1,vi ) for i ∈ [1,k]. For a pair (s,v) of nodes, denote by dist(s,v)
the shortest distance from s to v , i.e., the length of a shortest path from s to v . Given graph G and

a node s in V , GRAPE computes dist(s,v) for all nodes v ∈ V . It adopts edge-cut partition [18]. It

deduces Fi .O by referencing GP , and stores Fi .O at each fragment Fi .

As shown in Figure 3, PEval (lines 1-14) is verbally identical to Dijkstra’s sequential algorithm [32].

The only changes are message preamble and segment (underlined). It declares an integer variable

dist(s,v) for each node v , initially ∞ (except dist(s, s) = 0). It specifies min as aggregateMsg to

resolve conflicts: if there are multiple values for the same dist(s,v), the smallest value is taken by

the linear order on integers. The update parameters are Ci .x̄ = {dist(s,v) | v ∈ Fi .O}.

At the end of its process, PEval sends Ci .x̄ to coordinator P0. At P0, GRAPE maintains dist(s,v)
for all v ∈ F .O = F .I . Upon receiving messages from all workers, it takes the smallest value

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



Parallelizing Sequential Graph Computations 38:11

Input: Fi (Vi ,Ei ,Li ), source vertex s .
Output: Q(Fi ) consisting of current dist(s,v) for all v ∈ Vi .

Message preamble: /*candidate set Ci is Fi .O*/
for each node v ∈ Vi , a float variable dist(s,v);

/*sequential algorithm for SSSP (pseudo-code)*/

1. initialize priority queueQue;
2. dist(s, s) := 0;

3. for each v in Vi do
4. if v! = s then
5. dist(s,v) :=∞;

6. Que.addOrAdjust(s , dist(s, s));
7. whileQue is not empty do
8. u :=Que.pop(); /* pop vertex with minimal distance */

9. for each child v of u do /* only v that still has not been visited */

10. alt := dist(s,u) + Li (u,v);
11. if alt < dist(s,v) then
12. dist(s,v) := alt ;
13. Que.addOrAdjust(v , dist(s,v));
14. Q(Fi ) := {dist(s,v) | v ∈ Vi }

Message segment:Mi := {dist(s,v) | v ∈ Fi .O};

aggregateMsg = min(dist(s,v));

Fig. 3. PEval for SSSP

for each dist(s,v). It finds those variables with smaller values, deduces their destinations Pj by
referencing fragmentation graphGP , groups them into messagesMj , and sendsMj to worker Pj . 2

3.3 IncEval: Incremental Evaluation
Given query Q , fragment Fi , partial results Q(Fi ) and messageMi (updates to Ci .x̄), IncEval com-

putes Q(Fi ⊕ Mi ) incrementally, making maximum reuse of the computation of Q(Fi ) in the last

round. Here Fi ⊕Mi denotes Fi updated withMi . Each time after IncEval is executed, GRAPE treats

Fi ⊕Mi andQ(Fi ⊕Mi ) as Fi andQ(Fi ), respectively, for the next round of incremental computation.

Function IncEval can be any existing sequential incremental algorithm for Q. It shares the

message preamble of PEval. At the end of the process, it identifies changed values to Ci .x̄ at each

fragment Fi , and sends the changes as messages to P0. Upon receiving the messages at coordinator

P0, GRAPE composes these messages as described in 3(b) in Section 3.2.

Boundedness. Graph computations are typically iterative. GRAPE reduces the costs of iterative

computations by promoting bounded incremental algorithms for IncEval.
Consider an incremental algorithm IncEval for Q. Given G, Q ∈ Q, Q(G) and updatesM to G, it

computes ∆O such thatQ(G⊕M) =Q(G)⊕∆O , where ∆O denotes changes to the old outputQ(G). It
is said to be bounded if its cost can be expressed as a function in the size of |CHANGED| = |M |+ |∆O |,

i.e., the size of changes in the input and output [28, 57]. Intuitively, |CHANGED| represents the
updating costs inherent to the incremental problem for Q itself. For a bounded IncEval, its cost is
determined by |CHANGED|, not by the size |Fi | of entire Fi , no matter how big |Fi | is. That is, it
reduces computation on possibly big Fi to smaller data bounded by O(|CHANGED|).

Example 3.2. Continuing with Example 3.1, we provide IncEval in Figure 4. It is the sequential

incremental algorithm for SSSP developed in [56, 57], in response to changed dist(s,v) for v in Fi .I
(here messageMi includes changes to dist(s,v) for v ∈ Fi .I deduced from GP ). Using a queue Que,

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



38:12 W. Fan et al.

Input: Fi (Vi ,Ei ,Li ), partial result Q(Fi ), messageMi .

Output: Q(Fi ⊕ Mi ).

1. initialize priority queueQue;
2. for each dist(s,v) inM do
3. Que.addOrAdjust(v, dist(s,v));
4. while Que is not empty do
5. u :=Que.pop(); /* pop vertex with minimum distance*/

6. for each children v of u do /* only v that still has not been visited */

7. alt := dist(s,u) + Li (u,v);
8. if alt < dist(s,v) then
9. dist(s,v) := alt ;
10. Que.addOrAdjust(v, dist(s,v));
11. Q(Fi ) := {dist(s,v) | v ∈ Vi }

Message segment:Mi = {dist(s,v) | v ∈ Fi .O, dist(s,v) decreased};

Fig. 4. IncEval for SSSP

it starts with Mi , propagates the changes to affected area, and updates the distances (see [56, 57]

for details). The partial result is now the revised distances (line 11).

At the end of the process, IncEval sends to coordinator P0 updated values of those status variables

in Ci .x̄ , as in PEval. It applies aggregateMsg min to resolve conflicts.

The changes to the algorithm of [56, 57] are underlined in Figure 4. Following [56, 57], one can

show that IncEval is bounded: its cost is determined by the sizes of “updates” |Mi | and the changes

to the output. This reduces the cost of iterative computation of SSSP (the while and for loops). 2

Note that IncEval only needs to deal with changesMi , e.g., changes to dist(s,v) for v ∈ Fi .I in
Example 3.2. That is, changes are restricted to the update parameters, rather than generic updates.

3.4 Assemble Partial Results
Function Assemble takes partial results Q(Fi ⊕ Mi ) and fragmentation graph GP as input, and

combines Q(Fi ⊕ Mi ) to get complete query answer Q(G). It is triggered when no more changes

can be made to update parameters Ci .x̄ for any i ∈ [1,m].

Example 3.3. Continuing with Example 3.2, function Assemble (not shown) for SSSP takes Q(G)
=

⋃
i ∈[1,n]Q(Fi ), the union of the shortest distance for each node in each Fi .

The GRAPE process terminates with correct Q(G). Indeed, the updates to Ci .x̄ are “monotonic”:

the value of dist(s,v) for each node v decreases or remains unchanged. There are finitely many

such variables. Furthermore, dist(s,v) is the shortest distance from s to v , as warranted by the

correctness of the sequential algorithms of [32, 56, 57] (i.e., PEval and IncEval). 2

Putting these together, one can see that a PIE program parallelizes a graph query class Q provided

with a sequential algorithm (PEval) and a sequential incremental algorithm (IncEval) for Q. More-

over, Assemble is typically a straightforward algorithm. A large number of sequential (incremental)

algorithms are already in place for various Q, after decades of study of graph computations. Thus

GRAPE is promising for making parallel graph computations accessible to a large group of users.

Remark. Observe the following about PEval, IncEval, and Assemble.

(1) There have been methods for incrementalizing algorithms, to get incremental algorithms from

their batch counterparts [11, 24]. Moreover, incremental algorithm IncEval only needs to deal with

changes to status variables (update parameters), not necessarily generic updates (although to focus

on the main idea, we present IncEval using the familiar notion of incremental graph algorithms).

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



Parallelizing Sequential Graph Computations 38:13

Such changes are aggregated by function faggr and depend on how faggr is defined. Hence it is
often not hard to develop IncEval by revising a batch algorithm in response to changes to update

parameters, as will be shown by the case of CC (connected components) in Section 5.2.

(2) Incremental IncEval speeds up iterative computations by minimizing unnecessary recomputation

of Q(Fi ) at each worker Pi , no matter whether IncEval is bounded or not. Indeed, boundedness is
not the only criterion for the effectiveness of incremental algorithms. Alternative performance

guarantees for incremental graph algorithms have been developed, such as semi-boundedness [28],

localizable incremental algorithms and relative boundedness [24].

(3) In contrast to existing graph systems, GRAPE parallelizes sequential algorithms PEval and
IncEval as a whole, with additional declaration of message segment (PEval). As a result, users do
not have to “think like a vertex” [49, 50, 63, 71] when programming. As opposed to vertex-centric

and block-centric systems, GRAPE runs sequential algorithms on entire fragments. Moreover,

IncEval employs incremental evaluation to reduce cost, which is a unique feature of GRAPE.

(4) GRAPE aims to help users develop parallel programs, especially those who are more familiar

with conventional sequential programming. This said, users of GRAPE still need to know the

domain knowledge to design update parameters and aggregate functions.

4 FOUNDATION OF GRAPE
We next present fundamental results underlying GRAPE. We first identify a condition under which

a PIE program guarantees to converge at correct answers under GRAPE (Section 4.1). We then

demonstrate the expressive power ofGRAPE by simulating BSP, MapReduce and PARM (Section 4.2).

4.1 Correctness of Parallel Model
Consider a partition strategy P and a PIE program ρ for a class Q of graph queries, where ρ consists

of functions PEval, IncEval and Assemble. Given a query Q ∈ Q, a graph G and a natural number

m, the GRAPE parallelization of ρ can be modeled as a simultaneous fixpoint operator defined on

m fragments. More specifically, it starts with PEval for partial evaluation, and conducts incremental

computation by taking IncEval as the intermediate consequence operator:

R0

i = PEval(Q, F 0

i [x̄i ]),

Rr+1

i = IncEval(Q,Rri , F
r
i [x̄i ],Mi ),

where for i ∈ [1,m], r indicates a superstep; F 0

i is the fragment Fi assigned to worker Pi by the

partition of G via P; F ri [x̄i ] is fragment Fi at the end of superstep r carrying update parameters

Ci .x̄i ;Mi indicates changes to Ci .x̄i (via message); and Rri denotes partial results (including values

of Ci .x̄i ) computed at fragment Fi after the (r + 1)-th superstep. The computation proceeds until it

reaches r0 such that Rr0

i = Rr0+1

i . At this point, Assemble(Rr0

1
, . . . ,Rr0

m) is computed and returned.

Note that the computation does not reach a fixpoint as long as update parameters Ci .x̄i keep
changing. This is consistent with the parallel model of GRAPE (Section 3.1).

There has been a large body of work on fixpoint computation, to study (a) whether a fixpoint

computation converges [20, 35, 52, 74]; and (b) how to accelerate fixpoint computation [35, 40, 60, 69].

In this paper, we mainly focus on (a). Issue (b) has been addressed in [27], which is based onGRAPE.
As an example, below we identify one convergence guarantee for the simple parallel model as a

sufficient condition. We start with some notations.

(1) We say that PIE program ρ terminates under GRAPE with P if for all queries Q ∈ Q and all

graphs G, there always exists r0 such that at superstep r0, R
r0

i = Rr0+1

i for all i ∈ [1,m].

(2) We say that a PIE program ρ with PEval, IncEval and Assemble is correct for Q w.r.t. P if for all

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



38:14 W. Fan et al.

Fig. 5. Computation of a PIE program

queries Q ∈ Q and all graphs G fragmented into F1, . . . , Fm with P, Assemble(Rr
1
, . . . ,Rrm) = Q(G)

at any superstep r when update parameters in Rri (i ∈ [1,m]) have the same values as in Rr−1

i , where

Q(G) is the answer toQ inG , and Rri is the partial result computed at Fi after the (r +1)-th superstep.

We say that GRAPE correctly parallelizes ρ with partition strategy P if for all queriesQ ∈ Q and

all graphs G, ρ always terminates under GRAPE with P and returns Q(G).

(3) We say that PEval and IncEval satisfy the monotonic condition w.r.t. partition strategy P if for

graphsG and every variable x ∈ Ci .x̄ for i ∈ [1,m], (a) the values of x are from a finite set computed

from values in the active domain of G (i.e., the constants in G); and (b) there exists a partial order

≤px on the values of x such that IncEval decreases x in the order of px .

Intuitively, condition (a) above says that x draws values from a finite domain, and condition (b)

says that x is updated “monotonically” following px . These ensure that PIE programs with PEval
and IncEval terminate under GRAPE with P. For instance, dist(s,v) in Example 3.1 can only be

changed in the decreasing order (i.e., it is computed by function min for aggregateMsg of IncEval
in the active domain ofG), and hence PEval and IncEval for SSSP satisfy the monotonic condition.

We next provide a condition that warrants the correctness of GRAPE parallelization.

Theorem4.1 [Assurance Theorem]: Consider a PIE program ρ with PEval, IncEval andAssemble
for a class Q of graph queries. GRAPE correctly parallelizes ρ with a graph partition strategy P if
(a) PEval and IncEval satisfy the monotonic condition w.r.t. P, and
(b) ρ with PEval, IncEval and Assemble is correct for Q w.r.t. P. 2

More specifically, (1) under the monotonic condition, the PIE program ρ guarantees to terminate

under GRAPE and better yet, (2) it converges at correct answer Q(G) for all queries Q ∈ Q and

all graphs G as long as the sequential algorithms PEval, IncEval and Assemble of ρ are correct

for Q. In other words, condition (a) guarantees termination of a PIE program under GRAPE, and
conditions (a) and (b) put together guarantee the correctness of a PIE program under GRAPE.

Proof. We show the correctness of Theorem 4.1 by analyzing the computations of a PIE program.

Consider any run of a PIE algorithm depicted in Fig. 5. Observe the following.

(1) Termination. Under the monotonic condition of Theorem 4.1, we have that . . . ≤px Rr+1

i ≤px

. . . ≤px R1

i ≤px R0

i for all i ∈ [1,m]. Since R0

i ,R
1

i , . . . ,R
r+1

i , . . . are from a finite domain, we know

that there exists a number n such that Rt+1

i = Rti for all i ∈ [1,m] and t ≥ n. That is, ρ terminates.

(2) Correctness. From the argument above it follows that ρ must terminate at some superstep r0.

Hence, by condition (b), Assemble(Rr0

1
, . . . ,Rr0

m) = Q(G), i.e., ρ computes Q(G). 2

Remark. Observe the following.

(1) The fixpoint computation model does not reduce the expressive power of GRAPE. Indeed, (a)
fixpoint computation has sufficient expressive power; many data mining and machine learning

algorithms can be modeled as fixpoint computations [60, 69]. (b) We can conduct any computation

in PEval and IncEval, and hence by GRAPE. We will see a formal characterization in Section 4.2.

(2) The monotonic condition is a sufficient condition for GRAPE computations to converge, but

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



Parallelizing Sequential Graph Computations 38:15

it is not a necessary condition. Indeed, there has been a large body of work on convergence,

e.g., [35, 40, 60, 69], from which other characterizations can be deduced.

(3) It does not mean that only algorithms satisfying the monotonic condition can be parallelized in

GRAPE. As will be shown by Theorem 4.2, any MapReduce algorithm can be migrated to GRAPE
without extra complexity, and not all MapReduce algorithms are monotonic. The monotonicity is

just a sufficient condition under which users do not have to worry about convergence.

4.2 The Expressivity of GRAPE
We next show that the simple parallel model of GRAPE does not imply degradation in the expres-

sivity. As a result, GRAPE can readily switch to other parallel models without extra complexity.

Following [66], we say that a parallel modelM1 can optimally simulate modelM2 if there exists

a compilation algorithm that transforms any program with cost C onM2 to a program with cost

O(C) on M1. The cost includes computational and communication costs. For GRAPE, these are
measured by the running time of PEval, IncEval and Assemble on all the processors, and by the

total size of the messages passed among all the processors in the entire process.

We show thatGRAPE optimally simulates popular parallel models MapReduce [22], BSP [65] and

PRAM [66]. Note that GRAPE parallelization is modeled as a simultaneous fixpoint computation.

Moreover, GRAPE is a BSP system under the the following constraints: (1) in each round of

computation, GRAPE runs the same function PEval or IncEval, while other parallel systems may

run different user-defined functions in different rounds (e.g., MapReduce); and (2) GRAPE only

allows the status variables of the same vertex in different fragments to be exchanged, while there is

no such restriction in some other parallel systems. We show that despite these restrictions, GRAPE
does not degrade in expressive power, i.e., it is as powerful as MapReduce, BSP and PRAM.

As a consequence of the result, all algorithms developed for graph systems based on these models

can be migrated to GRAPE without increasing complexity bounds, including Pregel [50], GraphX

[34], Giraph++ [63] and Blogel [71]. The result below is stronger than its counterpart in [31] in that

it does not use key-value pairs (messages) in the simulation (see electronic appendix for proof).

Theorem 4.2 [Simulation Theorem]: (1) All BSP algorithms with n workers in k supersteps can
be optimally simulated on GRAPE with n workers in k supersteps;

(2) all MapReduce programs using n processors can be optimally simulated by GRAPE using n pro-
cessors; and

(3) all CREW PRAM algorithms using O(P) total memory, O(P) processors and t time can be run in
GRAPE in O(t) supersteps using O(P) processors with O(P) memory. 2

Remark. (1) Theorem 4.2 aims to show the expressive power of GRAPE, e.g., all MapReduce

algorithms can be migrated to GRAPE without increasing the complexity bounds. Nonetheless, it

is possible that some simulated applications are not efficient in practice, due to a possible large

constant in the simulation complexityO(C) (see the proof of Theorem 4.2 in the electronic appendix).

(2) As indicated by Theorem 4.2, all parallel algorithms for MapReduce, BSP and PRAM are also

supported by GRAPE. Moreover, those graph computations that have effective (e.g., bounded)
incremental algorithms can be accelerated by GRAPE.

(3) Compared with the vertex-centric model, the ability to run sequential algorithms over an entire

fragment has several benefits. One of them is that it can reduce the number of supersteps, as

demonstrated by SSSP. This is because within the fragment each worker can do some computation

that would have required extra supersteps in a vertex-centric system like Pregel. This is analogous

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



38:16 W. Fan et al.

to running multiple “local-supersteps”’ in a worker before running a global superstep. Similarly it

can reduce the communication since no message passing is needed within a fragment, and this

happens also because of the reduction in supersteps. Finally, because the sequential algorithms have

access to the entire fragment, existing sequential algorithms can be executed, and optimization

techniques that are developed for the sequential algorithms are inherited in the parallel setting.

Hence, GRAPE can speed up parallel computations and achieve better performance by conducting

efficient fragment-level local computations, without incurring excessive communication costs.

(4) However, for algorithms that make only one or very few fragments “active” at a time, GRAPE
may not speed up their parallel computations. These include “local” queries to find neighbors of

a given node, or kNN (k nearest neighbors) queries with very small constant k . The evaluation
of such queries is restricted to a small subgraph localized by the given node. Such a localized

subgraph may be entirely contained in one fragment at one worker, and hence may not fully enjoy

parallel processing unless we allow a fine-grained parallelization within the fragment by e.g., using
parallelized IncEval or partitioning the fragment into multiple small virtual fragments. Besides,

GRAPE may not make P-complete problems such as Depth First Search (DFS) more efficient than

other parallel platforms; these algorithms are inherently difficult to parallelize.

5 GRAPH COMPUTATIONS IN GRAPE
We have seen how GRAPE parallelizes graph traversal SSSP (Section 3). We next show how

GRAPE parallelizes existing sequential algorithms for a variety of graph computations. We take

graph pattern matching (defined in terms of graph simulation and subgraph isomorphism), graph

connectivity and collaborative filtering as examples (Sections 5.1–5.3, respectively).

We adopt edge-cut [12, 18] in this section unless stated otherwise. Under vertex-cut [47] and

other graph partition strategies, PIE programs can be developed similarly.

5.1 Graph Pattern Matching
We start with graph pattern matching, which is commonly used in social media marketing [30],

social network analysis [25] and knowledge base expansion [23], among other things.

A graph pattern is a graph Q = (VQ ,EQ ,LQ ), in which (a) VQ is a set of query nodes, (b) EQ is a

set of query edges, and (c) each node u in VQ carries a label LQ (u).
We study two semantics of graph pattern matching.

Graph simulation. A graphG = (V ,E,L)matches a patternQ = (VQ ,EQ ,LQ ) via graph simulation
if there exists a binary relation R ⊆ VQ ×V such that

(a) for each query node u ∈ VQ , there exists a node v ∈ V such that (u,v) ∈ R, and

(b) for each pair (u,v) ∈ R, (i) LQ (u) = L(v), and (ii) for each query edge (u,u ′) in EQ , there
exists an edge (v,v ′) in graph G such that (u ′,v ′) ∈ R.

For (u,v) ∈ R, we refer to v as a match of u. It is known that if G matches Q , then there exists a

unique maximum relation [39], referred to as Q(G). If G does not match Q , then Q(G) is the empty

set. Moreover, Q(G) can be computed in O((|VQ | + |EQ |)(|V | + |E |)) time [25, 39].

Graph pattern matching via graph simulation is stated as follows.

◦ Input: A directed graph G and a graph pattern Q .

◦ Output: The unique maximum relation Q(G).

We next show how GRAPE parallelizes graph simulation.

(1) PEval. GRAPE takes the sequential algorithm of [39] as PEval to compute Q(Fi ) in parallel. Its

message preamble declares a Boolean status variable x(u,v) for each query node u in VQ and each

node v in Fi , indicating whether v matches u, initialized true. It takes Fi .I as candidate set Ci .

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



Parallelizing Sequential Graph Computations 38:17

Input: Q = (VQ ,EQ ,LQ ), Fi = (Vi ,Ei ,Li ) (equally for G).
Output: Maximum match relation sim.

Message preamble: /*candidate set Ci is Fi .I*/
for each node u in VQ and v in Vi a Boolean x(u,v) := true;

/*sequential algorithm for graph simulation (pseudo-code)*/

1. Vi := (Vi \ Fi .I
′) ∪ Fi .O ;

2. Ei := Ei \ {(u,v) ∈ Ei | u ∈ Fi .I
′ ∧v ∈ Fi .I };

3. for each u ∈ VQ do /* Initialization */

4. if post(u) = ∅ then
5. sim(u) := {v ∈ Vi | LQ (u) = Li (v)};
6. else sim(u) := {v ∈ Vi | LQ (u) = Li (v) ∧ post(v) , ∅};

7. remove(u) := pre(Vi ) \ pre(sim(u));
8. for each v ∈ Vi \ sim(u) do x(u,v) := false;
9. while there exists u ∈ VQ such that remove(u) , ∅ do
10. for each u ′ ∈ pre(u) do /* Refinement */
11. for eachw ∈ remove(u) do
12. ifw ∈ sim(u ′) then
13. sim(u ′) := sim(u ′) \ {w}; x(u′,w ) := false;
14. for eachw ′ ∈ pre(w) do
15. if post(w ′) ∩ sim(u ′) = ∅ then
16. remove(u ′) := remove(u ′) ∪ {w ′};

17. remove(u) := ∅;

18. Q(Fi ) := sim;

Message segment:Mi := {x(u,v) | u ∈ VQ ∧v ∈ Fi .I };

aggregateMsg = min (x(u,v));

Fig. 6. PEval for graph simulation in GRAPE

Before giving the details of PEval, we first review the algorithm in [39]. The simulation algo-

rithm [39] computes the match set sim(u) for each query node u via least fixpoint computation.

The initial match set sim(u) contains all possible candidate matches of u. These match sets are then

iteratively refined by removing non-matching nodes. The process stops when a fixpoint is reached.

As shown in Figure 6, the main body of PEval (lines 3-17) is almost identical to the simulation

algorithm of [39], except the underlined parts to preprocess fragments. More specifically, PEval first
preprocess each fragment Fi by removing incoming edges and their associated “foreign nodes”, and

by including nodes to which there exists an outgoing edge from Fi (lines 1-2). Such preprocessing is

conducted to comply with the semantics of simulation relations. More specifically, the match status

of a data node v , i.e., whether v matches some query node u, is determined by the complete match

status of all v’s outgoing neighbors. This also implies that the match status of v is propagated and

updated via the reverse direction of edges linked to v . The preprocessing yields fragment Fi such
that (a) for each node v in Vi \ Fi .O , the outgoing edges from v are all included in Ei ; and (b) for

each node v ′
in Fi .O , there exists no outgoing edge from v ′

present in Ei . As a result, the match

status of Vi \ Fi .O , i.e., of the nodes owned by Fi , is computed and updated in Fi at worker Pi ; and
the match status of nodes in Fi .O is computed and updated in other fragments.

For each node u ∈ VQ , PEval starts with a set sim(u) of candidate matches v in Fi (lines 3-8),
and iteratively removes from sim(u) those nodes that violate the simulation condition (lines 9-17).

It uses post(v) and pre(v) to keep track of successors and predecessors of node v , respectively
(see [39] for details). It refines sim(u) for all u ∈ VQ . The partial result Q(Fi ) is designated (line 18).

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



38:18 W. Fan et al.

Input: Q = (VQ ,EQ ,LQ ), Fi = (Vi ,Ei ,Li ), maximum match

relation sim for Q and Fi ; messageMi (batch update).

Output: maximum match relation sim for P and Fi ⊕ Mi .

/* incremental graph simulation (pseudo-code)*/

1. stack simset := ∅;

2. for each x in
(u,v) ∈ Mi do simset.push(u,v); /*x in

(u,v) = false*/

3. while simset is not empty do
4. (u, v) := simset.pop(); sim(u) := sim(u) \ {v}; x(u,v) := false;
5. for each v ′ ∈ pre(v) and u ′ ∈ VQ that v ′ ∈ sim(u ′) do
6. if (u ′,u) ∈ EQ and sim(u) ∩ post(v ′) = ∅ then
7. simset.push(u ′,v ′);

8. Q(Fi ) := sim;

Message segment:
Mi := {x(u,v) | u ∈ VQ ,v ∈ Fi .I ,x(u,v) changed to false};

Fig. 7. IncEval for graph simulation

At the end of the process, PEval sends Ci .x̄ = {x(u,v) | u ∈ VQ ,v ∈ Fi .I } to coordinator P0. That is,

the updated match status is propagated via the reverse direction of edges.

At coordinator P0, GRAPE maintains x(u,v) for all v ∈ F .I . Upon receiving messages from all

workers, it changes x(u,v) to false if it is false in one of the messages. This is specified by min as

aggregateMsg, taking the order false ≺ true. GRAPE identifies those variables that become false,
deduces their destinations by referencing GP , groups them into messagesMj , and sendsMj to Pj .

(2) IncEval is the sequential incremental simulation algorithm of [28] in response to edge deletions.

The changes to sim(u) are “equivalent to” removing some nodes from sim(u), which can be also

seen as the results of removing some relevant edges. Thus propagating the changes of these nodes

can be done by propagating the changes of deleted edges. Hence we can use the algorithm of [28]

for edge deletions. Note that we just make use of the algorithm for edge deletions as IncEval to
process changes to x(u,v), but IncEval does not have to handle generic edge deletions in the graph.

As shown in Figure 7, if status variable x(u,v) is changed to false by messageMi , it is treated as

deleting “cross edges” to v ∈ Fi .O . Using a stack (line 1), it starts with changed status variables

inMi , propagates the changes to affected area, and removes from sim those matches that become

invalid (lines 3-7; see [28] for more details). The partial result is now the revised sim relation (line 8).

At the end of the process, IncEval sends to coordinator P0 those values of the status variables in

Ci .x̄ that have been set false in the process, along the same lines as how PEval does it.

As shown in [28], IncEval is semi-bounded: its cost is decided by the sizes of “updates” |Mi | and

changes to the affected area necessarily checked by all incremental algorithms for Sim, not by |Fi |.
This reduces the cost of iterative computation of graph simulation (the while and for loops).

(3) Assemble simply takes Q(G) =
⋃

i ∈[1,n]Q(Fi ), the union of all partial matches, i.e., the sim
relation computed at each fragment Fi at the end of the process.

(4) The correctness of the GRAPE parallelization is warranted by Theorem 4.1, and the monotonic

updates toCi .x̄ . Indeed, x(u,v) is initially true for each border nodev , and is changed at most once to

false, taking the order false ≺ true. Furthermore, x(u,v) denotes whether v matches u, as warranted
by the correctness of the sequential algorithms [28, 39] (PEval and IncEval).

Subgraph isomorphism. We next parallelize subgraph isomorphism, under which a match of

pattern Q in graph G is a subgraph of G that is isomorphic to Q . More specifically, a match of Q in

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



Parallelizing Sequential Graph Computations 38:19

Input: Q = (VQ ,EQ ,LQ ), Fi = (Vi ,Ei ,Li ).
Output: a local annotated version of NdQ (s) in Fi for each s ∈ Fi .I ∪ Fi .O

′
.

Message preamble:
an integer variable dist(s, t) initialized as ∞ for each pair s, t ∈ Vi ;

1. for each s ∈ Fi .I ∪ Fi .O
′ do

2. dist(s, s) := 0; V (s) := {s};
3. queueQue := ∅; Enqeue(Que, s);
4. whileQue is not empty do
5. u := Deqeue(Que);
6. if dist(s,u) < dQ then
7. for each v linked with u do
8. if dist(s,v) := ∞ then
9. dist(s,v) := dist(s,u) + 1; V (s) := V (s) ∪ {v};
10. Enqeue(Que,v);
11. E(s) := {(u,v) | (u,v) ∈ Fi ,u,v ∈ V (s)};
12. L(s) := {dist(s,v) | v ∈ V (s)};
13. Q(Fi ) := {(s,V (s),E(s),L(s)) | s ∈ Fi .I ∪ Fi .O

′)};

Message segment:Mi := {(s,V (s),E(s),L(s)) | s ∈ Fi .I ∪ Fi .O
′};

aggregateMsg = Expand(s,V (s),E(s),L(s));

Procedure Expand
Input: a source s ∈ Fi .I ∪ Fi .O

′
, (u,V (u),E(u),L(u)) for each u ∈ F .I ∪ F .O ′

.

Output: the dQ -neighbor NdQ (s) of s in G.

1. queueQue := ∅; V0 := V (s);
2. for each v ∈ V (s) do
3. if dist(s,v) < dQ and v ∈ Fi .O ∪ Fi .I

′ then
4. Enqeue(Que, (v,dQ − dist(s,v)));
5. while Que is not empty do
6. (u,k) := Deqeue(Que);
7. use GP to find j such that u ∈ Fj .I ∪ Fj .O

′
;

8. for each v ∈ V (u) do
9. if dist(u,v) ≤ k then
10. V0 := V0 ∪ {v};
11. if v ∈ Fj .O ∪ Fj .I

′
and dist(u,v) < k then

12. Enqeue(Que, (v,k − dist(u,v)));
13. E0 := {(u,v) | u,v ∈ V0, (u,v) ∈ E(w) for somew ∈ F .I ∪ F .O ′};

14. NdQ (s) := (V0,E0);

Fig. 8. PEval for subgraph isomorphism

G is a subgraph G ′ = (V ′,E ′,L′, F ′
A) of G such that there exists a bijective function h from VQ to V ′

,

where (1) for each node u ∈ VQ , LQ (u) = L′(h(u)); and (2) e = (u,u ′) is an edge in Q if and only if

e ′ = (h(u),h(u ′)) is an edge in G ′
and LQ (e) = L′(e ′).

Graph pattern matching via subgraph isomorphism is to compute the set Q(G) of all matches of

Q in G. It is intractable: it is NP-complete to decide whether Q(G) is nonempty.

GRAPE parallelizes TurboISO, the sequential algorithm of [37] for subgraph isomorphism. It has

two supersteps, one for PEval and the other for IncEval, outlined as follows.

(1) PEval identifies update parameters Ci .x̄ at each fragment Fi . It declares an integer variable

dist(s, t) as the status variable for each pair of nodes s and t in Fi , to record their distance in

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



38:20 W. Fan et al.

Input: Pattern Q = (VQ ,EQ ,LQ ), fragment Fi = (Vi ,Ei ,Li ),
messageMi consisting of NdQ (v) for each v ∈ Fi .O ∪ Fi .I

′
.

Output: Q(Fi ⊕ Mi ), i.e., the set of all matches of Q in Fi ⊕ Mi .

1. Fi := Fi ⊕ Mi ; /* extend Fi with the nodes and edges inMi */

2. Q(Fi ) := TurboISO(Q, Fi );

Fig. 9. IncEval for subgraph isomorphism

fragment Fi . It computes the dQ -neighbor NdQ (s) of each border node in s ∈ Fi .I ∪ Fi .O
′
. Here dQ

is the diameter of pattern Q , i.e., the length of the shortest path between any two nodes in Q when

Q is treated as an undirected graph; and Nd (v) is the subgraph of G induced by the nodes within d
hops of v . At each Fi , Ci .x̄ consists of NdQ (s) for all s ∈ Fi .I ∪ Fi .O

′
.

Intuitively, upon receiving update parameters Ci .x̄ from all workers, coordinator P0 completes

the dQ -neighbor of each border node s in the entire graphG , and sends the dQ -neighbor to workers
where s resides, to compensate information loss caused by fragmentation of graph G. After this
step, one can directly apply TurboISO to each expanded fragment in parallel.

More specifically, PEval computes Ci .x̄ at fragment Fi as shown in Figure 8. PEval performs a

standard BFS traversal (Breath-First Search) from each border node s in Fi .I ∪ Fi .O
′
to identify (a)

a setV (s) of nodes that are reachable from s in dQ hops in Fi (lines 2-10), and (b) a set E(s) of edges
that are associated with nodes in V (s) (line 11). Here fragment Fi is treated as an undirected graph

in the BFS traversal, ignoring the orientations of the edges (line 7). PEval annotates each node v
in V (s) with dist(s, t) from s (lines 8-9). These compose a local (annotated) dQ -neighbor NdQ (s) in
fragment Fi . To simplify the discussion, PEval sends these local NdQ (s)’s to coordinator P0 (line 13).

In practice, the union of all these dQ -neighbors is sent to P0 in a single message. The size of such a

message is bounded by the size |G | of graph G.

Upon receiving the local versions of NdQ (s) for all s in F .I ∪ F .O ′
, coordinator P0 expands each

of them to the dQ -neighbor NdQ (s) in the entire graph G . This is specified by procedure Expand as

aggregateMsg, which performs a BFS-like traversal on the data received and combines necessary

nodes and edges, by making use of fragmentation graph GP (see Section 2) and the annotations

associated with the nodes. A messageMi is composed and sent to worker Pi for i ∈ [1,m], including

all the nodes and edges in the dQ -neighbor of s in the entire graph G, for each s ∈ Fi .O ∪ Fi .I
′
.

(2) IncEval is the sequential algorithm TurboISO [37]. Given a pattern Q and a graph G, TurboISO
finds all isomorphic matches of Q in G as follows. (1) It first picks a start vertex from query Q ,
and rewrites Q into a tree Q ′

by performing BFS search. Each node in the tree corresponds to a

“neighborhood equivalence class” (NEC), by merging nodes with the same labels and neighborhoods.

(2) Next, it explores “candidate regions” of Q ′
, i.e., subgraphs that subsume matches of Q . (3) For

each candidate region, it computes an order on the nodes in Q ′
, based on the number of their

candidate matches in the region. (4) It then searches matches within the candidate region in this

order. During the search, it only combines partial matches of the NECs, instead of inspecting all

possible enumerations. (5) At last, it expands matches of the NECs to get exact matches of Q .
As shown in Figure 9, IncEval computes Q(Fi ⊕ Mi ) at each worker Pi in parallel, on fragment

Fi extended with dQ -neighbor of each node in Fi .O ∪ Fi .I
′
by applying TurboISO. IncEval sends no

messages since the values of variables in Ci .x̄ remain unchanged. As a result, IncEval is executed
once, and hence two supersteps suffice.

(3) Assemble simply takes the union of all partial matches computed by IncEval from all workers.

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



Parallelizing Sequential Graph Computations 38:21

Input: Fi = (Vi ,Ei ,Li ).
Output: Q(Fi ) consisting of v .cid for each v ∈ Vi .

Message preamble: /* candidate set Ci is Fi .I */
for each v ∈ Vi , an integer variable v .cid initialized as v’s id;

1. CC := DFS(Fi ); /* use DFS to find the set of local CCs */
2. for each local component C ∈ CC do
3. add a new single root node vr ;
4. vr .cid := min{v .cid | v ∈ C};
5. for each node v ∈ C do
6. link v to vr ; v .root := vr ; v .cid := vr .cid;
7. Q(Fi ) := {v .cid | v ∈ Vi };

Message segment:Mi := {v .cid | v ∈ Fi .I };

aggregateMsg = min(v .cid);

Fig. 10. PEval for CC

(4) The correctness of the process is assured by TurboISO and the locality of subgraph isomorphism:

a pair (v,v ′) of nodes in G is in a match of Q only if v is in the dQ -neighbor of v
′
.

5.2 Graph Connectivity
We next study graph connectivity, for computing connected components (CC).

Consider an undirected graph G. A subgraph Gs of G is a connected component of G if (a) it is

connected, i.e., for any pair (v,v ′) of nodes in Gs , there exists a path between v to v ′
, and (b) it is

maximum, i.e., adding any node to Gs makes the induced subgraph no longer connected.

The CC problem is stated as follows, and is known to be in O(|G |) time [13].

◦ Input: An undirected graph G = (V ,E,L).

◦ Output: All connected components of G.

GRAPE parallelizes CC as follows. It picks a sequential CC algorithm as PEval. At each fragment

Fi , PEval computes its local connected components and creates their ids. The component ids of

the border nodes are exchanged with neighboring fragments. The (changed) ids are then used to

incrementally update local components in each fragment by IncEval, which simulates a “merging”

of two components whenever possible, until no more changes can be made.

(1) PEval declares an integer status variable v .cid for each node v in fragment Fi , initialized as its

node id. As shown in Figure 10, PEval first uses a standard sequential traversal DFS (Depth-First

Search) to compute the local connected components of Fi (line 1). For each local component C ,
(a) PEval creates a “root” node vr carrying the minimum node id in C as vr .cid (lines 3-4), and (b)

links all the nodes in C to vr , and sets their cid as vr .cid (lines 5-6). These can be completed in one

pass of the edges of Fi via DFS. At the end of process, PEval sends {v .cid | v ∈ Fi .I } to coordinator

P0. In other words, the set consists of the update parameters at fragment Fi .

At P0, GRAPE maintains v .cid for each all v ∈ F .I . It updates v .cid by taking the smallest cid
if multiple cids are received, by taking min as aggregateMsg in the message segment of PEval. It
groups the nodes with updated cids into messagesMj , and sendsMj to Pj by referencing GP .

(2) IncEval incrementally updates the cids of the nodes in each fragment Fi upon receivingMi , in

parallel, as shown in Figure 11. Observe that messageMi sent to Pi consists of v .cid with updated

(smaller) values. For each v .cid in Mi , IncEval finds the root vr of v (line 3), and updates vr .cid

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



38:22 W. Fan et al.

Input: Fi = (Vi ,Ei ,Li ), partial result Q(Fi ), messageMi (grouped cid).
Output: Q(Fi ⊕ Mi ).

/*incremental connected component (pseudo-code) */

1. ∆ := ∅;

2. for each v .cid ∈ Mi do /* v ∈ Fi .I */
3. vr := v .root;
4. if v .cid < vr .cid then
5. vr .cid := v .cid; ∆ := ∆ ∪ {vr };
6. for each vr ∈ ∆ do /*propagate the change*/

7. for each v ′ ∈ Vi linked to vr do
8. v ′.cid := vr .cid;
9. Q(Fi ) := {v .cid | v ∈ Vi };

Message segment:Mi := {v .cid | v ∈ Fi .I ,v .cid decreased};

Fig. 11. IncEval for CC

to the minimal one (lines 4-5). IncEval then propagates the changes from every updated root node

vr to all nodes linked to vr by changing their cids to vr .cid (lines 6-8). At the end of the process,

IncEval sends to coordinator P0 the updated cids of nodes in Fi .I just like in PEval.

One can verify that the incremental algorithm IncEval is bounded: it takesO(|Mi |) time to identify

the root nodes, andO(|AFF|) time to update cids by following the direct links from the roots, where

AFF consists of only those nodes with their cid changed. Hence, it avoids redundant local traversal.

(3) Assemblemerges all the nodes having the same cid in a bucket as a single connected component,

and returns the set of all these buckets as all the connected components.

(4) Correctness. The process terminates as the cids of the nodes are monotonically decreasing by

the definition of aggregateMsg, until no changes can be made. Moreover, it correctly merges two

local connected components by propagating the smaller component id.

5.3 Collaborative Filtering
As an example of machine learning, we consider collaborative filtering (CF) [48], a method com-

monly used for inferring user-product rates in social recommendation. It takes as input a bipartite

graph G that includes two types of nodes, namely, usersU and products P , and a set of weighted

edges E ⊆ U × P . (1) Each user u ∈ U (resp. product p ∈ P ) carries an (unknown) latent factor

vector u . f (resp. p. f ). (2) Each edge e = (u,p) in E carries a weight r (e), estimated as u . f T ∗ p. f
(possibly ∅, i.e., “unknown”) that encodes a rating from user u to product p. The training set ET
refers to edge set {e ∈ E | r (e) , ∅}, i.e., all the known ratings. The CF problem is as follows.

◦ Input: Directed bipartite graph G, training set ET .

◦ Output: The missing factor vectors u . f and p. f that minimizes an error function ϵ(f ,ET ),
estimated as min

∑
((u,p)∈ET )(r (u,p) − u . f T ∗ p. f )2 + λ(∥u . f ∥2 + ∥p. f ∥2).

That is, CF predicts all the unknown ratings by learning the factor vectors that “best fit” ET .
A common practice to approach CF is to use stochastic gradient descent (SGD) algorithm [48],

which iteratively (1) computes a prediction error ϵ(u,p) = r (u,p) −u . f T ∗p. f , for each e = (u,p) ∈
ET , and (2) updates u . f and p. f accordingly towards minimizing ϵ(f ,ET ).

The SGD algorithm [48] is inherently sequential. To parallelize it, a nice idea has been proposed

by DSGD [33], based on a partition of the dataset such that at each round of computation, different

workers can process disjoint datasets independently without conflicts. More specifically, it partitions

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



Parallelizing Sequential Graph Computations 38:23

Input: Fi = (Vi ,Ei ,Li ).
Output: Q(Fi ) consisting of v . f for each v ∈ Vi .

Message preamble: /* candidate set Ci is Fi .I */
a variable x .v = (v . f , t) for each v ∈ Vi ;

1. Bi := {e ∈ E(i, i) | r (e) , ∅};

2. Run SGD on the training set Bi ;
3. t := t + 1;

4. Q(Fi ) := {v . f | v ∈ Vi };

Message segment:Mi := {(v . f , t) | v ∈ Fi .I ,v . f changed};

Procedure SGD
Input: A training set B.
Output: Revised training set.

/* SGD on the training set B (pseudo-code)*/

1. for each k ∈ {1, 2, . . . , |B |} do
2. Pick an edge (u,p) from B uniformly at random;

3. ϵ(u,p) := r (u,p) − u . f T ∗ p. f ;
4. u . f ′ := u . f + γ (ϵ(u,p) ∗ p. f − λ ∗ u . f );
5. p. f := p. f + γ (ϵ(u,p) ∗ u . f − λ ∗ p. f );
6. u . f := u . f ′;

Fig. 12. PEval for CF

the user set U intom disjoint subsets U (1), U (2), . . . , U (m), and similarly, the product set P into

disjoint P(1), P(2),. . . , P(m) such that U =
⋃m

i=1
U (i) and P =

⋃m
j=1

P(j), for a constantm. Corre-

spondingly the training set E is divided intom2 blocks, such that each 1 ≤ i, j ≤ m, a block E(i, j)
identified by a pair (i, j) is the subset of E induced byU (i) and P(j). Clearly E =

⋃
1≤i, j≤m E(i, j). Two

blocks E(i, j) and E(i ′, j ′) are independent if i , i ′ and j , j ′. DSGD parallelizes SGD by utilizing the

property that the factor vectors of independent blocks can be updated in parallel without conflicts.

Adopting the partition strategy of DSGD, GRAPE parallelizes the sequential SGD algorithm

such that different workers can run SGD on different fragments of a graph G in parallel, without

conflicts. GRAPE partitions G by a vertex-cut strategy and distributes them2
blocks intom dif-

ferent fragments. More specifically, it defines Fi = (Vi ,Ei ,Li ), where Vi = U (i) ∪
⋃m

j=1
P(j) and

Ei =
⋃m

j=1
E(i, j), i.e., P is shared by all fragments whileU is partitioned across different workers.

(1) PEval declares a status variable v .x = (v . f , t) for each node v , where v . f is the factor vector

of v (initially ∅), and t is an integer (initially 0) that bookkeeps a timestamp at which v . f is lastly

updated. The candidate set Ci the border nodes set Fi .I .

As shown in Figure 12, PEval essentially runs the sequential SGD algorithm of [48] on the

training block E(i, i) as follows. Each time it picks an edge (u,p) from the training set uniformly

at random and computes the prediction error ϵ(u,p). It updates local factor vectors by a magnitude

proportional to γ in the opposite direction of the gradient as:

u . f t = u . f t−1 + γ (ϵ(u,p) ∗ p. f t−1 − λ ∗ u . f t−1); (1)

p. f t = p. f t−1 + γ (ϵ(u,p) ∗ u . f t−1 − λ ∗ p. f t−1). (2)

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



38:24 W. Fan et al.

Input: Fi = (Vi ,Ei ,Li ), partial result Q(Fi ),
messageMi including updated factor vectors and

a pair (i,pi ) indicates the training block.

Output: Q(Fi ⊕ Mi ).

1. for each v in. f ∈ Mi do
2. v . f := v in. f ;
3. Bi := {e ∈ E(i,pi ) | r (e) , ∅};

4. Run SGD on the training set Bi ;
5. t := t + 1;

6. Q(Fi ) := {v . f | v ∈ Vi };

Message segment:
Mi := {(v . f , t) | v ∈ Fi .I , v . f changed };

Fig. 13. IncEval for CF

By the partition strategy, the training blocks E(1, 1), E(2, 2), . . . , E(d,d) on different fragments line

on the diagonal of the rating matrix, and are independent of each other. At the end of its process,

PEval sends messageMi that consists of updated v .x for nodes v ∈ Ci to coordinator P0.

At coordinator P0, GRAPE maintains v .x = (v . f , t) for all border nodes v ∈ F .I = F .O . Upon
receiving updated values (v . f ′, t ′) with t ′ > t , it changes v . f to v . f ′, i.e., it defines aggregateMsg
as max on timestamps. This is well defined since different workers process independent blocks.

GRAPE then groups the updated vectors into messages Mj , and sends Mj to Pj as usual. That is,
GRAPE passes the latest updates to factor vectors to workers.

In addition, coordinator P0 selectsm independent blocks to be processed in the next round. To

do this P0 simply picks a permutation p1p2 . . .pm of {1, 2, . . . ,m} following some fixed strategy,

e.g., simple cycle scheduling. It sends a pair (j,pj ) along with Mj to Pj . By the partition strategy,

block E(j,pj ) belongs to Fj and E(j,pj ) is independent of E(i,pi ) if j , i .

(2) IncEval iteratively updates the factor vectors of independent blocks. As shown in Figure 13,

IncEval first updates the factor vectors with the latest changes (lines 1-2). It then extracts the

training set Bi for the current round based on the block identifier assigned by P0 (line 3), and runs

the sequential SGD algorithm [48] on Bi just like PEval (line 4). Since the training sets B1, B2, . . . ,

Bd are extracted from the independent blocks E(1,p1), E(2,p2), . . . , E(d,pd ), they can be processed

in parallel without conflict. At the end of the process, it sends the updated vectors in Ci like PEval.

(3) Assemble simply takes the union of all the factor vectors of nodes from all the workers.

(4) Correctness. Observe that a permutationp1p2 . . .pm of {1, 2, . . . ,m} corresponds to am-monomial

stratum of DSGD [33]. The permutation in each round is picked according to a stratum selection

strategy. It is known that the strategy guarantees the convergence of DSGD (see [33] for more

details). As a result, GRAPE converges and correctly infers CF models by the correctness of DSGD.

6 IMPLEMENTATION OF GRAPE
We next outline an implementation of parallel graph engine GRAPE.

Architecture overview. GRAPE adopts a four-tier architecture depicted in Figure 14.

(1) Its top layer is a user interface. As shown in Figure 1, GRAPE supports interactions with (a)

developers who specify and register sequential PEval, IncEval and Assemble as a PIE program for

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



Parallelizing Sequential Graph Computations 38:25

Storage System (DFS)

Fault-tolerance
Module

GRAPE Query Engine

GRAPE API

• Message

• Partition

• Index

• Graph Alg.

Query Parser Auto. Parallel Interface

MPI Control

Index Mngr.

Load Balancer

Partition Mngr.

Partial

Evaluation

Incremental

Evaluation
Assemble

developerend user

queries results sequential algs.

Play

Plug-in

Fig. 14. GRAPE Architecture

a class Q of graph queries (the plug panel); and (b) end users who make use of PIE programs from

API library, pick a graph G, enter queries Q ∈ Q, and “play” (the play panel). GRAPE parallelizes

the PIE program, computes Q(G) and displays Q(G) in result and analytics consoles.

(2) At the core of the system is a parallel query engine. It manages sequential algorithms registered

in GRAPE API, makes parallel evaluation plans for PIE programs, and executes the plans for query

answering (see Section 3.1). It also enforces consistency control and fault tolerance (see below).

(3) Underlying the query engine are (a) an MPI Controller (message passing interface) for communi-

cations between coordinator and workers, (b) an Index Manager for loading indices, (c) a Partition
Manager to partition graphs, and (d) a Load Balancer to balance workload (see below).

(4) The storage layer manages graph data in DFS (distributed file system). It is accessible to the

query engine, Index Manager, Partition Manager and Load Balancer.

Message passing. The MPI Controller of GRAPE makes use of a standard MPI for parallel and

distributed programs. It currently adopts MPICH [5], which is also the basis of other parallel graph

systems such as GraphLab [49] and Blogel [71]. It generates messages and coordinates messages

in synchronization steps using standard MPI primitives.

We remark that at the conceptual level, to simplify the discussion, we adopt a coordinator to

aggregate messages (Section 3). In practice, GRAPE implements point-to-point message passing

instead: workers exchange messages directly without going through a coordinator, accumulate

messages received in a buffer, and the aggregation function is invoked at each worker. It is easy

to verify that this implementation and the centralized aggregation with coordinator produce the

same results, since the aggregation function is invoked after all messages are received.

Graph partition. The Graph Partitioner supports a variety of built-in partition algorithms. Users

may pick (a) METIS, a fast heuristic algorithm for sparse graphs [44], (b) edge-cut partition [12, 18]

and vertex-cut partition [47], (c) 1-D and 2-D partitions [17], which distribute vertex and adjacent

matrix to the workers, respectively, emphasizing on maximizing the parallelism of graph traversal,

and (d) a fast streaming-style partition strategy [62] that assigns edges to high degree nodes to

reduce cross edges. New data partition strategies can also be deployed at GRAPE.

Multi-thread. GRAPE supports multi-threading. At each worker, there are multiple working

threads, each acting as a virtual worker and handling one fragment. During computation, the threads

at the same worker are maintained in a pool; a main thread at the worker takes the responsibility

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



38:26 W. Fan et al.

of assigning fragments and workload to idle threads in the pool. At the end of each round of the

computation, the main thread generates messages and communicates with peer workers. The main

thread is able to process messages in a buffer even when its working threads are still computing.

This allows workers to overlap computation and communication, and reduce response time.

Graph-level optimization. In contrast to prior graph systems, GRAPE supports data-partitioned

parallelism by parallelizing the runs of sequential algorithms. Since fragments of a graph are

graphs themselves, all optimization strategies developed for sequential (batch and incremental)

algorithms can be readily used by GRAPE, to improve the performance of PEval and IncEval over
graph fragments. As examples, below we outline some of the graph-level optimization strategies.

(1) Indexing. Any indexing structure effective for sequential algorithm can be computed offline and

directly used to optimize PEval, IncEval and Assemble. GRAPE can support indices including (1)

2-hop index [21] for reachability queries; and (2) neighborhood-index [45] for candidate filtering

in graph pattern matching. Moreover, new indices can be incorporated into GRAPE API library.

(2) Compression. Another strategy is query preserving compression [26] at the fragment level. Given

a query class Q and a fragment Fi , each worker Pi computes a smaller F ci offline via a compression

algorithm, such that for any query Q in Q, Q(Fi ) can be computed from F ci without decompressing

F ci , regardless of what sequential PEval and IncEval are used. As shown in [26], this compression

scheme is effective for graph pattern matching and graph traversal, among other things.

(3) Dynamic grouping. GRAPE dynamically groups a set of border nodes by adding a “dummy”

node, and sends messages from the dummy nodes in batches, instead of one by one. This effectively

reduces the amount of message passing in each synchronization step.

To the best of our knowledge, many of these optimization strategies are not supported by

the state-of-the-art vertex-centric and block-centric graph query systems. For instance, indexing

and query-preserving compression for sequential algorithms do not carry over to vertex-centric

programs, and block-centric programming essentially treats blocks as vertices rather than graphs.

Fault tolerance. GRAPE employs an arbitrator mechanism to recover from both worker failures

and coordinator failures (a.k.a. single-point failures). More specifically, it reserves a worker Pa
as arbitrator, and a worker S ′c as a standby coordinator. It keeps sending heart-beat signals to

all workers and the coordinator. In case of failure, (a) if a worker fails to respond, the arbitrator

transfers its computation tasks to another worker; and (b) if the coordinator fails, it activates the

standby coordinator S ′c to continue parallel computation. It is also possible for GRAPE to adopt

the optimistic recovery mechanism introduced in [60] for general fixpoint paradigm [15].

Consistency. Multiple workers may update copies of the same status variable. To cope with this,

(a) GRAPE allows users to specify a conflict resolution policy as function aggregateMsg in PEval
(Section 3.2), e.g., min for SSSP and CC (Section 5), based on a partial order on the domain of

status variables, e.g., linear order on integers. Based on the policy, inconsistencies are resolved in

each synchronization step of PEval and IncEval processes. Moreover, Theorem 4.1 guarantees the

consistency when the policy satisfies the monotonic condition. (b) GRAPE also supports default

exception handlers when users opt not to specify aggregateMsg. In addition, GRAPE allows users

to specify generic consistency control strategies and register them in GRAPE API library.

7 EXPERIMENTAL STUDY
Using real-life and synthetic graphs, we next empirically evaluate GRAPE, for its (1) efficiency and

scalability, (2) communication costs, (3) effectiveness of incremental steps, and (4) compatibility

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



Parallelizing Sequential Graph Computations 38:27

with optimization techniques developed for sequential graph algorithms. We used real-life graphs

larger than those that [31] experimented with. We evaluated the performance of GRAPE compared

with Giraph (a open-source version of Pregel), GraphLab, and Blogel (the fastest block-centric
system we are aware of). We compared GRAPE with the prior graph systems by parallelizing

existing sequential algorithms with a preliminary implementation of GRAPE [9].

Experimental setting. We used five real-life graphs of different types, including

(1) movieLens [3], a dense recommendation network (bipartite graph) that has 20 million movie

ratings (as weighted edges) between 138000 users and 27000 movies;

(2) UKWeb [1], a Web graph with 133 million nodes and 5 billion edges;

(3) DBpedia [7], a knowledge base with 5 million entities and 54 million edges, with 411 labels;

(4) Friendster [4], a social network with 65 million users and 1.8 billion links; and

(5) traffic [2], a road network with 23 million nodes (locations) and 58 million edges.

To make use of unlabeled Friendster for Sim and SubIso, we assigned up to 100 random labels

to nodes. We also randomly assigned weights to UKWeb, traffic and Friendster for testing SSSP.

Synthetic graphs. To evaluate the scalability of GRAPE (Exp-1 and Exp-2), we also developed a

generator to produce synthetic graphs G = (V ,E,L) controlled by the numbers of nodes |V | (up

to 250 million) and edges |E | (up to 2.5 billion), with L drawn from an alphabet L of 100 labels.

Partitioning and Loading. We used XtraPuLP [61] as the default graph partition strategy. In theory,

GRAPEworks regardless of what partitioning strategy is used, and guarantees to converge under the
conditions given in Theorem 4.1. In practice, different strategies may yield partitions with various

degrees of skewness and stragglers, which have an impact on the performance of GRAPE. Here we
picked XtraPuLP, which is widely used in practice. On Friendster, for example, XtraPuLP took about

16minutes, and our computations took atmost 62 seconds. However, graph partitioning is performed

once offline. Afterwards various queries are answered online on the same partition. The partitioning

costs for traffic, UKWeb, DBpedia and movieLens are 6.0, 598.1, 32.2, 4.3 seconds, respectively.

GRAPE loads graph data from a distributed file system by each worker simultaneously. It takes

about 20 minutes to import Friendster by 4 workers at the first time (16s, 24m, 44s, 10s for traffic,
UKWeb, DBpedia, movieLens, respectively). After the first loading, the graph is “serialized” to the

storage in a compact format, which largely reduces the loading time to 40s (2s, 86s, 4s, 2s for traffic,
UKWeb, DBpedia, movieLens, respectively) for reloading afterwards when necessary.

It should be remarked thatGRAPE is able to load a graphG once and process query workload (i.e.,
a set of queries) posed onG , without reloadingG . In contrast, GraphLab, Giraph and Blogel require
the graph to be reloaded each time a single query is issued, and loading is costly over large graphs.

In favor of these systems, we exclude the loading cost when reporting the experimental results.

Queries. We randomly generated the following queries for SSSP, Sim and SubIso. (a) We sampled 10

source nodes in each graph used, and constructed an SSSP query for each node. (b) We generated

20 pattern queries for Sim and SubIso, controlled by |Q | = (|VQ |, |EQ |), the number of nodes and

edges, respectively, using labels drawn from the graphs experimented with.

Algorithms. We implemented the PIE programs (PEval, IncEval and Assemble) for the query classes
given in Sections 3 and 5, namely, SSSP, Sim, SubIso, CC and CF, which are registered in the API

library of GRAPE. We adopted basic sequential algorithms, and only used optimized Sim to demon-

strate how GRAPE inherits optimization strategies developed for sequential algorithms (Exp-3).

We also implemented algorithms for these query classes for Giraph, GraphLab and Blogel. We

used the “default” code provided by the systems when available, and made our best efforts to

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



38:28 W. Fan et al.

develop “optimal” algorithms otherwise. We also used the “default” graph partition algorithms

provided by these systems, i.e., hash partitioning for GraphLab and Giraph, and Voronoi partition-

ing for Blogel. We implemented synchronized algorithms for both GraphLab and Giraph for the

ease of comparison. As observed by [40, 41, 68], neither asynchronous model nor synchronous

model outperform the other for different algorithms, input graphs and cluster scales. We expect

the observed relative performance trends to hold on other similar graph systems.

We deployed the systems on a cluster of up to 12 machines, each with 16 processors (Intel Xeon

2.2GHz) and 128G memory (thus in total 192 processors). This is the best configuration we could

afford. Each experiment was repeated 5 times and the average is reported here.

Experimental results. We next report our findings.

Exp-1: Efficiency. We first evaluated the efficiency and scalability of GRAPE by varying the

number n of processors used, from 64 to 192. For each algorithm, we chose datasets based on its

applications in the real world, to demonstrate meaningful computations. For SSSP and CC, we
experimented with real-life graphs UKWeb, traffic and Friendster. For Sim and SubIso, we used
Friendster and DBpedia. We used movieLens for CF as its application in movie recommendation.

(1) SSSP. Figures 15a-15c report the performance of the systems for SSSP over Friendster, UKWeb
and traffic, respectively. We report the average over 10 SSSP queries on each graph. The results

on other graphs are consistent (not shown). From the results we can see the following.

(a) GRAPE outperforms Giraph, GraphLab and Blogel by 14842, 3992 and 756 times, respectively,

over traffic with 192 processors (Figure 15a). In the same setting, it is 556, 102 and 36 times faster

over UKWeb (Figure 15b), and 18, 1.7 and 4.6 times faster over Friendster (Figure 15c). These

results demonstrate that by simply parallelizing sequential algorithms without further optimization,

GRAPE already outperforms the state-of-the-art systems in response time for SSSP.
The improvement ofGRAPE over all the systems on traffic is much larger than on Friendster and

UKWeb since the traffic graph has a larger diameter. In addition, (i) for Giraph and GraphLab, this
is because synchronous vertex-centric algorithms take more supersteps to converge on graphs with

large diameters, such as traffic. Using 192 processors, Giraph take 10749 supersteps over traffic and
161 over UKWeb; similarly for GraphLab. In contrast, GRAPE is not vertex-centric and it takes 31

supersteps on traffic and 24 on UKWeb. (ii) Blogel also takes more (1690) supersteps over traffic
than over UKWeb (42 supersteps) and Friendster (23 supersteps). It generates more blocks over

traffic (with larger diameter) than UKWeb and Friendster. Since Blogel treats blocks as vertices,
the benefit of parallelism is degraded with more blocks.

(b) In all cases, GRAPE take less time when n increases. On average, it is 1.4, 2.3 and 1.5 times faster

for n from 64 to 192 over traffic, UKWeb and Friendster, respectively. (i) Compared with the results

in [31] using less processors, this improvement degrades a bit. This is mainly because the larger

number of fragments leads to more communication overhead. On the other hand, such impact

is significantly mitigated by IncEval that only ships changed update parameters. (ii) In contrast,

Blogel does not demonstrate such consistency in scalability. It takes more time on traffic when n
is larger. When n varies from 160 to 192, it also takes longer over Friendster. Its communication

cost dominates the parallel cost as n grows, “canceling out” the benefit of parallelism. (iii) GRAPE
has scalability comparable to GraphLab over Friendster and scales better over UKWeb and traffic.
Giraph has better improvement with larger n, but with constantly higher cost (see (a)) than GRAPE.

(c) GRAPE significantly reduces supersteps. It takes on average 22 supersteps, while Giraph,
GraphLab and Blogel take 3647, 3647 and 585 supersteps, respectively. This is because GRAPE
runs sequential algorithms over fragmented graphs with cross-fragment communication only

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



Parallelizing Sequential Graph Computations 38:29

 1

 10

 100

 1000

 10000

64 96 128 160 192

T
im

e 
(S

ec
on

ds
)

GRAPE
GraphLab

Giraph
Blogel

(a) Varying n: SSSP (traffic)

 1

 10

 100

 1000

 10000

64 96 128 160 192

T
im

e 
(S

ec
on

ds
)

GRAPE
GraphLab

Giraph
Blogel

(b) Varying n: SSSP (UKWeb)

 10

 100

 1000

64 96 128 160 192

T
im

e 
(S

ec
on

ds
)

GRAPE
GraphLab

Giraph
Blogel

(c) Varying n: SSSP (Friendster)

 0.1

 1

 10

 100

 1000

 10000

64 96 128 160 192

T
im

e 
(S

ec
on

ds
)

GRAPE
GraphLab

Giraph
Blogel

(d) Varying n: CC (traffic)

 0.1

 1

 10

 100

 1000

 10000

64 96 128 160 192

T
im

e 
(S

ec
on

ds
)

GRAPE
GraphLab

Giraph
Blogel

(e) Varying n: CC (UKWeb)

 1

 10

 100

 1000

64 96 128 160 192

T
im

e 
(S

ec
on

ds
)

GRAPE
GraphLab

Giraph
Blogel

(f) Varying n: CC (Friendster)

 1

 10

 100

 1000

64 96 128 160 192

T
im

e 
(S

ec
on

ds
) GRAPE

GraphLab
Giraph
Blogel

(g) Varying n: Sim (Friendster)

 0.25

 1

 4

 16

 64

64 96 128 160 192

T
im

e 
(S

ec
on

ds
) GRAPE

GraphLab
Giraph
Blogel

(h) Varying n: Sim (DBpedia)

 1

 10

 100

 1000

64 96 128 160 192

T
im

e 
(S

ec
on

ds
)

GRAPE
GraphLab

Giraph
Blogel

(i) Varying n:SubIso(Friendster)

 1

 2

 4

 8

 16

 32

64 96 128 160 192

T
im

e 
(S

ec
on

ds
)

GRAPE
GraphLab

Giraph
Blogel

(j) Varying n: SubIso (DBpedia)

 128

 256

 512

 1024

 2048

 4096

64 96 128 160 192

T
im

e 
(S

ec
on

ds
) GRAPE

GraphLab
Giraph
Blogel

(k) Varying n: CF (movieLens)

 0

 0.2

 0.4

 0.6

 0.8

 1

(64, G1) (96, G2) (128, G3) (160, G4) (192, G5)

T
im

e 
(R

at
io

)

GRAPE

(l) Scalability of GRAPE (Synthetic)

Fig. 15. Efficiency of GRAPE

when necessary, and moreover, IncEval ships only changes to status variables. In contrast, Giraph,
GraphLab and Blogel pass vertex-vertex (vertex-block) messages.

(d) SSSP under Blogel runs in VB-model. In each superstep, it first runs V-compute over all vertices

to identify “active” vertices, i.e., vertices whose distance value is updated; it then runs B-compute

on active vertices within blocks. Compared with pure vertex-centric models, running a sequential

algorithm within blocks reduces communication cost. However, its V-compute incurs redundant

computations since it runs over all vertices in each superstep. In contrast, GRAPE runs sequen-

tial algorithms within partitions and leverages incremental computation to reduce redundant

computation and communication cost. In each round, IncEval only runs on affected vertices.

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



38:30 W. Fan et al.

(2) CC. Figures 15d-15e report the performance for CC detection, and tell us the following. (a) Both

GRAPE and Blogel substantially outperform Giraph and GraphLab. For instance, when n = 192,

GRAPE is on average 12094 and 1329 times faster than Giraph and GraphLab, respectively. (b)
Blogel is faster than GRAPE in some cases, e.g., 3.5 seconds vs. 17.9 seconds over Friendster when
n = 192. This is because Blogel embeds the computation of CC in its graph partition phase as

precomputation, while this graph partition cost (on average 357 seconds using its built-in Voronoi

partition) is not included in its response time. In other words, without precomputation, the per-

formance of GRAPE is already comparable to the near “optimal” case reported by Blogel.
CC in GRAPE also works better than the one in Giraph++ [63]. This is because after exchanging

messages between blocks, Giraph++ invokes computation on all internal vertices, and a large part of

the computation is redundant. In contrast, IncEval of GRAPE processes only those affected vertices,

by capitalizing on auxiliary indices that were inherited from sequential algorithms.

(3) Sim. Fixing |Q | = (6, 10), i.e., patterns Q with 6 nodes and 10 edges, we evaluated graph

simulation over DBpedia and Friendster. As shown in Figures 15g-15h, (a) GRAPE consistently

outperforms Giraph, GraphLab and Blogel over all queries. It is 109, 8.3 and 45.2 times faster over

Friendster, and 136.7, 5.8 and 20.8 times faster overDBpedia for 20 queries on average, respectively,

when n = 192. (b) GRAPE scales better with the number n of processors than the others. (c) GRAPE
takes at most 21 supersteps, while Giraph, GraphLab and Blogel take 38, 38 and 40 supersteps,

respectively. This empirically validates the convergence guarantee of GRAPE under monotonic

status variable updates and its effect on reducing computation and communication costs.

(4) SubIso. Fixing |Q | = (3, 5), we evaluated the performance of the systems for subgraph isomor-

phism. As shown in Figures 15i-15j over Friendster and DBpedia, respectively, (a) GRAPE is on

average 76, 35 and 9 times faster than Giraph, GraphLab and Blogel when n = 192. (b) When n
varies from 64 to 192, GRAPE is on average 1.3 and 1.2 times faster over Friendster and DBpedia,
respectively. This is comparable with GraphLab that is 1.3 and 2.8 times faster, respectively.

(5) CF. For collaborative filtering, we used real-lifemovieLens [3] with a training set |ET | = 90%|E |.

We compared GRAPE with the built-in SGD-based CF in GraphLab, and with CF implemented for

Giraph and Blogel. It should be remarked that CF favors “vertex-centric” programming since each

user or product node only needs to exchange data with its neighbors, as indicated by thatGraphLab
and Giraph outperform Blogel. Nonetheless, as shown in Figure 15k, GRAPE is on average 4.1,
2.6 and 12.4 times faster than Giraph, GraphLab and Blogel, respectively, when the number n of

processors varies from 64 to 192. Moreover, GRAPE scales well with n.

(6) Scalability of GRAPE. As observed in [51], the speed-up of a system may degrade over more

processors. We thus evaluated the scalability of GRAPE, which measures the ability to keep the

same performance when both the size of graph G (denoted as (|V |, |E |)) and the number n of pro-

cessors increase proportionally. We varied n from 64 to 192, and for each n, deployed GRAPE over

a synthetic graph. The graph size varies from (50M, 500M) (i.e., 50 million nodes and 500 million

edges; denoted as G1) to (250M, 2.5B) (denoted asG5), with fixed ratio between edge number and

node number and proportional to n . The scalability at e.g., (128,G3) is the ratio of the time using

64 processors overG1 to its counterpart using 128 processors overG3. As shown in Fig. 15l, GRAPE
preserves a reasonable scalability (close to linear scalability, the optimal scalability).

We further evaluated the COST [51] of GRAPE, which denotes the hardware configuration (the

number of cores) required by GRAPE to outperform a competent single-threaded implementation.

It measures the extra overhead (e.g., communication) introduced by parallel systems relative to

single-threaded implementations. The results are reported in Table 3. For CC, we adopted its

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



Parallelizing Sequential Graph Computations 38:31

Algorithms Dataset GRAPE cores GRAPE time (s) Single-threaded time (s)

SSSP traffic 4 6.08 6.14

Friendster 4 96.3 101.1

UKWeb 2 149.1 151.8*

CC traffic 2 1.52 1.63

Friendster 4 35.5 40.3

UKWeb 2 21.6 27.9*

Sim DBpedia 2 7.11 7.32

Friendster 2 44.0 93.7*

SubIso DBpedia 24 0.08 0.08

Friendster 32 20.4 25.0*

CF movieLens 2 460.0 733

Table 3. COST of GRAPE

original implementation
1
of [51] as the single-threaded version. For SSSP, Sim, SubIso and CF, no

implementations are given in [51], and we adopted the best single-threaded implementations to our

knowledge for comparison with GRAPE. Following [51], for large input graphs that are unable to

fit into RAM, we used the external I/O on SSD as an extension to RAM (marked with * in Table 3).

From Table 3 we can see the following. (1) For SSSP, CC, Sim and CF, GRAPE achieves speed-up

over single-threaded implementations with just 2 or 4 cores over all tested input graphs. (2) For

SubIso, even with its relatively heavy prefetching cost (Section 5.1), GRAPE still outperforms the

single-threaded implementations with 24 or 32 cores (just 2 physical machines). (3) According

to [51], GraphLab had a COST of 512 cores and Spark GraphX had unbounded COST (no config-

uration can outperform single-threaded). Therefore, GRAPE demonstrates better scalability than

GraphLab and GraphX, with smaller extra overhead for parallel graph computations.

It should be remarked that parallelization overheads are inevitable for all distributed/parallel

systems, including but not limited to GRAPE. Nonetheless, parallel processing often works better

when dealing with large-scale graphs that are beyond the capacity of a single machine.

Exp-2: Communication cost. The communication cost (in bytes) reported by Giraph, GraphLab
and Blogel depends on their own implementation of message blocks and protocols. As observed

in [36], these built-in message or byte counters differ from each other: Blogel counts cross-process
bytes, GraphLab reports cross-machine bytes, and Giraph tracks cross-partition bytes. For a fair

comparison, we adopted a third-party tool Nethogs [10] following the practice [36]. It tracks the total

bytes sent by each machine during the run, by monitoring the system file /proc/net/dev. This metric,

better aligned to parallel models of the systems, reveals consistent results with better insights.

In the same setting as Exp-1, Figure 16 reports the communication costs of the systems. The

results show that in all cases, GRAPE incurs much less communication cost than Giraph and

GraphLab. On datasets excluding traffic, with 192 processors, it ships on average 0.08%, 1.1%, 0.3%,

0.18% and 8.4% of the data shipped for SSSP, Sim, CC, SubIso and CF by Giraph, and 0.11%, 0.14%,

0.3%, 0.19% and 44% by GraphLab, respectively; moreover, it reduces their cost by 6 and 5 orders

of magnitude for SSSP and CC on traffic, respectively. While it ships more data than Blogel for CC
due to the precomputation of Blogel remarked earlier, it only ships 6.2%, 0.1%, 1.9% and 4.8% of the

data shipped by Blogel for Sim, SubIso, SSSP and CF, respectively. On traffic, GRAPE also reduces

the communication cost of Blogel by 4 and 3 orders of magnitude for SSSP and CC, respectively.

1
https://github.com/frankmcsherry/COST

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



38:32 W. Fan et al.

 1

 20

 400

 8000

 160000

 3.2x10
6

64 96 128 160 192

C
om

m
un

ic
at

io
n 

(M
)

GRAPE
GraphLab

Giraph
Blogel

(a) Varying n: SSSP (traffic)

 100

 1000

 10000

 100000

64 96 128 160 192

C
om

m
un

ic
at

io
n 

(M
)

GRAPE
GraphLab

Giraph
Blogel

(b) Varying n:SSSP (UKWeb)

 1000

 10000

 100000

64 96 128 160 192

C
om

m
un

ic
at

io
n 

(M
)

GRAPE
GraphLab

Giraph
Blogel

(c) Varying n: SSSP (Friendster)

 0.1

 1

 10

 100

 1000

 10000

 100000

64 96 128 160 192

C
om

m
un

ic
at

io
n 

(M
)

GRAPE
GraphLab

Giraph
Blogel

(d) Varying n: CC (traffic)

 1

 10

 100

 1000

 10000

 100000

64 96 128 160 192

C
om

m
un

ic
at

io
n 

(M
)

GRAPE
GraphLab

Giraph
Blogel

(e) Varying n: CC (UKWeb)

 10

 100

 1000

 10000

 100000

64 96 128 160 192

C
om

m
un

ic
at

io
n 

(M
)

GRAPE
GraphLab

Giraph
Blogel

(f) Varying n: CC (Friendster)

 100

 1000

 10000

 100000

64 96 128 160 192

C
om

m
un

ic
at

io
n 

(M
)

GRAPE
GraphLab

Giraph
Blogel

(g) Varying n: Sim (Friendster)

 1

 10

 100

 1000

64 96 128 160 192

C
om

m
un

ic
at

io
n 

(M
)

GRAPE
GraphLab

Giraph
Blogel

(h) Varying n: Sim (DBpedia)

 100

 1000

 10000

 100000

64 96 128 160 192

C
om

m
un

ic
at

io
n 

(M
)

GRAPE
GraphLab

Giraph
Blogel

(i) Varying n:SubIso(Friendster)

 100

 1000

64 96 128 160 192

C
om

m
un

ic
at

io
n 

(M
)

GRAPE
GraphLab

Giraph
Blogel

(j) Varying n: SubIso (DBpedia)

 10000

 100000

 1x10
6

64 96 128 160 192

C
om

m
un

ic
at

io
n 

(M
)

GRAPE
GraphLab

Giraph
Blogel

(k) Varying n: CF (movieLens)

 0

 2000

 4000

 6000

 8000

 10000

 12000

(64, G1) (96, G2) (128, G3) (160, G4) (192, G5)

C
o

m
m

u
n

ic
at

io
n

 (
M

) GRAPE

(l) Data shipment (Synthetic)

Fig. 16. Communication costs

(1) SSSP. Figures 16a-16c show that both GRAPE and Blogel incur communication costs that are

orders of magnitudes less than those of GraphLab and Giraph. This is because vertex-centric

programming incurs a large amount of messages. Both block-centric programs (Blogel) and PIE
programs (GRAPE) reduce unnecessary messages, and trigger inter-block communication only

when necessary. We also observe that GRAPE ships 0.9% and 10% of the data shipped by Blogel
over UKWeb and Friendster, respectively. Indeed, GRAPE ships only changed values of update

parameters, and needs fewer supersteps. These significantly reduce the size and number of messages.

(2) CC. Figures 16d-16f demonstrate similar improvement of GRAPE over GraphLab and Giraph
for CC. It ships on average 0.2% and 0.3% of the data shipped by Giraph and GraphLab on datasets

excluding traffic, and 0.0015% and 0.0003% on traffic, respectively. Since Blogel precomputes CC

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



Parallelizing Sequential Graph Computations 38:33

 0

 10

 20

 30

 40

 50

 60

64 96 128 160 192

T
im

e
 (

se
c
o
n
d

s)
GRAPE

GRAPENI

(a) The impact of IncEval

 1

 1.1

 1.2

 1.3

 1.4

 1.5

64 96 128 160 192

S
p
ee

d
u
p
 o

f 
o

p
ti

m
.

GRAPE speedup
sequential speedup

(b) Optimization on GRAPE

Fig. 17. Incremental steps and optimization

(see Exp-1(2)), it ships little data. Nonetheless, GRAPE is not far worse than the near “optimal” case

of Blogel on Friendster and UKWeb, and ships only 0.05% of the data shipped by Blogel on traffic.

(3) Sim. Figures 16g and 16h report the communication cost for graph simulation over Friendster
and DBpedia, respectively. One can see that GRAPE ships substantially less data, e.g., on average

0.9%, 0.1%, 4.9% of the data shipped byGiraph,GraphLab and Blogel, respectively. Observe that the
communication cost of Blogel is much higher than that ofGRAPE, even though it adopts inter-block
communication. This shows that the extension of vertex-centric to block-centric by Blogel may

not suffice to reduce messages when it comes to complex queries. GRAPE works better than these

systems by employing incremental IncEval to reduce redundant messages and computation.

(4) SubIso. Figures 16i and 16j report the results for SubIso over Friendster and DBpedia, respec-
tively. The results are consistent with their counterparts for Sim. On average, GRAPE ships 0.18%,

0.24% and 0.11% of the data shipped by Giraph, GraphLab and Blogel, respectively.

(5) CF. Figure 16k reports the result for CF over movieLens. On average, GRAPE ships 5.6%, 43.3%

and 3.2% of the data shipped by Giraph, GraphLab and Blogel, respectively.

(6) Synthetic. In the same setting as Figure 15l, Figure 16l reports the communication cost for SSSP
using synthetic graphs. The results demonstrate that more communication cost is incurred over

larger graphs and more processors, due to increased border nodes, as expected.

Exp-3: Incremental computation. We evaluated the effectiveness of incremental IncEval. We

implemented a batch version of GRAPE for Sim queries, denoted as GRAPENI, which uses PEval to
perform iterative computations and handle the messages, instead of IncEval. It mimics the case when

no incremental computation is used. As shown in Figure 17a over Friendster, (1)GRAPE outperforms

GRAPENI by 9.0 times with 192 processors; and (2) the gap is larger when less processors are

employed, e.g., 11.0 times when 64 processors are used. This is because the less processors are used,

the larger fragments reside at each processor, and as a consequence, heavier computation costs are

incurred at each superstep. This verifies that incremental steps effectively reduces redundant local

computations in iterative graph computations. The results on DBpedia are consistent (not shown).

Exp-4. Compatibility. We also evaluated the compatibility of optimization strategies developed

for sequential graph algorithms with GRAPE parallelization. For a query class Q, a sequential

algorithm A and its optimized version A∗
for Q, denote the speedup of the optimization as

T (A)

T (A∗)
.

Denote the running time of GRAPE parallelization of A (resp. A∗
) as Tp (A) (resp. Tp (A

∗)) for a

given number n of processors. Ideally,
T (A)

T (A∗)
should be close to

Tp (A)

Tp (A∗)
, i.e., GRAPE preserves the

speedup from the optimization. That is, the impact of the optimization is not “dampened out” by

parallelization overhead such as synchronization and message passing.

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



38:34 W. Fan et al.

We make a case for graph simulation. We evaluated two sequential algorithms, one from [39],

and the other is an optimized version that employs indices to reduce candidates [25]. Using Sim
queries over Friendster. we found that the average speedup of sequential algorithms is 1.24. Varying

n from 64 to 192, we report the speedup of the parallelized algorithms of GRAPE in Figure 17b. The

results on DBpedia are consistent (not shown). The results suggest that the speedup is close to its

sequential counterpart. Such optimization cannot be easily encoded in vertex programs of Giraph
and GraphLab and the V-mode and B-mode programs of Blogel.

Summary. From the experimental results we find the following.

(1) By simply parallelizing sequential algorithms, the performance of GRAPE is already comparable

to state-of-the-art systems. Using from 64 to 192 processors over real-life graphs excluding traffic,
GRAPE is on average 484, 36 and 15 times faster thanGiraph,GraphLab andBlogel for SSSP, 151, 6.8
and 16 times for Sim, 149.3, 34.2 and 9.6 times for SubIso, and 4.6, 2.6 and 12.4 for CF, respectively.
For CC, it is 1377 and 212 times faster than Giraph and GraphLab, respectively, and is comparable

to the “optimal” case of Blogel although Blogel embeds the computation of CC in its graph partition

phase. On traffic, for SSSP and CC, GRAPE is on average 4, 3 and 2 orders of magnitude faster than

Giraph, GraphLab and Blogel, respectively. The results on synthetic graphs are consistent.

(2) In the same setting, on datasets excluding traffic GRAPE ships on average 0.07%, 0.12% and

1.7% of the data shipped across machines by Giraph, GraphLab and Blogel for SSSP, 0.89%, 0.14%

and 4.9% for Sim, 0.18%, 0.23% and 0.11% for SubIso, 5.6%, 43.3% and 3.2% for CF, respectively. For
CC, it incurs 0.23% and 0.3% of data shipment of Giraph and GraphLab, and is comparable with

“optimized” Blogel. On traffic, for SSSP and CC, it ships on average 5, 6 and 3 orders of magnitude

less data shipment by Giraph, GraphLab and Blogel, respectively.

(3) GRAPE demonstrates good scalability when using more processors, since its incremental com-

putation mitigates the impact of more border nodes and fragments.

(4) Incremental steps effectively reduce iterative recomputation. For Sim, it improves the response

time by 9.6 times on average.

(5) GRAPE inherits the benefit of optimized sequential algorithms. For Sim, it is on average 20%

faster by using the algorithm of [25] instead of the algorithm of [39].

8 CONCLUSION
We have proposed an approach to parallelizing sequential graph algorithms. Given a class Q of

graph queries, users can devise existing sequential algorithms for Q with minor changes, with-

out recasting the entire algorithms into a new model. GRAPE parallelizes the computation and

guarantees to converge at correct answers under a monotonic condition, as long as the sequential

algorithms are correct. Moreover, graph algorithms that are developed for existing parallel graph

systems can be migrated to GRAPE, without incurring extra complexity. We have verified that

GRAPE achieves comparable performance to the state-of-the-art graph systems for various query

classes, and that (bounded) IncEval effectively reduces unnecessary recomputation and hence the

cost of iterative graph computations. We hope that GRAPE will make parallel graph computations

accessible to a large group of users who are more familiar with sequential algorithms.

A preliminary implementation of GRAPE is available at [9]. We are in the process of imple-

menting asynchronous message passing, based on [27]. We are also implementing a lightweight

transaction controller, to support not only queries but also updates such as insertions and deletions

of nodes and edges. When the update load is light,GRAPE adopts non-destructive updates that have

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



Parallelizing Sequential Graph Computations 38:35

proven useful in functional databases [64]. Otherwise, it switches to multi-version concurrency

control [14] that keeps track of timestamps and versions, as adopted by existing distributed systems.

One topic for future work is to revise the asynchronous model of [27] to maximize the benefit

of pipelined parallelism and data-partitioned parallelism. Another topic is to develop methods for

incrementalizing graph algorithms with performance guarantees, extending [11, 16, 24].

ACKNOWLEDGMENTS
The authors are supported in part by 973 Program 2014CB340302, ERC 652976, NSFC 61421003, EP-

SRC EP/M025268/1, the Foundation for Innovative Research Groups of NSFC, and Beijing Advanced

Innovation Center for Big Data and Brain Computing.

REFERENCES
[1] 2006. UKWeb. http://law.di.unimi.it/webdata/uk-union-2006-06-2007-05/. (2006).
[2] 2010. Traffic. (2010). http://www.dis.uniroma1.it/challenge9/download.shtml.
[3] 2011. Movielens. http://grouplens.org/datasets/movielens/. (2011).
[4] 2012. Friendster. https://snap.stanford.edu/data/com-Friendster.html. (2012).
[5] 2012. MPICH. (2012). https://www.mpich.org/.
[6] 2014. Giraph. (2014). http://giraph.apache.org/.
[7] 2015. DBpedia. (2015). http://wiki.dbpedia.org/Datasets.
[8] 2017. Apache Hadoop. (2017). http://hadoop.apache.org/.
[9] 2017. GRAPE. http://grapedb.io/. (2017).
[10] 2017. Nethogs. (2017). https://github.com/raboof/nethogs.
[11] Umut A. Acar. 2005. Self-Adjusting Computation. Ph.D. Dissertation. CMU.

[12] Konstantin Andreev and Harald Racke. 2006. Balanced graph partitioning. Theory of Computing Systems 39, 6 (2006),
929–939.

[13] Jrgen Bang-Jensen and Gregory Z. Gutin. 2008. Digraphs: Theory, Algorithms and Applications. Springer.
[14] Philip A. Bernstein and Nathan Goodman. 1981. Concurrency Control in Distributed Database Systems. ACM Comput.

Surv. 13, 2 (1981), 185–221.
[15] Dimitri P Bertsekas and John N Tsitsiklis. 1997. Parallel and Distributed Computation: Numerical Methods. (1997).

[16] Pramod Kumar Bhatotia. 2015. Incremental Parallel and Distributed Systems. Ph.D. Dissertation. Saarland University.

[17] Erik G Boman, Karen D Devine, and Sivasankaran Rajamanickam. 2013. Scalable matrix computations on large

scale-free graphs using 2D graph partitioning. In SC.
[18] Florian Bourse, Marc Lelarge, and Milan Vojnovic. 2014. Balanced graph edge partition. In SIGKDD. 1456–1465.
[19] Peter Buneman, Gao Cong, Wenfei Fan, and Anastasios Kementsietsidis. 2006. Using Partial Evaluation in Distributed

Query Evaluation. In VLDB.
[20] Badong Chen, Jianji Wang, Haiquan Zhao, Nanning Zheng, and José C. Príncipe. 2015. Convergence of a Fixed-Point

Algorithm under Maximum Correntropy Criterion. IEEE Signal Process. Lett. 22, 10 (2015), 1723–1727.
[21] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. 2003. Reachability and Distance Queries via 2-Hop Labels.

SICOMP 32, 5 (2003), 1338–1355.

[22] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified data processing on large clusters. Commun. ACM
51, 1 (2008).

[23] Wenfei Fan, Zhe Fan, Chao Tian, and Xin Luna Dong. 2015. Keys for Graphs. PVLDB 8, 12 (2015), 1590–1601.

[24] Wenfei Fan, Chunming Hu, and Chao Tian. 2017. Incremental Graph Computations: Doable and Undoable. In SIGMOD.
[25] Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, Yinghui Wu, and Yunpeng Wu. 2010. Graph Pattern Matching: From

Intractability to Polynomial Time. In PVLDB.
[26] Wenfei Fan, Jianzhong Li, Xin Wang, and Yinghui Wu. 2012. Query preserving graph compression. In SIGMOD.
[27] Wenfei Fan, Ping Lu, Xiaojian Luo, Jingbo Xu, Qiang Yin, Wenyuan Yu, and Ruiqi Xu. 2018. Adaptive Asynchronous

Parallelization of Graph Algorithms. In SIGMOD.
[28] Wenfei Fan, Xin Wang, and Yinghui Wu. 2013. Incremental graph pattern matching. TODS 38, 3 (2013).
[29] Wenfei Fan, Xin Wang, and Yinghui Wu. 2014. Distributed graph simulation: Impossibility and possibility. PVLDB

7, 12 (2014), 1083–1094.

[30] Wenfei Fan, Xin Wang, Yinghui Wu, and Jingbo Xu. 2015. Association Rules with Graph Patterns. PVLDB 8, 12 (2015),

1502–1513.

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



38:36 W. Fan et al.

[31] Wenfei Fan, Jingbo Xu, Yinghui Wu, Wenyuan Yu, Jiaxin Jiang, Zeyu Zheng, Bohan Zhang, Yang Cao, and Chao Tian.

2017. Parallelizing Sequential Graph Computations. In SIGMOD. 495–510.
[32] Michael L Fredman and Robert Endre Tarjan. 1987. Fibonacci heaps and their uses in improved network optimization

algorithms. JACM 34, 3 (1987), 596–615.

[33] Rainer Gemulla, Erik Nijkamp, Peter J. Haas, and Yannis Sismanis. 2011. Large-Scale Matrix Factorization with

Distributed Stochastic Gradient Descent. In KDD. 69–77.
[34] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J. Franklin, and Ion Stoica. 2014. GraphX:

Graph Processing in a Distributed Dataflow Framework. In OSDI.
[35] Elaine T. Hale, Wotao Yin, and Yin Zhang. 2008. Fixed-Point Continuation for ℓ1-Minimization: Methodology and

Convergence. SIAM Journal on Optimization 19, 3 (2008), 1107–1130.

[36] Minyang Han, Khuzaima Daudjee, Khaled Ammar, M Tamer Ozsu, Xingfang Wang, and Tianqi Jin. 2014. An

experimental comparison of Pregel-like graph processing systems. VLDB 7, 12 (2014).

[37] Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. 2013. Turboiso: Towards Ultrafast and Robust Subgraph Isomorphism

Search in Large Graph Databases. In SIGMOD.
[38] Tim J. Harris. 1994. A Survey of PRAM Simulation Techniques. ACM Comput. Surv. 26, 2 (1994), 187–206.
[39] M. R. Henzinger, T. Henzinger, and P. Kopke. 1995. Computing simulations on finite and infinite graphs. In FOCS.
[40] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B. Gibbons, Garth A. Gibson, Gregory R.

Ganger, and Eric P. Xing. 2013. More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server.

In NIPS. 1223–1231.
[41] Jiawei Jiang, Bin Cui, Ce Zhang, and Lele Yu. 2017. Heterogeneity-aware Distributed Parameter Servers. In SIGMOD.

463–478.

[42] N. D. Jones. 1996. An Introduction to Partial Evaluation. Comput. Surveys 28, 3 (1996).
[43] Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. 2010. A Model of Computation for MapReduce. In SODA.
[44] George Karypis and Vipin Kumar. 1995. METIS–unstructured graph partitioning and sparse matrix ordering system,

version 2.0. Technical Report.
[45] Arijit Khan, Yinghui Wu, Charu C Aggarwal, and Xifeng Yan. 2013. Nema: Fast graph search with label similarity.

PVLDB 6, 3 (2013).

[46] Zuhair Khayyat, Karim Awara, Amani Alonazi, Hani Jamjoom, Dan Williams, and Panos Kalnis. 2013. Mizan: A

system for dynamic load balancing in large-scale graph processing. In EuroSys. 169–182.
[47] Mijung Kim and K Selçuk Candan. 2012. SBV-Cut: Vertex-cut based graph partitioning using structural balance

vertices. Data & Knowledge Engineering 72 (2012), 285–303.

[48] Yehuda Koren, Robert Bell, Chris Volinsky, et al. 2009. Matrix factorization techniques for recommender systems.

Computer 42, 8 (2009), 30–37.
[49] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and Joseph M. Hellerstein. 2012.

Distributed GraphLab: A Framework for Machine Learning in the Cloud. PVLDB 5, 8 (2012).

[50] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz

Czajkowski. 2010. Pregel: A system for large-scale graph processing. In SIGMOD.
[51] Frank McSherry, Michael Isard, and Derek Gordon Murray. 2015. Scalability! But at what COST?. In HotOS.
[52] Joris M Mooij and Hilbert J Kappen. 2007. Sufficient conditions for convergence of the sum–product algorithm. IEEE

Transactions on Information Theory 53, 12 (2007), 4422–4437.

[53] Todd Mytkowicz, Madanlal Musuvathi, and Wolfram Schulte. 2014. Data-parallel finite-state machines. In ASPLOS.
[54] Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher, M Amber Hassaan, Rashid Kaleem, Tsung-Hsien

Lee, Andrew Lenharth, Roman Manevich, Mario Méndez-Lojo, et al. 2011. The tao of parallelism in algorithms. In

ACM Sigplan Notices. 12–25.
[55] Cosmin Radoi, Stephen J. Fink, Rodric M. Rabbah, and Manu Sridharan. 2014. Translating imperative code to

MapReduce. In OOPSLA.
[56] G. Ramalingam and Thomas Reps. 1996. An incremental algorithm for a generalization of the shortest-path problem.

J. Algorithms 21, 2 (1996), 267–305.
[57] G. Ramalingam and Thomas Reps. 1996. On the computational complexity of dynamic graph problems. Theoretical

Computer Science 158, 1-2 (1996).
[58] Veselin Raychev, Madanlal Musuvathi, and Todd Mytkowicz. 2015. Parallelizing user-defined aggregations using

symbolic execution. In SOSP.
[59] Semih Salihoglu and Jennifer Widom. 2013. GPS: A graph processing system. In SSDBM.

[60] Sebastian Schelter, Stephan Ewen, Kostas Tzoumas, and Volker Markl. 2013. "All roads lead to Rome": Optimistic

recovery for distributed iterative data processing. In CIKM. 1919–1928.

[61] George M Slota, Sivasankaran Rajamanickam, Karen Devine, and Kamesh Madduri. 2017. Partitioning Trillion-edge

Graphs in Minutes. In IPDPS.

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



Parallelizing Sequential Graph Computations 38:37

[62] Isabelle Stanton and Gabriel Kliot. 2012. Streaming graph partitioning for large distributed graphs. In KDD. 1222–1230.
[63] Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, and John McPherson Shirish Tatikonda. 2013. From “Think

Like a Vertex" to “Think Like a Graph". PVLDB 7, 7 (2013), 193–204.

[64] Phil Trinder. 1989. A Functional Database. Ph.D. Dissertation. University of Oxford.

[65] Leslie G. Valiant. 1990. A Bridging Model for Parallel Computation. Commun. ACM 33, 8 (1990), 103–111.

[66] Leslie G. Valiant. 1990. General Purpose Parallel Architectures. In Handbook of Theoretical Computer Science, Vol A.
[67] Guozhang Wang, Wenlei Xie, Alan J. Demers, and Johannes Gehrke. 2013. Asynchronous Large-Scale Graph

Processing Made Easy. In CIDR.
[68] Chenning Xie, Rong Chen, Haibing Guan, Binyu Zang, and Haibo Chen. 2015. SYNC or ASYNC: Time to fuse for

distributed graph-parallel computation. In PPOPP.
[69] Eric P. Xing, Qirong Ho, Wei Dai, Jin Kyu Kim, Jinliang Wei, Seunghak Lee, Xun Zheng, Pengtao Xie, Abhimanu

Kumar, and Yaoliang Yu. 2015. Petuum: A New Platform for Distributed Machine Learning on Big Data. IEEE Trans.
Big Data 1, 2 (2015), 49–67.

[70] Da Yan, Yingyi Bu, Yuanyuan Tian, and Amol Deshpande. 2017. Big Graph Analytics Platforms. Foundations and
Trends in Databases 7, 1-2 (2017), 1–195.

[71] Da Yan, James Cheng, Yi Lu, and Wilfred Ng. 2014. Blogel: A Block-Centric Framework for Distributed Computation

on Real-World Graphs. PVLDB 7, 14 (2014), 1981–1992.

[72] Da Yan, James Cheng, Yi Lu, and Wilfred Ng. 2015. Effective techniques for message reduction and load balancing

in distributed graph computation. InWWW.

[73] Da Yan, James Cheng, Kai Xing, Yi Lu, Wilfred Ng, and Yingyi Bu. 2014. Pregel Algorithms for Graph Connectivity

Problems with Performance Guarantees. PVLDB 7, 14 (2014), 1821–1832.

[74] Zhensheng Zhang and Christos Douligeris. 1991. Convergence of Synchronous and Asynchronous Algorithms in

Multiclass Networks. In INFOCOM. 939–943.

[75] Yang Zhou, Ling Liu, Kisung Lee, Calton Pu, and Qi Zhang. 2015. Fast iterative graph computation with resource

aware graph parallel abstractions. In HPDC.

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



38:38 W. Fan et al.

SUPPLEMENTARY MATERIALS
Proof of Theorem 4.2

(1) Simulate BSP. We first show that all BSP programs can be optimally simulated by GRAPE.
Recall that a BSP algorithm A consists of the following three components: (1) n workers that

perform computation of some function f ; (2) a router that ships data between workers; and (3) a

mechanism for synchronizing the computations of the workers [65].

To simulate A, we use PEval and IncEval to simulate the function f , and coordinator P0 to play

the role of the router. To simulate arbitrary data shipment of BSP, similar to the construction in [27],

we construct a complete graph GW of n nodes as additional input of the BSP program. That is, GW
is a clique of n nodes, which assigns one nodewi to each worker Pi for i ∈ [1,n], and stores the data
transferred to Pi in the status variables ofwi , as its update parameters. The reason for usingGW
is because in GRAPE, only the update parameters at a worker can be exchanged between workers.

By employing GW , all the n nodes become border nodes, and we can simulate the arbitrary data

shipment of A by storing the data in the update parameters of GRAPE workers, and encoding the

shipments as messages. The coordinator P0 collects messages from workers, and routes them to

the corresponding workers. GRAPE adopts the same synchronization mechanism as BSP.

More specifically, we simulate a given BSP algorithm A with a PIE program B as follows.

(a) Data partition: Program B also uses n workers. It partitions and distributes the input of A in

exactly the same way asA. In addition, as mentioned above, B takes as input a complete graphGW
of n nodes, which is evenly distributed across the n works, one node designated for each worker.

(b) Update parameters. The update parameters of B are such defined that they encode the messages

transferred by A. That is, for each node wi in G, a status variable x is declared such that wi .x
maintains the data at Pi to be exchanged with other workers.

(c) PEval and IncEval: Both PEval and IncEval of B are simply the function f of A.

(d) Message grouping. The GRAPE message scheme of B is used to (i) group the received messages;

(ii) distribute the workload to workers. More specifically, the coordinator P0 does the following.

• It first collects all the update parameters for each worker Pi (i ∈ [1,n]).

• It then sends (the changed values of) the update parameters designated to worker Pi (i ∈
[1,n]), in the same way as A does.

The complete graph GW allows B to exchange messages between different workers, i.e., to sup-

port point-to-point message passing. The data shipment strategies of BSP can be encoded by the

aggregate function of B, to dispatch messages just like A does.

(e) Assemble: The Assemble function simply collects and returns the partial results from workers.

Given these, one can verify that the PIE program correctly simulates A under GRAPE. That is,
for any input I of algorithm A, B takes I and GW as input and returns the same result as A.

Next, we verify that the simulation is optimal. Suppose that given an input I , A runs in k rounds

using T time. Suppose that at superstep r (r ∈ [1,k]), A takes Tr time and sends Cr amount of

data. We show that B also does the job in k supersteps and takes O(T ) time. To this end, it suffices

to show that B simulates round r in O(Tr ) times, and moreover, it sends O(Cr ) amount of data

as messages. To see this, observe that when simulating round r of A, B runs the same function

f on the same data, and sends the same data as messages to the coordinator P0 as A does. The

coordinator then routes the message to other workers. Thus B simulates round r of A in O(Tr )
times, with O(Cr ) as its communication cost. Formally, this can be verified by induction on r .

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



Parallelizing Sequential Graph Computations 38:39

Putting these together, we can see that GRAPE can optimally simulate BSP.

(2) Simulate MapReduce. It has been shown in [27] that all MapReduce programs using n proces-

sors can be optimally simulated by GRAPE using n processors. For the completeness of this paper,

we also present the construction in [27] here, and provide more details of the proof.

A MapReduce algorithmA is specified as follows. The input ofA is a multi-set I0 of ⟨key, value⟩
pairs. The operations of A are characterized as a sequence (B1, . . . ,Bk ) of subroutines, where
Br (r ∈ [1,k]) consists of a mapper µr and a reducer ρr . Given input I0, A iteratively runs the

subroutines Br (r ∈ [1,k]) as follows [22, 43].
(i) The mapper µr processes each pair ⟨key, value⟩ in Ir−1 one by one, and produces a multi-set

I ′r of ⟨key, value⟩ pairs as output.
(ii) Group pairs in I ′r by the key values. That is, two pairs are put in the same group if and only

if they have the same key value. Group I ′r by distinct keys; this yields Gk1
, . . . , and Gkj .

(iii) The reducer ρr processes the groups Gkl (l ∈ [1, j]) one by one, and produces a multi-set Ir
of ⟨key, value⟩ pairs as output.

(iv) If r < k , then A continues to run the next subroutine Br+1 on Ii in the same manner as steps

(i)-(iii); otherwise, A outputs Ik and terminates.

Here I0 is the input of A, and Ir is the output of Br (r ∈ [1,k]). There are two other parameters,

namely,Mr and Nr (r ∈ [1,k]), which are the numbers of instances of mappers and reducers for

each subroutine Br , respectively. That is, there existMr processors and Nr processors running µr
and ρr , respectively. As put in [43], each mapper (resp. reducer) processes only one ⟨key, value⟩
pair (resp. group) at a time. To simplify the discussion, we assume w.l.o.g. that each routine uses

n mappers and n reducers, by reassigning the workload when needed. Generally speaking, there

also exists a partition strategy for distributing the outputs of the mappers to the reducers in a

MapReduce algorithm. To simplify the discussion, we only consider the hash partition used as

default methods in Hadoop [8]. Other partition methods can be simulated similarly.

To simulate the process of the MapReduce algorithm A above, we use PEval to simulate the

mapper µ1 of B1, and IncEval to play the roles of reducer ρi and mapper µi+1 in each superstep,

for i ∈ [1,k − 1], and the final reducer ρk . Complications arise from the following mismatches:

(a) A has a sequence (B1, . . . ,Bk ) of subroutines, while algorithms of GRAPE have only three

functions, namely, PEval, IncEval, and Assemble; and (b) A groups data by keys and distributes

⟨key, value⟩ pairs across processors, while workers of GRAPE can only exchange the values of

update parameters. In a nutshell, to solve problem (a), we define IncEval that takes the subroutines
B1, . . . , Bk of A as program branches, and makes use of an index r (r ∈ [1,k]) to select correct

branches via update parameters. We use the status variables of update parameters to store tuples

of form ⟨r , key, value⟩ (for r ∈ [1,k]), where r is the index for selecting subroutines in IncEval.
GRAPE picks the correct subroutines in IncEval by properly maintaining and citing index r . We

solve problem (b) along the same lines as what we do for simulating BSP above, by employing a

complete graph GW as additional input. We use boarder nodes of GW to denote processors, and

employ update parameters Ci .x̄ to store associated data.

More specifically, given a MapReduce algorithm A with n processors, we simulate A with a PIE
programB underGRAPEwithnworkers. Suppose that the input ofA is a multi-set I0 of ⟨key, value⟩.

(a) Data partition: Similar to the simulation of BSP, we construct a complete graph GW of n nodes

as additional input of the GRAPE algorithm B, such that each worker Pi is represented by a node

wi for i ∈ [1,n]. Each nodewi has a status variable x to store a multi-set of ⟨r ,key, value⟩ tuples. As
mentioned above, r keeps track of different rounds of the computation of B, for IncEval to select

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



38:40 W. Fan et al.

right subroutines. We distribute the ⟨key, value⟩ pairs in I0 in exactly the same way asA does before

running subroutine B1; the status variable of eachwi inGW contains the pairs assigned to worker Pi .

(b) Update parameters. As remarked earlier, for each node wi in GW , its status variable x takes a

multi-set of ⟨r , key, value⟩ tuples as its value, and the update parameter at worker Pi iswi .x .

(c) PEval: PEval simulates mapper µ1 of subroutine B1 and organizes its output, as follows.

• Each worker first runs the mapper µ1 of subroutine B1 on its local data.

• Next, it prepares the output of µ1 and stores it in the update parameters for later supersteps.

Suppose that the output of µ1 is (I1)
′
. For each pair ⟨key, value⟩ in (I1)

′
, it includes a tuple

⟨1,key,value⟩ in an update parameter. Here the index 1 in the tuples indicates that these

tuples are the results of the mapper µ1.

This is possible since graphGW is complete, all the nodes inGW are border nodes, and each node in

G denotes a worker. Hence each worker can modify the update parameters of all the other workers.

(d) Message grouping. The coordinator groups and routes messages as follows.

• It first takes a union of the update parameters of all nodewi (i ∈ [1,n]), and then groups the

update parameters by the key values.

• Next, to balance the workload, it uses hash partition to assign each tuple ⟨r , key, value⟩ to
a reducer (i.e., a worker), following Hadoop. More specifically, suppose that h is the hash

function used. Then all tuples ⟨r , key, value⟩ with the same key will be assigned to worker Pj
with j = h(key) mod n + 1, where n is the total number of workers, and r ∈ [1,k] indicates
the round of computation. After this, PEval stores all tuples ⟨r , key, value⟩ with the specific

key in the update parameter of worker Pj .
That is, the aggregateMsg function groups the ⟨r , key, value⟩ tuples by the key value, and assigns

each group to a worker based on hash function h; the group of tuples is sent to the worker as

messages and stored in its update parameter.

(e) IncEval. Upon receiving messages from the coordinator P0, IncEval first extracts the index r from
the ⟨r , key, value⟩ tuples in the messages, and uses the index r to pick the right subroutine in IncEval.
Note that although we run different subroutines by IncEval, GRAPE uses the same function IncEval
through the course of the execution. This is done by treating subroutines as branch programs in

IncEval, controlled by index r . More specifically, IncEval does the following.
• Extract a multi-set of ⟨key, value⟩ pairs from the ⟨r , key, value⟩ tuples received. Denote by
(Ir )

′
the result of the process.

• On (Ii )
′
, run the reducer ρr , which can be seen as a branch program of IncEval. Suppose that

Ir is the output of the reducer ρr .

• If r = k , i.e., if the reducer ρk has finished the job, then IncEval sets the update parameter

of each worker to be empty, which will terminate the algorithm B; otherwise, IncEval runs
mapper µr+1 on Ir , and generates tuples of the form ⟨r +1, key, value ⟩ from the output of µr+1.

The output is processed in the same way as described in the message grouping part above.

(f) Assemble: The Assemble function simply takes a union of the partial results from all workers.

Having these functions, the PIE program B simulates A under GRAPE as follows. Suppose that

A runs in k rounds. Then B runs in k + 1 rounds, since given a subroutine (µr , ρr ) (r ∈ [1,k]),
B simulates the mapper µr in round r , and the reducer ρr in round r + 1. The extra round is also

needed to set parameters empty and terminate the process. By induction on k , one can easily verify

that given any input I0 of ⟨key, value⟩ pairs, A and B produce the same result.

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.



Parallelizing Sequential Graph Computations 38:41

We next show that under GRAPE, the PIE program B optimally simulates the MapReduce al-

gorithm A. Suppose that given input I0, A runs in T time, and has communication cost C . More

specifically, a subroutine Br (r ∈ [1,k]) takesTr time, and sendsCr amount of data. To show that B

runs in O(T ) time and sends O(C) amount of data, it suffices to show that B simulates Br in O(Tr )
time, and sends messages of size O(Cr ) in the round. To verify this, observe that when simulating

Br , B runs the same functions µr and ρr on the same data, except that B encapsulates the produced

⟨key, value⟩ pairs as ⟨r , key, value⟩ tuples. The update parameters ⟨r , key, value⟩ are generated by

the workers in parallel, also in O(Tr ) time. In addition, since we only add a number (index r ) to
each key-value pair in the update parameters, B sends messages of sizeO(Cr ) in the round. Putting

these together, we have that B simulates Br in O(Tr ) time, and incurs communication cost O(Cr )

via messages. Hence, B runs in O(T ) time, and sends O(C) amount of data in total.

From the argument above it follows that GRAPE can optimally simulate MapReduce.

(3) Simulate PRAM. Finally, we show that all PRAM programs can be simulated by GRAPE.
PRAM employs a number of processors that share memory, and each processor can access

any memory cell in unit time. The computation is typically synchronous. In one unit time, each

processor can read one memory location, execute a single operation and write into one memory

location. PRAM is further classified by various access policies of shared memory, e.g., CREW PRAM

indicates concurrent read and exclusive write (see [66] for details).

It is known that a CREW PRAM algorithm using t time withO(P) total memory andO(P) proces-
sors can be simulated by a MapReduce algorithm in O(t) rounds using at most O(P) reducers and
memory [43]. By Theorem 4.2(2) above, each MapReduce algorithm in r rounds can be simulated

by GRAPE in r + 1 supersteps. From these Theorem 4.2(3) follows. 2

Received February 2007; revised March 2009; accepted June 2009

ACM Trans. Datab. Syst., Vol. 0, No. 0, Article 38. Publication date: 2000.


	Abstract
	1 Introduction
	2 Preliminaries
	3 Programming with GRAPE
	3.1 The Parallel Model of GRAPE
	3.2 PEval: Partial Evaluation
	3.3 IncEval: Incremental Evaluation
	3.4 Assemble Partial Results

	4 Foundation of GRAPE
	4.1 Correctness of Parallel Model
	4.2 The Expressivity of GRAPE

	5 Graph Computations in GRAPE
	5.1 Graph Pattern Matching
	5.2 Graph Connectivity
	5.3 Collaborative Filtering

	6 Implementation of GRAPE
	7 Experimental Study
	8 Conclusion
	Acknowledgments
	References

