Satisfiability of XPath Queries with Sibling Axes

Floris Geerts' and Wenfei Fan?

! University of Limburg and University of Edinburgh
2 University of Edinburgh and Bell Laboratories

Abstract. We study the satisfiability problem for XPath fragments sup-
porting the following-sibling and preceding-sibling axes. Although this
problem was recently studied for XPath fragments without sibling axes,
little is known about the impact of the sibling axes on the satisfiability
analysis. To this end we revisit the satisfiability problem for a variety
of XPath fragments with sibling axes, in the presence of DTDs, in the
absence of DTDs, and under various restricted DTDs. In these settings
we establish complexity bounds ranging from NLOGSPACE to undecid-
able. Our main conclusion is that in many cases, the presence of sibling
axes complicates the satisfiability analysis. Indeed, we show that there
are XPath satisfiability problems that are in PTIME and PSPACE in the
absence of sibling axes, but that become NP-hard and EXPTIME-hard,
respectively, when sibling axes are used instead of the corresponding
vertical modalities (e.g., the wildcard and the descendant axis).

1 Introduction

We revisit the satisfiability problem for XPath [7] in the presence of DTDs. It is
the problem to determine, given an XPath query @ and a DTD D, whether or
not there exists an XML document 7" such that T' conforms to D and satisfies
Q, i.e., the set Q(T) of nodes of T selected by @Q is nonempty.

The prevalent use of XPath highlights the need for the satisfiability analysis
of XPath queries. Indeed, XPath has been commonly used in specifying XML
constraints (e.g., [6,9,27]), queries (e.g., XSLT, XQuery), updates (e.g., [26]),
and access control (e.g., [10]). In many applications both XPath expressions and
DTDs are present. The static satisfiability analysis of XPath addresses the in-
teraction between XPath and DTDs, and is useful in query optimization, update
manipulation and reasoning about XML access control, among other things. An
alternative to the static analysis would be a dynamic approach. As an exam-
ple, consider an access-control policy S defined in terms of a DTD and XPath
queries, which is to prevent disclosure of XML documents to unauthorized users
by validating that the documents “satisfy” S. One could simply attempt to vali-
date a document with respect to S at run-time. This, however, would not tell us
whether repeated failures are due to inconsistency between the XPath queries
and the DTD, or problems with the documents.

The satisfiability problem has been studied for a large number of XPath
fragments [2,13,15,17], in the presence and in the absence of DTDs. The pre-
vious work has mostly focused on XPath queries with only vertical modalities

such as child, parent, descendant and ancestor axes (referred to “|,t,1",1*”,
respectively). However, XML data is ordered and it is often desirable to ac-
cess this order using XPath. Indeed, consider an XML document storing items
bought by customers over a period of time. The items are grouped under cus-
tomers and appear according to their date of acquisition. In order to detect
customer behavior over time, one needs to be able to pose queries involving or-
der. Therefore, it is common to find XPath queries that need sideways traversal
via horizontal modalities such as (immediate) right-sibling and left-sibling axes
(denoted by “—, —=*, «,«*”, respectively). It is natural to ask whether the
presence of sibling axes simplifies or complicates the satisfiability analysis. For
example, consider a fragment X(J,[]) that supports wildcard (}) and qualifiers
([1) and characterizes well-studied tree pattern queries [1,2,28,29]. One would
want to know whether the satisfiability analysis becomes easier or harder for
X(—=,[]) (resp. X(+,[])), the horizontal counterpart of X({,[]) by substitut-
ing — (resp. «<) for |. The complexity of the satisfiability analysis is not yet
known for a variety of XPath fragments with sibling axes.

Related to the satisfiability analysis is the containment problem, which is
to determine, given two XPath queries ()1, and a DTD D, whether or not
for all XML documents T that conform to D, Q1(T) is contained in Q»(T).
While there has also been a host of work on the containment analysis [8,17,
19,22, 29], the previous results cannot answer the questions of the satisfiability
analysis. Indeed, as already observed by [2], the lower bounds for the containment
analysis are often much higher than its satisfiability counterpart. Worse still, to
our knowledge there has not been a full treatment of the containment problem
for various fragments with the sibling axes or XPath negation.

Main results. To this end we investigate the satisfiability problem for a variety
of XPath fragments with sibling axes, in the following settings:

— XPath fragments: with or without recursion axis (e.g., =*, «*,}*,1"), qual-
ifiers ([]), data-value joins (denoted by =), and negation (—);

— DTDs: in the presence of DTDs vs. in the absence of DTDs; fixed DTDs
vs. arbitrary DTDs; and restricted DTDs with or without DTD recursion,
disjunction, and Kleene star in element type definitions.

We establish lower and upper bounds for the satisfiability analysis in these set-
tings, which range from NLOGSPACE to undecidable. We also explore the im-
pact of sibling axes on the analysis. We show that in the absence of XPath qual-
ifiers, the presence of sibling axes does not complicate the satisfiability analysis.
In contrast, in the presence of qualifiers, sibling axes make the analysis harder.
Indeed, we show the following. (a) The satisfiability problem for X(—,[]) is
NP-hard under fixed, disjunction-free DTDs, whereas it is in PTIME for its
vertical counterpart X'({,[]) in the same setting [2]. (b) It is EXPTIME-hard
for X(t,—,U,[],7)), a fragment with upward and sibling axes and negation
but without recursion; in contrast, it is in PSPACE for the vertical counterpart
X, 1,U,[1,7) [2]- (¢) Under non-recursive and fixed DTDs and in the absence
of DTDs, it is still unknown [2] whether or not the satisfiability problem is de-

cidable for X({,J*,%,1%,U,[], ~, =), a fragment with negation, data-value joins
and all the vertical axes. In contrast, the problem is undecidable when sibling
axes are introduced; indeed, it is undecidable for X (1, +,—,—>*,U,[],=,) in
the same settings.

In addition to the complexity bounds for the satisfiability problems, we also
explore the connection between vertical and horizontal axes and the connec-
tion between the satisfiability and containment analysis, establishing first lower
bound results for the containment analysis of XPath fragments with sibling axes.

These results help us understand the interaction between different XPath
axes, as well as their interaction with various DTD constructs. Taken together,
these results and the previous work [2,13,15,17] provide a detailed treatment
of the satisfiability analysis for a large number of XPath fragments commonly
found in practice, in a variety of DTD settings.

Related work. The satisfiability problem has been studied in [2,13,15,17].
Complexity bounds were provided in [2] for various XPath fragment under a va-
riety of DTDs. However, no sibling axes were considered there. Our results in this
paper complement and extend the results of [2]. The main focus of [17] is about
extensions of XPath, and it provided EXPTIME (lower and upper) bounds on
equivalence for an extension of XPath in the presence of DTDs, which implies
an EXPTIME bound for our fragment with all the axes and negation but with-
out data-value joins. We will show in Section 4.3 that the EXPTIME-hardness
already holds for a subclass of the fragment without recursion axes. The XPath
queries considered in [15] are basically tree patterns with node equality, inequal-
ity and limited use of data joins; neither negation nor sibling axes were considered
there; furthermore, DTDs were restricted to be non-recursive disjunction-free
in [15]. In the absence of DTDs, [13] studied the satisfiability problem for XPath
without negation and data-value joins. From the results of [2], we already know
that these bounds do not hold in the presence of DTDs. In particular, [13] gave
PTIME bounds for XPath fragments with qualifiers, sibling axes, upward axes,
and a root test in the absence of DTDs. We show that in the presence of DTDs,
the problem is NP-hard, and we give PTIME bounds in the absence of qualifiers,
and in the presence of sibling, upward axes and DTDs.

There has also been work on the containment problem for XPath fragments
in the absence and in the presence of DTDs [8,17,19, 22,29]. Most of the work
(except [22,17]) only studied fragments without upward axes, sibling axes, data-
value joins and negation. The negation defined in [22] is quite different from the
general XPath negation operator. See [25] for a recent survey. As shown in [2],
the complexity bounds for the containment analysis are typically much higher
than its satisfiability counterpart in the absence of negation. In the presence of
negation, the connection between the containment analysis and its satisfiability
counterpart was explored in [2] and will be further discussed in Section 5.

Other active areas of XPath research include the expressive power of XPath
(e.g., [3,12,16-18,20,21]) and query rewriting and minimization (e.g., [1,9, 11,
23,28]). While XPath satisfiability is not the focus in those areas, the satisfia-
bility analysis is useful for XPath rewriting, minimization and optimization.

Organization. Section 2 reviews DTDs and defines XPath fragments. Section 3
explores the connection between sibling and vertical axes. Section 4 studies the
satisfiability problem for XPath fragments with sibling axes, followed by the
containment analysis in Section 5. Section 6 summarizes the main results of the
paper. All proofs can be found in the full paper.

2 Preliminaries

In this section we first review DTDs [5] and describe the XPath [7] fragments
considered in this paper. We then state the satisfiability problem in the presence
of DTDs and address its connection with the counterpart in the absence of DTDs.

2.1 DTDs

Without loss of generality, we represent a Document Type Definition (DTD [5])
D as (Ele, Att, P, R,), where (1) Ele is a finite set of element types, ranged
over by A, B,...; (2) r is a distinguished type in Ele, called the root type; (3)
P is a function that defines the element types: for each A in Ele, P(A) is a
regular expression over Ele; we refer to A — P(A) as the production of A; (4)
Att is a finite set of attribute names, ranged over by a,b,...; and (5) R defines
the attributes: for each A in Ele, R(A) is a subset of Att.

A DTD D = (Ele, Att, P, R, r) is said to be disjunction-free if for any
element type A € Ele, P(A) does not contain disjunction ‘+’. It is called no-
star if for any A € Ele, P(A) does not contain the Kleene star ‘+’ (this should not
be confused with star-free regular expressions). It is recursive if the dependency
graph of D, which contains an edge (A, B) iff B is in P(A), has a cycle.

An XML document is typically modeled as a (finite) node-labeled tree [5],
with nodes additionally annotated with values for attributes. We refer to this
as an XML tree. An XML tree T satisfies (or conforms to) a DTD D =
(Ele, Att, P, R, r), denoted by T | D, if (1) the root of T is labeled with
r; (2) each node n in T is labeled with an Ele type A, called an A element; the
label of n is denoted by lab(n); (3) each A element has a list of children such
that their labels are a word in the regular language defined by P(A); and (4) for
each A in Ele and each a € R(A), each A element n has a unique a attribute
value, denoted by n.a. We call T an XML tree of D if T | D.

Ezample 1. Consider a DTD D; = (Ele, Att, P, R,r) defined as
Ele={r, X, A, B}.
P: r— X", X — (A, B*)*
Att=0, R(X)=R(T)=R(F)=0.
It is non-recursive and disjunction-free. An XML tree of D; is shown at the left
in Fig. 1.
Another DTD D, = (Ele, Att, P, R, r) is defined as
Ele={r, X, Y}.
P: r—-X)Y, XY X+e, Y->X,Y+e
Att =0, R(X)=R(T)=R(F)=0.

/X\B e //\,\B J\/ 7»

Fig. 1. XML trees of the DTDs D1 (left) and D> (right) given in Example 1.

It is recursive and no-star. An XML tree of D5 is shown at the right in Fig. 1. m

Note that a DTD D may not have any XML tree T such that T |= D. This is
because some element type A in D is non-terminating, i.e., there exists no finite
subtree rooted at an A element that satisfies D. Fortunately, one can determine
whether this is the case for any element type of D in O(|D|) time, where |D| is
the size of D [14]. In the remainder of the paper we will assume that all element
types in a DTD are terminating. This does not affect any of our results.

2.2 XPath Fragments

Over an XML tree, an XPath query specifies the selection of nodes in the tree.
Assume a (possibly infinite) alphabet X' of labels. The largest fragment of XPath
studied in this paper, denoted by X({,}", 1,1, +,«* =, =* U, [],=,7), is
defined syntactically as follows:
pu=c¢¢ | AL [T] -]
| <« | <" | p/p | pUp | pld],

where € and A denote the empty path (the self-axis) and a label in X' (the child-
azis); ¢}’ and ‘}*’ stand for the wildcard (child) and the descendant-or-self-axis,
while T and 1* denote the parent-azis and ancestor-or-self-azis, respectively;
‘—*’ (resp. ‘—*’) is the following-sibling (resp. preceding-sibling) axis, and ‘—’
(resp. ‘<) denotes the immediate right sibling (reps. the immediate left sibling);
¢/’ and ‘U’ stand for concatenation and union, respectively; and finally, ¢ in p[q]
is called a qualifier and is defined by:
g== p | lab() =A | p/Qaopc | p/Qaopp’/Qb

| oA | Ve | g,

where p is as defined above, A is a label in X, op is either ‘=" or ‘#’ (referred
to as data-value joins), a,b stand for attributes, ¢ is a constant (string value),
and A,V,— stand for and (conjunction), or (disjunction) and not (negation),
respectively.

It is worth mentioning that while XPath [7] does not explicitly define ‘«—, —’,
these operators are definable in terms of the preceding-sibling and following-
sibling axes, together with position(), as follows:

+— = +*[position() = 1], — = —¥[position() = 1].

A query pin X(}, 5,1, 1", +,«*,—, =%, U,[],=,) over an XML tree T is
interpreted as a binary predicate on the nodes of T', while a qualifier is interpreted

as a unary predicate. More specifically, for any node n in T, T satisfies p at n
iff T = 3n' p(n,n'), where T |= p(n,n') and the associated version for qualifiers,
T [= q(n), are defined inductively on the structure of p, g, as follows:

. if p=-¢, then n =n';

if p =1, then n' is a child of n, and is labeled [;

if p= |, then n' is a child of n, regardless of its label;

if p= 1%, then n’ is either n or a descendant of n;

if p =1, then n’ is the parent of n;

if p = 1", then n' is either n or an ancestor of n;

if p = —, then n' is the immediate right sibling of n.

if p= —*, then n' is either n or a right sibling of n.

. if p = «, then n' is the immediate left sibling of n.

10. if p = «*, then n' is either n or a left sibling of n.

11. if p = p1/p2, then there exists anode v in T such that T |= p1(n, v) Ap2(v,n');

12. if p = py Ups, then T |= py(n,n’) V pa(n,n');

13. if p = p1[q], then T = p1(n,n') and T = ¢(n'), where ¢ is a unary predicate

of the following cases:

(a) g is po: then T = 3n" pa(n',n");

(b) ¢ is lab() = A: then the label of n' is A;

(c) qis pa/Qa op ‘¢’: then T |= Iny (p2(n',n1) A nyi.a op ‘@), where n;.a
denotes the value of the a attribute of ny; that is, there exists a node n,
in T such that T = pa(n',n1), ny has attribute a and ny.a op ‘c’;

(d) ¢ is p2/Qa op py/@b: then T satisfies the existential formula: T =
Ing Ing (p2(n',n1) A ph(n',ns) A ni.a op na.b);

() gisq1 Aga:then T |= (1 (n') A g2(n'));

(f) qis @1 V go: then T |= (q1(n') V g2(n'));

(g) g is —¢': then T [¢'(n'); for instance, if g is —p2, then T |
vn!" —py(n’,n'").

X R X

Here n is referred to as the context node. If T = p(n,n') then we say that n'
is reachable from n via p. We use n[p] to denote the set of all the nodes reached
from n via p, e, n[p]={n' | n' €T, T E=p(n,n')}.

We investigate various fragments of X({,,", 1,1, , «*, =, =% U,[],=,).
We denote a fragment X by listing the operators supported by X': the presence
or absence of negation ‘—’, data-value joins ‘=, #’, upward traversal ‘1’ ("1*’),
sideways traversal ‘-’ ("«<*’) and ‘=’ ("—*’), wildcard ‘|’, recursive axis ‘}*, 1%,
+*’ and ’—=*’, qualifiers ‘[]’, and union and disjunction ‘ U’. The concatenation
operator ‘/’ is included in all fragments by default.

Example 2. Consider the XML tree T of D5 shown in Fig. 1, and the following
XPath queries. (a) Over T, |*[{/—[lab() = X]] is to find all the nodes in T
that have child whose right sibling is labeled X. This query is in the fragment
X475, —,[])- (b) Posed on T, |*[-}*[X/—[lab() = Y]] is to find all the nodes
in T that have no descendant which has children X and Y in this order. This
query is in X({,4*,—,[],7). (¢) Over the XML tree T} of D; shown in Fig. 1,
V' [A/=/—*[lab() = A] A ~(B/—/—*[lab() = B]/—/—*[lab() = B])] is to find
all the nodes that have at least two A children but at most three B children. It
is in X(i;i*aﬁa—wa []a_')'

2.3 The Satisfiability Problem

We say that an XML tree T satisfies a query p, denoted by T' = p, iff T |
In p(r,n), where r is the root of T. In other words, r[p] # #. We focus on the
satisfiability of XPath queries applied to the root of T. The complexity results
of this paper remain intact for arbitrary context nodes.

We study the satisfiability problem for XPath queries considered together
with a DTD. That is the problem to determine whether a given XPath query
p and a DTD D are satisfiable by an XML tree. We say that an XML tree T
satisfies p and D, denoted by T = (p,D), f T = pand T | D. If such a T
exists, we say that (p, D) is satisfiable.

Formally, for a fragment X’ of XPath we define the XPath satisfiability prob-
lem SAT(X) as follows:

PROBLEM: SAT(X)
INPUT: A DTD D, an XPath query p in X.
QUESTION: Is there an XML document T such that T' |= (p, D)?

We are also interested in the complexity of the satisfiability analysis in the
query size alone. The satisfiability problem for a fragment X in the absence of
DTDs is the problem of determining, given any query p in X', whether or not
there is an XML tree T such that T' = p. As shown in [2], this problem is a
special case of SAT(X), when DTDs D are restricted to have a certain syntactic
form. Since such DTDs can be computed in low polynomial of the size of the
input queries, all the lower bounds for SAT(X) established in this paper, except
Proposition 6, also hold in the absence of DTDs.

3 Horizontal versus Vertical Traversal

In this section we study the basic properties of XPath fragments with sibling
axes, and explore the connection between these fragments and the corresponding
fragments without sibling axes.

Increase in expressive power. We first show that the sibling axes do add
expressive power to fragments without horizontal modalities.

Proposition 1. The sibling azes are not expressible in X({, ", 1,1, U,[],=,
=), our largest fragment with only vertical azes. [

Proof. Consider an XPath query @ = A/—, and two XML trees T} and T5,
where T} consists of a root with two A children, and T5 has a root with three A
children. Over T; and T3, @ is to find all A children of the root except the very
first one. One can verify that @ is not expressible in X({,}*,1,1*,U,[],=,),
in which 77 and T are not distinguishable. Similarly for <, —* and +*. (]

We say that an XPath fragment X has the finite model property if for any
query p in X, if p is satisfiable by a (possibly infinite) tree, then there exists a

finite tree that satisfies p. An XPath fragment X has the small model property
if there exists a recursive function f such that for each p € X, if p is satisfiable,
then p has a finite model of size at most f(|p|), where |p| is the size of p.

As another evidence for the increase of expressive power, observe that the
fragment X' (—,[],—) does not have the finite model property. Indeed, the query
e[A A 2 A[~—]lab() = A]]] does not have the finite model. Thus we have:

Proposition 2. The satisfiability problem for any fragment that subsumes
X(—=,[],7) does not have the finite model property, in the presence of DTDs
and in the absence of DTDs. [

In contrast, [2] has shown the following: (a) X({,1,U,[],) has the small
model property in the presence of DTDs and in the absence of DTDs, and (b)
X{L,45,1,15,U,[],) has the small model property over non-recursive DTDs.
This shows that the sibling axes may complicate the satisfiability analysis.

DTD coding. We next show that certain DTDs can be encoded in terms of a
qualifier in X' ({,!*,—,[],). Recall the following from [2]: a normalized DTD
restricts its productions A — « such that « is of the following forms:

o« == € | B,....,B, | Bi+---+B, | B*

where B; is a type in Ele. It was shown there that any DTD can be “normalized”
in linear time, and moreover, for any XPath fragment with U and | and without
sibling axes, the normalization has no impact on the complexity bounds of its
satisfiability analysis. Below we further show that we can actually encode a
normalized DTD in terms of XPath qualifiers in X(,}*, —=,[], 7).

Proposition 3. A normalized DTD D can be expressed as a qualifier qp in any
XPath fragment that subsumes X({,}*,—,[],7). That is, for any query Q in
a fragment that subsumes X (1,1",—,[],7), (Q, D) is satisfiable iff €[qp]/Q is
satisfiable in the absence of DTDs. [

Proof. We show that for any A in the set Ele of the element types of a nor-
malized DTD, the production A — P(A) can expressed as a qualifier Q4 in
X{,4%,—,[],), by induction on the structure of P(A). Putting these together,
we obtain a single qualifier gp = €[\ 4 . @“] at the root. n

As an immediate result, for any XPath fragment X({,*,—=,=*[],—,...),
its satisfiability analysis in the presence of normalized DTDs is equivalent to its
counterpart in the absence of DTDs.

In contrast, below we show that normalized DTDs are not expressible in
fragments without sibling axes. Indeed, it was shown in [2] that without sibling
axes, the lower bounds for XPath satisfiability analysis in the presence of DTDs
typically do not carry over to the counterpart in the absence of DTDs, although
the analysis without DTDs is a special case of its counterpart with DTDs.

Proposition 4. A normalized DTD D cannot be expressed as a qualifier qp in

X(‘L7*L*7T7T*7U7[]7=7_|)‘ u

Proof. One can verify that two different DTDs D; and D are not distinguish-
able by any XPath query in X({,!*,1,1",U,[],=,), where D; has a single
production r — A, A, and D, consists of a single production r — A, A, A. [

Encoding horizontal traversal in terms of vertical modalities. Let
X(—=,—*1],.-.) be any class of XPath queries that allows ‘—, —*’ and quali-
fiers. Let X*({,1,U,[],.-.) be a variation of X(—,—*,[],...) by (a) supporting
4,1, and U, (b) supporting the general Kleene closure defined by §*, where §
is a simple path Ai[q1]/.../Ak[qn], where A; is a label and [g;] is a Boolean
combination of simple label testing qualifiers (of the form lab() = A), and (c)
discarding any queries with ‘=, —*’. Note that X*({,1,U,[],...) is far more
restrictive than the regular XPath fragment introduced and studied in [17].

Proposition 5. For any class X(—,—*,[|,...) of XPath queries, there ez-
ists a PTIME computable function N from DTDs to DTDs, and there ex-
ists a PTIME computable function f from queries in X(—,—=*,[],...) to
queries in X*(},1,U,[],...) such that, for any DTD D and any XPath query
pE€ X(—=,-%[1],...), there exists an XML tree T such that T |= (p, D) iff there
exists an XML tree T' such that T' |= (f(p), N(D)). L]

Proof. The mapping N is based on the canonical binary encoding of instances
of the input D, which introduces new labels. Then f can be defined such that
it traverses “descendants” and “siblings” by visiting left subtrees and right sub-
trees in the binary trees, respectively. The query translation requires the use of
14, 1,U,[] and simple paths of the form A;[g1]/ ... /Ak[gn] as described above. m

This tells us that, upon the availability of upper bounds for conditional and
regular XPath fragments [17] without siblings, the bounds can carry over to our
fragments with sibling axes.

4 Complexity of XPath Satisfiability with Sibling Axes

In this section we study the satisfiability problem for various XPath fragments
with sibling axes, and contrast the complexity bounds with their counterparts
for the corresponding fragments without sibling axes. To understand the impact
of different XPath modalities on the satisfiability analysis, we start with a simple
fragment X (},l*, =, —*,U), and then extend the fragment gradually by adding
qualifiers, data-value joins, and negation one by one. To study the interaction
between XPath modalities and DTD constructs, we also consider the analysis
under DTDs restricted to have certain constructs and in the absence of DTDs.

4.1 XPath Fragments without Qualifiers

Without sibling axes, the absence of qualifiers simplifies the satisfiability analy-
sis [2]. Below we show that it is also the case for XPath fragments with siblings.

Proposition 6. SAT(X(l*)) is NLOGSPACE-hard in the presence of DTDs. m

Proof. This can be verified by LOGSPACE reduction from directed graph con-
nectivity with specified source and target, which is NLOGSPACE-hard [24]. =

In the absence of DTDs, all queries in X'({,]",U) are always satisfiable [2].

Theorem 1. Both SAT(X({,l*,—=,—=*,U)) and SAT(X(],}", +,<*,U)) are
NLOGSPACE-complete in the presence of DTDs.

Proof. We provide a NLOGSPACE algorithm for checking the satisfiability of
(@, D) for an input DTD D and query Q € X({,}",—, =*,U) (resp. +, +*).
The key idea is to code vertical navigation using a query graph Gg of) and
horizontal moves using NFAs of the regular expressions in D. This only requires
us to store triplets (¢,v, A) at each step, where ¢ is a NFA state, v is node in
Gg and A is a label. This only needs LOGSPACE. L]

Recall that SAT(X({,{*,U)) is in PTIME [2], which contains NLOGSPACE.
Thus Theorem 1 tells us that in the absence of qualifiers, the addition of sibling
axes does not complicate the satisfiability analysis. As another evidence:

Theorem 2. SAT(X(—, <)) is in PTIME in the presence of DTDs. L]

In contrast, SAT(X({,1)) is NP-hard [2]. The difference between X'({,7) and
X(—,+) is that while a query in X({,1) can constrain the subtree of a node by
moving downward and upward repeatedly in the subtree, queries in X(—,) are
not able to do it: as soon as the navigation moves down in a tree, it cannot move
back to the same node. Leveraging this we are able to develop a PTIME algo-
rithm, based on dynamic programming, for deciding the satisfiability of (@, D)
for a given DTD D and query @ € X (—,).

From these we can see that XPath queries with sibling axes are quite well
behaved in the absence of qualifiers.

4.2 Positive XPath Queries with Qualifiers

We now consider positive XPath fragments, i.e., fragments supporting qualifiers
but not including negation (—). Positive fragments are contained in positive
existential two-variable first-order logic over trees, with binary predicates child,
descendant, and sibling [17]. It is known that qualifiers make the satisfiability
analysis harder for XPath fragments without siblings [2]. We show that this is
also the case when sibling axes are considered instead of vertical modalities.

Theorem 3. The satisfiability problem for the following fragments is NP-hard:

1. SAT(X([])) under nonrecursive DTDs;

2. SAT(X(—,[])) and SAT(X(+,[])) under fized, disjunctive-free and nonre-
cursive DTDs;

3. SAT(X(—,U,[])) and SAT(X(+,U,[])) in the absence of DTDs. n

Proof. These can be verified by reduction from the 3SAT problem, which is
NP-complete (cf. [24]). L]

Here by fized DTDs we mean that the input to the satisfiability analysis
consists of only a query rather than both a query and a DTD, and the XML
trees considered are required to conform to a predefined DTD.

Contrast these with the following results in [2]. (a) SAT(X({,[])) is NP-
hard under normalized DTDs. Here we improve that result by showing that
SAT(X([])) is already intractable under (not necessarily normalized) DTDs.
(b) While SAT(X({,[])) is NP-complete for arbitrary DTDs, but it is in PTIME
when DTDs are restricted to be disjunction-free. In contrast, Theorem 3 shows
that it is no longer the case when | is replaced by — or . (c) In the absence
of DTDs, SAT(X({,U,[])) is in PTIME, as opposed to Theorem 3. Thus sibling
axes complicate the satisfiability analysis in the presence of qualifiers.

Recall that SAT(X({, ", 1,1*,U,[],=)) is in NP [2]. The result below shows
that the addition of the sibling axes does not increase the upper bound.

Theorem 4. SAT(X({,)", 1,1", ,«*, =, =>* U,[],=)) is in NP. n

Proof. Tt suffices to show that SAT(X*(,1*,1,1*,U,[],=)) is in NP by Proposi-
tion 5. A NP decision algorithm is then provided for this fragment, by extending
the NP algorithm for SAT(X({,!",1,1*,U,[],=)) developed in [2]. n

4.3 XPath Fragments with Negation

In contrast to positive XPath fragments, negation introduces universal quanti-
fiers and complicates the satisfiability analysis without sibling axes [2]. We show
that in the presence of sibling axes the situation is also bad, and may be worse.

It is known that SAT(X({,[],—)) is PSPACE-hard in the presence of DTDs
[2]. We show that the lower bound remains intact if we substitute — (resp. <)
for | in the fragment, even when the DTDs are restricted or left out.

Theorem 5. SAT(X(—,[],7)) and SAT(X(+,[],~)) are PSPACE-hard in the
following settings: (1) under non-recursive and no-star DTDs; and (2) in the

absence of DTDs. n
Proof. The lower bounds can be proved by reduction from 3QSAT, a well-known
PSPACE-complete problem (cf. [24]).]
Theorem 6. SAT(X({, 1, +,«<*,—,>*,U,[],7)) is PSPACE-complete under
no-star DTDs. -
Proof. The upper bound can be verified by reduction to SAT(X({,[],—)), based
on a variation of the proof of Proposition 5. [

It is known [17] that SAT(X(},{*,U,[],)) is EXPTIME-hard and that
SAT(X (], 1, 1", «, «*, =, = U,[], 7)) is in EXPTIME. We now show that
we already have the EXPTIME hardness in the presence of neither recursion in
XPath nor recursion in DTDs.

Theorem 7. SAT(X(1,—,[],7)) is EXPTIME-hard under fized, nonrecursive
and disjunction-free DTDs. [

This can be verified by reduction from the two-player game of corridor tiling,
which is EXPTIME-complete (cf. [4]). To see why the result holds, observe the
following. One can encode a certain recursive DTD D; in terms of a “flattened”
DTD D,, and based on this a mapping N can be defined from XML trees of D,
to XML trees of D, via “unnesting”; furthermore, there is a mapping f such that
for certain queries @ in X({,}*,U,[],7), f(Q) is in X (1, —,[], ~) and moreover,
if @ is satisfiable by an XML tree T' of D1, then f(Q) is satisfiable by N(T'). In
N(T), the child, parent and right sibling axes suffice to access certain elements
that are deep in 7. From this it follows that a reduction from the two-player
game of corridor tiling to SAT(X({,l",U,[],7)) can be coded in terms of a
query in X(1,—,[],) and a fixed, nonrecursive DTD as described above. This
explains why the EXPTIME lower bounds is robust in the absence of XPath
and DTD recursions, and demonstrates the power of sibling axes.

4.4 XPath Fragments with Negation and Data Values

Finally, we investigate the satisfiability analysis for XPath fragments with data-
value joins, negation and sibling axes. As observed in [2], the interaction between
data-value joins and negation is already intricate in the absence of sibling axes.
Indeed, SAT(X (4,1, 1, 1*,U,[],=,)) is undecidable in presence of fixed recur-
sive DTDs [2]. However, it is not yet known whether or not the undecidability
result still holds (a) under non-recursive DTDs, (b) under fixed DTDs, and (c)
in the absence of DTDs. In contrast, we next show that in the presence of sib-
ling axes but without vertical XPath recursion |* and 1*, the problem remains
undecidable in all the settings mentioned above.

Theorem 8. SAT(X (1, +,—,—=*,U,[],=,7)) is undecidable in any of the fol-
lowing setting: (1) under non-recursive, fized and disjunction-free DTDs; and
(2) in the absence of DTDs. n

The undecidability result can be verified by reduction from the halting prob-
lem for two-register machines, which is known to be undecidable (see, e.g., [4]).
The proof extends the undecidability proof of [2] for SAT(X({,)", +,1",[],=,)
under fixed recursive DTDs, by “flattening” DTDs in the same way as mentioned
above. The proof leverages the following observation: by means of XPath quali-
fiers with —, —»*, < and 1, (a) DTD linear recursion introduced by productions
of the form A — A + € can be coded with productions of the form A — B*;
(b) disjunction in a DTD can also be coded in terms of the use of Kleene star.
This allows us to get rid of linear recursion and disjunction required by the
undecidability proof of [2], and again shows the expressive power of sibling axes.

5 The Containment Analysis for XPath with Siblings

In this section we present a few lower bounds for the containment analysis of
XPath fragments with sibling axes, by exploring the connection between the con-

tainment analysis and its satisfiability counterpart, and by using the complexity
results for the satisfiability analysis given in the last section.

The containment problem for a fragment X in the presence of DTDs, denoted
by CNT(X), is the problem to determine, given any queries Q1,Q2 € X and a
DTD D, whether or not for any XML tree T of D, r[Q1] C 7[Q2], where r is
the root of T'. If this holds then we say that ()1 C @2 under D.

It is easy to see that for any fragment X, SAT(X) is reducible to the
complement of CNT(X). Recall that for a complexity class K, coK stands for
{P| PeK}.

Proposition 7. [2] For any class X of XPath queries, if CNT(X) is in K for
some complezity class K, then SAT(X) is in coK. Conversely, if SAT(X) is K-
hard, then CNT(X) is coK-hard.

From this and Theorems 3, 5, 7 and 8 it immediately follows:

Corollary 1. For the containment problem,

1. CNT(X(—,[])) and CNT(X(+,[])) are coNP-hard under fized, disjunction-
free and nonrecursive DTDs;

2. CNT(X(—=,U,[])) and CNT(X(+,U,[])) are coNP-hard in the absence of
DTDs;

3. CNT(X(—=,[],7)) and CNT(X(+,[],7)) are PSPACE-hard (a) under non-
recursive and no-star DTDs, and (b) in the absence of DTDs;

4. CNT(X(1,—,[],7)) is EXPTIME-hard under fized, disjunction-free and
nonrecursive DTDs;

5 CNT(X(1,+,—,—*U,[],=,7)) is undecidable (a) under non-recursive,
disjunction-free and fized DTDs, and (b) in the absence of DTDs. n

These are among the first lower bound results for the containment problem
for XPath fragments with sibling axes. Indeed, the only other result that we
are aware of is the EXPTIME lower bound given by [17] for CNT(X({,4*,U,[],
=)). Corollary 1 strengthens that result by showing that CNT(X (1, —,[],) is
already EXPTIME-hard under restricted DTDs.

As observed in [2], the upper bound for SAT(X) is often much lower than
its counterpart for CNT(X). However, for certain fragments X without sibling
axes, SAT(X) and CNT(X) actually coincide. These include the following: (a)
the class X{y, [,-) of Boolean queries, i.e., queries of the form €[g], in any class
X(...,[],~) with negation and qualifiers; and (b) any class containing negation
and closed under the inverse operator that is defined as a simple extension of
inverse(|) = 1, inverse(]*) = 1*, inverse(1) = | and inverse(1*) = |*.

We next show that this result of [2] carries over to XPath fragments with
sibling axes, by extending (a) the class (3, [],-) by including Boolean queries
with sibling axes; (b) the definition of inverse such that inverse(+) = —,
inverse(+*) = —*, inverse(—) = <+, inverse(—*) = «*.

NLOGSPACE . " . . any DTDs
-comp. XA =25 0), X117 0) nonr}:ac. DTDs
PTIME X(+,—) any DTD
NP-hard XD nonrec DTDs
NP-hard XD, X(—=,1D fixed, ‘+’-free, nonrec DTDs
NP-hard XU, X(=,U[] no DTDs
NP-comp. || X(H T 1T s U [[,=) any DID
PSPACE-hard A(=, 1), X([],7) nonrec, no star DDs
PSPACE-comp. X T« =25 U],) no-star DTDs
EXPTIME-hard XM, <,[1,7) fixed, ‘+’-free, nonrec. DTDs
undecidable XM, =250], =) fixed, “+ —iroe%rlnjg;rec DTDs

Table 1. The complexity of SAT(X) for various fragments X under different DTDs

Proposition 8. For any class Xy, [1,-) of Boolean queries, CNT (X, [1)) 45
reducible in constant time to the complement of SAT(X(y, [1,-)). For any class
X with negation and closed under inverse, CNT(X) is reducible in linear time to
the complement of SAT(X). n

6 Conclusions

We have established complexity bounds for a number of XPath fragments with
sibling axes, in the presence of DTDs, in the absence of DTDs, and under various
restricted DTDs. The main results of the paper are summarized in Table 1. As
immediate corollaries of these results, we have also provided several lower bounds
for the containment problem for XPath queries. Our main conclusion is that
while sibling axes do not complicate the satisfiability analysis in the absence of
qualifiers, they do make our lives harder in the presence of qualifiers.

To the best of our knowledge, the results of this paper are among the first
results for the satisfiability and containment analyses of XPath fragments with
sibling axes. They are complementary to the recent study on the satisfiability
problem for XPath fragments without sibling axes [2]. They are useful not only
for XML query and update optimization, but also for the static analysis of
inference control for XML security, among other things.

There is naturally much more to be done. One open problem is to close
the complexity gaps. For example, we do not know yet whether SAT(X([]))
is still intractable under fixed and disjunction-free DTDs, and whether or not
SAT(X(—,[],)) is in PSPACE under arbitrary DTDs. Another topic for future
work is to study the satisfiability problem for XPath in the presence of XML
Schema, which typically consists of both a type (a specialized DTD) and a set of
XML constraints. This setting was considered in [8] for the containment analysis.

Acknowledgment. The authors would like to thank Frank Neven for giving the
proof idea for Theorem 1. Wenfei Fan is supported in part by EPSRC GR/S63205/01,
EPSRC GR/T27433/01 and NSFC 60228006.

References

1.

2.

3.

10.

11.

12.

13.
14.

15.
16.
17.
18.
19.

20.
21.

22.
23.
24.
25.
26.
27.

28.
29.

S. Amer-Yahia, S. Cho, L. Lakshmanan, and D. Srivistava. Minimization of tree
pattern queries. In SIGMOD, 2001.

M. Benedikt, W. Fan, and F. Geerts. XPath satisfiability in the presence of DTDs.
In PODS, 2005.

M. Benedikt, W. Fan, and G. M. Kuper. Structural properties of XPath fragments.
In ICDT, 2003.

E. Borger, E. Gradel, and Y. Gurevich. The Classical Decision Problem. Springer,
1997.

T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible Markup Language
(XML) 1.0. W3C Recommendation, Feb 1998. http://www.w3.org/TR/REC-xml.
P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan. Keys for XML. Computer
Networks, 39(5):473-487, 2002.

J. Clark and S. DeRose. XML Path Language (XPath). W3C Recommendation,
Nov. 1999.

A. Deutsch and V. Tannen. Containment for classes of XPath expressions under
integrity constraints. In KRDB, 2001.

A. Deutsch and V. Tannen. Reformulation of XML queries and constraints. In
ICDT, 2003.

W. Fan, C. Chan, and M. Garofalakis. Secure XML querying with security views.
In SIGMOD, 2004.

G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing XPath
queries. In VLDB, 2002.

G. Gottlob, C. Koch, and K. Schulz. Conjunctive queries over trees. In PODS,
2004.

J. Hidders. Satisfiability of XPath expressions. In DBPL, 2003.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages
and Computation (2nd Edition). Addison Wesley, 2000.

L. Lakshmanan, G. Ramesh, H. Wang, and Z. Zhao. On testing satisfiability of
tree pattern queries. In VLDB, 2004.

L. Libkin. Logics over unranked trees: an overview. In ICALP, 2005.

M. Marx. XPath with conditional axis relations. In EDBT, 2004.

M. Marx. First order paths in ordered trees. In ICDT, pages 114-128, 2005.

G. Miklau and D. Suciu. Containment and equivalence for a fragment of XPath.
JACM, 51(1):2-45, 2004.

M. Murata. Extended path expressions for XML. In PODS, 2001.

F. Neven and T. Schwentick. Expressive and efficient languages for tree-structured
data. In PODS, 2000.

F. Neven and T. Schwentick. XPath containment in the presence of disjunction,
DTDs, and variables. In ICDT, 2003.

D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath: Looking forward. In XMLDM,
2002.

C. H. Papadimitriou. Computational Complerity. Addison-Wesley, 1994.

T. Schwentick. Xpath query containment. SIGMOD Rec., 33(1):101-109, 2004.
G. Sur, J. Hammer, and J. Siméon. An XQuery-based language for processing
updates in XML. In PLAN-X, 2004.

H. Thompson et al. XML Schema. W3C Recommendation, Oct. 2004.
http://www.w3.org/TR/xmlschemal.

P. T. Wood. Minimising simple XPath expressions. In WebDB, 2001.

P. T. Wood. Containment for XPath fragments under DTD constraints. In ICDT,
2003.

Appendix
Proofs

Proof of Proposition 1

Consider two XML trees T; and T», where T} consists of a root r with two A
children, and T5 consists of a root ro with three A children. It is known [17] that
X451 15,0, [], =,) is contained in two-variable first-order logic with binary
relations child and descendants, denoting parent-child and ancestor-descendant
relations on trees, respectively. Using 2-pebble Ehrenfeucht-Fraissé (EF) style
game, one can show that 77 and 7> are equivalent in the two-variable first-order
logic described above. In contrast, T3 and 75 are distinguishable by XPath query
Q@ = A/—, which yields different answers when posed against 77 and T5. Thus
Q is not expressible in X({, ", 1,1, U,[],=,). m

Proof of Proposition 3

Let D = (Ele, Att, P, R,r) be a normalized DTD, let A € Ele and T be an XML
tree such that T' = D. We enforce the structure on T specified by D in terms of
XPath qualifiers, based on the structure of D as follows:

(1) P(A) = e: We express that there exists no A node (labeled A) that has any
children:

QF = —1"lab() = A A Y],

(2) P(A) = By,...,B,: We express that there exists no A node that has a
different (ordered) set of children than By,...,B,. First, we express that an
A-labeled node has exactly n children:

Qp = ~I[lab() = AN /=™ A=l /™).
where —" is a shorthand of the repetition of — for n times.
Next, we express that all By, ..., B, must appear under A in the right order:
Qs = ~I"lab() = AN =(}/=[lab() = Bi]/ ... /=[lab() = Ba])],
The final qualifier then becomes Q4 = QA A AQZ.

(3) P(A) = By +- - -+ B;,. We express that there exists no A-node that has more
or less than one child, and that one of the B;s appears as the child of A-labeled

nodes. More specifically, Q! expresses that there is exactly one child, where Qﬁ
is the qualifier of the previous case with n = 1. We express that one of the B;s
appears as a child as follows:

QY =~ llab() = AA Y[/\ (1ab() # By)]l.

i€[1,n]

The final qualifier then becomes Q4 = Q A Q4.

(4) P(A) = B*. We express that all children of A-labeled nodes should be labeled
with B. More specifically,

Q4 = —/*[lab() = A A [lab() # B]].

It is clear that if we combine all the above qualifiers for each element type in the
DTD in a conjunction @ = €[A 4. Q4], where Q4 is one of the four qualifiers
obtained above depending on P(A), then for any tree T, T = @ if and only if
T E Q. By composing @ with the input query p, we obtain that T' |= (p, D) if
and only if T' |= €[Q]/p, as desired. O

Proof of Proposition 4

Consider two DTDs D; and D, where D; has a single production r — A, A,
and D, consists of a single production » — A, A, A. Similarly to the proof of
Proposition 1, one can show that D; and D5 are equivalent in two-variable first-
order logic with binary relations child and descendants, by using 2-pebble EF
game. Thus D; and D> are not distinguishable by any XPath query in X({, ",
1%,U,[], =,), since the fragment is contained in the two-variable first-order
logic. As a result, D; and D, are not expressible as qualifiers in X' (,{*,1,1",U,

[]a:a_‘)']

Proof of Proposition 5

The proof consists of two steps: First, we show how to convert any DTD D into
a binary DTD N(D) (i.e., a DTD describing a binary tree) such that if there
exists a tree T' conforming to D, then there exists a (binary) tree T} conforming
to Dy. Secondly, we show how to convert any XPath query p in X(—,—=*,[],...)
into an expression f(p) in X*({,1,U,[],...) such that if T = (p, D) if and onl

it Ty = (f(p), N(D))-

To transform the DTD D = (Ele, Att, P, R, r) we use the standard encoding into
a binary tree where the left child represents the leftmost child and the right child
represents the next right sibling (See Figure 2). We will distinguish between left

Fig. 2. Binary encoding of XML tree.

and right by introducing for each element type A € Ele a new element types
Ay (for left) and A, (for right). The standard mapping of the DTD D into the
DTD N(D) describing the binary tree can be done in quadratic time.

We now show how to encode an XPath expression p € X (+,«*,[],U,...) into
an equivalent expression f(p) € X*(,1,[],U,...).

The encoding is by induction on the structure of p. We denote by Ele, (Ele,.) the
union of all left (right) labeled element types in Ele’. We use the abbreviation
e[lab() = Eley] for €[Uacpie,lab() = A] and similarly for label tests involving
Ele,.

We distinguish between the following cases:

— If p=¢, then f(p) =e.

— If p= A, then f(p) = A, Ul/([lab() = Ele,])*/A,.

— If p=, then f(p) = U}/({[lab() = Ele,])*.

— If p= 1%, then f(p) = eU l[lab() = Eles]/}".

— If p =1, then f(p) = (1[lab() = Ele,])*/e[lab() = Ele,]/1.

— If p =17, then f(p) = 1"[lab() = Ele(]/1.

— If p= —, then f(p) = {[lab() = Ele,].

— If p= —*, then f(p) = eU ({[lab() = Ele,])*.

— If p =+, then f(p) = ¢[lab() = Ele,]/1.

— If p= «*, then f(p) = €[lab() = Ele;] U e[lab() = Ele,]/(t[lab() = Ele,])*
— If p=p1 Ups, then f(p) = f(p1) U f(p2)-

— If p = p1/p2, then f(p) = f(p1)/f(p2)-

— If p = €[q], then f(e[g]) = €[f(g)]-

If g =p', then f(q) = f(p')-

If g = —p', then f(q) = ~f(p').

if ¢ =lab() = A, then f(q) = ‘lab() = A, Ulab() = A,".

If ¢ = p1/@a op p»/@b, then f(q) = f(p1)/@a op f(p2)/@b.

We need to show that T' = (p, D) if and only if T = (f(p), N(D)) where Ty
denote the binary encoding of T'. By construction, it is clear that T, = N(D).
By induction on the structure of p and the semantics of XPath, it is easy to see
that T |= p if and only if Ty, = f(p). m

Proof of Proposition 6

We show that SAT(X()*)) is NLOGSPACE-hard in the presence of DTDs by
reduction from directed graph connectivity with specified source s and target ¢
nodes. This problem is known to be NLOGSPACE-complete [24]. Given a graph
G = (V, E) and two designated source and target nodes s and ¢, we define the
non-recursive and no-star DTD D = (Ele, Att, P,R,r) as Ele = V, Att = {),
R =10, r =sand P(v) =wi,...,wg + € such that (v,w;) € E for all i € [1,k].
It is easy to see that p = s/|*/t is satisfiable by an XML tree T |= D if and
only if there exists a (directed) path in G from s to t. The reduction is clearly
computable in LOGSPACE. [

Proof of Theorem 1

Let D = (Ele, Att,P,R,r) be a DTD and p € X({,}*, =, =*,U). We associate
with each production P(A) for A € Ele a finite automaton M4 corresponding
to the regular expression P(A). Furthermore, we assume that p is described by a
query graph G, defined constructively as follows: If p = ¢, 4, |, |*, — or —*, then
G, consists of a single node labeled with the p. This single node is both input
and exit node. If p = p; /p2, then G, is obtained by adding an edge between the
exit node of G, to the input node of G, and by defining the input (exit) node
of G, to be the input (exit) node of G,, (G,,). Hence, in this case we combine
the two graphs sequentially. Finally, if p = p; Up,, then G}, is obtained by adding
a common (dummy) input (exit) nodes of G, and Gp, that are labeled with e.
Hence, in this case we combine the two graphs in parallel. Note that we always
have a single input s and exit node ¢ in the query graph.

To show that SAT(X({,!*,—, —=*,U)) is NLOGSPACE, we show that given the
automata My for A € Ele and the query graph G, on an input tape, we need
to maintain only two pointers (ranging over the nodes of automata and nodes
of the query graph) and the current element type. More specifically, let (g, v, A)
be a triplet where g is a certain state of the automaton, v is a node in G, and
A € Ele. We claim that this triplet is the only thing we need to store at each step
of the decision algorithm. It is clear that such a triplet only needs logarithmic
space. The semantics of a triplet (g, v, A) is as follows: we are in a node that has
label A, we are in the query graph G, in node v and the last visited state of an
automaton is q.

We now describe how the NLOGSPACE algorithm works for deciding satisfia-
bility of p in the presence of a DTD D.

Initially, the algorithm stores (qo, s,7) where is qo is a (new) dummy state, s is
the input node of G, and r is the root label.

Assume that the currently stored triplet is (g, v, A). We now define which triplet
(¢',w', A’) will be stored next by the algorithm. Let w be a node in G, adjacent
to v. If multiple such w exist, then we non-deterministically choose one. (Note
that the only way a node in G, can have multiple outgoing edges is in case of
union). We now consider the following cases depending on the label of w.

(1) the label of w is e: Then (¢',w', A") = (¢, w, A).

(2) the label of w is B: Then (¢',w’, A') is such that w' = w, A’ =B and ¢' is a
state in M4 that has a B-labeled incoming edge. Again, if multiple such states
exist in M4, we non-deterministically choose one. If no such state exists, then
we are in a dead end and we do not have a next triplet.

(3) the label of w is }: Then (¢',w’, A’) is such that w' = w, ¢’ is one of the
states in M4 not corresponding to the trivial word, and A’ is one of the labels
of incoming edges in ¢'. Again, when M4 only produces the empty word then
we are in a dead end.

(4) the label of w is [*: Then (¢',w', A") is such that w' = w, and we can either
take ¢’ = ¢ and A’ = A or descend in the tree using the automata. This is done
as follows: Select a state ¢; in M4 that does not correspond to the empty word,
select an arbitrary incoming edge of ¢; and let A; be its label. Next, repeat
the same procedure for M4, and so on. The number of iterations i is chosen
non-deterministically (but bounded by the size of the automata). Let ¢’ be the
last selected state in M4, and A’ be the label of an incoming edge in ¢'.

(5) the label of w is —: Then (¢',w’, A’) is such that w' = w and ¢’ is a state
directly connected to ¢ via a labeled edge A’. If no such state exists, we are in
a dead end.

(6) the label of w is —*: Then (¢',w', A’) is such that w' = w, and ¢’ is a state
reachable from ¢ (or ¢ itself) and where A’ is the label of last edge leading to ¢’
(or A if we stayed at the state).

If the algorithm stores (g, t, A), then it decides that p is satisfiable. On the other
hand, if p is satisfiable then there exists a run of the algorithm (i.e., a sequence
of stored triplets) that ends up in (g,t, A). The last assertion is easy to show.
Suppose that T' |= (p, D) then the path from the root of T' to a node in the
answer set 7[p] can be used as a guide for making the choices in the decision
algorithm.

For the other direction, if the algorithm did not end up in a dead end, we
can use the successful run of the algorithm to build a tree T such that T |=
(D, p). This can easily be shown by induction on the structure of p. The use of
automata and states ensures that a sequence of sibling steps result in a word in
the corresponding regular language (or a production in the DTD). (]

Proof of Theorem 2

We show that SAT(X(—, <)) is in PTIME by providing a PTIME decision
algorithm based on dynamic programming. That is, given (Q, D), where @ is a
query in X(—,«) and D = (Ele, Att, P,R,r) is a DTD, the algorithm decides
whether or not (Q, D) is satisfiable in PTIME.

Observe that any query Q € X(—, <) is of the form Ai/mi/.../An /N, where
for each i € [1,n], A; is an element type, and 7; is a sequence of — and <. Here
7; indicates multi-step horizontal moves and A; is a one-step downward move.
In other words, on an XML tree T, the navigation of () at the i-th step first
moves sideways, and then downward; moreover, as soon as it moves downward,
the navigation proceeds to lower levels of 7" without looking back upward. Note
that a query in X(—,+«) is not satisfiable if it starts with — or +. Let Q;
denote A;/n;/ ... [An/Mn, where Q1 is Q.

We now define the variables to be used in the algorithm. (a) For each @; and
each A € Ele, we define a Boolean variable sat(Q;, A) that indicates whether
or not v[Q;] is empty at a context node v of A type, i.e., whether or not Q; is
satisfiable at an A element. (b) For each A € Ele, let M 4 be an NFA representing
the regular expression P(A), such that each state of M4 is reachable from the
start state, and there exists no e-transition. Such an M4 can be computed in
PTIME, and the size |[M4| of the NFA is linear in the size |P(A)|. For each n;
and each B € Ele, let reach(My4, B,7;) be the set consisting of element types
C such that there exist two states ¢1,¢2 in M4 and (i) there exists an outgoing
transition from ¢; labeled B; and (ii) g2 can be reached from ¢; via B/n (— for
forward move and « for backward); and (iii) the last transition is via an edge
labeled C'. It is easy to verify that reach(M4, B,7;) can be computed in PTIME
by, e.g., representing M4 as a graph with inverse edges (for «), and computing
reach(M 4, B, n;) based on dynamic programming.

Observe that sat(Q;, A) is true iff (a) reach(Ma4, 4;,7;) is not empty; (b) there
exists B € reach(My, A;,m;) such that sat(Q;41, B) is true.

Using these variables, the decision algorithm works as follows. It first computes
reach(M 4, B, n;) for each i € [1,n] and all A, B € Ele. Then, for each @; in the

decreasing order (i.e., for i = n,n—1,...,1), and for each A € Ele, it computes
sat(Q;, A) as described above. Both steps can be done in PTIME in |D| and |Q)|.
Hence the algorithm is in PTIME. (]

Proof of Theorem 3

(1) We show that SAT(X([])) is NP-hard under non-recursive DTDs by reduction
from the 3SAT problem. An instance of 3SAT is a well-formed Boolean formula
¢ = Cy A---ANC, of which we want to decide satisfiability. Assume that the
variables in ¢ are x1,...,Ty.

Given ¢, we define a DTD Dy and a query @1 in X' ([]) such that ¢ is satisfiable
iff (Q1,D,) is satisfiable. The DTD D; = (Ele, Att, P, R,r) is defined as follows:

Ele={C;|i€[1,n]} U {r},
P r—= (Xi+X)),...,(Xm+ X)),
where X; denotes (Cj,,...,Cj,) for all Cj; in which z; appears,
and X} denotes (Cj,,,...,Cj,,) for all Cj, in which Z; appears.
Cj — €
Att =0, R(A) =0 for all A € FEle.

177"

In a nutshell, the production of r codes a truth assignment of z1,. .., z,;, as well
as which clauses of ¢ are satisfied by the truth assignment. Note that X;, X J' are
not element types: they are just shorthands for the concatenations of the clauses
that they satisfy.

The query @ is simply €[/\ C], i.e., no matter what truth assignment is
j€ll,n]
given, for each i € [1,m], the clause Cj is satisfied by the truth value of some z;.

One can then easily verify that there exists an XML tree T such that T satisfies
@ and T conforms to D if and only if ¢ is satisfiable. Indeed, there is a one-to-one
correspondence between XML trees T' conforming to D on the one hand, and
truth assignments for the x; variables on the other hand. Moreover, T' |= @ iff all
clauses appear as the leaves of the tree T', which holds iff the truth assignment
corresponding to 7" makes all clauses true and hence is a solution of ¢.

(2) We next show that SAT(X(—,[])) is NP-hard under fixed, disjunction-
free and non-recursive DTDs by reduction from the 3SAT problem. We define
a fixed, disjunction-free and non-recursive DTD D, and moreover, given any
3SAT instance ¢, we find a query Q2 in X(—,[]) such that ¢ is satisfiable iff
(Q2, D») is satisfiable.

Define the DTD D, = (Ele, Att, P, R,r) as follows:

Ele = {TJSJSOJX7L7C7T}7
P: r— 507(S7X)*7SO7

X = S,I,L,8,

L— S§,C*8S,

C - ST,

Ci — e /* similarly for Sp, S, T */
Att =0, R(A) = 0 for all A € Ele.

An XML tree conforming to D5 is depicted in Fig. 3. Intuitively, the root of an
XML tree of Dy consists of a list of X elements. As will been seen shortly, these
X elements encode variables z;,...,%,,. Below each X element there are two
L elements, where the first L element codes the case when the corresponding

r\
So S e S ~X So

NN

Fig. 3. A tree of the DTD encoding a 3SAT instance in the proof of Theorem 3 (2)

S

variable is true, and the second L element codes the case when the corresponding
variable is false. Below each L is a list of C' elements, while each C' element may
have a T child. The elements S, Sy serve as delimiters to indicate the start and
end of children lists.

Given any instance ¢ of 3SAT as described above, we encode ¢ in terms of a
query Q2 = €[gy A ge Ao A gy in X (—,[]), defined with the following qualifiers
at the root.

(a) Encoding variables: g, = So/—?™/—[lab() = Sy], where —2™ is a shorthand
for repetition of — for 2m times. This asserts that the (S, X) list under r consists
of precisely m elements of type X. We use X; to denote Sp/—27, which encodes
the variable z; in ¢.

(b) Coding the connection between clauses and literals: g, = /\ (qu i N
F T _F .
g;.;), where g; ;,q; ; are defined as follows:

T _ {Xj/S/—>/S/—>':/S/—>[Iab()=T] if z; appears in C;
& X;/S/—/8/—="/S/—[lab() = S] otherwise

I X;/S/—/—/S]—%/S/—[lab() = T] if £; appears in C;
g {X,-/S/—)/—)/S/—)WS/—)[Iab() = 5] otherwise

That is, we encode the clause C; in terms of C* under both the first and second
L child of X, where C? is a shorthand for S/—?, i.e., the i-th C child of L from
the left. For each variable z; (i.e., X;), if #; appears (positively) in C;, then qiT,]-
ensures that C* under the first L has a T child, i.e., C; is satisfied if z; is true;
if z; does not appear in Cj;, then C? under the first L has no T child; similarly,
qf ; encodes the connection between z; (i.e., r; appears negatively) and C;. Note
that these also assert that below each L there are at least n many C children.

(¢) Coding consistent truth assignment: g, = /\ (X; [L/S/—="Tlab() = S] A
FE[L,K]

L/S/—="*2[lab() = S]). We encode z; (i.e., X;) such that it is assigned true if

under the first L child of X; there are precisely n elements of C' type; similarly,

x; is false if under the second L child of X; there are n elements of C' type. The
qualifier g, asserts that for each z; there is a single truth value, i.e., only one of
the C lists under X7 has n elements of type C.

(d) Encoding clauses: g, = /\ X/L/CYT]. This asserts that all clauses C;
i€[1,n]

(e.g., C*) must be satisfied by a truth assignment of some z;, no matter what

Z; is.

One can easily verify that @ is in SAT(X(—,[])) and furthermore, that @ is
satisfiable by an XML tree of the fixed DTD D5 iff the 3SAT instance ¢ is
satisfiable.

A mild variation of the proof above suffices to show that SAT(X(+,[])) is NP-
hard. Indeed, let @) be defined by substituting ‘<’ for ‘=’ in Q2 and changing
X to So/«* 1, then one can verify that there exists an XML tree T such that
T satisfies %, and T conforms to D5 if and only if ¢ is satisfiable.

(3) Finally, we show that SAT(X(—,U,[])) is NP-hard in the absence of DTDs,
by reduction from the 3SAT problem.

In a nutshell, given an instance ¢ of 3SAT as described above, we define a query
Q3 in X(—,U,[]) to encode ¢, and moreover, we will constrain XML trees that
satisfy ()3 by forcing them to contain a consecutive sequence of children whose
labels form the string X 71 X Z5 - - - X Z,;,, where m is the number of variables in
¢ and Z; € {T, F} for i € [1,m]. The idea is that the ith Z; child (which equals
T or F) in such a sequence denotes the truth value of the i-th variable z; in ¢.

We will use the following qualifiers to encode ¢:

(a) Encoding the clauses. For each clause C; = I1 V12 VI3, we let g =
zp(l1) V zp(l2) V zp(l3), where xp(l;) = —2lab() = T] if [; = z; and
.’Ep(l,') = —>2j71[|3b() = F] if I; = Zj.

(b) Let pm = X (A" =#*'lab() = X]). This expression selects X children
that have (m — 1) right X siblings, where consecutive X siblings are separated
by a single sibling.

Taken together, the final X(—,U,[]) query Q3 encoding ¢ is now

m—1

Qs = €[X[(/\ = lab() = X)) A (g1 A+ A gn)]]-

i=1
One can easily verify that ()3 is satisfiable iff ¢ is satisfiable.

Similarly, one can verify that SAT(X(+,U,[])) is also NP-hard in the absence
of DTDs [

Proof of Theorem 4

We show that SAT(X (], ", 1, 1", +, «*,—,—=*,U,[],=)) is in NP in the pres-
ence of DTDs. From Proposition 5, we know that it is sufficient to show that
SAT(X*({,}",1,1",U,[],=)) is in NP in the presence of DTDs describing a bi-
nary tree. Observe that we may assume that p does not contain U. Indeed, for

each U in p we can guess non-deterministically one of the alternatives and in this
way get rid of the unions. So, let p € X*({,{",1,1",[],=) and let D be a DTD.

The proof is similar to the proof that SAT(X({,{*,1,1*,[],=)) is in NP [2,
Theorem 4.5]. It consists of the following steps: we translate T |= p in terms
of a so-called skeleton T}, associated with p into 7'. We call such an embedded
skeleton a witness skeleton. More specifically, we show that T' |= p if and only if
T contains a witness skeleton (T},), where v denotes the embedding. The main
observation is then that if there exists a tree T conforming to D and a witness
skeleton for p in T, then there exists a tree 7' conforming to D and a witness
skeleton for p in T' whose depth is polynomial in the size of p and D. The proof
of this observation is based on a short-cutting technique. Once we established a
bound on the depth of the witness skeleton for p, we show that we can guess a
candidate witness skeleton for p using D and verify whether it is a real witness
skeleton in PTIME.

We only describe the differences from the proof of Theorem 4.5 presented in [2]
and refer to the full version of the paper for the detailed proof.

Skeletons and Witnesses. For a given p we define the skeleton T}, inductively
on the structure of p as described in [2]. We only need to describe how we deal
with the Kleene star. Denote by p[i1,...,in] the XPath expression obtained
by replacing the Kleene stars with exponents iq,...,4, (assuming we have m
Kleene stars). As a result, pli1,...,im] € X{, 4545151, =)-

Using the definition of skeleton described in [2], we end up with a skeleton
Tplis,...,im]- Having defined the skeleton of an XPath expression, we explain now
what it means to have a witness skeleton for p. Let T" be an arbitrary tree and
let Ty, ... i, denote the skeletons for pliy,...,4,]. We say that T' contains a
witness skeleton of p if there exist m integers ij,...,%,;; and a mapping v :
Tpliy,....im] — T satisfying the conditions for being an embedding as stated in [2].
If such a sequence of integers and an embedding v exist, we denote this by
Toliy,....im] Sy T It follows directly from the semantics of XPath queries that

T |= p if and only if there exists 41, ...,%, and v such that Ty, . ;.1 C4 T
Short-cutting For integers 41, . .., %, let the depth of a witness skeleton for p in

T be the depth in T of the deepest node in y(Tp;,,.... i) - In [2], it has been
shown that if there exists a witness skeleton for p[i1,...,in] in T, then there

exists a tree T' and witness skeleton for p[i1,...,4,] in 7' of depth bounded by
a polynomial in |p[i1, ..., %] and |D|.

We now observe that it is sufficient to choose the integers iy, ...,4,, from the
interval [0, |Ele|]. Consider the case of a single Kleene star. Suppose that we
choose an integer k larger than |Ele|, then due to the special form of our Kleene
star expression, we can designate k + 1 nodes v(n;) that correspond to the root
nodes of the copies of the skeleton of the expression within the Kleene star. Since
k > |Ele| at least two node y(n;) and y(n;), with ¢ < |Ele| < j, must have the
same element type, and hence we could have taken k = ¢ < |Ele|. For multiple
Kleene stars, we observe that we do not have nested Kleene stars and hence we
can treat each Kleene star independently.

Guessing and verifying. Clearly, a witness skeleton for p[iy, ..., ;] in T induces
a subtree of T by looking at all the paths from the root of T' to the deepest
witness nodes. We call this tree the witness tree of p[iy,...,i,] in T. We now
first guess m integers iy,...,i, € [0,|Ele|] and then apply the guessing and
PTIME verification procedure as described in [2]. L]

Proof of Theorem 5

(1) We first show that SAT (X (—,[], 7)) is PSPACE-hard under no-star and non-
recursive DTDs by reduction from 3QSAT. An instance of the Q3SAT problem
consists of a well-formed quantified Boolean formula ¢ = Q121Q2z2 - - - QT E,
where £ = Ci A --- A C,, is an instance of 3SAT in which all the propositional
variables are z1, ..., z,, and @; € {V,3} for each i € [1,n]. The Q3SAT problem
is to decide, given such a quantified Boolean formula ¢, whether or not ¢ is true.

Given a quantified Boolean formula ¢ as described above, we encode ¢ in terms
of a query Q4 in X(—,[],) and a no-star, non-recursive DTD D such that ¢
is satisfiable iff (Q4, D) is satisfiable.

We define a no-star and non-recursive DTD D = (Ele, Att, P, R,r) as follows:

Ele = {X,T,F,S}

P:. r—>X,...,X /[*noccurrences of X */
X =85 T+e),(F+e),
T — e,
F — e,
S — e,

Att=0, R(A) =0 for all A € Ele.

In a nutshell, the i-th X child of the root is to code the variable x;, which has
a truth assignment 7" or F.

We next define Q4 to be €[gi A ¢2], where ¢ is to code the quantifiers

Q121Q222 - - - Qpxy in ¢, and g2 is to code the the 3SAT instance E = Cy A

-++ A Cp. More specifically, ¢, = /\ ¢', where ¢' = =1[S/— /=] if Q; is Y,
i€[1,n]

and ¢' = —{S/—=[-—]] if Q; is ‘T’; here —! denotes the repetition of ‘—’ for

i times. That is, if x; is universally quantified, then both T" and F' values of x;

should be considered; otherwise only one of these truth values is needed.

We define ¢z to be (nc1 A. . .A—cp), where ¢; represents the negation of the clause
C;. More specifically, let C; =1} VI V I}, where I is a literal, i.e., it is either a
variable z; or the negation Z; of a variable. Then ¢; is to code I} A —IZ A =I3.
Without loss of generality, assume that the variables of these literals are z, z;
and x,, respectively, with k¥ < I < m. Then ¢; is defined as

¢ = < [1X/ 2] =" HX /20 1K) 2,

where Z; = F} if x; appears in ¢;, and Z; = T} if x; appears in ¢;, for j
ranging over k,I,m. For example, if C; = z V %; V z,,, with k < [< m, then
c; = =F[X/F) /=% X /T) /=™t [X/F). Intuitively, —c; is to assert that for all
possible truth assignments consistent with q;, the clause C; is true.

It is easy to verify that (Qg,D) is satisfiable by an XML tree T if and only
if the quantified Boolean formula ¢ is true. Similarly, it can be shown that
SAT(X(+,[],)) is PSPACE-hard under no-star and non-recursive DTDs.

(2) We next show that SAT(X(—,[],—)) is PSPACE-hard in the absence of
DTDs. A mild variation of the proof of Proposition 3 suffices to show that the
DTD D above can be coded in terms of a qualifier @ p in SAT(X(—,[],—)). Note
that @p does not use |* since D is non-recursive. Thus the PSPACE-hardness
result holds for X(—,[],) in the absence of DTDs.

Similarly we can show that SAT(X(+,[],—)) is PSPACE-hard in these settings.
|

Proof of Theorem 6

We show that SAT(X({, 1, <, <*, =, —=*,U,[], 7)) is in PSPACE under no-star
DTDs using the PSPACE-completeness result for SAT(X({,1,U,[],—)) estab-
lished in [2]. The lower bound has been shown by Theorem 5 above.

Let D = (Ele, Att, P,R,r) be a no-star DTD. Since D has no Kleene star, we
have an upper bound on the number of children in each node in any tree T
conforming to D. We denote this upper bound by cmaz(D).

Let p € X({,1, ¢, «*,—,—=*,U,[],7)). From Proposition 5 and its proof, we
know that p can be rewritten into f(p) € X*(},1,U,[],). Since the horizontal

relation between siblings is encoded vertically by means of labels, we need (a
limited form of) conditional path expressions to encode the navigational axis.
However, since we have a bound on the number of children and our XPath frag-
ment does not allow for descendant or ancestor, we can replace the Kleene star
expressions of the form (}[lab() = A])* in f(p) (given in the proof of Proposi-
tion 5) by
Ui (4 flab() = A))".

Consequently, f(p) can be rewritten into an expression p € X(},1,U,[],7), a
fragment for which the PSPACE upper bound already holds [2]. [

Proof of Theorem 7

We show that SAT(X(T,—,[],—)) is EXPTIME-hard under fixed and non-
recursive DTDs by reduction from the two-player game of corridor tiling (TPG-
CT). To simplify the discussion we give the reduction in terms of a query in
X(1,—,U,[],). However, union and disjunction can always eliminated by re-

placing p1 U ps by €[~(=p1 A —p2)].

PROBLEM: TPG-CT (Two-Player Game of Corridor Tiling)

INPUT: A tiling system (X, H,V,t,b) and a natural number n, where X
is a finite set of dominoes (tiles), H,V C X x X are two binary
relations, ¢ and b are two n-vectors of given tiles in X, and n is the
number of columns (the width of the corridor).

QUESTION: Does player I have a winning strategy for tiling the corridor? By
tiling the corridor we mean that there exists a tiling 7 : N xIN — X
and a natural number m such that for all € [1,n] and y € [1,m)],
the tiling adjacency conditions are observed, i.e.,

— if 7(z,y) = d and 7(xz + 1,y) = d' then (d,d') € H;

— if 7(z,y) = d and 7(z,y + 1) = d' then (d,d’) € V;

— 7(z,1) = t[z] and 7(z,m) = b[z], where ¢[x] (resp. b[z]) de-
notes the z-th element of the vector ¢ (resp. b); that is, the
given tiles of ¢t and b are placed in the top and bottom rows,
respectively.

Player I and Player II in turn place a tile from X in the first free location (row
by row from left to right), observing the tiling adjacency conditions. The one
who is unable to make the next move loses the game. Player II may also decide
to end the game and check the tiling adjacency conditions at the bottom row.
The given tiles t and b are placed in the top and bottom rows by the referee of
the game.

Given an instance, (X, H,V,t,b) and n, of TPG-CT, we define a fixed and non-
recursive DTD D and an XPath query @ in X (1, —,[],) such that there exists

tile Y tile Y3

Fig.4. Illustration of the DTD wused in the EXPTIME-hardness proof of
SAT(X (T, —=,[1],7))-

an XML tree T satisfying (@, D) if and only if Player I has a winning strategy
for the game. Let X = {z1,...,z}. Without loss of generality, we assume that
the n is even and Player I moves first; the coding for an odd n is similar.

We define the fixed and non-recursive DTD D = (Ele, Att, P, R,r) as follows:

Ele = {r, Rws, Rw, T, Y, S}.
P: r— Rws*
Rws = Rw*
Rw — S,T*
T— S, Y*W*
Att =0, R(A)=0 for all A€ FEle.

An XML tree of D consists of a root node with a node Rws for each row in the
tiling. Each Rws node will have a bunch of children Rw representing all possible
tilings of that row. Each Rw node in its turn has a T node for each tile. Each tile
Y; is coded in terms of exactly ¢ many Y children. Here W is a label indicating
whether the tiling is part of row, where each tile has a W label, and such that
there exists a row below and above satisfying the vertical constraints. We have
depicted (part of) an instance of such an XML tree in Figure 4.

We now use XPath qualifiers in X' (1, —,U,[],) to encode the following.

(1) Tile type. We often need to express that the tile below T' corresponds to tile
Y;. We express this as tiley,, which is the shorthand for

tiley, = S[—"[lab() = Y] A (=D [lab() # Y]V =(= D).

(2) Initial values. There is a Rws node consisting of a single Rw node below
which the initial tile configuration ¢ is encoded. This is stated as follows:

Qo = Rws[(-Rw[=]) A\ Ruw/S[—[tiler, AW]]].

i€[1,n]

(3) Cardinality conditions. Below each Rw node we need to ensure that there
are exactly n tiles, i.e., n children of type T. We express this by the qualifier

Qcard = ~Rws/Ruw[\/ S[=D A=(=F)] v S[- 0+,
i€[1,n—1]

(4) Horizontal constrains: Below each Rw node, consecutive T' children must
satisfy the horizontal tiling constraints. We state this as follows:

Qu = ~Rws/Ruw[\/ N (S/—[tiles] A =S/ = F D tile,])).

i€[l,n—1] (z,z')€H

(5) Vertical constraints: For any two consecutive Rws nodes r; and rq, every
Rw node s; below r; that has a W child must have a corresponding Rw nodes
s below ro that has a W child such that the tilings below s; and sy satisfy the
vertical tiling constraints. In other words, there does not exist a Rws with a Rw
node that has no “matching” (with respect to the vertical constraints) Rw node
in the consecutive Rws node. We can express this as follows:

Qv =-Ruws/Ruw[\/ \/ (S[-[tile, A W]
(z,y)€V i€[l,n]

A =1/ =/ Rw[-~S[—=[tile, AW]]]])]-

(6) Play continues unless Player I has won. Unless there is a node Rws below
which the bottom vector b appears in one of its Rw nodes, there is always a
right sibling to Rws, i.e., the game continues. We express this as a qualifier Q):

Q, = “Rws[Ruw| /\ S/—"[tilepsg AW]A (1/=)]].

i€[1,n]

(7) Player I responds to all possible moves of Player II. Suppose that Player I
just placed tile z at position ¢ (odd), and that this row is represented by a Rw
node v, then for any tile 2’ that satisfies the horizontal constraint (z,z') € H,
the immediate right Rw sibling of the Rw node v represents this possible tiling.
More specifically, for odd 1,

Qi = ﬁRws[Rw[\/ (S/—"[tile]

A=/ (/= Ttile] A S/ Ttile,])]]]

(t,s)eH

We then consider @, = /\?:/ f Q2;—1, This qualifier forces that below any Rws, all
possible tiles of a row appear. Note that some of them will not be consistent with
the vertical adjacency conditions. However, each Rw that represents a tiling of
a row consistent with vertical conditions as well will have a W descendant (as is
forced by the Qv qualifier).

(8) Correct W labeling. It is not sufficient to have some tiles in a row that have
a W child. We require that either each tile in a row has a W child, or none of
the tiles has. This can be easily expressed as follows.

Qw = ﬁRws/Rw[\n/ S/l A\ SO A (=)L

=1 i€[1,n—1]

Finally, we obtain the qualifier

Q=QoNQcard N\QEANQV ANQp NQo AN Qw.

It is easily verified that Player I has a winning strategy if and only if there is an
XML document T that represents the game tree such that T = (Q, D).]

Proof of Theorem 8

(1) We prove the undecidability of SAT(X (1, +, =, —=*,U,[],=, 7)) in the pres-
ence of fixed, non-recursive DTDs by reduction from the halting problem for
two-register machines, which is known to be undecidable (see, e.g., [4]).

Two Register Machine. A two-register machine (2RM) M has two regis-
ters register, , register,, and is programmed by a numbered sequence Iy, I1, ..., I;
of instructions. Each register contains a natural number. An instantaneous de-
scription (ID) of M is (i,m,n), where ¢ € [0,1], m and n are natural numbers.
It indicates that M is to execute instruction I; (or at “state i”) with register;
and register, containing m and n, respectively.

An instruction I; of M can be either an addition or a subtraction, which defines
a relation — s between IDs, described as follows:

— addition: (i,rg,j), where rg is either register; or register,, and 0 < 4,5 < [.
Its semantics is: at state 4, M adds 1 to the content of rg, and then goes to
state j. Accordingly:

(J,m + 1,n) if rg = register
(j,m,n + 1) otherwise

(¢,m,n) —>M{

— subtraction: (i,rg,j, k), where rg is either register, or register,, and 0 <
i,J,k < l. Its semantics is: at state i, M tests whether the content of rg

Qid—__Qid Qid Qid
register 1 register 2

Fig. 5. Illustration of the DTD used in the undecidability proof of SAT(X(t, <+, —,
—",U, []7 =7ﬂ))'

is 0, and if it is, then goes to state j; otherwise M subtracts 1 from the
content of rg and goes to the state k. Accordingly:

((j,0,m) if rg = register;
and m=0
(k,m — 1,n) if rg = register,
. and m #0
(6m,n) = S (j,m,0) if rg = register,
andn =0
(k,m,n — 1) if rg = register,
{ andn #0

Assume, w.l.o.g., that the initial ID is I = (0,0,0) and that the final ID is
F = (£,0,0), i.e., a halting state f € [0,I] with zeros in both registers. The
halting problem for 2RM is to determine, given a 2RM M as described above,
whether or not I =, F', where =), denotes the reflexive and transitive closure
of —>M-

Reduction. We now provide reduction from the halting problem for 2RM to
SAT(X(T,+,—,—=*,U,[],=,7)). Given an instance M of 2RM as described
above, we encode M in terms of a DTD D and an XPath query p € X (1, +, —,
—)*,U,[],:,_')-

More specifically, we define the DTD D = (Ele, Att, P, R, r) as follows:

Ele={r, C, X, Y}.
P: r—cC*
C = X*,Y*.
Att = {Qs, @id}, R(C) ={@s}, R(X) = R(Y) = {Qid}.

As depicted in Figure 5, an XML tree of the DTD D consists of an unbounded
number of C' children coding the IDs of M executing starting from the outer

leftmost C' element. Each C element encodes and ID of the 2RM M: it has an
s attribute indicating the state of the ID, and it has a number of X children
on the left followed by a number of Y children on the right. The number of X
(resp. Y)) children represents the contents of register; (resp. register,). To count
the number of X children with the same parent, an X.id attribute is defined
for X elements, which is to serve as a local key for the X elements in a block.
Similarly for the Y below the same parent.

We also use the following qualifiers at the root to encode the 2RM M, expressed
in X(t, <, —,—=*,U,[],=,7).

(1) Initial ID. We code the initial ID (0,0, 0) of M by using the leftmost C child
of the root r.

Qstart = C[(e/@Q@s=0 A [~(«VXVY))]

(2) Halting state. The final ID (f,0,0) of M is expressed as
Qhalting = C[(G/@S = f A [_'(_> VXV Y)])]

This asserts that there exists an ID (i.e., a C child of r) such that it is (f,0,0),
and moreover, no more computation is conducted (or ID is reached) after M
enters (f,0,0).

(3) Local key. To count the number of X children (resp. Y children) under a C
element, we enforce that X.id is a local key for the set of X children (resp. Y
children):

Qzkey = ~C[X/Qid = —/—"[lab() = X]/Qid],
Qykey = C[Y/Qid = —/—"[lab() = Y]/Qid).

This suffices as it asserts that the X.id of any X is different from the X.id of
any of its X siblings; in other words, all the X children of C' have distinct X.id
values; similarly for Y elements.

(4) Transition. For each i € [0,[], we code the i-th instruction I; with a qualifier
Q;, based on the type of I;.

(Case 1: Addition). If I; is an addition transition (i,rg, j), where rg = register,,
then @; is defined to ensure that for any C element ¢; with state ¢;.s = 4, (i)
its right sibling co has state ca.s = j (state change); (ii) ¢z has one more X
child than ¢; (register; is incremented by 1); and moreover, (iii) ¢, has the same
number of Y children as ¢; (register, remains unchanged). These are expressed
as follows:

Qi=-Cle/Q@s=i AN(=/@s#j vV QY Vv Q)]
QY = (X[-(¢/Qid = 1/—=/X/=*[lab() = X]/Qid)))
V (=/X/=*[lab() = X A —[tab() = X]
A —(e/@id = 1)/ X /—*[lab() = X]/@id))
QY = (Y[~(e/Qid = t/—=/Y/—="/Qid)])
V (=/Y[-(e/Qid =1/« /Y /=" /Qid)]).
Here @Q;, QX and QY assert the conditions (i — iii) above. Similarly, Q;, QX and
QY can be defined for rg = register,.

(Case 2: Subtraction). If I; is a subtraction (i,rg, j, k), where rg = register;, then
Q; is defined to ensure that for any C element c¢; with state ¢;.s = 4, (i) its
right sibling ¢, has state ca.s = j if ¢; has no X child (i.e., register; is 0), and
furthermore, ¢; has no X child and it has the same number of Y children as c¢;;
in other words, the contents of registers remain unchanged; and (ii) if ¢; has an
X child (i.e., register; # 0), then c¢s has state ¢y.s = k, and moreover, co has
one less X child than ¢; (register; is decremented by 1), while the number of Y
children of ¢, is the same as that of ¢; (register, remains unchanged). These are
expressed as follows:

Qi =-Cle/@s =i A Q] V Q)]
Q=X A (=/@s#k VvV =[X] vV QY))
QY =(X A (=/Qs#j
V X[—=*[lab() = X A —=[lab() = X]
A —(e/Qid = 1/— /X —*[lab() = X]/Qid)])
V (=/X[-(e/@id = 1/+/X/—=*[lab() = X]/Qid)])

Here QY is the same as defined in Case 1, and @Q;, Q° and QX assert the condi-
tions (i — ii) above. Similarly, Q;, Q% and QX can be defined for rg = register.

Putting these together, we define the query p to be
G[Qstart A Qhalting A QmKey A QyKey A /\ Qz]
i€[0,1]

One can verify that p is in X (1, +,—,—>*,U,[],=,—) and furthermore, that
(D, p) is satisfiable iff the 2RM M halts, i.e., (0,0,0) = (f,0,0).

(2) We next show that SAT(X (1, +,—,—*,U,[],=,)) is undecidable in the
absence of DTDs. Consider the DTD D given in part (1). We will encode this
DTD using qualifiers.

First, the production P(r) can be easily expressed by a qualifier saying that
there should be a C' child of the root, followed only by C' labeled right siblings:

Qr = Cl=(&) A=(=7[lab() # C])].

For the production P(C) we express that only X and Y labeled children appear
and no X labeled node can come after an Y labeled node. It is easier to encode
the production P(C) = S, X*,Y™* since then we know that C has at least one
child which we can use to go down (we do not have | in the XPath fragment).
It can be easily verified that the undecidability proof of (1) goes through after
these minor modifications.

We then encode (the modified) P(C) with a qualifier saying that there should
be a single leftmost S child below C, followed by only X and Y labeled right
siblings in the right order (Y after X):

Qc = ~C[S[«+ V —=/="[lab() # X Alab() #Y]] A =S] A
=C[S/—=/—=*[lab() = Y]/—/—="[lab() = X]].

For a given p € X(1, -, —,—*,U,[], =,), it is then easy to see that T' = (p, D)
iff T = €[Qr A Qc]/p. n

Proof of Proposition 8

The proof of the first statement is the same as the proof of Proposition 3.3 in
[2]. For the second statement, consider fragments X that contains negation and
1 and is closed under inverse. Given any DTD D and any queries p;,ps € X,
it is easy to verify, by induction on the structure of ps, (a) p1 C p2 under D
iff p = p1[~(inverse(p2)[—1])] is satisfiable, where inverse is an extension of that
function given in [2], as described in Section 5, and the qualifier [-1] conducts
the root test; and (b) inverse(p2) is computable in O(|p2|) time. Thus CNT(X)
can be reduced to SAT(X) in linear time. n

