
Selectively Storing XML Data in Relations

Wenfei Fan1 and Lisha Ma2

1 University of Edinburgh and Bell Laboratories
2 Heriot-Watt University

Abstract. This paper presents a new framework for users to select relevant data
from an XML document and store it in an existing relational database, as opposed
to previous approaches that shred the entire XML document into a newly created
database of a newly designed schema. The framework is based on a notion of
XML2DB mappings. An XML2DB mapping extends a (possibly recursive) DTD

by associating element types with semantic attributes and rules. It extracts either
part or all of the data from an XML document, and generates SQL updates to
increment an existing database using the XML data. We also provide an efficient
technique to evaluate XML2DB mappings in parallel with SAX parsing. These
yield a systematic method to store XML data selectively in an existing database.

1 Introduction

A number of approaches have been proposed for shredding XML data into rela-
tions [3,6,14,15], and some of these have found their way into commercial sys-
tems [10,7,13]. Most of these approaches map XML data to a newly created database
of a “canonical” relational schema that is designed starting from scratch based on an
XML DTD, rather than storing the data in an existing database. Furthermore, they of-
ten store the entire XML document in the database, rather than letting users select
and store part of the XML data. While some commercial systems allow one to de-
fine schema-based mappings to store part of the XML data in relations, either their
ability to handle recursive DTDs is limited [7,10] or they do not support storing the
data in an existing database [13]. In practice, it is common that users want to specify
what data they want in an XML document, and to increment an existing database with
the selected data. Moreover, one often wants to define the mappings based on DTDs,
which may be recursive as commonly found in practice (see [4] for a survey of real-life
DTDs).

Example 1.1. Consider a registrar database specified by the relational schema R0
shown in Fig. 1(a) (with keys underlined). The database maintains student data, en-
rollment records, course data, and a relation prereq, which gives the prerequisite hier-
archy of courses: a tuple (c1, c2) in prereq indicates that c2 is a prerequisite of c1.

Now consider an XML DTD D0 also shown in Fig. 1(a) (the definition of elements
whose type is PCDATA is omitted). An XML document conforming to D0 is depicted in
Fig. 1(b). It consists of a list of course elements. Each course has a cno (course number),
a course title, a prerequisite hierarchy, and all the students who have registered for the
course. Note that the DTD is recursive: course is defined in terms of itself via prereq.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 22–32, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Selectively Storing XML Data in Relations 23

Relational schema R0:
course(cno, title),
student(ssn, name),
enroll(ssn, cno),
prereq(cno1, cno2).

DTD D0:
<!ELEMENT db (course∗)>
<!ELEMENT course (cno, title,

prereq, takenBy)>
<!ELEMENT prereq (course∗)>
<!ELEMENT takenBy(student∗)>
<!ELEMENT student(ssn, name)>

(a) Relational schema R0 and DTD D0 (b) An XML document of D0

Fig. 1. Relational Schema R0, DTD D0 and an example XML document of D0

We want to define a mapping σ0 that, given an XML document T that conforms to D0
and a relational database I of R0, (a) extracts from T all the CS courses, along with their
prerequisites hierarchies and students registered for these related courses, and (b) inserts
the data into relations course, student, enroll and prereq of the relational database I ,
respectively. Observe the following. (a) We only want to store in relations a certain part
of the data in T , instead of the entire T . (b) The selected XML data is to be stored in
an existing database I of a predefined schema R0 by means of SQL updates, rather than
in a newly created database of a schema designed particularly for D0. (c) The selected
XML data may reside at arbitrary levels of T , whose depth cannot be determined at
compile time due to the recursive nature of its DTD D0. To our knowledge, no existing
XML shredding systems are capable of supporting σ0. �

Contributions. To overcome the limitations of existing XML shredding approaches, we
propose a new framework for mapping XML to relations. The framework is based on
(a) a notion of XML2DB mappings that extends (possibly recursive) DTDs and is capable
of mapping either part of or an entire document to relations, and (b) a technique for
efficiently evaluating XML2DB mappings.

XML2DB mappings are a novel extension of attribute grammars (see, e.g., [5] for
attribute grammars). In a nutshell, given a (possibly recursive) XML DTD D and a pre-
defined relational schema R, one can define an XML2DB mapping σ : D → R to select
data from an XML document of D, and generates SQL inserts to increment an existing
relational database of R. More specifically, σ extends the DTD D by associating seman-
tic attributes and rules with element types and their definitions in D. Given an XML

document T of D, σ traverses T , selects data from T , and generates SQL inserts Δ by
means of the semantic attributes and rules during the traversal. Upon the completion of
the traversal, the SQL updates Δ are executed against an existing database I of R, such
that the updated database Δ(I) includes the extracted XML data and is guaranteed to be
an instance of the predefined schema R. For example, we shall express the mapping σ0
described in Example 1.1 as an XML2DB mapping (Fig. 2(a)).

To evaluate efficiently an XML2DB mapping σ, we propose a technique that com-
bines the evaluation with the parsing of XML data by leveraging existing SAX [9]

24 W. Fan and L. Ma

parsers. This allows us to generate SQL updates Δ in a single traversal of the document
without incurring extra cost. To verify the effectiveness and efficiency of our technique
we provide a preliminary experimental study.

Taken together, the main contributions of the paper include the following:

– A notion of XML2DB mappings, which allow users to increment an existing rela-
tional database by using certain part or all of the data in an XML document, and are
capable of dealing with (possibly recursive) XML DTDs in a uniform framework.

– An efficient technique that seamlessly integrates the evaluation of XML2DB map-
pings and SAX parsing, accomplishing both in a single pass of an XML document.

– An experimental study verifying the effectiveness of our techniques.

The novelty of our uniform framework consists in (a) the functionality to support
mappings based on (possibly recursive) DTDs from XML to relations that, as opposed
to previous XML shredding approaches, allows users to map either part of or the en-
tire XML document to a relational database, rather than core-dumping the entire doc-
ument; (b) the ability to extend an existing relational database of a predefined schema
with XML data rather than creating a new database starting from scratch; (c) efficient
evaluation techniques for XML2DB mappings via a mild extension of SAX parsers for
XML.

Organization. Section 2 reviews DTDs and SAX. Section 3 defines XML2DB mappings.
Section 4 presents the evaluation technique. A preliminary experimental study is pre-
sented in Section 5, followed by related work in Section 6 and conclusions in Section 7.

2 Background: DTDs and SAX

DTDs. Without loss of generality, we formalize a DTD D to be (E, P, r), where
E is a finite set of element types; r is in E and is called the root type; P defines
the element types: for each A in E, P (A) is a regular expression α defined by
PCDATA | ε | B1, . . . , Bn | B1 + . . . + Bn | B∗, where ε is the empty word,
B is a type in E (referred to as a child type of A), and ‘+’, ‘,’ and ‘∗’ denote disjunc-
tion, concatenation and the Kleene star, respectively (we use ‘+’ instead of ‘|’ to avoid
confusion). We refer to A → P (A) as the production of A. A DTD is recursive it has
an element type defined (directly or indirectly) in terms of itself.

Note that [2] all DTDs can be converted to this form in linear time by using new ele-
ment types and performing a simple post-processing step to remove the introduced ele-
ment types. To simplify the discussion we do not consider XML attributes, which can be
easily incorporated. We also assume that the element types B1, . . . , Bn in B1, . . . , Bn

(resp. B1 + . . . + Bn) are distinct, w.l.o.g. since we can always distinguish repeated
occurrences of the same element type by referring to their positions in the production.

SAX Parsing. A SAX [9] parser reads an XML document T and generates a
stream of SAX events of five types: startDocument(), startElement(A, eventNo), text(s),
endElement(A), endDocument(), where A is an element type of T and s is a string (PC-
DATA). The semantics of these events is self-explanatory.

Selectively Storing XML Data in Relations 25

3 XML2DB Mappings: Syntax and Semantics

In this section we formally define XML2DB mappings.

Syntax. The idea of XML2DB mappings is to treat the XML DTD as a grammar and
extend the grammar by associating semantic rules with its productions. This is in the
same spirit of Oracle XML DB [13] and IBM DB2 XML Extender [7], which specify XML

shredding by annotating schema for XML data. When the XML data is parsed w.r.t. the
grammar, it recursively invokes semantic rules associated with the productions of the
grammar to select relevant data and generate SQL updates.

We now define XML2DB mappings. Let D = (E, P, r) be a DTD and R be a
relational schema consisting of relation schemas R1, . . . , Rn. An XML2DB mapping
σ : D → R takes as input an XML document T of D, and returns an SQL group of in-
serts Δ which, when executed on a database I of R, yields an incremented instance ΔI
of schema R. The mapping extracts relevant data from T and uses the data to construct
tuples to be inserted into I . More specifically, σ is specified as follows.

• For each relation schema Ri of R, σ defines a relation variable ΔRi , which is to
hold the set of tuples to be inserted into an instance Ii of Ri. The set ΔRi is initially
empty and is gradually incremented during the parsing of the XML document T .

• For each element type A in E, σ defines a semantic attribute $A whose value is
either a relational tuple of a fixed arity and type, or a special value � (denoting $r
at the root r) or ⊥ (denoting undefined); intuitively, $A extracts and holds relevant
data from the input XML document that is to be inserted into the relational database
I of R. As will be seen shortly, $A is used to pass information top-down during the
evaluation of σ.

• For each production p = A → α in D, σ specifies a set of semantic rules, denoted
by rule(p). These rules specify two things: (a) how to compute the value of the
semantic attribute $B of B children of an A element for each child type B in α,
(b) how to increment the set in ΔRi ; both $B and ΔRi are computed by using the
semantic attribute $A and the PCDATA of text children of the A element (if any).
More specifically, rule(p) consists of a sequence of assignment and conditional
statements:

rule(p) := statements
statements := ε | statement; statements
statement := X := expression | if C then statements else statements

where ε denotes the empty sequence (i.e., no semantic actions); and X is either a
relation variable ΔRi or a semantic attribute $B. The assignment statement has one
of two forms. (a) $B := (x1, . . . , xk), i.e., tuple construction where xi is either of
the form $A.a (projection on the a field of the tuple-valued attribute $A of the A
element), or val (B′), where B′ is an element type in α such that it precedes B in
α (i.e., we enforce sideways information passing from left to right), B’s production
is of the form B′ → PCDATA, and val (B′) denotes the PCDATA (string) data of
B′ child. (b) ΔRi := ΔRi ∪ {(x1, . . . , xk)}, where (x1, . . . , xk) is a tuple as
constructed above and in addition, it is required to have the same arity and type
as specified by the schema Ri. The condition C is defined in terms of equality or

26 W. Fan and L. Ma

Relational variables: Δcourse, Δprereq, Δstudent,
Δenroll, with ∅ as their initial value.

Semantic rules:

db → course*
$course := �;

course → cno, title, prereq, takenBy
if val (cno) contains ‘CS’ or ($course �= ⊥

and $course �= �)
then $prereq := val (cno); $takenBy := val (cno);

Δcourse := Δcourse ∪ {(val (cno), val (title))};
if $course �= � and $course �= ⊥
then Δprereq := Δprereq ∪ {($course, val (cno))};

else $title := ⊥; $prereq := ⊥; $takenBy := ⊥;

prereq → course*
$course := $prereq;

takenBy → student*
$student := $takenBy;

student → ssn, name
if $student �= ⊥
then Δstudent := Δstudent ∪ {(val (ssn), val (name))};

Δenroll := Δenroll ∪ {(val (ssn), $student)};

(a) XML2DB mapping σ0

Relational variables: Δcourse, Δprereq, Δstudent,
Δenroll, with ∅ as their initial value.

Semantic rules:

db → course*
$course := �;

course → cno, title, prereq, takenBy
$prereq := val (cno); $takenBy := val (cno);
Δcourse := Δcourse ∪ {(val (cno), val (title))};
if $course �= �
then Δprereq := Δprereq ∪ {($course, val (cno))};

prereq → course*
$course := $prereq;

takenBy → student*
$student := $takenBy;

student → ssn, name
Δstudent := Δstudent ∪ {(val (ssn), val (name))};
Δenroll := Δenroll ∪ {(val (ssn), $student)};

(b) XML2DB mapping σ1

Fig. 2. Example XML2DB mappings: storing part of (σ0) and the entire (σ1) the document

string containment tests on atomic terms of the form val (B′), $A.a,�, ⊥, and it is
built by means of Boolean operators and, or and not, as in the standard definition of
the selection conditions in relational algebra. The mapping σ is said to be recursive
if the DTD D is recursive.

We assume that if p is of the form A → B∗, rule(p) includes a single rule $B := $A,
while the rules for the B production select data in each B child. This does not lose
generality as shown in the next example, in which a list of student data is selected.

Example 3.2. The mapping σ0 described in Example 1.1 can be expressed as the
XML2DB mapping σ0 : D0 → R0 in Fig. 2(a), which, given an XML document T
of the DTD D0 and a relational database I of the schema R0, extracts all the CS courses,
their prerequisites and their registered students from T , and inserts the data as tuples
into I . That is, it generates Δcourse, Δstudent, Δenroll and Δprereq, from which SQL

updates can be readily constructed. Note that a course element c is selected if either its
cno contains ‘CS’ or an ancestor of c is selected; the latter is captured by the condition
($course �= ⊥ and $course �= �). The special value ⊥ indicates that the correspond-
ing elements are not selected and do not need to be processed. Note that the rules for
takenBy and student select the data of all student who registered for such courses. �

Semantics. We next give the operational semantics of an XML2DB mapping σ : D → R
by presenting a conceptual evaluation strategy. This strategy aims just to illustrate the
semantics; a more efficient evaluation algorithm will be given in the next section.

Given an input XML document (tree) T , σ(T) is computed via a top-down depth-first
traversal of T , starting from the root r of T . Initially, the semantic attribute $r of r is

Selectively Storing XML Data in Relations 27

assigned the special value �. For each element v encountered during the traversal, we
do the following. (1) Identify the element type of v, say, A, and find the production
p = A → P (A) from the DTD D and the associated semantic rules rule(p) from the
mapping σ. Suppose that the tuple value of the semantic attribute $A of v is t. (2) Ex-
ecute the statements in rule(p). This may involve extracting PCDATA value val (B′)
from some B′ children, projecting on certain fields of the attribute t of v, and perform-
ing equality, string containment tests and Boolean operations, as well as constructing
tuples and computing union of sets as specified in rule(p). The execution of rule(p)
assigns a value to the semantic attribute $B of each B child of v if the assignment of
$B is defined in rule(p), and it may also increment the set ΔRi . In particular, if p is
of the form A → B∗, then each B child u of v is assigned the same value $B. (3) We
proceed to process each child u of v in the same way, by using the semantic attribute
value of u. (4) The process continues until all the elements in T are processed. Upon
the completion of the process, we return the values of relation variables ΔR1 , . . . , ΔRn

as output, each of which corresponds to an SQL insert. More specifically, for each Δi,
we generate an SQL insert statement:

insert into Ri select * from ΔRi

That is, at most n SQL inserts are generated in total.

Example 3.3. Given an XML tree T as shown in Fig 1(b), the XML2DB mapping σ0
of Example 3.2 is evaluated top-down as follows. (a) All the course children of the
root of T are given � as the value of their semantic attribute $course. (b) For each
course element v encountered during the traversal, if either $course contains ‘CS’ or
it is neither ⊥ nor �, i.e., v is either a CS course or a prerequisite of a CS course,
the PCDATA of cno of v is extracted and assigned as the value of $title, $prereq and
$takenBy; moreover, the set Δcourse is extended by including a new tuple describing
the course v. Furthermore, if $course is neither � nor ⊥, then Δprereq is incremented
by adding a tuple constructed from $course and val (cno), where $course is the cno of
c inherited in the top-down process. Otherwise the data in v is not to be selected and
thus all the semantic attributes of its children are given the special value ⊥. (c) For
each prereq element u encountered, the semantic attributes of all the course children
of u inherit the $prereq value of u, which is in turn the cno of the course parent of u;
similarly for takenBy elements. (d) For each student element s encountered, if $student
is not ⊥, i.e., s registered for either a CS course c or a prerequisite c of a CS course,
the sets Δstudent and Δenroll are incremented by adding a tuple constructed from the
PCDATA val (ssn), val (name) of s and the semantic attribute $student of s; note that
$student is the cno of the course c. (e) After all the elements in T are processed, the sets
Δcourse, Δstudent, Δenroll and Δprereq are returned as the output of σ0(T). �

Handling Recursion in a DTD. As shown by Examples 3.2 and 3.3 XML2DB mappings
are capable of handling recursive DTDs. In general, XML2DB mappings handle recursion
in a DTD following a data-driven semantics: the evaluation is determined by the input
XML tree T at run-time, and it always terminates since T is finite.

Storing Part of an XML Document in Relations. As demonstrated in Fig. 2(a), users
can specify in an XML2DB mapping what data they want from an XML document and
store only the selected data in a relational database.

28 W. Fan and L. Ma

Shredding the Entire Document. XML2DB mappings also allow users to shred the
entire input XML document into a relational database, as shown in Fig. 2(b). Indeed, for
any XML document T of the DTD D0 given in Example 1.1, the mapping σ1 shreds the
entire T into a database of the schema R0 of Example 1.1.

Taken together, XML2DB mappings have several salient features. (a) They can be
evaluated in a single traversal of the input XML tree T and it visits each node only once,
even if the embedded DTD is recursive. (b) When the computation terminates it gener-
ates sets of tuples to be inserted into the relational database, from which SQL updates Δ
can be readily produced. This allows users to update an existing relational database of
a predefined schema. (c) The semantic attributes of children nodes inherit the semantic
attribute of their parent; in other words, semantic attributes pass the information and
control top-down during the evaluation. (d) XML2DB mappings are able to store either
part of or the entire XML document in a relational database, in a uniform framework.

4 Evaluation of XML2DB Mappings

We next outline an algorithm for evaluating XML2DB mappings σ : R → D in parallel
with SAX parsing, referred to as an extended SAX parser. Given an XML document T of
the DTD D, the computation of σ(T) is combined with the SAX parsing process of T .

The algorithm uses the following variables: (a) a relation variable ΔRi for each table
Ri in the relational schema R; (b) a stack S, which is to hold a semantic attribute $A
during the evaluation (parsing); and (c) variables Xj of string type, which are to hold
PCDATA of text children of each element being processed, in order to construct tuples to
be added to ΔRi . The number of these variables is bounded by the longest production
in the DTD D, and the same string variables are repeatedly used when processing differ-
ent elements. Recall the SAX events described in Section 2. The extended SAX parser
incorporates the evaluation of σ into the processing of each SAX event, as follows.

• startDocument(). We push the special symbol � onto the stack S, as the value of
the semantic attribute $r of the root r of the input XML document T .

• startElement(A, eventNo). When an A element v is being parsed, the semantic
attribute $A of v is already at the top of the stack S. For each child u of v to be
processed, we compute the semantic attribute $B of u based on the semantic rules
for $B in rule(p) associated with the production p = A → P (A); we push the
value onto S, and proceed to process the children of u along with the SAX parsing
process. If the production of the type B of u is B → PCDATA, the PCDATA of u is
stored in a string variable Xj . Note that by the definition of XML2DB mappings,
the last step is only needed when p is of the form A → B1, . . . , Bn or A →
B1 + . . . + Bn.

• endElement(A). A straightforward induction can show that when this event is en-
countered, the semantic attribute $A of the A element being processed is at the top
of the stack S. The processing at this event consists of two steps. We first increment
the set ΔRi by executing the rules for ΔRi in rule(p), using the value $A and the
PCDATA values stored in string variables. We then pop $A off the stack.

• text(s). We store PCDATA s in a string variable if necessary, as described above.

Selectively Storing XML Data in Relations 29

• endDocument(). At this event we return the relation variables ΔRi as the output
of σ(T), and pop the top of the stack off S. This is the last step of the evaluation
of σ(T).

Upon the completion of the extended SAX parsing process, we eliminate duplicates
from relation variables ΔRis, and convert ΔRi to SQL insert command Δis.

Example 4.4. We now revisit the evaluation of σ0(T) described in Example 3.3 using
the extended SAX parser given above. (a) Initially, � is pushed onto the stack S as the
semantic attribute $db of the root db of the XML tree T ; this is the action associated with
the SAX event startDocument(). The extended SAX parser then processes the course
children of db, pushing � onto S when each course child v is encountered, as the
semantic attribute $course of v. (b) When the parser starts to process a course element
v, the SAX event startElement(course, eNo) is generated, and the semantic attribute
$course of v is at the top of the stack S. The parser next processes the cno child of
v, extracting its PCDATA and storing it in a string variable Xj ; similarly for title. It
then processes the prereq child of u, computing $prereq by means of the corresponding
rule in rule(course); similarly for the takenBy child of v. After all these children are
processed and their semantic attributes popped off the stack, endElement(course) is
generated, and at this moment the relation variables Δcourse and Δprereq are updated,
by means of the corresponding rules in rule(course) and by using $course at the top
of S as well as val (cno) and val (title) stored in string variables. After this step the
semantic attribute $course of v is popped off the stack. Similarly the SAX events for
prereq and takenBy are processed. (c) When endDocument() is encountered, the sets
Δcourse, Δstudent, Δenroll and Δprereq are returned as the output of σ0(T). �

Theorem 4.1. Given an XML document T and an XML2DB mapping σ : D → R, the
extended SAX parser computes σ(T) via a single traversal of T and in O(|T ||σ|) time,
where |T | and |σ| are the sizes of T and σ, respectively. �

5 Experimental Study

Our experimental study focuses on the scalability of our extended SAX parser, denoted
by ESAX, which incorporates the XML2DB mapping evaluation. We conducted two sets
of experiments: we ran ESAX and the original SAX parser (denoted by SAX) (a) on XML

documents T of increasing sizes, and (b) on documents T with a fixed size but different
shapes (depths or widths). Our experimental results showed (a) that ESAX is linearly
scalable and has the same behavior as SAX, and (b) the performance of ESAX is only
determined by |T | rather than the shape of T . The experiments were conducted on a
PC with a 1.40 Ghz Pentium M CPU and 512MB RAM, running Windows XP. Each
experiment was repeated 5 times and the average is reported here; we do not show
confidence interval since the variance is within 5%.

We built XML documents of the DTD of Fig. 1(a), using the Toxgene XML generator
(http://www.cs.toronto.edu/tox/toxgene). We used two parameters, XL and XR, where
XL is the depth of the generated XML tree T , and XR is the maximum number of
children of any node in T . Together XL and XR determine the shape of T : the larger
the XL value, the deeper the tree; and the larger the XR value, the wider the tree.

30 W. Fan and L. Ma

Fig. 3. Scalability with the size of XML document T : vary |T |

Fig. 4. Scalability with the shape of XML document T : vary XL and XR with a fixed |T |

Figure 3 shows the scalability of ESAX by increasing the XML dataset size from
153505 elements (3M) to 1875382 (39M). The time (in ms) reported for ESAX includes
the parsing and evaluation time of XML2DB mapping. As shown in Fig. 3, ESAX is
linearly scalable and behaves similarly to SAX, as expected. Furthermore, the evaluation
of an XML2DB mapping does not incur a dramatic increase in processing time vs. SAX.

To demonstrate the impact of the shapes of XML documents on the performance of
ESAX, we used XML documents T of a fixed size of 160,000 elements, while varying
the height (XL) and width (XR) of T . Figure 4 (a) shows the elapsed time when varying
XL from 8 to 20 with XR = 4, and Fig. 4(b) shows the processing time while varying
XR from 2 to 16 with XL = 12. The results show that ESAX takes roughly the same
amount of time on these documents. This verifies that the time-complexity of ESAX is
solely determined by |T | rather than the shape of T , as expected.

6 Related Work

Several approaches have been explored for using a relational database to store XML

documents, either DTD-based [3,15,13,7] or schema-oblivious [6,14,10] (see [8] for a
survey). As mentioned in section 1, except [10,7] these approaches map the entire XML

document to a newly created database of a “canonical” relational schema, and are not
capable of extending an existing database with part of the data from the document.

Microsoft SQL 2005 [10] supports four XML data-type methods QUERY(), VALUE(),
EXIST() and NODES(), which take an XQuery expression as argument to retrieve parts
of an XML instance. However, the same method is not able to shred the entire docu-
ment into relations via a single pass of an XML document, in contrast to our uniform
framework to store either the entire or part of an XML document. Furthermore, it does
not support semantic-based tuple construction, e.g., when constructing a tuple (a, b), it

Selectively Storing XML Data in Relations 31

does not allow one to extract attribute b based on the extracted value of a, which is sup-
ported by XML2DB mappings via semantic-attribute passing. Both Oracle XML DB [13]
and IBM DB2 XML Extender [7] use schema annotations to map either the entire or parts
of XML instances to relations. While Oracle supports recursive DTDs, it cannot incre-
ment an existing database. Worse, when an element is selected, the entire element has
to be stored. IBM employs user-defined Document Access Definitions (DADs) to map
XML data to DB2 tables, but supports only fixed-length DTD recursion (see also [12] for
upcoming XML support in DB2). Neither Oracle nor IBM supports semantic-based tuple
construction, which is commonly needed in practice.

We now draw the analogy of XML2DB mappings to attribute grammars (see,
e.g., [5]). While the notion of XML2DB mappings was inspired by attribute grammars, it
is quite different from attribute grammars and their previous database applications [11].
First, an attribute grammar uses semantic attributes and rules to constrain the parsing of
strings, whereas an XML2DB mapping employs these to control the generation of data-
base updates. Second, an attribute grammar outputs a parse tree of a string, whereas an
XML2DB mapping produces SQL updates.

Closer to XML2DB mappings are the notion of AIGs [2] and that of structural
schema [1], which are also nontrivial extensions of attribute grammars. AIGs are speci-
fications for schema-directed XML integration. They differ from XML2DB mappings in
that they generate XML trees by extracting data from relational sources. Furthermore,
the evaluation of AIGs is far more involved than its XML2DB mapping counterpart.
Structural schemas were developed for querying text files, by extending context-free
grammars with semantic attributes. The evaluation of structural schemas is different
from the SAX-parser extension of XML2DB mappings.

7 Conclusion

We have proposed a notion of XML2DB mappings that in a uniform framework, al-
lows users to select either part of or an entire XML document and store it in an existing
relational database of a predefined schema, as opposed to previous XML shredding ap-
proaches that typically shred the entire document into a newly created database of a new
schema. Furthermore, XML2DB mappings are capable of supporting recursive DTDs and
flexible tuple construction. We have also presented an efficient algorithm for evaluat-
ing XML2DB mappings based on a mild extension of SAX parsers. Our preliminary
experimental results have verified the effectiveness and efficiency of our technique.
This provides existing SAX parsers with immediate capability to support XML2DB

mappings.
We are extending XML2DB mappings by incorporating (a) the support of SQL queries

and (b) the checking of integrity constraints (e.g., keys and foreign keys) on the underly-
ing relational databases. We are also developing evaluation and optimization techniques
to cope with and leverage SQL queries and constraints.

Acknowledgment. Wenfei Fan is supported in part by EPSRC GR/S63205/01,
GR/T27433/01 and BBSRC BB/D006473/1. We thank Hamish Taylor for the helpful
comments.

32 W. Fan and L. Ma

References

1. S. Abiteboul, S. Cluet, and T. Milo. Querying and updating the file. In VLDB, 1993.
2. M. Benedikt, C. Y. Chan, W. Fan, J. Freire, and R. Rastogi. Capturing both types and con-

straints in data integration. In SIGMOD, 2003.
3. P. Bohannon, J. Freire, J. Haritsa, M. Ramanath, P. Roy, and J. Siméon. Bridging the XML

relational divide with LegoDB. In ICDE, 2003.
4. B. Choi. What are real DTDs like. In WebDB, 2002.
5. P. Deransart, M. Jourdan, and B. Lorho (eds). Attribute grammars. LNCS, 1988.
6. D. Florescu and D. Kossmann. Storing and querying XML data using an RDMBS. IEEE

Data Eng. Bull, 1999.
7. IBM. DB2 XML Extender. http://www-3.ibm.com/software/data/db2/extended/xmlext/.
8. R. Krishnamurthy, R. Kaushik, and J. Naughton. XML-SQL query translation literature: The

state of the art and open problems. In Xsym, 2003.
9. D. Megginson. SAX: A simple API for XML. http://www.megginson.com/SAX/.

10. Microsoft. XML support in Microsoft SQL server 2005, December 2005.
http://msdn.microsoft.com/library/en-us/dnsql90/html/sql2k5xml.asp/.

11. F. Neven. Extensions of attribute grammars for structured document queries. In DBPL, 1999.
12. M. Nicola and B. Linden. Native XML support in DB2 universal database. In VLDB, 2005.
13. Oracle. Oracle database 10g release 2 XML DB technical whitepaper.
14. A. Schmidt, M. L. Kersten, M. Windhouwer, and F. Waas. Efficient relational storage and

retrieval of XML documents. In WebDB, 2000.
15. J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, and J. Naughton. Relational

databases for querying XML documents: Limitations and opportunities. In VLDB, 1999.

	Introduction
	Background: DTDs and SAX
	XML2DB Mappings: Syntax and Semantics
	Evaluation of XML2DB Mappings
	Experimental Study
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

