
Propagating XML Constraints to Relations

Susan Davidson
�

U. of Pennsylvania
Wenfei Fan

�

Bell Labs
Carmem Hara

U. Federal do Parana, Brazil
Jing Qin

Temple U.

Abstract

We present a technique for refining the design of rela-
tional storage for XML data based on XML key propaga-
tion. Three algorithms are presented: one checks whether
a given functional dependency is propagated from XML keys
via a predefined view; the others compute a minimum cover
for all functional dependencies on a universal relation given
XML keys. Experimental results show that these algorithms
are efficient in practice. We also investigate the complex-
ity of propagating other XML constraints to relations, and
the effect of increasing the power of the transformation lan-
guage. Computing XML key propagation is a first step to-
ward establishing a connection between XML data and its
relational representation at the semantic level.

1 Introduction

Over the past five years, XML has become enormously
popular as a data exchange format. A common paradigm
is for a data provider to export its data using XML; on the
other end, the data consumer imports some or all of the
XML data and stores it using database technology. Since
the XML data being transmitted is often large in size and
fairly regular in structure, the database technology used is
frequently relational.

A problem with XML is that it is only syntax and does
not carry the semantics of the data. To address this problem,
a number of constraint specifications have recently been
proposed for XML which include a notion of keys; such
proposals have also found their way into XML-Data [18]
and XML Schema [28]. A natural question to ask, there-
fore, is how information about constraints can be used to
determine when an existing consumer database design is
incompatible with the data being imported, or to generate
de-novo a good consumer database. We illustrate the prob-
lem below.

Example 1.1: Suppose that the XML data (represented
as a tree) in Fig. 1 is being exchanged and that the ini-
tial design of the consumer database has a single ta-
ble Chapter with fields bookTitle, chapterNum

�
Research supported by NSF DBI-9975206.�
Research supported in part by NSF Career Award IIS-0093168. Cur-

rently on leave from Temple University.

bookTitle chapterNum chapterName
XML 1 Introduction
XML 10 Conclusion
XML 1 Getting Acquainted

(a) Chapter: the initial design

isbn chapterNum chapterName
123 1 Introduction
123 10 Conclusion
234 1 Getting Acquainted

(b) Chapter: a refined design

Figure 2. Sample relational instances

and chapterName (written Chapter(bookTitle,
chapterNum, chapterName)). The table is popu-
lated from the XML data as follows: For each book el-
ement, the value of the title subelement is extracted.
A tuple is then created in the Chapter relation for
each chapter subelement containing the title value
for bookTitle, the number value for chapterNum,
and the name value for chapterName (see Fig. 2(a)
for the resulting relational instance.) The key of the
Chapter table has been specified as bookTitle and
chapterNum. While importing this XML data, vi-
olations of the key are detected because two different
books have the same title (“XML”) and disagree on the
name of chapter one (“Introduction” versus “Getting Ac-
quainted”). After digging through the documentation ac-
companying the XML data, the database designers decide to
change the schema to Chapter(isbn, chapterNum,
chapterName) with a key of isbn and chapterNum
(populated in the obvious way from the XML data). The
resulting relational instance is shown in Fig. 2(b). While
importing the XML data, no violations of the key con-
straint are detected. However, the designers are not sure
whether they were lucky with this particular XML data set,
or whether such violations will never occur.

It turns out that given the following keys on the XML
data, the designers of the consumer database could prove
that the key of Chapter in their modified design is correct:

1. isbn uniquely identifies a book element.
2. Within each book, number is a key for chapter,

i.e., number is a key for chapter relative to book.
3. Each book has a unique title, and within each

1

@isbn @isbn

@number @number@number

@number

@number
2

Eauthor 5Etitle 4 Echapter 6

Ename 16

E 1book

SXML 11

Introduction 17S

Ebook 19

Etitle 21

E 0r

A

E S

SGetting
Acquainted

Tim
Bray

S

E

E

18Conclusion

E

34

E

E
EE

A

 123
3 20

 234
A

13A

 1

15Aname

 10

24AXML

 1

14 2312

chapter 7

35

name

S

33name

S

32
2928 E

name

S
30

chapter
22

section

A

name 25

26 1

31section
27

Fundamentals
Attributes

Figure 1. Tree representation of XML data

book, each chapter has a unique name.

That is, if these XML keys hold on the data being im-
ported, then ���������
	��
����������������� 	��
����������������� is a
functional dependency (FD) that is guaranteed to hold on
the Chapter relation generated (in other words, (isbn,
chapterNum) is a key of the relation). We refer to the FD
as one that is propagated from these XML keys.

In general, given a transformation to a predefined rela-
tional schema and a set � of XML keys, one wants to know
whether or not an FD is propagated from � via the trans-
formation. Let us refer to this problem as XML key prop-
agation. The ability to compute XML key propagation is
important in checking the consistency of a predefined rela-
tional schema for storing XML data. �

On the other hand, suppose that the relational database is
designed from scratch or can be re-designed to fit the con-
straints (and thus preserve the semantics) of the data being
imported. A common approach to designing a relational
database is to start with a rough schema and refine it into a
normal form (such as BCNF or 3NF [1]) using FDs. In our
scenario, we assume that the designer specifies the rough
schema by a mapping from the XML document. The FDs
over that rough schema must then be inferred from the keys
of the XML document using the mapping. However, it is
impractical to compute the set of all the FDs propagated
since is exponentially large in the number of attributes.
We would therefore like to find a minimum cover [1] of ,
that is, a subset "! of that is equivalent to (i.e., all
the FDs of can be derived from #! using Armstrong’s
Axioms) and is non-redundant (i.e., none of the FDs in !
can be derived from other FDs in !).

Example 1.2: Returning to our example, suppose that the
database designers decide to start from scratch and initially
propose a schema of Chapter(isbn, booktitle,
author, chapterNum, chapterName), with the
obvious mapping from the data in Fig. 1. From the three
keys given earlier, the following minimum cover for
Chapter can be derived: 1) isbn � bookTitle, and
2) isbn,chapterNum � chapterName. Taking ad-
vantage of these FDs, the following BCNF decomposition
of the initial design would be produced: Book(isbn,
bookTitle), Chapter(isbn, chapterNum,

chapterName), and Author(isbn, author).
Note that isbn � author is not mapped from the keys
since a book may have several authors. �
Contributions. In this paper, we propose a framework for
improving consumer relational database design. Our ap-
proach is based on inferring functional dependencies from
XML keys through a given mapping (transformation) of
XML data to relations. The class of XML keys considered
includes those commonly found in practice, and is a subset
of those in XML Schema [27]. More specifically, we make
the following contributions:
$ A polynomial time algorithm for checking whether an

FD on a predefined relational database is propagated
from a set of XML keys via a transformation.

$ A polynomial-time algorithm that, given a universal
relation specified by a transformation rule and a set of
XML keys, finds a minimum cover for all the func-
tional dependencies mapped from XML keys.

$ Undecidability results that show the difficulty of XML
constraint propagation.

$ Experimental results which show that the algorithms
are efficient in practice.

Note that the polynomial-time algorithm for finding a mini-
mal cover from a set of XML keys is rather surprising, since
it is known that a related problem in the relational context –
finding a minimum cover for functional dependencies em-
bedded in a subset of a relation schema – is inherently ex-
ponential [16].

The undecidability results give practical motivation for
the restrictions adopted in this paper. In particular, one
result shows that it is impossible to effectively propagate
all forms of XML constraints supported by XML Schema,
which include keys and foreign keys, even when the trans-
formations are trivial. This motivates our restriction of con-
straints to a simple form of XML keys. Another undecid-
ability result shows that when the transformation language
is too rich, XML constraint propagation is also not fea-
sible, even when only keys are considered. Since XML
to relational transformations are subsumed by XML to
XML transformations expressible in query languages such
as XQuery [8], this negative result applies to most popular
XML query languages.

2

Related Work. In [14, 13], a chase/backchase method
is presented which can be used for determining constraint
propagation in a semistructured data model when views are
expressed in CRPQ (conjunctive regular path queries) and
dependencies are DERPDs (disjunctive embedded regular
path dependencies). However, the method does not com-
pute a minimum cover for propagated FDs; it is also too
general to be efficient for checking propagation of XML
keys. The CPI algorithm of [19] is orthogonal to our work
and derives constraints from DTDs. Our work also paral-
lels that of [2], which investigates propagation of type con-
straints through queries.

The problem of finding a cover for FDs embedded in a
subset of a relational schema has been studied in [16] and
shown to be inherently exponential. It is worth mentioning
that the problem of computing embedded FDs cannot be
reduced to ours since the XML key language cannot capture
relational FDs, and vice versa.

Approaches for using a relational database to store XML
data include [21, 24, 25, 5]. However, our framework and
algorithms are the first results on mapping XML constraints
through relational views. The transformation language de-
veloped in this paper is also similar to that of Stored [12]
and aspects of the new release of Oracle (9i) [22].
Organization. The next section describes the class of XML
keys considered and our transformation language. Section 3
states the constraint propagation problem and establishes
the undecidability results. Sections 4 and 5 present algo-
rithms for computing XML key propagation and minimum
cover. Experimental results are given in Section 6, followed
by our conclusions in Section 7. Complete details are given
in the full version of the paper [11].

2 XML Keys and Transformations
XML keys. To define a key we specify three things: 1) the
context in which the key must hold; 2) a target set on which
we are defining a key; and 3) the values which distinguish
each element of the target set. For example, the second key
specification of Example 1.1 has a context of book, a tar-
get set of chapter, and a single key value, @number.
Specifying the context node and target set involve path ex-
pressions.

The path language we adopt is a common fragment of
regular expressions [17] and XPath [10]:� ����� � � � � �	�
� � ���
where

�
is the empty path,

�
is a node label, “/” denotes

concatenation of two path expressions (child in XPath), and
“//” means descendant-or-self in XPath. To avoid confusion
we write � ����� for the concatenation of � ,

�
�
and

�
. A

path � is a sequence of labels
�������������
���

. A path expression�
defines a set of paths, while “

���
” can match any path. We

use ��� �
to denote that � is in the set of paths defined by�

. For example, �����
� ���! #"%$ �'& �'()�!*,+ � ���'()�!*,+
.

Following the syntax of [6]1 we write an XML key as:- �/.10
�
.32
�54'� � � ����� ���7698':;:

where
-

is the name of the key, path expressions
0

and2
are the context and target path expressions respectively,

and � � � ���<� �;�)6 are the key paths. For the purposes of this
paper, we restrict the key paths to be simple attributes=?>?�

�
���<�
�
=?> 6 , and denote this class of keys as @BA . A key

is said to be absolute if the context path
0

is the empty path�
, and relative otherwise.

Example 2.1: Using this syntax, the sample constraints
from Section 1 and others can be written as follows:
$ -DC � �E.F� � .���� �G���
����4 =IHKJ � (8':;: : within the context of

the entire document (
�

denotes the root) a book ele-
ment is identified by its

=IHKJ � (attribute. The book
node can occur anywhere in the tree.

$ -DC)L �M.N��� �G���
��� .1O�$P��QP"K+ & ��4 =I(7 #* � + &
8�:%: : within the
context of any subtree rooted at a book node, a chapter
is identified by its

=I(7 #* � + & attribute. The chapter
node must be immediately under the book node.

$ -DC)R �	.���� �G���
��� .3"SHN"K�F+ ��4
8':;: : each book has at most
one title; similarly,

$ -DC7T �U.��
� �G���
� �
O�$P��QP"K+ & � .3()�!*,+
��4�8�:%: for the name of

a chapter, and
$ -DC)V �W.N��� �����
� ��O�$P�XQU"K+ & �
JX+'OG"SH � (� .F()�
*,+

��4
8':%: for
section name.

$ -DC)Y �Z.���� �G���
� �
O�$U�XQP"K+ & � .1JX+'OG"SH � (��4 =I(7 P* � + &!8':%: :
within the context of a chapter of a book, each section
is identified by its @

(7 #* � + & attribute.
$ -DC)[�\.��
� �G���
��� .F�! #"%$ �'& ��O � (7"K�!O�" ��4�8�:%: : a book can

have multiple authors, but at most one has contact in-
formation (the contact author). �

To define the meaning of an XML key, we use the following
notation: in an XML document (tree),

(M]] �?^ ^ denotes the set
of node identifiers that can be reached by following path
expression � from the node with identifier

(
.
]] �?^ ^ is an

abbreviation for &]] �?^ ^ , where & is the root node of the tree.

Example 2.2: In Fig. 1,
]] �G���
�!^ ^ � 4
_���_X`98 , _]] O�$P�XQU"K+ &X^ ^ �

4Xa
�cb!8 and
]]d���
=I(7 P* � + &X^ ^ � 4
Xe���'f��cg�h
�cg
i
�;e
g98 . �

Definition 2.1: An XML tree
2

satisfies an XML keyj �?.�0
�
.32
�)4 =?> � � ����� � =?> 6k8':%: , denoted

2l� � j , iff for
any

(
in

]] 0 ^ ^ and any
(m�
�
(L

in
(M]] 2 ^ ^ , (1)

(n�
and

(L
each

has a unique attribute
=?>?o

for all
H �] _�� Q ^ , and (2)

if p �k�%.3(n���d=?>Io : � p �k�;.3(L ��=?>qo : for all
H �] _�� Q ^ then(n�r�s(L

, where p �k�%.F()t1�d=?>Io : denotes the text value associ-
ated with the attribute

=?>Io
of
()t

. �
Example 2.3: The XML tree of Fig. 1 satisfies our
sample constraints. For example,

-DC �
is satisfied since]] �
� �G���
�!^ ^ � 4
_���_X`98 and p �!�;. _ �d=IHKJ � (:vu� p �k�;. _�` �d=IHKJ � (: .

One can check
-DC L

by verifying the absolute key

1We adopt this syntax for keys because it is more concise than that of
XML Schema.

3

.F�
�
.1O�$U�XQP"K+ & ��4 =I(7 #* � + &!8�:%: in the context of each of the

subtree rooted at 1 and the one rooted at 19; similarly for-DC R
to
-DC7[

. �
This definition of keys has several salient features: First,

keys can be scoped within the context of the entire doc-
ument (an absolute key), or within the context of a sub-
document (a relative key). Second, the specification of keys
is orthogonal to the typing specification for the document
(e.g. DTD or XML Schema). The type of documents
will therefore be ignored throughout this paper. Combining
keys with schema information, as is done in XML Schema,
adds complexity to the inference problem. As demonstrated
by [3], it is NP-hard even to check whether XML Schema
keys are satisfiable, i.e., whether there exist any XML doc-
ument which satisfies those keys. In contrast, the keys stud-
ied here are always satisfiable [7].

Transformation Language. The transformation language
forms a core of many common transformations found
throughout the literature, in particular those of [25].

Definition 2.2: A transformation � from XML data to
relations of schema

� � .�� �
�
�����

�
� � : is specified as.��

����� .�� � :
� ����� � � �	��� .�� � :%: , where each Rule(
� o

), re-
ferred to as the table rule for

�vo
, is defined with:

$ a set
 o of variables, in which �
� is a distinguished
variable, referred to as the root variable;

$ a set of field rules 4 �m� p �k�3 5+k. �5: �U� � �!"S"�.�� o :c8 , where
� is a distinct variable in
 o , and

�
"S"�.�� o : denotes the
set of attributes in the schema of relation

� o
;

$ a set of variable mapping rules of the form ����� � � ,
where � ��� ��
 o and � is a path expression.

In addition, each variable � ��
 o is connected to the root
& ; that is, � is specified with either ����� � � � in the rule,
or ����� � � and � is connected to the root & ; moreover, for
any ����� � � , 1) � is a simple path (i.e. without //) unless
� is ��� , and 2) no field rule is defined as

� � p �k�F #+k. � : when
there exists a variable � specified with ����� � � . �
Example 2.4: Expanding on Example 1.1, consider the fol-
lowing schema R (with keys underlined):

book(isbn, title, author, contact),
chapter(inBook, number, name),
section(inChapt, number, name).

A transformation � from the XML data of Fig. 1 to R could
be specified as:

� = (Rule(book), Rule(chapter), Rule(section))
Rule(book) = 4 isbn: value(� �), title: value(� L),

author: value(� R), contact: value(� T) 8 ,
�
����� � //book, � � ����� /@isbn, � L ����� /title,
�5A����
� /author, � R ���5A /name, � T ���#A /contact;

Rule(chapter) = 4 inBook: value(� �), number:
value(� L), name: value(� R) 8 ,

r

book

chapter

section

name

Xr
r

book

Xr

//

@number

@number

Zc

Zs

Z3

Z1

Z2

//

title@isbn author

name contact

X1

Xb

Xa

X4

X2

X3

(b) Rule(section)(a) Rule(book)

Figure 3. Table trees

��� ��� � //book, � � ���!� /@isbn, �!"#���!� /chapter,
� L ���!" /@number, � R ���!" /name;

Rule(section) = 4 inChapt: value($ �), number:
value($ L), name: value($ R) 8 ,

$ " ����� //book/chapter, $ � ��$ " /@number,
$&%'��$ " /section, $ L ��$(% /@number, $ R ��$&% /name. �

Table trees. Throughout the remainder of the paper, we
will use an abstract representation of a table rule called a
table tree. The idea is that by treating “

�
�
” as a special

node label, each table rule can be represented as a node-
labeled tree. For example, Fig. 3 depicts the table trees for�
�	��� . �G���
� : and

�
����� .1JX+'OG"SH � (: in Example 2.4. In a table

tree
2*)

representing Rule(R), each variable in Rule(R)
corresponds to a unique node, and each node corresponds
to at most one variable.
Semantics. Given an XML tree

2
, each

�
����� .��vo : maps2

to an instance + o of
�?o

. More specifically, given a vari-
able specification �,��� � � , � ranges over �]] �?^ ^ ; � � is al-
ways interpreted as the root & . A field rule

� � p �k�3 5+k. �#:
populates the

�
field with values in 4�p �!�F #+k. �#: � � �

�]] �?^ ^18 , where function p �k�3 5+ returns a string represent-
ing the pre-order traversal of the subtree rooted at � . Let�!"S"�.�� o : � 4 � � � ����� � ��- 8 and each variable � be specified
with �.� � t3� �0/ . Then the instance + o is generated by
+ o � 4 .1� � � p �k�F #+k. � � : � ����� � ��-	� p �k�3 5+k. � - :;: � ��� � & �1� �
� tN]] �0/�^ ^ �2� ��
 o 8 .
Example 2.5:

�
����� .�JX+XO�"SH � (: is interpreted as:

4 .3HN(0\$P�XQ � p �k�3 5+k. $ � :
� (7 #* � + & � p �!�F #+k. $ L : �()�!* +\� p �k�3 5+k. $ R :;: � $ " �,&]]d��� �G���
� ��O�$U�XQU"K+ &X^ ^
$ � ��$ "]]d=I(7 P* � + &X^ ^ �3$&% ��$ "]] J�+'OG"SH � (^ ^ �
$ L ��$&%]] =I(7 #* � + &X^ ^ �2$ R ��$&%]] ()�!* + ^ ^18 �

Referring to the XML tree
2

in Fig. 1, p �k�3 5+k. a
: returns
(@number:1, name: (S: Introduction)). The interpretation
of the rule for section (Example 2.4) over

2
generates fol-

lowing instance:
section inChapt number name

1 1 Fundamentals
1 2 Attributes �

4

Several subtleties are worth mentioning. First, since
XML data is semistructured it is possible that for � ��� � � ,
�]] �?^ ^ is empty. In this case p �k�F #+k. �5: is defined to be null.
Second, if �]] �?^ ^ has multiple elements, then to generate the
relation, an implicit Cartesian product is computed so that
all nodes in �]] �?^ ^ are covered in the relation.

3 Problem Statement and Limitations
Key propagation. The question of key propagation asks if
given a transformation � from XML data to relations of a
fixed schema R and an XML tree

2
satisfying a set � of

XML keys, whether � .32 : satisfies an FD j (on a schema
�

in R). We write �
� � � � � j if the implication holds for all

XML trees satisfying � , and refer to j as an FD propagated
from � . With respect to a transformation specification lan-
guage, the key propagation problem is to determine, given
any � expressed in the language, any XML keys � and an
FD j , whether or not �

� � � � � j . Note that we do not
require the XML data to conform to any type specification.

A subtle issue arises from null values in � .F2 : , the re-
lations generated from an XML tree

2
via � . In particular,

there may exist
�

tuples in � .32 : with FD
 �
�

such that
their
 or

�
fields contain null. The presence of null

complicates FD checking since comparisons of null with
any value do not evaluate to a Boolean value [23]. A brutal
solution is to restrict the semantics of the transformation �
so that a tuple is not included if it has a null field. Since
XML is semistructured, this could exclude a large number
of “incomplete” tuples from � .32 : . We therefore adopt the
following semantics of FDs: � .32 : satisfies FD
 � �

,
denoted by � .32 : � �
 � �

, iff (1) for any tuple
"

in
�

,
if ���

.F" : contains null then so does ���
.F" : ; and (2) for

tuples
" �
�
" L

in
�

, if neither
" �

nor
" L

contains null and
� �

.3";� : � � �
.3" L : , then � �

.F";� : � � �
.3" L : . The motivation

behind the first condition is that an FD is possibly treated
as a key when normalizing the relational schema, and an
“incomplete key”
 cannot determine complete

�
fields.

Another issue we should address is the simplicity of the
transformation language, which can only express projection
(�), Cartesian product (�) and a limited form of set union
(). One might be tempted to develop a richer language
which can express all relational algebra operators: projec-
tion, selection (�), Cartesian product, set union and differ-
ence (
). Although these operators can be generalized to
XML trees, the following negative result holds:

Theorem 3.1: The key propagation problem from XML to
relational data is undecidable when the transformation lan-
guage can express all relational algebra operators. �

The undecidablity is established by reduction from the
equivalence problem for relational algebra queries (see [11]
for a proof); the latter is a well-known undecidable prob-
lem [1]. In contrast, for our transformation language there
is a polynomial time algorithm in the size of � and � .

r
Xr

book

Y1

section

name

chapter

name

Xa

Y2

X2

X4

//

Xb
Yc

X1

@isbn

@number

@number

title author

name contact

X3

Zs
Z1

Z2

Figure 4.
�
����� .�� :

Minimum cover. The problem of finding a minimum cover
is to compute, given a universal relation

�
and a set � of

XML keys, a minimum cover #! for the set �
 of all FDs
on

�
propagated from � . Guided by ! , one can then

decompose
�

into a normal form as illustrated by Exam-
ple 1.2. This is analogous to techniques for designing rela-
tional databases [1]. In our context, a universal relation is
simply the collection of all the fields of interest, along with
a table rule that defines these fields.

Example 3.1: Recall the schema R and the transformation
given in Example 2.4. A universal relation

�
here is the

collection of all the fields of R, defined as follows:
U = (bookIsbn, bookTitle, bookAuthor, authContact,

chapNum, chapName, secNum, secName),�
�	��� .�� : = 4 bookIsbn: value(� �), bookTitle: value(� L),

bookAuthor: value(� R), authContact: value(� T),
chapNum: value(� �), chapName: value(� L),
secNum: value($ �), secName: value($ L) 8 ,

� � � ��� //book, � � � � � /@isbn, � L � � � /title,
� A � � � /author, � R � � A /name, � T � � A /contact,
� " � � � /chapter, � � � � " /@number, � L � � " /name,
$&% � � " /section, $ � � $(% /@number, $ L � $&% /name

The table tree of
�
����� .�� : is depicted in Fig. 4.

¿From the set of XML keys of Example 2.1 the following
minimum cover for the FDs on

�
can be computed:

bookIsbn � bookTitle,
bookIsbn � authContact,
bookIsbn, chapNum � chapName,
bookIsbn, chapNum, secNum � secName.

Guided by these FDs, we can decompose
�

into BCNF:
book(bookIsbn, bookTitle, authContact),
author(bookIsbn, bookAuthor),
chapter(bookIsbn, chapNum, chapName),
section(bookIsbn, chapNum, secNum, secName) �

Although in the relational context algorithms have been
developed for computing a minimum cover for a set of
FDs [4, 16, 20], they cannot be used in our context since the
FDs must be computed from the XML keys � via the trans-
formation � , instead of being provided as input for those
relational algorithms. Furthermore, relational FDs are not
capable of expressing XML keys and vice versa.

5

Propagation of other XML constraints. XML Schema
supports keys and foreign keys. Although it is tempting to
develop algorithms to compute the propagation of both keys
and foreign keys, we have the following negative result:

Theorem 3.2: The propagation problem for XML keys and
foreign keys is undecidable for any transformation lan-
guage that can express identity mapping. �

The “identity” mapping is one in which the XML rep-
resentation of relations is mapped to the same relations (in
our language this corresponds to a small class of transfor-
mations defined with paths of length e). The undecidability
result is established by reduction from implication of re-
lational keys and foreign keys, which is undecidable [15]
(see [11] for a reduction). Because of this we restrict our
attention to the propagation of XML keys.

4 Checking Key Propagation
Checking key propagation is nontrivial for a number of

reasons: First, XML data is semistructured in nature, which
complicates the analysis of key propagation by the pres-
ence of null values. Second, XML keys which are not in
� but are consequences of � may yield FDs on a relational
view. Thus key propagation involves XML key implica-
tion. Third, XML data is hierarchically structured and thus
XML keys are relative in their general form – they hold on
a sub-document. However, its relational view collapses the
hierarchical structures into a flat table and thus FDs are “ab-
solute” – they hold on the entire relational view. Thus one
needs to derive a unique identification of a sub-document
from a set of relative keys.

Before presenting our polynomial-time algo-
rithm for checking XML key propagation (Algo-
rithm propagation), we first discuss the notion of
a “keyed” node and the implication of XML keys.

Transitive set of XML keys. To uniquely identify a node
within the entire document we need a set of XML keys iden-
tifying unique contexts up to the root. To formalize this, we
use the following notion [7]: (

� �
�
.1�\t� � C � :) immediately

precedes (
� L � .1�\tL � C7L :) if

� L � � � �
�Bt�
. The precedes re-

lation is the transitive closure of the immediately precedes
relation. A set � of keys is transitive if for any relative key
(
� �

�
.1�Bt� � C � :) in � there is an absolute key (

�
�
.��BtL � C L :)

in � which precedes (
�	�

�
.��\t� � C � :). We say that a node

is keyed if there exists a transitive set of keys to uniquely
identify the node.

Example 4.1: The set 4 - C � � -DC L 8 is transitive since any
chapter in the document can be identified by providing
@isbn of a book and @number of a chapter. Thus every
chapter node is keyed. In contrast, 4 -DC L 8 is not transitive
since with it alone there is no way to uniquely identify a
book in the document, which is necessary before identify-
ing a chapter of that book. �

Implication of XML keys. One aspect of key propagation
is to determine whether an XML key j must hold provided
that a set � of XML keys holds, denoted by �

� � j . In other
words, �

� � j iff for any XML tree
2

,
2

satisfies j as long
as
2

satisfies all the keys in � . An algorithm for implica-
tion analysis, implication, can be found in [11]. The
algorithm takes as input a set � and j of XML keys of @BA
and returns true iff �

� � j . It is based on a set of inference
rules that, along the same lines as the Armstrong’s Axioms
for implication of FDs in relational databases, allows one to
derive key implication systematically. One example of the
rules is target-to-context: if

.��
�
.�� � ��� L

�
C :%: is a key then

so is
.1� ��� �

�
.�� L

�
C :%: . Intuitively, the rule states that if

C
can uniquely identify a set � of nodes in the entire tree

2
,

then it can also identify nodes of � in any subtree of
2

;
observe that for any nodes

(�]] � ^ ^ and
(t � (M]] �	� ^ ^ , the

subtree rooted at
(t

is a subtree of the one rooted at
(

. An-
other example of a trivial rule is epsilon: for any path

�
, it

is true that
.1�

�
.F�
��4�8':;: . Intuitively, it states that any subtree

has a unique root node. Algorithm implication deter-
mines whether or not �

� � j in � .;� � �
L � j � L : time, where�

�
�
and

� j � are the sizes of � and j .

Table tree. Algorithm propagation uses the tree rep-
resentation of a transformation to bridge the gap between
XML keys and the FD � to be checked. Without loss of gen-
erality, assume that � is of the form

� �
�

with
� � �
"S"�.�� :

and
��� �!"S"�.�� : , and that for the relation

�
,
�
����� .�� : is

4 ��o � p �!�F #+k. � o : � H �] _�� * ^�8 along with a set
 of vari-
ables and mappings � � � � � for each � �
 . In the
table tree

2*)
representing

�
����� .�� : , any variable � in

has a unique node corresponding to it, referred to as the � -
node. In particular, the ��� -node is the root of

2)
. Observe

that for any � ��� ��
 , if the � -node is a descendant of the
� -node in

2)
, then there is a unique path in

21)
from the

� -node to � -node, which is a path expression. We denote
the path by � . � ���#: , which exists only if there are variables
� � � ����� ��� - in
 such that � � � � , � - � � and for eachH �] _����
 _�^ , � o

� ��� oK� � o is a mapping in
�
����� .�� : . We

use � +�JXO�+X(� �!(7"%J!. � : to denote the set of all the variables
that are descendants of � ; we define

�!()O�+�J�" �'& J
. � : simi-
larly. In particular, if � is specified with � ��� � � then the
variable � is called the parent of � , denoted by

QP� & +X(7"�. �5: .
Referring to Fig. 3 (b), for example, �
� is the parent of � " ,
and � . ������� " : is

�
� �G���
� ��O�$P�XQU"K+ & .
Algorithm. The intuition behind Algo-
rithm propagation is as follows. Given an FD
� � � �

�
on
�

, assume that
�

is specified with p �k�3 5+k. �5: ,
and that the table tree representing

�
����� .�� : is

2)
. Then

�
� � � � iff (1) either � is trivial, that is,

� � �
, or there

exists an ancestor
"K� &	� +X" of � in

2)
such that

"K� &	� +X" is
keyed with fields of

�
and moreover, � is unique under"K� &
� +X" ; that is, there is a set of transitive keys that uniquely

identifies
"K� &	� +X" with only those attributes which define

6

Algorithm propagation

Input: XML keys � , FD �������	� over
 ,
and �
��������
�� in transformation � , in which �����������! ��#"$� .
Output: true iff �&% �(')
*��� .

1. ��+$,- �.-/10�2�3 "54 := +$67� ;
2. w:= x;
3. while 8:9�;"!< do
4. 8 := =��>2� ?+!/@�#8(� ;
5. �>+$,@ A.-/B0A2�3 "C4 := 8D�E����+$,- �.-/10�2�3 "54 ;
6. Ycheck := �*FHGA�#I ;
7. if ��JK�
8. then L� ?M�N�0���+$O := /12��! ;
9. else LC ?M�N�0A��+$O := P5�C�Q.R ;
10. ,-0A+$/B ?"5/ := " < ;
11. while �>+S,- A.@/10�2�3 "54T9��+$67� do
12. /1�>2AU� @/ := V� ?��O!�#�>+$,@ A.-/B0A2�3 "C4Q� ;
13. W := G�X(�Y%Z��[\J]�_^Z��[Z�����C�`�! ��#M5�aJ]
(�!�Q ���
b�c^

M)de/B�>2AU� @/gf�X(� is a variable mapping I
14. if not LC ?M�N�0A��+$O
15. then if implication �7�h^T��i)�#"!<�^g,c0�+!/B R"C/j� ,

��i)�#,-0A+!/g ?"5/-^k/B�>2RU� ?/g�c^gWl�g�g�
16. then ,-0A+$/B ?"5/ := /B�>2RU� @/ ;
17. if implication �7�h^a��i)�#"$<R^B/B�>2RU� @/j�c^

��i)�Q/1�>2AU� @/-^7"$�c^mGhIA�g�g�
18. then L� ?MCN�0A��+$O := true;

19. if exist(i)�#" < ^B/1��2RU� @/j�c^BW)
20. then n := GR� [%Z� [JK�_^�� [���������! ��#MC�oJK
(�!�� >��
��c^

M)de/B�>2AU� @/gf�X(� is a variable mapping I
21. Ycheck := Ycheck FHn ;
22. �>+$,@ A.-/B0A2�3 "C4 := /B�>67�1�#�>+$,@ A.-/B0A2C3 "54�� ;
23. return L� ?M�N�0���+$O and (Ycheck = GpI);
function exist (q , W)

Input: q : path expression; W : a set of attributes.
Output: true iff for all �ZJrW and +sJt3 3 qb4 4 , +vu X�� exists.
1. w := W ;
2. for each key ������qyx@^R��qb[x ^mW�xm�g� in � do
3. if q{z|q x fAqb[x
4. then w := w}FtW x ;
5. return (w~�DGpI);

Figure 5. XML key propagation algorithm

fields of
�

, and �
� �Z. � . � � � "K� &	� +X" : � . � .3"K� &	� +X" ���#: ��4I8�:%: ;

(2) every field of
�

is defined with an attribute of some
ancestor of � that is required to exist. The first condition
asserts that for any

�
tuples

"��
and

" L
, if they agree on their�

fields and do not contain null, then they agree on their�
fields. The second condition excludes the possibility that

in some
�

tuple
"
, the

�
field is defined while some of their�

fields are null.
Putting everything together, Algorithm propagation

is shown in Fig. 5. The algorithm first computes the list
of all the ancestors of � (Lines 1 to 5); it then traverses
the table-tree

2)
top-down along the ancestor path from

the root ��� to � (Lines 11 to 22), and for each ancestor

"K� &
� +X" in this path, checks if
"K� &
� +X" is keyed (Lines 15).

The central part of the algorithm is to check whether there
is a set of transitive keys for

"K� &	� +X" . To do so, it uses
variable

O � (7"K+ � " to keep track of the closest ancestor for
which a key has been found, and collects the attributes of"K� &
� +X" that populate fields in

�
in a set

C
. Thus

"K� &	� +X" is
keyed iff �

� � . � . � � � O � (7"K+ � " : � . � .1O � (7"K+ � " � "K� &	� +�" :
� C :;: ,
i.e.,

C
is a key of

"K� &	� +X" relative to its closest ancestor with
a key. XML key implication is checked by invoking Al-
gorithm implication mentioned above. If it holds, the
algorithm moves

O � (7"K+ � " down to
"K� &	� +�" (Line 16; the cor-

rectness of this step is ensured by the target-to-context rule
given above); then, it sets the Boolean flag � + �� \� P(� to
true if � is unique under

"K� &	� +X" (Line 17). To ensure that
all the fields of

�
are defined with attributes of ancestors of

� that are required to exist, it uses a variable Ycheck (with an
initial value of

�

 4 � 8) and removes from Ycheck the field

names that correspond to the set
C

of attributes (Lines 19
to 21). The algorithm returns true iff � + �� \� #(� is true
and Ycheck becomes empty, i.e., the two conditions given
above are satisfied.

Example 4.2: To illustrate the algorithm, recall the trans-
formation � of Example 2.4 and the set � of XML keys
of Example 2.1. Consider FD: ������� � 	>�������
	�� over re-
lation �����
� defined by Rule(book), which is depicted in
Fig. 3 (a). Note that the field contact in the FD is spec-
ified with variable � T . Given � , � and the FD, the algo-
rithm computes the ancestors of � T , which consists of ��� ,
� � and � A . Then, it first checks if ��� is keyed by inspecting
�

� � .F�
�B4
8': . Since this holds by the epsilon rule given

above, the algorithm then checks whether � � is keyed by in-
specting �

� � .���� �G���
���r4 =IHKJ � (8': . Since this is also true,
the algorithm proceeds to check whether � T is unique un-
der �
� , i.e., whether �

� � .��
� �G���
��� .F�! #"%$ �'& �
O � (7"K�kOG" ��4
8':%: .
This is also the case. In addition, the field isbn in the FD is
defined in terms of an attribute of �*� that is required to exist.
That is, by the semantics of keys,

.��
� �G���
����4 =IHKJ � (8�: re-
quires every �G���
� element to have an

=IHKJ � (attribute. Thus
the algorithm concludes that the FD is derived from � via
� and returns true.

Next, let us consider Rule(section) of Example 2.4,
represented by the table tree of Fig. 3 (b), and let � be
an FD: � �$���
�����
� �������
��� � �
��� � over relation

JX+'OG"SH � (.
After succesfully verifying that � � is keyed, the algo-
rithm checks whether its next ancestor is keyed, i.e.,
whether �

� � .��
� �G���
� �
O�$P��QP"K+ & � 4 =I(7 P* � + &!8': . This
fails. Thus it attempts to verify another key relative to
the root: �

� � .��
� �G���
� �
O�$P��QP"K+ & ��JX+XO�"SH � (��4 =I(7 #* � + &!8�: ,
which fails again. At this point the algorithm concludes that
the FD cannot be derived from � and returns false. �

The complexity of the algorithm is � .F*
L (R : , where

*
and

(
are the sizes of XML keys � and table tree

2)
, re-

7

spectively (see [11] for details as well as for a proof of cor-
rectness of the algorithm).

5 Computing Minimum Cover
In this section we present two algorithms for finding

a minimum cover for FDs propagated from XML keys.
The first algorithm is a direct generalization of Algo-
rithm propagation of Fig. 5, and always takes exponen-
tial time. We use this naive algorithm to illustrate the dif-
ficulties in connection with finding a minimum cover. The
second algorithm takes polynomial time in the size of input,
by reducing the number of FDs generated in the following
way: a new FD is inserted in the resulting set only if it can-
not be implied from the FDs already generated, using the
inference rules for FDs. To the best of our knowledge, this
is the first effective algorithm for finding a minimum cover
for FDs propagated from XML keys.

A Naive Algorithm. Algorithm propagation given in
the last section allows us to check XML key propagation.
Thus a naive algorithm for finding a minimum cover is to
generate each possible FD on

�
, check whether or not it is

in
 , the set of all the FDs mapped from the XML keys,
using Algorithm propagation, and then eliminate both
extraneous attributes and redundant FDs from
 using
standard relational database techniques; this yields a mini-
mum cover "! for
 . The algorithm, Algorithm naive,
can be found in [11]. It takes exponential time in the size
of

�
for any input since it computes all possible FDs on

�
.

It should be mentioned that the function invoked by the al-
gorithm for eliminating redundancy, Function minimize
given below [4], takes quadratic time in the size of its input
FDs, since FD implication can be checked in linear time us-
ing the Armstrong’s Axioms; but when invoked in naive,
the set of input FDs is exponentially large.

function minimize (N)

Input: N : a set of FDs.
Output: A non-redundant cover of N .

1. for each �#�{� �#� JKN do /* eliminate extra attributes */
2. for each � [J]� do
3. if N % � �#� F GR��[�IA�T�	�
4. then � := �DF GR� [I ;
5.

�
:= N ; /* eliminate redundant FDs */

6. for each � in N do
7. if � � FHGA�\IA�p% �&�
8. then

�
:=
� FHGA�\I ;

9. return
�

;

Obviously, Algorithm naive is too expensive to be
practical. The problem is that it needs to compute
 ,
which is exponential in the size of

�
even with trivial FDs

removed. This observation motivates us to develop an algo-
rithm that directly finds ! without computing
 .
A Polynomial-Time Algorithm. We next present a more
efficient algorithm for finding a minimum cover for all the

propagated FDs. The algorithm takes � .F*���(
Y
: time, where*

and
(

are the sizes of XML keys � , and the transforma-
tion � , respectively. The algorithm works as follows. Recall
that the transformation

�
����� .�� : can be depicted as a table

tree
2

, in which each variable � in the set
 of
�
����� .�� :

is represented by a unique node, referred to as the � -node.
The algorithm traverses

2
top-down starting from the root

of
2

, ��� , and generates a set of FDs that is a cover of

 , i.e., a superset of "! . More specifically, at each � -
node encountered, it expands by including certain FDs
propagated from � . It then removes redundant FDs from
to produce a minimum cover #! .

The obvious question is what new FDs are added at each
� -node. As in Algorithm propagation, at each � -node a
new FD

�
�

�
is included into only if (1) � is keyed with

a set of attributes that define the fields in
�

; (2) the field
�

is
defined by the value of a node � and � is unique under � .

Example 5.1: Recall the universal relation
�

defined by
the transformation � of Example 3.1, the table tree de-
picted in Fig. 4, and the set � of XML keys of Ex-
ample 2.1. An FD derived from � at the $ L node is
�S�5����������� �
	��
�����������
���
	 ����� � ���
	 ������� . The left-hand
side of the FD corresponds to a transitive set of keys for
the $&% node consisted of a section

=I(7 #* � + & which is an
attribute of $&% , as well as a chapter

=I(7 #* � + & and a book=IHKJ � (, which are a key of $ % ’s ancestor � " . The right-hand
side of the FD is defined by a node $ L unique under $ % , by-DC7V

in � . Thus the key for the $ % node actually consists
of the key of its ancestor ��" as well as a key for

JX+'OG"SH � (
(
=I(7 #* � + &) relative to �!" . �

Critical to the performance of the algorithm is to min-
imize the number of FDs added at each � -node while en-
suring that no FDs in ! are missed. This is done in two
ways: First, we reduce our search for candidate FDs to those
whose left-hand side corresponds to attributes of keys in � .
Second, we observe that an ancestor

"K� &	� +X" of an � -node
may have several keys, but that in creating a transitive key
for � only one of them needs to be selected as long as the
following property is enforced: for any two transitive keys- �

and
- L

of the � -node, includes
� � �

�
for each� � �PL

and
�#L � �1t

for each
�1t � � �

, where
� � � �#L are sets

of
�

fields defined by
- �

and
- L

, respectively. Given this,� �
and

�#L
are equivalent by Armstrong’s Axioms.

There is a subtlety caused by the troublesome null
value. Let

- L
be a transitive key for an � -node,

- �
be a

transitive key for an ancestor � of � ,
� �

and
�#L

be the sets
of

�
fields defined by

- �
and

- L
, respectively, and � be

another set of
�

fields. Then the following is a rule for
populating : if (

� �
	 � �

�
) is in and

�
is a

�
field

defined by a descendant $ of � , then (
� L

	 � �
�
) should

be also be included in . The intuition behind this rule is
that a key for � is also a key for its ancestor � , provided
that the existence of � under � is assured. This is because

8

Algorithm minimumCover
Input: XML keys � , a universal relation � defined

by �
���������K� along with a set w of variables.
Output: a minimum cover N�� for all FDs on �

propagated from � .

1. for each " in w do
2. L� ?MC.�3 "54 := +$67� ; L� RM��p+S,�3 "54 := G�I ;
3. �5+S6��A�! �3 "54 := G�I ; ��/1/-3 "C4 := G�I ; O> A.@,�3 "54 := G�I ;
4. for each M in O> A.@,@ ?+$O��>+$/-�#"$� do
5. if �Z�
�������� >�#MC� is in �
���������K� then
6. O> A.@,�3 "54 := O> A.@,�3 "54��KGA��I ;
7. if implication(� , ��i)�#"!<�^g"$�c^-��i)�#"Z^BMC�c^cG�I��g�)
8. then ��+$6��A�! �3 "C4 := ��+$6����! �3 "54	� GR��I ;
9. if M)d "$f�X�� [is a variable mapping then
10. �>/k/@3 "54 := ��/1/-3 "C4�� G�X���[QI ;
11. ���Q��
��>2�. := "!<��E�
+$67� ; L� ?MC.�3 "!<j4 := G�I � ��+$6k� ;
12. L� ?M	�p+$,�3 "!<c4 := G�I ; �>+S,- A.@/10�2�3 "!<c4 := +S67� ; N := G�I ;
13. for each � in �5+S6��A�! �3 " < 4 do N := N��KG�
 � ��I ;
14. for each " in ,@V567��O�2� ?+T�#" < � do U� ?+SN�� .
�#"$� ;
15. while �C����
 �>2�.y9�;+$67� do
16. " := V5 R�>O!�#���Q��
b�>2
.R� ;
17. for each
*JKL� RM��p+S,�3 "54 do
18. for each �#�{�	�Q� in N do
19. if ��JKO> A.@,�3 "54 and
 is subset of � then
20. for each �eJ]LC ?MC.
3 "54 do
21. N := N��]G������ �#�*Ft
��g�v� ��I ;
22. ���Q��
 �>2�. := /1��67�1�#���Q��
 �>2�.A� ;
23. N � := minimize(N); return N � ;

procedure genFDs (")
Input: " : a variable in �
���������K� .
Output: expanded N .
1. ���Q��
��>2�. := " :: ���Q��
b��2�. ; 8 := =��>2� ?+!/@�#"!� ;
2. �>+$,@ A.-/B0A2C3 "54 := �>+$,@ A.-/B0A2C3 8 4����#8D�E�
+$67�#� ;
3. while LC ?MC.
3 8 4��&+$67� do 8 := =��>2� ?+!/@�#8(� ;
4. L� ?M	�p+$,�3 "54 := LC ?M��h+$,�3 "54���V� ?�>O!��L� RMC.
3 8p4�� ;
5. for each ��q)^-��q [�^mWl�g� in � do
6. � := GA� % X�� [J W�^v�Z�����C�`�! ��#M5�aJ��
���������K�c^

M d "!f�X�� [is a variable mapping I ;
7. if W z ��/1/-3 "C4 and % �H%
�{% W % then
8. /12��>�> ?2�.R �3 "54 := �>+$,@ A.-/B0A2C3 "54 ; L� ?M	�p+$,@ A.-/B0A2 := false;
9. while /B2A���> ?2�.? >3 "54v9�;+$67� and not L� ?M	�p+$,@ A.-/B0A2 do
10. /1�>2AU� @/ := V� ?��O!�Q/12��>�> ?2�.R �3 "54�� ;
11. if LC ?MC.
3 /B�>2AU� @/k4v9��+$67� and implication

(� , ��i)�#"!<�^1/B�>2AU� @/g�c^-��i)�Q/1��2RU� @/-^7"$�c^mWl�g�)
12. then L� ?M	�p+$,@ A.-/B0A2 := true
13. else /B2A���> ?2�.? >3 "54 := /1��67�1�Q/12��>�> ?2�.R �3 "54�� ;
14. if LC ?M��h+$,- �.-/10�2 then
15. � := ���]V� ?�>O!��L� RMC.
3 /B�>2RU� ?/k4�� ;
16. L� ?MC.�3 "54 := � �E��L� RMC.
3 "54 ;
17. L� ?M��h+$,�3 "54 := LC ?M��h+$,�3 "C4���V5 R�>O!��L� ?M5.
3 /B�>2RU� @/14�� ;
18. for each � in ��+$6��A�! �3 "54�F�� do
19. N := N�� G��~�	��I ;
20. for each M in ,-V567��O�2� ?+l�#"$� do genFDs �#MC� ;

Figure 6. Computing minimum cover

there is a unique ancestor � of � in a tree that connects to
� via the path � . ��� �5: . Thus, provided the existence of �
under � , we have

� L � �1t
for any

�Ft � � �
. As a result, if� �

	 � �
�

then
� L

	 � �
�
, by the transitivity of FD

implication. The existence of � under � is ensured by the
existence of $: if

� L
	 � �

�
, then by the definition of FDs,

$ must exist under � ; hence, � must be on the path from � to
$, i.e., � exists. It is worth remarking that when

�
is not de-

fined by a descendant of � , the rule may not be sound since�PL
�

�1t
may not hold for an

��t � � �
; more specifically,�PL

consists of null if � does not exist under � , while
��t

may not be. As an example, consider two transitive keys at
a node � :

- � � 4 .�� � ��4 =?> � 8':
� .1� � � .�� L ��4 =?> L 8':;:c8 and- L � 4 .1� � �
� L ��4 =?> R 8�:c8 , with each attribute
=?> o

popu-
lating a field

� o
in

�
. Note that

.�� �
��4 =?> � 8': is a key of the

ancestor � of � that connects to � via the path
� L

. Consider
the following FDs: � �\� .F�F�

�
� L : � � R

, � L � � R � �F�
, and

� R � � R � � L
. Although � � and � R are indeed propagated

from
- �

and
- L

, � L is not. This is because the existence
of attribute

=?>v�
of node � in

]] � � ^ ^ does not guarantee the
existence of attribute

=?> R
of � in �]] � L ^ ^ ; therefore,

�F�
can

have a non-null value even when
� R

is null, violating
the FD. Thus � L should not be included in . However, if
 contains

� �
�

� T
for some

� T
defined with a descendent

of � , then should also include
� R � � T

.
To keep track of the information needed to generate FDs

at each � -node, we associate the following with each vari-
able � in

�
�	��� .�� : :$ � + � J!] �U^ : a list of sets of

�
fields, each set mapped

from a transitive key of the � -node;$ � + � > ()O
] � ^ : a set of sets of
�

fields, each mapped from
a transitive key of an ancestor of � ;$ � +'JXO
] � ^ : the set of all descendants of the � -node;$ #(7H��' 5+k] �U^ : the set of all the unique descendants of the
� -node;

$ �!"S"�] �U^ : the set of attributes of the � -node;$ �!()O�+�J�" �'&] � ^ : the list of all the ancestors of � starting
from the root;

Note that
 #(7H��' 5+k] �U^ is a subset of � +�JXO
] �U^ , and

�!"S"�] �U^ is a
subset of

 P(7H��' 5+!] � ^ since any node in an XML tree has at
most one attribute labeled with a particular name.

Using this notation, at each � -node, we expand the cover
 of FDs as follows: First, for each

.1�
�
.1�Bt

� C :%: in � we
compute

-
, the set of fields of

�
defined by attributes inC

. We check whether
C

is contained in
�!"S"�] �U^ and whether

every attribute of
C

defines a
�

field (by comparing the
cardinalities of

C
and

-
). If it is the case then we traverse

the ancestor path of � starting from the root. We find the
first ancestor

"K� &	� +X" of � that is keyed, and check whetherC
is a key for the � -node relative to

"K� &	� +�" using Algo-
rithm implication. If these conditions are met we con-
struct a transitive key

- t
for � by combining

C
with an ar-

bitrary transitive key for the ancestor
"K� &	� +X" of the � -node,

which is in � + � J
] "K� &	� +X" ^ . We increment � + � J
] � ^ by adding

9

this transitive key, and insert � + � J!] "K� &	� +�" ^ in � + � > ()O
] � ^ .
Second, we expand by including

�
�

�
for each

�
in P(7H��' 5+!] � ^ (excluding

�
), where

�
is a set of

�
fields de-

fined by
- t

. That is, the transitive key of the � -node de-
termines the unique descendants of � . After the set is
computed by traversing all variables � in

�
����� .�� : , it is

expanded by applying transitivity on keys in � + � > ()O
] � ^ ,
which includes a key of � ’s closest keyed ancestor. That is,
if
- � � � + � > ()O
] � ^ , we inspect each

�
�

�
in , check-

ing if
- �

is a subset of
�

, i.e., whether there exists � such
that

� � - �
	 � . If this is the case and

� � � +'JXO
] � ^ ,
then for each

- L
in � + � J
] � ^ we add

. - L
	 �I: � �

to .
One can show that the sizes of � + � J!] � ^ and � + � > ()O
] � ^ are
quadratic in the size of � ,

 P(7H��' 5+!] � ^ is bounded by the
size of

�
����� .�� : , and the set
 is no larger than the size

of
�
����� .�� : ; thus the set is bounded by

* T (R
, i.e., the

size (thus the cardinality) of is at most � .3*
T (R : , a poly-

nomial in the input size.

Algorithm. Based on these observations, we show Algo-
rithm minimumCover in Fig, 6. After computing � +�J�O�] �U^ ,�
"S"�] � ^ , #(7H��' #+k] � ^ and initializing � + � J!] �U^ , and � + � > ()O�] �U^
for each variable � in

�
����� .�� : (Lines 1 to 10), the algo-

rithm initializes these variables for the root node (Lines
11, 12), and inserts in FDs of the form � �

�
for

each unique field under the root (Line 13). It then in-
vokes a recursive procedure genFDs to process the chil-
dren of the root node (Line 14). Procedure genFDs ex-
pands given an input � -node as described above, and re-
cursively processes the children of the � -node. After is
computed, Algorithm minimumCover expands it by ap-
plying the transitivity rule (Lines 15 to 22) and invokes
function minimize given in the last section to eliminate
redundant FDs from , and thus yields a minimum cover
 ! (Lines 23). The correctness of the algorithm is estab-
lished in [11].

Example 5.2: Given the transformation � of Exam-
ple 3.1 and the set � of XML keys of Example 2.1, Al-
gorithm minimumCover returns the FDs given in Ex-
ample 3.1, which are a minimum cover for all the FDs
propagated from � via � . Specifically, the algorithm tra-
verses the table tree of Fig. 4 (a) top-down starting at
the root. At node � � , two FDs are generated: one is
�$������������� � �S��� �������	��� , and the other is �S��� ��������� �
�������$�!�������
	 � . Here � + � J
] � � ^ �] 4 =IHKJ � (8�^ . At node � " ,
FD �$���������������
	��
��������� � 	������������ � is included in
and � + � J!] �!"K^ is changed to

] 4 =IHSJ � (� =I(7 P* � + &!8�^ , which is
constructed by combining

=I(7 P* � + & , a key of � " relative
to �
� , and the key in � + � J!] �*�S^ . Similarly, at node $ % FD
�$���������������
	��
��������� �
����	������ � ���
	 ������� is inserted into
 . No FDs are generated at any other nodes. �

The complexity of the algorithm is � .F*���(
Y
: time,

where
*

and
(

are the sizes of XML keys � and table

tree
2*)

, respectively (see [11] for details). Since � and�
�	��� .�� : are usually small, this algorithm is efficient in

practice. The experimental results of the next section also
show that it substantially outperforms Algorithm naive.

A final remark is that, although one can generalize
Algorithm minimumCover to check XML key propa-
gation instead of using Algorithm propagation, there
are good reasons for not doing so. The complexity of
Algorithm minimumCover is much higher than that of
Algorithm propagation (� .F* ��(

Y
: vs. � .F*

L (R :).
In short, Algorithm propagation is best used to
inspect a predefined relational schema, whereas Algo-
rithm minimumCover helps normalize a universal rela-
tion at the early stage of relational design.

6 Experimental Study
The various algorithms presented in this paper have

been implemented, and a number of experiments per-
formed. The results of these experiments show that despite
their � .F*

L (R : and � .F* ��(
Y
: worst-case performance, both

Algorithms propagation and minimumCover work
well in practice: they take merely a few seconds even
given large transformation and XML keys. For comput-
ing minimum cover, Algorithm minimumCover is sev-
eral orders of magnitude faster than Algorithm naive, and
for checking key propagation Algorithm propagation
significantly outperforms the generalization of Algorithm
minimumCover. Our results also reveal that Algo-
rithm minimumCover is more sensitive to the number of
XML keys than to the size of the transformation. This is
nice since in many applications the number of keys does not
change frequently, whereas a relational schema may define
tables with a variety of different arities (number of fields).
Our results also show that Algorithm propagation has
a surprisingly low sensitivity to the size of the transforma-
tion, and that its execution time grows linearly with the size
of XML keys.

To perform these experiments, we synthetically gener-
ated transformations and XML keys based on the number
of fields in a relation, the depth of a table-tree, and the num-
ber of XML keys. All experiments were conducted on
the same 1.6GHz Pentium 4 machine with 512MB mem-
ory. The operating system is Linux RedHat v7.1 and the
program was implemented in C++.

The first experiment evaluates the performance of
the two algorithms for computing minimum cover (see
Fig. 7(a)). These results tell us the following. First,
the average complexity of Algorithm minimumCover in
practice is much better than its � .3*���(

Y
: worst-case com-

plexity. Consider, for example, the execution time of
the algorithm for depth = 10 and key = 10. When the
number of fields is increased (which corresponds roughly
to increasing the size of the transformation), the execu-
tion time grows in the power of two in average instead

10

of in the power of six. Second, the algorithm needs less
than 35 seconds for 200 fields, and a little over 2 minutes
even for 500 fields. Since in most applications the num-
ber of fields in a relation is much less than 500, we can say
that Algorithm minimumCover performs well in practice.
Third, the performance of Algorithm minimumCover is
much better than Algorithm naive. For example, when
the number of fields is incremented by 5, the execution time
of minimumCover at most doubles, while for naive it
grows almost two-hundred-fold.

We next consider checking XML key propagation. An
algorithm for doing so, Algorithm propagation, was
presented in Section 4. An alternative algorithm can also
be developed by means of Algorithm minimumCover
as follows: Given a transformation � , a set of keys � ,
and an FD � � �

�
�
, the algorithm first invokes

minimumCover(� � �) to compute a minimum cover !
of all the FDs propagated; it then checks whether or not !
implies � using relational FD implication, and whether all
the fields in

�
are guaranteed to have a non-null value when�

is not null. It returns true iff these conditions are met.
In what follows, we refer to this generalized algorithm as
GminimumCover since the performance is roughly com-
parable to the original algorithm.

Our second experiment serves two purposes: to com-
pare the effectiveness of these two algorithms for check-
ing key propagation, and to study the impact of the
depth of table-tree (depth) on the performance of Algo-
rithms propagation and GminimumCover. Fig. 7(b)
depicts the execution time of these algorithms for field
= 15 and keys = 10 with depth varying from g to
_Xf . (These parameters were chosen based on the aver-
age tree depth found in real XML data [9].) The re-
sults in Fig. 7(b) reveal the following. First, Algo-
rithm propagation works well in practice: it takes
merely �

�
�!f second even when the table tree is as deep as

_Xf . Second, these algorithms are rather insensitive to the
change to depth. Third, propagation is much faster
then GminimumCover for checking key propagation, as
expected. Although the actual execution times of the algo-
rithms are quite different, the ratios of increase when the
depth of the table-tree grows are similar. This is because in
both algorithms the depth determines how many times Al-
gorithm implication is invoked, and because the com-
plexity of Algorithm implication is a function of the
size of the XML keys, which grows when the depth of the
table tree gets larger.

Our third experiment demonstrates how the number
of XML keys (keys) influences the performance of Al-
gorithms propagation and GminimumCover when
checking key propagation. The results (Fig. 7(c)) show
that increasing the number of keys has a bigger impact
on Algorithm GminimumCover than on propagation,

(a) Time for computing minimum cover

(b) Effect of depth of the table tree

(c) Effect of number of keys

Figure 7. Experimental results
11

in which the growth of the execution time is almost lin-
ear. In fact, additional experiments tell us that for depth
= 10 and keys = 50, Algorithm GminimumCover runs
in under 2 minutes for 200 fields, but when increasing
the number of keys to 100, its execution time is over 4
minutes for relations with 150 fields. In contrast, Algo-
rithm propagation runs in both settings in less than 5
seconds. In addition, for 1000 fields, which is the maximum
number of fields allowed by Oracle [22], the execution time
of propagation is 85 seconds on average for 50 keys,
and 142 seconds for 100 keys.

A closer look at Algorithm propagation reveals that
the constant ratio of increase is based on the time needed
for executing calls to Algorithm implication. That is,
if the depth of the table-tree is fixed, the number of calls
is roughly the same for the whole experiment; the increase
in running time is based on the the performance of Algo-
rithm implication, which depends on the size of the
XML keys. The performance of implication also has
an impact on the Algorithm GminimumCover. However,
the number of keys has a bigger influence in this algorithm
because for each node in the table-tree all the keys are an-
alyzed. Also, by increasing the number of XML keys, the
number of FDs in the resulting set is likely to grow, increas-
ing the execution time for eliminating redundant FDs by
calling minimize.

7 Conclusion
We have proposed a framework for refining the relational

design of XML storage based on XML key propagation.
For this purpose we have developed algorithms for checking
whether a functional dependency is propagated from XML
keys, and for finding a minimum cover for all functional
dependencies propagated from XML keys, along with com-
plexity results in connection with XML constraint propaga-
tion. Our experimental results show that these algorithms
are efficient and effective in practice. These algorithms can
be generalized and incorporated into relational storage tech-
niques published in the literature (e.g. [25, 26, 22]). Our
results are also useful in optimizing queries and in under-
standing XML to XML transformations.

Topics for future work include studying the propagation
of other forms of integrity constraints, and re-investigating
constraint propagation in the presence of types (e.g., XML
Schema).

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[2] N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu. XML
with data values: Typechecking revisited. In PODS, 2001.

[3] M. Arenas, W. Fan, and L. Libkin. What’s hard about XML
Schema constraints? In DEXA, 2002.

[4] C. Beeri and P. A. Bernstein. Computational problems re-
lated to the design of normal form relational schemas. ACM
Trans. on Database Systems, 4(1):455–469, 1979.

[5] P. Bohannon, J. Freire, P. Roy, and J. Simeon. From XML
schema to relations: A cost-based approach to XML storage.
In ICDE, 2002.

[6] P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan.
Keys for XML. In WWW’10, 2001.

[7] P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan.
Reasoning about keys for XML. In DBPL, 2001.

[8] D. Chamberlin et al. XQuery 1.0: An XML Query Lan-
guage. W3C Working Draft, June 2001.
http://www.w3.org/TR/xquery.

[9] B. Choi. What are real DTDs like. In WebDB, 2002.
[10] J. Clark and S. DeRose. XML Path Language (XPath). W3C

Working Draft, Nov. 1999.
http://www.w3.org/TR/xpath.

[11] S. Davidson, W. Fan, C. Hara, and J. Qin. Propagating XML
constraints to relations. Technical Report MS-CIS-02-16,
University of Pennsylvania, 2002.

[12] A. Deutsch, M. Fernandez, and D. Suciu. Storing semistruc-
tured data with STORED. In SIGMOD’99, 1999.

[13] A. Deutsch, L. Popa, and V. Tannen. Physical data indepen-
dence, constraints and optimization with universal plans. In
VLDB, 1999.

[14] A. Deutsch and V. Tannen. Querying XML with mixed and
redundant storage. Technical Report MS-CIS-02-01, Uni-
versity of Pennsylvania, 2002.

[15] W. Fan and L. Libkin. On XML integrity constraints in the
presence of DTDs. JACM, 49(3):368–406, 2002.

[16] G. Gottlob. Computing covers for embedded functional de-
pendencies. In PODS, 1987.

[17] J. E. Hopcroft and J. D. Ullman. Introduction to Automata
Theory, Languages and Computation. Addision Wesley,
1979.

[18] A. Layman et al. XML-Data. W3C Note, Jan. 1998.
http://www.w3.org/TR/1998/NOTE-XML-data.

[19] D. Lee and W. W. Chu. Constraints-preseving transfor-
mation from XML document type definition to relational
schema. In ER, 2000.

[20] D. Maier. Minimum covers in relational database model. J.
of ACM, 27(4):664–674, 1980.

[21] I. Manolescu, D. Florescu, and D. Kossmann. Pushing XML
queries inside relational databases. Tech. Report no. 4112,
INRIA, 2001.

[22] Oracle Corporation. Oracle9i Application Developer’s
Guide - XML, Release 1 (9.0.1), 2001.

[23] R. Ramakrishnan and J. Gehrke. Database Management
Systems. McGraw-Hill Higher Education, 2000.

[24] A. Schmidt, M. L. Kersten, M. Windhouwer, and F. Waas.
Efficient relational storage and retrieval of XML documents.
In WebDB (Informal Proceedings), pages 47–52, 2000.

[25] J. Shanmugasundaram et al. Relational databases for query-
ing XML documents: Limitations and opportunities. VLDB
Journal, pages 302–314, 1999.

[26] J. Shanmugasundaram et al. A general techniques for query-
ing XML documents using a relational database system.
SIGMOD Record, 30(3):20–26, 2001.

[27] H. Thompson. Personal communication, 2002.
[28] H. Thompson et al. XML Schema. W3C Working Draft,

May 2001. http://www.w3.org/XML/Schema.

12

