
Rewriting Regular XPath Queries on XML Views

Wenfei Fan1,2 Floris Geerts1,3 Xibei Jia1 Anastasios Kementsietsidis1

1 University of Edinburgh 2 Bell Laboratories 3 Hasselt University/Transnational Univ. of Limburg
{wenfei,fgeerts,xjia,akements}@inf.ed.ac.uk

Abstract

We study the problem of answering queries posed on
virtual views ofXML documents, a problem commonly en-
countered when enforcingXML access control and integrat-
ing data. We approach the problem by rewriting queries
on views into equivalent queries on the underlying docu-
ment, and thus avoid the overhead of view materialization
and maintenance. We consider possibly recursively defined
XML views and study the rewriting of bothXPath and reg-
ular XPath queries. We show that while rewriting isnot
always possible forXPath over recursive views, it is for reg-
ular XPath; however, the rewritten query may be ofexpo-
nential size. To avoid this prohibitive cost we propose a
rewriting algorithm that characterizes rewritten queriesas
a new form of automata, and an efficient algorithm to eval-
uate the automaton-represented queries. These allow us to
answer queries on views in linear time. We have fully im-
plemented a prototype system,SMOQE, which yields the first
regularXPath engine and a practical solution for answering
queries over possibly recursively definedXML views.

1. Introduction

In many applications users are allowed to access anXML

document only by querying a view of the data. The need
for this is evident in, for example, enforcing access control
on XML data [2, 5, 9]. To prevent improper disclosure of
sensitive or confidential information ofXML data residing
in a server, the server defines anXML view for each group
of users, consisting of all and only the information that the
users are authorized to access. While the users may query
the view, they are not allowed to directly query or access
the underlying document (referred to as thesource). With
this comes the need to answer queries posed on the views.
One way to do this is to first materialize the views and then
directly evaluate queries on the views. However, it is of-
ten too costly to materialize and maintain a large number
of views, a common scenario when many groups of users
with different access privileges query the same source. A
more realistic approach is torewrite (aka. translate, refor-
mulate) queries on the views into equivalent queries on the
source, evaluate the rewritten queries on the sourcewithout
materializing the views, and return the answers to the users.

We study how to rewriteXML queries posed on vir-
tual XML views into equivalent queries on the underlying
XML document. ForXML queries we start with a fragment
of XPath, which supports recursion (the descendant-or-self
axis ‘//’), union and complex filters (predicates). This class
of XPath queries is commonly used in practice and is essen-
tial to XQuery,XSLT andXML Schema. We considerXML

views defined by annotating a viewDTD with a collection
of (regular)XPath expressions, along the same lines as how
commercial systems specifyXML views [15, 21, 20]. An
XML view defined as above is a mappingσ : D → DV in
the global-as-view style, fromXML documents of thedocu-
mentDTD D to documents of theviewDTD DV . When the
view schemaDV is recursively defined, i.e. if some element
type inDV is defined in terms of itself, so is the view. The
central technical problem studied in this paper is:

Therewriting problemis to find an algorithm that, given a
view definitionσ and anXPath queryQ over the viewDTD

DV , computes anXPath queryQ′ over the documentDTD

D such that for anyXML treeT of D, Q(σ(T)) = Q′(T).

While there has been a host of work on rewritingXPath
queries intoSQL queries forXML views of relational data
(see [17] for a survey), little previous work has considered
rewriting XPath queries intoXPath queries forXML views
of XML data. In this context, query rewriting has only been
studied for non-recursiveXML views, over whichXPath
rewriting is always possible [9]. However, query rewriting
for recursiveviews is still anopenproblem [17].

RecursiveDTDs naturally arise when, e.g., specifying
biomedical data (see the Gene Ontology database,GO [7]);
in fact [3] shows that out of 60 real-worldDTDs analyzed,
more than half (35) of them were recursive. It is the reason
that Oracle supports fully recursively definedXML views
(AXSD [21]) and thatIBM also allows a class of recursively
defined XML view (DAD [15]). However desirable, the
rewriting problem is more intriguing for recursively defined
views, due to the interaction between recursion inXPath
queries (e.g., ‘//’) and recursion in the view definition.

Example 1.1:Consider ahospitalDTD D shown as a graph
in Fig. 1(a). Ahospitaldocument ofD consists of a list of
departments, and eachdepartmenthas a list of in-patients
(i.e. patients who are currently residing in the hospital; we

n a m e a d d r e s sh o s p i t a lp a t i e n t d o c t o rs t r e e t c i t y z i pp n a m e p a r e n t v i s i tt r e a t m e n tm e d i c a t i o nt y p e* * *
d n a m e s p e c i a l t yd a t e d i a g n o s i s

d e p a r t m e n t* * t e s ts i b l i n g
(a) documentDTD D

h o s p i t a lp a t i e n tp a r e n t r e c o r dd i a g n o s i se m p t y
(b) view DTD DV

production: hospital→ patient∗

σ0(hospital,patient)= department/patient[visit/treatment/
medication/diagnosis/text() = ‘heart disease’]/*Q1*/

production: patient→ parent∗, record∗

σ0(patient, parent)= parent /*Q2*/
σ0(patient, record)= visit /*Q3*/

production: parent→ patient
σ0(parent, patient)= patient /*Q4*/

production: record→ empty + diagnosis
σ0(record, empty) = treatment/test /*Q5*/
σ0(record, diagnosis)= treatment/medication/diagnosis/*Q6*/

(c) view specification

Figure 1. Example: document and view DTDs and view specification.

use ‘∗’ on an edge to indicate a list). For eachpatient, the
hospital maintains her name (pname), address, records of
visits, each including the visitdateandtreatmentwhich is
either atestor somemedication(dashed edges indicate dis-
junction), as well as information about the treatingdoctor.
Eachname, pname, street, city, zip, date, type, dname, spe-
cialty has a single text node (PCDATA) as its child (omitted
in the figure). The hospital also maintains family medical
history by means of the recursively definedparentandsib-
ling. It records the same information of ancestors with those
of in-patients, by sharing the description forpatients.

A view σ0 is defined for a research institute studying in-
herited patterns of heart disease, with theviewDTD depicted
in Fig. 1(b) (the view is defined in Example 2.2). Obliged
by the Patient Privacy Act, the view reveals only thosepa-
tients who have heart disease, along with theirparenthier-
archy. While the institute may accessdiagnosisinformation
of those patients and their ancestors, it is denied access to
theirname, address, testanddoctordata.

Consider anXPath queryQ posed on the view, which is
to find patients whose ancestors also had heart disease:
Q: patient[*// record/diagnosis/text()=‘heart disease’].

Here∗ denotes a wildcard, i.e., any element. However, it is
impossible to rewriteQ on the view to an equivalent query
(in theXPath fragment mentioned above) on the underlying
hospitaldocument. This is because ‘//’ inQ is supposed
to traverse only theparenthierarchy on the view, i.e., a se-
quence of the(parent/patient)pattern; however, when trans-
lated to a queryQ′ on the source,Q′ necessarily retains
‘//’ since the viewDTD is recursive, and ‘//’ inQ′ may ac-
cesssiblings of those patients, althoughsiblingsare not in
the view and are not allowed to be accessed. An incorrect
translation may lead to serious security breach. 2

In response to this we develop both fundamental results
and practical techniques for the rewriting problem. The
main contributions of the paper include the following.

1. Closure Properties.On the theoretical side, we study the
closure property ofXPath under query rewriting: is it al-
ways possible to rewriteXPath queries on views toXPath
queries on the source? We prove thatXPath isnot closed
under query rewriting forrecursiveviews. In light of this
we consider a mild extension ofXPath,regularXPath [19],

which uses the general Kleene closureE∗ instead of the ‘//’
axis. We show that regularXPath isclosedunder rewriting
for arbitrary views, recursive or not. Since regularXPath
subsumesXPath, anyXPath queries on views can be rewrit-
ten to equivalent regularXPath queries on the source.

However, the rewriting problem isEXPTIME-complete:
for a (regular)XPath queryQ over even a (non-)recursive
view, the rewritten regularXPath query on the source may
be inherentlyexponential in the size ofQ and the viewDTD

DV . This tells us that rewriting is beyond reach in practice
if Q is directly rewritten into regularXPath.

On the practical side, to avoid the exponential blow-up
we develop the following techniques for answering (regu-
lar) XPath queries posed onXML views.

2. Automaton-based rewriting for (regular)XPath. We in-
troduce a rewriting method based on a notion ofmixed
finite state automata(MFA) to represent rewritten regular
XPath queries. AnMFA is a nondeterministic finite au-
tomaton (NFA) “annotated” with alternating finite state au-
tomata (AFA), which characterize data-selection paths and
filters of a regularXPath queryQ, respectively. The algo-
rithm rewritesQ into an equivalentMFA M. In contrast
to the exponential blowup, the size ofM is bounded by
O(|Q||σ||DV |). This makes it possible to answer queries
on views via rewriting. To our knowledge, although a num-
ber of automaton formalisms were proposed forXPath and
XML stream (e.g. [6, 13]), they cannot characterize regular
XPath queries, as opposed toMFA.

3. Evaluation of rewritten query.We provide an efficient al-
gorithm for evaluatingMFA M (rewritten regularXPath
queries) onXML sourceT . While there have been a num-
ber of evaluation algorithms developed forXPath, none is
capable of processing regularXPath queries. Previous algo-
rithms forXPath (e.g., [16]) require at least two passes ofT :
a bottom-up traversal ofT to evaluate filters, followed by a
top-down pass ofT to select nodes in the query answer. In
contrast, our evaluation algorithm combines the two passes
into a single top-down pass ofT during which it both eval-
uates filters and identifies potential answer nodes. The key
idea is to use an auxiliary graph, often far smaller thanT ,
to store potential answer nodes. Then, a single traversal
of the graph suffices to find the actual answer nodes. The

algorithm effectively avoids unnecessary processing of sub-
trees ofT that do not contribute to the query answer. It is
not only the first efficient algorithm for evaluating regular
XPath queries (MFA), but also provides an efficient (alterna-
tive) algorithm to evaluateXPath queries.
4. Implementation and experimental study.We have imple-
mented a prototype systemSMOQE(Secure MOdular Query
Engine [10]) for answering queries onXML views,fully sup-
porting the rewriting and evaluation techniques mentioned
above. UsingSMOQE we have conducted an experimen-
tal study, which clearly demonstrates that our evaluation
techniques are efficient and scale well. For regularXPath
queries, we compared theSMOQEevaluation of queries with
that of their XQuery translation, and found that the lat-
ter requires considerably more time. Furthermore,SMOQE

outperforms the widely usedXPath engine Xalan (default
XPath implementation in Java 5), whether Xalan uses its in-
terpretive processor or its high performance compiling pro-
cessor (XSLTC), when evaluatingXPath queries.

In summary, we provide the first practical and complete
solution to answering regularXPath queries posed on (vir-
tual and possibly recursively defined)XML views. It is
provably efficient: it has alinear-timedata complexity and
a quadratic combined complexity. Furthermore it yields
the first efficient technique for processing regularXPath
queries, whose need is evident since regularXPath is in-
creasingly being used both as a stand-alone query language
and as an intermediate language in query translation [11].

Organization. Section 2 reviews (regular)XPath andXML

views. Section 3 discusses the closure property of (regu-
lar) XPath rewriting. Section 4 introducesMFA and Sec-
tion 5 describes the rewriting algorithm. Section 6 presents
theMFA evaluation algorithm, followed by experimental re-
sults in Section 7. Related work is discussed in Section 8,
followed by conclusions in Section 9.

2. Background
In this section we reviewXPath [4], regularXPath [19],

DTDs andXML views considered in this paper.

2.1. XPath and Regular XPath
We consider a class ofregular XPath queries proposed

and studied in [19], denoted byXreg and defined as follows:

Q ::= ǫ | A | Q/Q | Q ∪ Q | Q∗ | Q[q],
q ::= Q | Q/text()= ‘c’ | ¬Q | Q ∧ Q | Q ∨ Q

whereǫ is the empty path (self), A is a label (tag), ‘∪’ repre-
sentsunion, ‘/’ is thechild-axis, and∗ is the Kleene star;[q]
is referred to as afilter, in whichQ is anXreg expressions,
c is a string constant, and¬,∧,∨ are the Boolean negation,
conjunction and disjunction, respectively. RegularXPath
extends regular expressions by allowing filters [19], and ex-
tendsXPath by supporting Kleene closureQ∗ as opposed to
the restricted recursion ‘//’ (thedescendant-or-self axis).

Like XPath queries, when anXreg queryQ is evaluated
at a nodev in an XML treeT , it returns the set of nodes of
T reachable viaQ from v, denoted byv[[Q]].

We also study anXPath fragmentof Xreg, denoted byX ,
which is defined by replacingQ∗ with ‘//’ in the definition
above. Note that given aDTD D of the documents on which
queries are posed, ‘//’ is expressible inXreg as (

⋃
Ele)∗,

where
⋃

Ele denotes the union of all the labels inD.

Example 2.1:Consider anXML documentT conforming to
the documentDTD D in Fig. 1(a). The regularXPath query
Q = department/patient[q0 ∧ (q1/(q1)

∗)]/pname
q0 = visit/treatment/medication/diagnosis/text() = “heart disease”
q1 = parent/patient[¬q0]/parent/patient[q0]

when evaluated onT , returns the names of patients who
have heart disease and the disease appears in their ancestors
but always skips a generation. Such queries, which look for
certain patterns, are often encountered in medical research.
Note that the query is in the fragmentXreg, but is not ex-
pressible in theXPath fragmentX . 2

In this work we focus on regularXPath queries with only
downward modalities since they are most commonly used
in practice. As will be seen shortly, rewriting queries is
already challenging in this setting. It is thus necessary to
understand rewriting of these basic queries before dealing
with full-fledgedXPath orXQuery.

2.2. DTD
Following [9], we represent aDTD D as a triple

(Ele, P, r), whereEle is a finite set ofelement types; r is a
distinguished type inEle, called theroot type; P defines the
element types: for eachA in Ele, P (A) is a regular expres-
sion of the form:str, ǫ, B1, . . . , Bn, orB1 + · · ·+Bn. Here
str denotesPCDATA, ǫ is the empty word,Bi is eitherB or
of the formB∗ whereB is in Ele (referred to as achild type
of A), and ‘+’, ‘ ,’ and ‘∗’ denotedisjunction(with n > 1),
concatenationand theKleene star, respectively. We refer
to A → P (A) as theproductionof A. This form ofDTD’s
does not lose generality since anyDTD can be converted to
a DTD of this form by using new element types.

A DTD can be represented as a graph, as shown in Fig. 1.
It is recursiveif the corresponding graph iscyclic. For ex-
ample, bothDTD’s depicted in Fig. 1 are recursive.

2.3. XML Views
We consider views defined by annotating aDTD [9].

This is similar in spirit toXML view specification in com-
mercial systems, e.g. annotatedXSD’s (AXSD) in Oracle
XML DB [21] andM icrosoftSQLServer 2000SQLXML [20],
andDocumentAccessDefinitions (DAD) of IBM DB2 XML

Extender [15]. Specifically, we define anXML view as a
mappingσ : D → DV , whereD is adocumentDTD, DV

is aview DTD. Given anXML documentT of D, the map-
ping generates anXML viewσ(T) that conforms to the view

Query rewriting Views Closure Complexity

from X to X non-rec. Yes [9] EXPTIME-complete
from X to X recursive No NA

from X to Xreg arbitrary Yes EXPTIME-complete
from Xreg to Xreg arbitrary Yes EXPTIME-complete

Figure 2. Closure property and complexity

DTD DV . More specifically, for each element typeA and its
child typeB in DV (i.e., each edge(A, B) in theDTD graph
of DV), σ maps(A, B) to a queryσ(A, B) defined on doc-
umentsT of D. Intuitively, given anA element,σ(A, B)
generates itsB children in the view by extracting data from
T . The queryσ(A, B) is in the regularXPath fragmentXreg

given above. TheXML view is recursiveif the view DTD

DV is recursive.

Example 2.2: Figure 1(c) defines the viewσ0 described in
Example 1.1. The semantics ofσ0, informally presented,
is as follows: Given ahospitaldocumentT , σ0 generates
a viewσ0(T) top-down, which conforms to the viewDTD

of Fig. 1(b). The queryQ1 (i.e.,σ0(hospital, patient)) ex-
tracts fromT thosepatients who have heart disease. For the
patients extracted byQ1, (a) Q2 finds theirparentnodes,
which are in turn processed byQ4 and then inductively by
Q2 andQ3 to form theparenthierarchy, and (b)Q3 finds
the record(i.e., visit) data, which can be either beempty
(i.e., test) or diagnosis, handled byQ5, Q6, respectively.2

3. The Closure Property of (Regular) XPath

We next study the closure property and complexity of
XPath and regularXPath query rewriting. The main results
of this section are summarized in Fig. 2.

Formally, anXML query languageL is closed under
rewriting if there exists a computable functionF : L → L
that, given any view definitionσ : D → DV and any query
Q in L overDV , computes queryQ′ = F (Q) in L such that
for any documentT of D, Q(σ(T)) = Q′(T). While one
may consider translating anXPath queryQ to an equivalent
Q′ in a richer language, e.g.XQuery orXSLT, it is vastly
preferable to have anXPath translation since it is more effi-
cient to evaluateXPath queries than queries in the aforemen-
tioned Turing-complete languages. The closure property is
desirable since rewriting should not be penalized by paying
the higher price for evaluating and optimizing queries in a
richer language than that of the original query.

It was shown in [9] that the classX of XPath queries de-
fined in Section 2 is closed under query rewriting fornon-
recursiveviews. However, below we show that in the pres-
ence of recursion in a view definition, this is no longer the
case (even when the annotating queries are inX).

Theorem 3.1:For recursively definedXML views, the frag-
mentX is not closed under query rewriting. 2

In contrast, the fragmentXreg of regularXPath given in
the last section is closed under query rewriting:

Theorem 3.2: For arbitrary XML views (recursive or non-
recursive),Xreg is closed under rewriting. 2

Example 3.1: Recall the viewσ0 : D → DV de-
fined in Example 2.2 and the queryQ given in Exam-
ple 1.1. Using the queriesQ1, Q2, Q3, Q4 andQ6 from the
view specification in Fig. 1(c), we can compute a correct
rewriting Q′ of queryQ. Specifically: Q′ = Q1[Q2/Q4/
(Q2/Q4)

∗/Q3/Q6/text() =‘heart disease’]. For any docu-
mentT that conforms toD, Q′(T) = Q(σ0(T)). 2

Although it is always possible to rewrite a (regular)
XPath query on a view to an equivalent regularXPath query
on the source, it is often prohibitively expensive if it is todi-
rectly computeXreg queries as output. Indeed, the rewriting
problem subsumes the problem for translation fromNFA’s
to regular expressions. The latter problem isEXPTIME-
complete [8]: the size of the explicit representation of a reg-
ular expression is exponential in the size of theNFA. Worse
still, it remains exponential even if theNFA is acyclic.

Corollary 3.3: There exist a view definitionσ : D →
DV and a queryQ in X such that for anyQ′ in Xreg, if
Q(σ(T)) = Q′(T) for all XML treesT of D, then the size
|Q′| of Q′, when represented as anXreg query, is exponen-
tial in |Q| and the size|DV | of DV . The lower bound re-
mains intact even whenDV is non-recursive. 2

4. Mixed Finite State Automata

The exponential lower bound of Corollary 3.3 tells us
that a direct rewriting into (regular)XPath is beyond reach
in practice. To overcome this, in this section we introduce
a new representation ofXreg queries, referred to asmixed
finite state automata(MFA). Along the same lines asNFA

for regular expressions,MFA characterizeXreg queries and
avoid the exponential blowup of rewriting. LeveragingMFA

we shall present a practical solution to the rewriting prob-
lem by providing (a) a low polynomial-time algorithm for
rewritingXreg queries on a view into theMFA-presentation
of equivalentXreg queries on the source (Section 5), and
(b) a linear-time algorithm for directly evaluating theMFA-
presentation ofXreg queries on the source (Section 6).

While a regular expression can be efficiently represented
as a graph or aNFA, for Xreg queries a notion of automaton
representation is not yet available. The difficulties of char-
acterizing anXreg queryQ as an automaton include the fol-
lowing: (a)Q typically involves both “selecting” paths that
are to extract and return nodes, and filters that constrain the
extraction; (b) a filter[q] in Q may involve Boolean opera-
tors ‘∧,∨,¬’ and constant testp/text() = ‘c’, which are not
encountered in regular expressions; (c) worse still, it may
be nested:q itself may be a query of the formp[q1]; and
(d) the sub-queryp of p∗ may itself contain Kleene closure.

Mixed finite state automata (MFA). In light of this we
define anMFA M as anondeterministic finite automaton

s1

s2 s3 s4

p a t i e n t p a r e n t r e c o r d d i a g n o s i sǫ

ǫ

p a t i e n t λ(s4) = X0

sA1

sA2 sA3 sA4

sA5 sA6

ǫ

p a r e n t p a t i e n t
ǫ

ǫ

ǫ

sA7

∨

∨

t e x t () = “ h e a r t d i s e a s e ”X0 = A
F A
0

A
F A
0

Ns

Figure 3. NFA Ns and AFA AFA
0 in Example 4.1

(NFA) in which a state may be annotated with analternating
finite state automaton(AFA). Intuitively, theNFA in M is to
capture the selecting paths of anXreg queryQ and theAFA ’s
are to characterize the filters inQ.

Formally, anMFA M is defined to be(Ns, ~A), where
(a) ~A is a set of bindingsXi = AFA

i , Xi is a name andAFA
i

is anAFA as defined below; (b)Ns = (Ks, Σs, δs, s, F, λ)
is a variation ofNFA, referred to as theselectingNFA of
M, whereKs, Σs, δs, s, F are the states, alphabet, transi-
tion function, start state and final states as in the standard
NFA definition; andλ is a partial mapping fromKs to names
Xi, i.e., a state inNs may be annotated with a singleXi.

We employ a variation ofAFA ’s [24] to representXreg

filters. We define anAFA AFA to be(K, Σ, δ, s, F), where
(a) K is a set of states partitioned intoKop, Kl and F ,
whereKop is a set ofoperator statesmarked withAND,
OR or NOT, Kl is a set oftransitionstates, andF is a set of
final states optionally annotated with predicates of the form
text()=‘c’ or position()=k; (b)Σ is a set of labels; (c)s is the
start state inK; and (d)δ is the transition function defined
as follows. (1) For a states1 in Kop, δ is only defined for
empty stringǫ andδ(s1, ǫ) = K ′, whereK ′ is a subset of
K. In particular, ifs1 is marked withNOT, K ′ has a single
state in it. (2) For each states2 in Kl, δ is only defined for
a single labelA ∈ Σ andδ(s2, A) contains a single state in
K. (3) δ is not defined for any state inF . Observe that ex-
cept for operator states marked withAND or OR, from each
state at most one state can be reached viaδ. These operator
states capture Boolean operators∧,∨ and¬ in Xreg filters.

Example 4.1:Consider anXreg queryQ0 posed on anXML

tree conforming to theDTD of Fig. 1(b), which is to find all
patients who have an ancestor diagnosed with heart disease:

Q0 = (patient/parent)∗/patient[q0],
q0 = (parent/patient)∗/record/diagnosis[text() =“heart disease”].

ConsiderMFA M0 in Fig. 3. It consists of aselecting
NFA Ns (shown at the top of the figure), and anAFA AFA

0
,

corresponding to the filterq0 (shown at the bottom). The
MFA M0 is equivalentto Q0, in the sense that whenevalu-
atingM0 at a noden in an XML treeT (described below),
it returns the same setn[[M0]] of nodes asn[[Q0]].

The (conceptual) evaluation ofM0 is illustrated, by ex-
ample, in Fig. 4. At the root node1 of the tree,M0 asso-
ciates a set{s1, s3} of Ns states, wheres1 is the start state
of Ns ands3 is reached froms1 via anǫ-transition. It then
inspects the children of node1: for all its children labeled
patient(nodes2 and9), it associates them with statess2, s4,
moves down to these children and processes them induc-
tively, in parallel. At a node associated with states2, for

h o s p i t a l p a t i e n tp a r e n th e a r t d i s e a s e r e c o r dp a r e n tp a t i e n t p a t i e n tr e c o r dd i a g nl u n g d i s e a s e d i a g nl u n g d i s e a s er e c o r db r a i n d i s e a s e {s1, s3}

{s2, s4} {s2, s4}

{s1, s3}

{s2, s4}

{s1, s3}

{s2, s4}

123456 78 91 01 11 21 3 1 4 1 5
∨

X(8, sA7)

X(7, sA6)

X(2, sA5)X(2, sA2)

X(2, sA1)

X(3, sA3)

X(4, sA4)

X(4, sA2) X(4, sA5)

X(5, sA6)

X(6, sA7)

∨ FF FF FFF FFFF
∨

∨
F FFFX(9, sA1)

X(9, sA2) X(9, sA5)

X(14, sA6)

X(15, sA7)

X(10, sA3)

X(11, sA4)

X(11, sA2) X(11, sA5)

X(12, sA6)

X(13, sA7) TT TTTT Td i a g nr e c o r d d i a g np a t i e n t

Figure 4. Conceptual evaluation of M0

all its children labeledparent(nodes3 and10) it associates
them with statess1, s3 and processes them in the same way
as at the parent node of the tree. In the case of states4,
since this state is annotated withAFA

0 , any node associated
with states4 must also evaluateAFA

0
(the evaluation ofAFA

0

is described below). This is the case for both nodes2 and
9. Sinces4 is a final state, ifAFA

0
evaluates to true, the cor-

responding node is added ton[[M0]] (theanswerof M0).
When theAFA AFA

0
is invoked, e.g., at node2, a Boolean

value 2[[AFA
0]] is computed as follows:AFA

0 associates a
Boolean variableX(2, sA1) with node2, whose value is
to be computed and treated as2[[AFA

0
]], wheresA1 is the start

state ofAFA
0 . It then traverses the subtree rooted at node

2 top-down. FromsA1 there are twoǫ-transitions tosA2

andsA5, and thus node2 is also associated with variables
X(2, sA2) andX(2, sA5) for theseAFA states. SincesA1

is an OR state,X(2, sA1) is computed viaX(2, sA2) ∨
X(2, sA5). To computeX(2, sA5), it inspects the chil-
dren of node2: if no child is labeledrecord, no AFA

0 tran-
sition can be made fromsA5 and X(2, sA5) is assigned
false; otherwise, forall children labeledrecord, in this case
node7, it associates a variableX(7, sA6), moves down to
these children and process them in parallel. Inductively,
X(7, sA6) is true if node 7 has a child labeleddiagno-
sis and carrying text “heart disease”, and if so,X(2, sA5)
is assignedtrue as well. Similarly, X(2, sA2) is com-
puted and becomestrue if it has a descendant that is reach-
able via(parent/patient)∗/record/diagnosisand carries text
“heart disease”. If eitherX(2, sA2) or X(2, sA5) is true,
thenX(2, sA1) is true and so is the output2[[AFA

0
]]. This is

not the case here, however, andAFA
0

returnsfalse. 2

Observe the following. (a) AlthoughAFA
0 traverses

the subtree top-down, the Boolean variables are computed
bottom-up. (b) InAFA

0 the only operator states areOR states
(sA1

, sA4); butAND andNOT states can be processed simi-
larly. (c) The conceptual evaluation requires multiple passes
over a subtree, one pass for each filter. In contrast, our eval-
uation algorithm in Section 6 requires only one pass of the
input tree, regardless of the number of filters.

Equivalence of MFA andXreg queries. An MFA M and
anXreg queryQ areequivalentif for eachXML treeT and
any noden in T , n[[M]] = n[[Q]], wheren[[M]] (resp.n[[Q]])
denotes the result of evaluating anMFA M (resp.Q) atn.

The result below tells us that we can identify a class of
MFA’s, namely,MFA’s with a syntactic restriction onAFA ’s
called thesplit property, to precisely capture the fragment
Xreg of regularXPath queries; as a result,MFA’s can be used
to representXreg queries.

Theorem 4.1:For anyXreg queryQ, there exists an equiv-
alentMFA M with the split property, and vice versa. 2

5. Rewriting Algorithm

We now present an efficient algorithm, calledrewrite
(not shown due to space constraints), for rewriting (regu-
lar) XPath queries on arbitrary views into equivalentMFA’s
on the underlying documents.

Algorithm rewrite takes as input anXreg queryQ and
a view definition σ : D → DV ; it returns anMFA

M = (Ns, ~A) as output, such that for anyXML tree T
of D, M on T yields the same result asQ on σ(T). It
is based on dynamic programming: for each sub-queryQ′

of Q and each element typeA in DV , it computes a local
translationrewr(Q′, A), i.e., anMFA on D that is equiva-
lent toQ′ whenQ′ is evaluated at anyA elements ofDV .
The MFA rewr(Q′, A) is constructed inductively, based on
structure ofQ′. It assembles local translations to obtain
M = rewr(Q, r), wherer is the root type ofDV .

Example 5.1: Given queryQ0 of Example 4.1 on the
view σ0 of Example 2.2, assume that we want to compute
rewr(Q0, hospital). Fig. 5(a) shows a simplified parse tree
of Q0. Algorithm rewrite uses this parse tree to induc-
tively build theMFA for Q0. In more detail, Fig. 5(b) shows
threeMFAs and twoAFAs that are the basis of the induction
of the rewriting ofQ0. Specifically,M0

0
corresponds to

rewr(parent, patient), M1

0 to rewr(patient, parent) and
M2

0
to rewr(patient, hospital). Notice that the construc-

tion ofM2
0 also requires the construction ofAFA

0 .
Figure 5(c) shows how Algorithmrewrite uses these ba-

sic blocks to build inductively theMFA rewr(Q0, hospital).
Specifically, it constructsM3

0
= rewr(Q0

0
/Q1

0
, hospital)

by concatenatingMFA M2
0 andM0

0. Then, it constructs
M5

0
= rewr((Q0

0
/Q1

0
)∗, hospital) by concatenatingM3

0

with M4

0
= rewr(Q0

0
/Q1

0
, parent) and adding appropriate

ǫ-transitions for the recursion. Finally, the algorithm con-
siders the rewriting ofQ2

0
[q0] and concatenates this toMFA

M5

0
to compute the final result. 2

Similarly rewrite constructsAFA ’s for filters q, with the
following features. (a) For a “path sub-queries”Q′ (i.e., of
the formp given in Section 2) ofq, rewrite defines itsAFA

in same way asMFA for Q′. (b) For logical connectives
∧,∨, or ¬, rewrite connects inductively obtainedAFA ’s by

introducing a new logical state, i.e., anAND, OR, or NOT
state. (c) For nested filters, i.e.,q = p[q1] whereq1 = p′[q′1],
rewrite constructs asingle AFA, rather than nestedAFA ’s,
for q, by “concatenating” theAFA ’s for p andq1.

Example 5.2:Consider the filterq0 in the queryQ0 of Ex-
ample 4.1. Figure 5(b) shows how itsAFA AFA

1
is constructed

step-wise, by reusing theMFA’s M0

0
,M1

0
,M2

0
for path sub-

queries, and by concatenating these and “local”AFA ’s to
build AFA

0
andAFA

1
. Note that althoughq0 contains a nested

filter text()=‘heart disease’, the two filters are combined into
a singleAFA andno “nested” AFA ’s are required. 2

Concluding, we have the following result, which, in con-
trast to Corollary 3.3, justifies the use ofMFA’s.

Theorem 5.1: Given a view definitionσ : D → DV

and anXreg queryQ overDV , Algorithmrewrite computes
an equivalentMFA of size at mostO(|Q||σ||DV |) over the
original document in at mostO(|Q|2|σ||DV |2) time. 2

6 Evaluation Algorithm

To make query rewriting a practical approach it is nec-
essary to be able to efficiently evaluateMFA’s. We next
present an evaluation algorithm forMFA’s, referred to as
HyPE (Hybrid Pass Evaluation, Fig. 6). AlgorithmHyPE
takes as input a document treeT , a context noden in T and
anMFA M = (Ns, ~A); it outputsn[[M]]. The desired result
r[[M]] is obtained by invokingHyPE with the rootr of T .

A salient feature ofHyPE is that it requires only asingle
top-downpass over the document tree, and asingle pass
over an auxiliary structure, which in most cases is much
smaller than the document tree. It employs several pruning
strategies in its top-down pass to avoid visiting irrelevant
parts of the tree and the computation of irrelevantAFA ’s.

Since any regularXPath query can be transformed into
an MFA, HyPE serve as a stand-alone evaluation algorithm
for regularXPath, beyond the rewriting context. To the best
of our knowledge,HyPE is the first practical algorithm for
evaluating regularXPath. Indeed, no practical algorithm has
been provided thus far that can be done within a bounded
number of tree traversals. ForXPath only, a two-pass algo-
rithm was presented in [16]: a bottom-up phase for evaluat-
ing filters followed by a top-down phase for selecting nodes.
However, it requires a pre-processing step (another scan of
the tree) during which the document tree is converted to a
special data format (a binary representation of the tree), and
the construction of a tree automata which are more com-
plex thanMFA’s and are possibly large. AlgorithmHyPE
requires neither pre-processing of the data nor the construc-
tion of tree automaton. Moreover, in contrast toHyPE, the
two-passXPath evaluation algorithm may have to evaluate
filters at nodes in its first phase, although these nodes will
not be accessed in its second phase. As will be verified
in Section 7, the pruning technique ofHyPE speeds up the

/* /
Q0

0
Q1

0

Q2

0

q0

[]/
Q0

0
= p a t i e n t

Q1

0
= p a r e n t

Q2

0
= p a t i e n t

Q0 = (Q0

0
/Q1

0
)∗/Q2

0
[q0]

(a) Parse tree ofQ0

s1

d i a g n o s i sp a t i e n t
ǫ

p a r e n t p a t i e n t
ǫ

ǫ

ǫ

∨

∨t e x t () = “ h e a r t d i s e a s e ”
M

0

0 d e p a r t m e n ts2
s3

A
F A
1

v i s i t t r e a t m e n t m e d i c a t i o n d i a g n o s i st e x t () = “ h e a r t d i s e a s e ”
sA1 sA2 sA3 sA4 sA5

s4

s5

p a t i e n t
M

1

0

M
2

0

p a r e n t
s6 s7

sA6

sA7 sA8 sA9 sA10 sA11 sA12

λ(s7) = X0

A
F A
0

X0 = A
F A
0v i s i t t r e a t m e n tm e d i c a t i o n

∧
ǫ

ǫ
sA13sA14

sA15

sA16

(b) Basic rewriting components

M
0

0
M

2

0

ǫ
M

0

0

ǫ
M

1

0

ǫ

M
3

0
= r e w r (Q0

0
/Q1

0
, h o s p i t a l) M

4

0
= r e w r (Q0

0
/Q1

0
, p a r e n t)M

5

0
= r e w r ((Q0

0
/Q1

0
)∗, h o s p i t a l)

X1 = A
F A
1

ǫ M
1

0

ǫ
M

2

0 X2 = A
F A
1

ǫ

ǫ

ǫ

M
9

0
= r e w r ((Q0

0
/Q1

0
)∗/Q2

0
[q0], h o s p i t a l)

M
7

0
= r e w r (Q2

0
[q0], p a r e n t)

M
8

0
= r e w r (Q2

0
[q0], h o s p i t a l)

(c) ResultedMFA rewriting

Figure 5. Rewriting query Q0 to the corresponding MFA

Algorithm HyPE(n, T,M).

Input: Context noden, treeT , MFA M.
Output: Answer setn[[M]].

1. Initialize mstates(n), fstates↓(n), andP = {n};
2. cans(n):=PCans(n, mstates(n), fstates↓(n));
3. Traversecans(n) starting from setI of cans(n), add
4. visited nodesν(v) for vertices incans(n) to n[[M]];
5. returnn[[M]];

ProcedurePCans(n, T, mstates(n), fstates↓(n))

Input: Context noden, treeT , statesmstates(n), vectorfstates↓(n).
Output: Candidate answerscans(n).

1. if mstates(n) 6= ∅ or fstates↓(n) 6= ~∅ then
2. for each childv of n then
3. push(v,P);
4. mstates(v):=NextNFAStates(mstates(n), v, Ns);
5. fstates↓(v):=NextAFAStates(fstates↓(n), v, ~A);
6. for eachs ∈ mstates(v), s.t.λ(s) = Xi, i ∈ [1..κ], do
7. add initial state ofAFA

i
to fstates↓(v)[i];

8. cans(v):=PCans(v, mstates(v), fstates↓(v));
9. cans(n):=connectmstates(n) to I of cans(v);
10. Set the setI of initial vertices incans(n) to mstates(n);
11. for eachi such thatfstates↓(n)[i] 6= ∅ do
12. fstates↑(n)[i]:=PrevAFAStates(fstates↑(n)[i]);
13. fstates↑(n)[i]:=fstates↑(n)[i] ∪ {f ∈ F | f is true atn};
14. for eachs ∈ mstates(n) s.t. associatedAFA is false do
15. Deletes and all its in- and outgoing edges fromcans(n);
16. for each final statef of mstates(n) in cans(n) do
17. assignn to f , i.e.,ν(f) := n;
18. pop(n,P);
19. if head(P) 6= ∅ do
20. u:=head(P);
21. fstates↑(u):=fstates↑(u) ∪ fstates↑(n);
22. returncans(n);

Figure 6. Evaluation algorithm for MFA’s.

evaluation ofbothregularXPath andXPath queries.
In a nutshell,HyPE consists of two phases (not to be

confused with two passes of the treeT). In the first phase,
the treeT is traversed (top-down) depth-first, during which
the MFA M prunes away irrelevant subtrees and identifies
which AFA ’s in ~A need to be evaluated at nodes in the tree.
Visited nodes are pushed into a stackP . This stack is used
to evaluate theAFA ’s in a synthesized (bottom-up) way. A
node is popped fromP once all its relatedAFA ’s have been
evaluated. The size ofP is at mostthe depthof T . During

this traversal,HyPE also constructs an auxiliaryDAG struc-
ture, calledcans (for candidate answers), representing the
history of the run of the selectingNFA Ns. Vertices incans
will correspond to states in this run for which the associated
AFA evaluated totrue. Moreover, vertices incans are pos-
sible annotated with a node inT which is potentially in the
answer setn[[M]]. A node inT associated with a vertex in
cans will be in n[[M]] if this node is reachable from a node
in cans corresponding to an initial state ofNs at context
noden. This allows for distinguishing between potential
and real answer nodes incans. In the second phase,cans is
traversed top-down to identify the real answer nodes. The
size ofcans is typically much smaller thanT .

Example 6.1:Consider theMFA M0 in Fig. 3 and the tree
T shown in Fig. 4. We illustrate howHyPE evaluatesM0

on T through the table in Fig. 7. In the figure, we assume
thatHyPE already traversed, top-down, the left-most patient
(node 2) in the tree and wejoin the execution ofHyPE at the
point where node9 is considered (the first row in the table).
Each row in the table corresponds to a step in the execution
of HyPE during which the noden at the head of the stackP
is considered. In the table, we also show (a)mstates(n),
i.e., the ǫ-closure of states inNs (i.e., the set of states
reached by following one or moreǫ moves), reached by de-
scending ton in T ; (b) fstates↓(n), i.e., a set of states in
AFA

0
. If this set is non-empty thenn will be involved in the

bottom-up evaluation ofAFA
0

; and (c)fstates↑(n), i.e., a set
of states (and their truth values) ofAFA

0 used in the bottom-
up evaluation ofAFA

0
. At the bottom of Fig. 7, we show the

auxiliary structurecans. It is constructed during the traver-
sal of T . We indicate, through boxes, which rows in the
table are responsible for the corresponding updates tocans
(note thatcans is constructed from left to right in Fig. 7).

Going back to the figure, the first row of the table in-
dicates two things. First, sinces4 is a final state ofNs,
we know that node 9 is a candidate answer. Second, state
s4 is annotated withAFA

0
and therefore we need to evalu-

ateAFA
0

to determine whether node9 is an actual answer.
We rememberthatAFA

0 needs to be evaluated on node9 by
initializing fstates↓(9) with the initial states ofAFA

0
. Con-

sider now the second row in the table. Node 10 is in the

s1

s3

s4 s2

s4

s1

s3

1 19 I n i tc a n s

f s t a t e s
↑s t a c k

P m s t a t e s f s t a t e s
↓

true false...
(1|9) s2, s4 sA1, sA2, sA5 ∅ ∅
(1|9|10) s1, s3 sA3 ∅ ∅
(1|9|10|11) s2, s4 sA2, sA4, sA5 ∅ ∅
(1|9|10|11|12) ∅ sA6 ∅ ∅
(1|9|10|11|12|13) ∅ sA7 ∅ ∅
(1|9|10|11|12) ∅ sA6 sA6 ∅
(1|9|10|11) s2, s4 sA2, sA4, sA5 sA1, sA4, sA11 ∅
(1|9|10) s1, s3 sA3 sA3 ∅
(1|9) s2, s4 sA1, sA2, sA5 sA1, sA2, sA4 ∅
(1|9|14) ∅ sA6 ∅ ∅
(1|9|14|15) ∅ sA7 ∅ ∅
(1|9|14) ∅ sA6 ∅ sA6

(1|9) s2, s4 sA1, sA2, sA5 sA1, sA2, sA4 sA5

(1) s1, s3 ∅ ∅ ∅

Figure 7. HyPE evaluation.

top ofP . Furthermore,mstates(10) is {s1, s3} and is ob-
tained by calling functionNextNFAStates with arguments
the mstates(9) = {s2, s4} (line 4 in algorithm of Fig. 6).
Similarly, NextAFAStates computesfstates↓(10) = {sA3}
from fstates↓(9) (line 5 in Fig. 6). The fact thatfstates↓(10)
is non-empty tells us that node10 is relevant for the evalua-
tion of AFA

0 . The actual evaluation ofAFA
0 starts when in the

head ofP is node13. At that point,fstates↓(13) includes
the final state ofAFA

0
and from that point onAFA

0
is evalu-

ated bottom-up. This hybrid mixing of a top-down with a
bottom-up evaluation is the distinguishing characteristic of
HyPE. Essentially,HyPE uses the former evaluation type to
determine when to initiate the latter. WhenHyPE returns to
P = {1, 9} (the dark grey row of the table), the fact that
fstates↑(9) includes{sA1 = true} indicates that the evalu-
ation ofAFA

0
results intrue. Therefore, node9 is an actual

answer. Concerningcans, this is constructed bottom-up.
For each noden for which mstates(n) 6= ∅, mstates(n) is
connected to the existingcans, each time the subtree be-
low a child of n has been traversed. For example, when
P = {1, 9} (dark gray row),mstates(9) is connected (us-
ing the transitions inM0) to thecans structure to its left.
At this point, notice that by following the paths2, s3, s4 we
reach node 11 inT . Furthermore, through the new states4

node9 is also reachable. When the construction ofcans is
completed (row with dashed box), a traversal ofcans start-
ing from the Init nodes shows that nodes 9 and 11 are still
reachable and hence are in the answer ofM0 onT . 2

Complexity. The complexity ofHyPE is determined by
that of PCans (for constructingcans) and the traversal of
cans. PCans needs for each context noden at mostO(|M|)
time. Moreover, connecting and updatingcans takes at
mostO(|M|) time as well. Hence, the overall time com-
plexity of PCans is O(|T ||M|). Moreover,PCans requires
a single scan of the input documentT andcans. The space

requirement ofPCans is dominated by the size ofcans,
which, although in the worst case isO(|T ||M|), is typi-
cally much smaller than|T |. Traversingcans takes again
O(|T ||M|) time in the worst case. As a consequence:

Theorem 6.1: Given anMFA M and treeT , HyPE com-
putesr[[M]] in at mostO(|T ||M|) time and space. 2

Using the evaluation algorithm together with the rewrit-
ing algorithm, we obtain a complete practical method for
answering queries on (virtual) views. The overall complex-
ity of our method follows from Theorems 5.1 and 6.1.

Theorem 6.2:Given anXreg queryQ on a view of anXML

sourceT , our query answering method returns the answer
to Q in O(|Q|2|σ||DV |2 + |Q||σ||DV ||T |) time. 2

The size|T | of the document is dominant and is typically
much larger than the size|DV | of the viewDTD and the size
|σ| of the view definitionσ; when only |T | is concerned
(e.g., if DV andσ are fixed as commonly encountered in
practice), our method answers queries inlinear-time (data
complexity), and in quadratic combined complexity.

Variants of HyPE. AlthoughHyPE already performs well
in practice (see Section 7), we developed a novel index
structure which enablesHyPE to skip even more subtrees.
In the following, we denote byOptHyPE the version of
HyPE which is built on top of the index, and byOptHyPE-C
the version ofHyPE which uses a compressed version of the
index.

7. Experimental Study

We have developed a prototype systemSMOQE[10] sup-
porting MFA’s and algorithmsrewrite and HyPE (and its
variantsOptHyPE and OptHyPE-C). In our experiments,
we focused on the most time-consuming module ofSMOQE,
i.e., the query evaluator. The experiments were conducted
on a dual 2.3GHz Apple Xserve with 4GB of memory. For
the generation of our datasets, we used ToXGene [1]. We
generatedXML documents that conform to our recursive
hospitalDTD shown in Fig. 1(a), with sizes ranging from
7MB to 70MB, in 7MB increments. Each increment roughly
corresponds to adding the medical history of 10,000 pa-
tients to our document tree. Therefore, the largest document
stores the medical history of approximately 100,000 pa-
tients. The maximal depth of the trees is 13. The generated
data consist mainly of element nodes, and to a lesser extent
of text nodes. Therefore, the size of the document has a
direct impact on query evaluation. For example, our small-
est document (7MB) consists of 303,714 element nodes vs
151,187 text nodes. The text nodes are used to increase the
selectivity of queries but their size is kept to a minimum (so
as not to increase the document size).

Using the generated document trees, we conducted two
sets of experiments, one regardingXPath evaluation, the

14

12

10

8

6

4

2

7063564942352821147

T
im

e
(s

ec
)

Document size (MB)

JAXP
HyPE

OptHyPE
OptHyPE-C

(a) A filter returning a large set of nodes

14

12

10

8

6

4

2

7063564942352821147

T
im

e
(s

ec
)

Document size (MB)

JAXP
HyPE

OptHyPE
OptHyPE-C

(b) Query with filter conjunctions

16

14

12

10

8

6

4

2

7063564942352821147

T
im

e
(s

ec
)

Document size (MB)

JAXP
HyPE

OptHyPE
OptHyPE-C

(c) Query with filter disjunctions

Figure 8. XPath query evaluation times

20
18
16
14
12
10
8
6
4
2

7063564942352821147

T
im

e
(s

ec
)

Document size (MB)

HyPE
OptHyPE

OptHyPE-C

(a) Kleene star outside filter

16

14

12

10

8

6

4

2

7063564942352821147

T
im

e
(s

ec
)

Document size (MB)

HyPE
OptHyPE

OptHyPE-C

(b) Filter inside Kleene star

10

8

6

4

2

7063564942352821147

T
im

e
(s

ec
)

Document size (MB)

HyPE
OptHyPE

OptHyPE-C

(c) Kleene star in filter

Figure 9. regular XPath query evaluation times

other regarding regularXPath. The reported times are av-
eraged over at least 5 runs of each experiment.

Evaluating XPath Queries.Since regularXPath subsumes
XPath, we investigate the performance ofHyPE and its vari-
ants for the evaluation ofXPath queries.

We compared our performance with that of the Java API
for XML Processing Reference Implementation (JAXP RI

1.3), which relies on XERCESand XALAN [23]. We also
compared withJAXP-COMPILE, a version ofJAXP that pre-
compiles the input query and converts it into a set of Java
classes. The twoJAXP versions had similar performance
and thus we only report one of them.

We ran various types ofXPath queries with simple filters
on data values, unions of queries, and Boolean combina-
tions of filters. Figure 8 shows the evaluation time for three
different types ofXPath queries. We show the evaluation
time both for queries with result sizes of a few hundreds of
nodes (Figures 8(b) and (c)) and queries that return a few
thousands of nodes (Fig. 8(a)). For each query type, we
report the evaluation time forJAXP, HyPE, OptHyPE and
OptHyPE-C. The figures show clearly that our algorithm
consistently outperformJAXP by a factor ofthreefor HyPE,
and four for OptHyPE andOptHyPE-C. We also observe
that in most cases, both optimized versions ofHyPE run
almost twice as fast asHyPE. Note as well that the perfor-
mance ofOptHyPE-C is almost identical to that ofOptHyPE
(while OptHyPE-C uses a compressed index).

Evaluating Regular XPath Queries.The second set of ex-
periments investigated the performance of evaluating regu-
lar XPath queries with the different versions ofHyPE. Ex-
isting alternatives rely on a translation of regularXPath
into a more powerful query language likeXQuery. We

conducted a series of experiments following this approach.
Specifically, we translated several regularXPath queries
into XQuery and evaluated them in GALAX (http://db.bell-
labs.com/galax). These experiments consistently showed
that the queries inXQuery required considerably more time
than their regularXPath counterparts. As a result we omit
GALAX from our discussion because even for a simple
regularXPath query on the smallest used document tree,
GALAX needed more time thanHyPE for the same query
on the largest tree. Hence, we only focus on the relative
performance of our algorithm.

We ran different types of regularXPath queries that in-
volve Kleene star outside a filter, inside a filter, filters inside
Kleene stars and combinations thereof. Figure 9 reports the
evaluation time for three of these queries. The overall con-
clusion is consistent with our observations regardingXPath
queries. Indeed,OptHyPE andOptHyPE-C show consider-
able improvement overHyPE.

An interesting observation is thatHyPE prunes a sub-
stantial number of element nodes. Specifically,HyPE (resp.
OptHyPE) prunes, on average, 78.2% (resp. 88%) of the
element nodes for our example queries.

8. Related Work
There has been a host of work on rewriting queries posed

on XML views to relational queries on top ofRDBMS (e.g.,
[22, 12]). Even in this setting, recursion in the viewDTD

makes the translation challenging. As observed by [18],
most of the existing approaches cannot translate recursive
queries over recursive views (two exceptions are [22, 11]).

There has been little work on query rewriting forXML

views in the nativeXML setting where one does not rely on
any RDBMS, i.e., the setting considered in this paper. To

our knowledge, the only work in this context is [9], which
showed thatX is closed under query rewriting fornon-
recursiveXML views. Our rewriting algorithm given here
is the first practical solution to rewriting queries inXPath
and its extension regularXPath over recursiveXML views.

In [19], regularXPath was introduced and it was shown
that a regularXPath queryQ can be evaluated over anXML

tree T in O(|Q||T |) time, requiring multiple passes over
the document tree. A two-pass algorithm forXPath was
developed in [16], but it cannot be easily extended to deal
with the Kleene star. As already observed in Section 6,
even when onlyXPath is concerned, our evaluation algo-
rithm, HyPE, does not need a pre-processing step (another
scan ofT) that is required by the algorithm of [16], and is
more effective in pruning irrelevant nodes when traversing
T , among other things. To our knowledge,HyPE is the first
practical algorithm to evaluate regularXPath queries.

As remarked in Section 1, several automaton formalisms
were proposed for processing multipleXPath queries on
streamingXML (e.g. [6, 13]). The idea ofAFA was explored
by [13] for evaluatingXPath filters. However, no previous
work has attempted to characterize regularXPath in terms
of bothNFA andAFA in an integrated automaton.

Another line of research concerns view-basedquery
rewriting andanswering(see [14] for a survey). Here, given
a set of (materialized) views and a queryQ on the underly-
ing database, the goal is to answerQ solely on the basis of
the views. The problem we consider here is theopposite
scenariowhere the queryQ is posed on the view, and it is
to find a rewritingQ′ of Q on the underlying document.

9. Conclusion
We have provided a solution for efficiently answering

regularXPath queries posed on possibly recursively defined
XML views. On the theoretical side, we have established
results for the closure property and complexity of rewrit-
ing (regular)XPath queries on views into (regular)XPath
queries on the source. On the practical side, we proposed
a practical approach for query rewriting, by usingMFA as
an intermediate representation of rewritten regularXPath
queries. The novelty of the approach consists in (a) an al-
gorithm for rewriting regularXPath queries onXML views
to equivalentMFA on the source, and (b) an efficient evalua-
tion algorithm forMFA. These yield an effective method for
answering queries posed onXML views of XML data, and
are useful in enforcingXML security, among other things.
Furthermore, our evaluation algorithm is among the first for
efficiently processing regularXPath queries. We have fully
implemented a prototype system supporting all these algo-
rithms, and our experimental results verified the efficiency
of our techniques. We are currently studying extension of
our rewriting algorithms to handleXML queries and views
defined inXQuery andXSLT.
Acknowledgment.Wenfei Fan is supported in part by EP-

SRC GR/S63205/01, GR/T27433/01 and BBSRC BB/D006473/1.
Floris Geerts is a postdoctoral researcher of the FWO Vlaanderen.
References

[1] D. Barbosa, A. O. Mendelzon, J. Keenleyside, and K. A.
Lyons. Toxgene: An extensible template-based data genera-
tor for XML. In WebDB, 2002.

[2] S. Cho, S. Amer-Yahia, L. Lakshmanan, and D. Srivastava.
Optimizing the secure evaluation of twig queries. InVLDB,
2002.

[3] B. Choi. What are real DTDs like. InWebDB, 2002.
[4] J. Clark and S. DeRose. XML Path Language (XPath). W3C

Working Draft, Nov. 1999.
[5] E. Damiani, S. di Vimercati, S. Paraboschi, and P. Samarati.

Securing XML documents. InEDBT, 2000.
[6] Y. Diao, P. M. Fischer, M. J. Franklin, and R. To. YFilter:

Efficient and scalable filtering of XML documents. InICDE,
2002.

[7] EBI. Gene Ontology.http://www.geneontology.org/.
[8] A. Ehrenfeucht and H. P. Zeiger. Complexity measures for

regular expressions.JCSS, 12(2):134–146, 1976.
[9] W. Fan, C. Y. Chan, and M. Garofalakis. Secure XML

querying with security views. InSIGMOD, 2004.
[10] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. SMOQE:

A system for providing secure access to XML data. In
VLDB, 2006. Demo.

[11] W. Fan, J. X. Yu, H. Lu, J. Lu, and R. Rastogi. Query transla-
tion from XPath to SQL in the presence of recursive DTDs.
In VLDB, 2005.

[12] M. F. Fernandez, Y. Kadiyska, D. S. A. Morishima, and
W. Tan. SilkRoute: A framework for publishing relational
data in XML. TODS, 27(4):438–493, 2002.

[13] T. J. Green, A. Gupta, G. Miklau, M. Onizuka, and D. Suciu.
Processing XML streams with deterministic automata and
stream indexes.TODS, 29(4):752–788, 2004.

[14] A. Y. Halevy. Answering queries using views: A survey.
VLDB J., 10(4):270–294, 2001.

[15] IBM. DB2 XML Extender.
http://www-3.ibm.com/software/data/db2/extended/xmlext/.

[16] C. Koch. Efficient processing of expressive node-selecting
queries on xml data in secondary storage: A tree automata-
based approach. InVLDB, 2003.

[17] R. Krishnamurthy, V. Chakaravarthy, R. Kaushik, and
J. Naughton. Recursive XML schemas, recursive XML
queries, and relational storage: XML-to-SQL query trans-
lation. In ICDE, 2004.

[18] R. Krishnamurthy, R. Kaushik, and J. Naughton. Efficient
XML-to-SQL query translation: Where to add the intelli-
gence. InVLDB, 2004.

[19] M. Marx. XPath with conditional axis relations. InEDBT,
2004.

[20] Microsoft. XML support in microsoftSQL server 2005,
2005.http://msdn.microsoft.com/library/en-us/dnsql90/
html/sql2k5xml.asp/.

[21] Oracle. Oracle Database 10g Release 2 XML DB Technical
Whitepaper.http://www.oracle.com/technology/tech/xml/
xmldb/index.html.

[22] J. Shanmugasundaram, J. Kiernan, E. J. Shekita, C. Fan,and
J. Funderburk. Querying XML views of relational data. In
VLDB, 2001.

[23] Xerces and Xalan. http://xml.apache.org.
[24] S. Yu. Regular languages. InHandbook of Formal Lan-

guages, volume 1. Springer, 1996.

