Rewriting Regular XPath Queries on XML Views
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Abstract We study how to rewritexmML queries posed on vir-
tual XML views into equivalent queries on the underlying

We study the problem of answering queries posed onxML document. FOXML queries we start with a fragment
virtual views ofxmL documents, a problem commonly en- of XPath, which supports recursion (the descendant-or-self
countered when enforcingvL access control and integrat-  axis ‘//’), union and complex filters (predicates). Thissda
ing data. We approach the problem by rewriting queries of XPath queries is commonly used in practice and is essen-
on views into equivalent queries on the underlying docu- tial to XQuery, XSLT andxML Schema. We considemL
ment, and thus avoid the overhead of view materialization views defined by annotating a viemrd with a collection
and maintenance. We consider possibly recursively definedof (regular)XPath expressions, along the same lines as how
XML views and study the rewriting of bokPath and reg-  commercial systems speci§ML views [15, 21, 20]. An
ular XPath queries. We show that while rewriting n®t XML view defined as above is a mapping D — Dy in
always possible foxPath over recursive views, it is for reg-  the global-as-view style, frommML documents of thelocu-
ular XPath; however, the rewritten query may beesfpo- mentdbTD D to documents of theiewDTD Dy,. When the
nential size. To avoid this prohibitive cost we propose a view schemay isrecursively defined.e. if some element
rewriting algorithm that characterizes rewritten querias type in Dy is defined in terms of itself, so is the view. The
a new form of automata, and an efficient algorithm to eval- central technical problem studied in this paper is:
uate the automaton-represented queries. These allow us tg
answer queries on views in linear time. We have fully im-
plemented a prototype systesm0QE, which yields the first
regularXPath engine and a practical solution for answering
queries over possibly recursively definadL views.

’Therewriting problemis to find an algorithm that, givenja
view definitiono and anXPath query® over the viewpTD
Dy, computes axPath query)’ over the documeriTbD
D such that for anxmL treeT of D, Q(a(T)) = Q'(T).

While there has been a host of work on rewritixigath

1. Introduction queries intosQL queries forxmL views of relational data
(see [17] for a survey), little previous work has considered
rewriting XPath queries intoXPath queries foxML views
of XML data. In this context, query rewriting has only been
studied for non-recursiveML views, over whichXPath
rewriting is always possible [9]. However, query rewriting
for recursiveviews is still anopenproblem [17].

RecursiveDTDs naturally arise when, e.g., specifying
>k;iomedical data (see the Gene Ontology databasd?]);

In many applications users are allowed to access\an
document only by querying a view of the data. The need
for this is evident in, for example, enforcing access cdntro
on XML data [2, 5, 9]. To prevent improper disclosure of
sensitive or confidential information ofvL data residing
in a server, the server defines amL view for each group
of users, consisting of all and only the information that the
users are authorized to access. While the users may quer
the view, they are not allowed to directly query or access In fact [3] shows that out of 60 real—wor!dTDs gnalyzed,
the underlying document (referred to as #mircd. With more than half (35) of them were recursive. It is the reason

this comes the need to answer queries posed on the viewghat Oracle supports fully recursively definemL views

One way to do this is to first materialize the views and then ((jA?,SDfl]) anpl thatem also allows a claszof -re(E)lljrSIVre]Iy
directly evaluate queries on the views. However, it is of- efinedxmL view (DAD [15]). However desirable, the

ten too costly to materialize and maintain a large number rewriting problem is more intriguing for recursively defihe

of views, a common scenario when many groups of users"'€Ws: due to‘ the Interaction b_etween_ recursyo_r)i(l?ath
with different access privileges query the same source. AQuenes (e.g., /") and recursion in the view definition.
more realistic approach is tewrite (aka. translate, refor- Example 1.1:Consider ghospitabTp D shown as a graph
mulate) queries on the views into equivalent queries on thein Fig. 1(a). Ahospitaldocument ofD consists of a list of
source, evaluate the rewritten queries on the sowrtteout departmerd, and eacldepartmenhas a list of inpatiens
materializing the viewsand return the answers to the users. (i.e. patients who are currently residing in the hospitat; w



production: hospital— patient

"'/"Spi% oo (hospital,patientF department/patient|visit/treatment/
oA (T medication/diagnosis/text() = ‘heart diseade)1*/
I* production: patient— parent, record
patient % - hospital oo (patient, parenty parent *Qa2*l
pnve address. R\\‘ VN > oo (patient, records visit 1FQs*l
Al pavent sibling date treatment patient production: pargnt—» pat{'ent
street city zip a” ‘xd. . *( /c \.i oo (parent, patient)= patient 1*Qa*l
SN o production: record— empty + diagnosis
5 5 parent  record =
type doctor  diagnosis oo(record, empty) = treatment/test *Qs*
dn am‘e/ ;‘ecmhy emp:y d,.a‘gmis oo (record, diagnosis) treatment/medication/diagnosis/* Q¢*/
(a) documenoTD D (b) view DTD Dy (c) view specification

Figure 1. Example: document and view DTDs and view specification.

use %' on an edge to indicate a list). For eaphtient the which uses the general Kleene closéieinstead of the ‘//’
hospital maintains her nam@rfamé, addressrecords of axis. We show that regulatPath isclosedunder rewriting
visits, each including the visitateand treatmentvhich is for arbitrary views, recursive or not. Since regubrath
either atestor somemedicatior(dashed edges indicate dis- subsumeXPath, anyxPath queries on views can be rewrit-
junction), as well as information about the treatithgctor ten to equivalent regula¢Path queries on the source.
Eachname, pname, street, city, zip, date, type, dname, spe-  However, the rewriting problem iEXPTIMEcomplete
cialty has a single text nod®€DATA) as its child (omitted  for a (regular)xPath queryq over even a (non-)recursive
in the figure). The hospital also maintains family medical yiew, the rewritten regulaxPath query on the source may

history by means of the recursively definpdrentandsib- be inherentlyexponential in the size @} and the viewpTD
ling. Itrecords the same information of ancestors with those 1. Thijs tells us that rewriting is beyond reach in practice
of in-patients, by sharing the description featiens. if  is directly rewritten into regulaxPath.

A view o, is defined for a research institute studying in- o the practical side, to avoid the exponential blow-up
herited patterns of heart disease, withviewvpTo depicted e gevelop the following techniques for answering (regu-
in Fig. 1(b) (the view is defined in Example 2.2). Obliged |5 xpath queries posed oML views.
by the Patient Privacy Act, the view reveals only thpse . .

. . . . L 2. Automaton-based rewriting for (regulaxpath. We in-
tients who have heart disease, along with ttmrentier troduce a rewriting method based on a notionnaiked

archy. While the institute may acceg&gnosisnformation L .
Y y g finite state automatémFA) to represent rewritten regular

of those patients and their ancestors, it is denied access tQ . ) S
: XPath queries. AnMmFA is a nondeterministic finite au-
their name addresstestanddoctordata.

) . L tomaton (IFA) “annotated” with alternating finite state au-
Consider arkPath queryl) posed on the view, whichis a3 aFa), which characterize data-selection paths and
to find patients whose ancestors also had heart disease:

; X ; ‘ X i filters of a regulaxPath queryQ, respectively. The algo-
Q:  patienp'// recorddiagnosittext(="heart disease’]. rithm rewrites@ into an equivalenmMFa M. In contrast

Herex denotes a wildcard, i.e., any element. However, it is to the exponential blowup, the size 8f is bounded by
impossible to rewrite) on the view to an equivalent query o o1,||Dy|). This makes it possible to answer queries
(in theXPath fragment mentioned above) on the underlying ., views via rewriting. To our knowledge, although a num-

hospitaldocument. This is because /" i@ is supposed  por of 5tomaton formalisms were proposedxX@ath and

to traverse only th@aren_thlerarchy .on the view, i.e., a se- XML stream (e.g. [6, 13]), they cannot characterize regular
quence of théparent/patiengattern; however, when trans- o queries, as opposeduFA.

lated to a queryQ’ on the source()’ necessarily retains . . . -
quen, @ y 3. Evaluation of rewritten queryVe provide an efficient al-

‘I since the viewDTD is recursive, and ‘// inQ’ may ac- u : ;
cesssiblings of those patients, althougtiblingsare not in gorithm for evaluatingurFa M (rewritten regularxPath
gueries) orxmL sourcel’. While there have been a num-

the view and are not allowed to be accessed. An incorrect . ) .
ber of evaluation algorithms developed foPath, none is

translation may lead to serious security breach. O X _ .
_ capable of processing regubéPath queries. Previous algo-
In response to this we develop both fundamental resultsithms forxpath (e.g., [16]) require at least two passegof
and practical techniques for the rewriting problem. The gz pottom-up traversal df to evaluate filters, followed by a

main contributions of the paper include the fO”OWing. top_down pass of to select nodes in the guery answer. In
1. Closure PropertiesOn the theoretical side, we study the contrast, our evaluation algorithm combines the two passes
closure property ofXPath under query rewriting is it al- into a single top-down pass @f during which it both eval-
ways possible to rewrit&Path queries on views tPath uates filters and identifies potential answer nodes. The key
gueries on the source? We prove ti&ath isnot closed idea is to use an auxiliary graph, often far smaller tfign

under query rewriting forecursiveviews. In light of this to store potential answer nodes. Then, a single traversal
we consider a mild extension &Path,regular XPath [19], of the graph suffices to find the actual answer nodes. The



algorithm effectively avoids unnecessary processing bf su
trees ofT that do not contribute to the query answer. Itis
not only the first efficient algorithm for evaluating regular
XPath queriesNiFA), but also provides an efficient (alterna-
tive) algorithm to evaluat®Path queries.

4. Implementation and experimental studfe have imple-
mented a prototype systesmMOQE (Secure MOdular Query
Engine [10]) for answering queries amL views,fully sup-
porting the rewriting and evaluation techniques mentioned
above. UsingsMOQE we have conducted an experimen-
tal study, which clearly demonstrates that our evaluation
techniques are efficient and scale well. For regiaath
queries, we compared tlsaoQEevaluation of queries with
that of their XQuery translation, and found that the lat-
ter requires considerably more time. Furtherm@@pQE
outperforms the widely usedpPath engine Xalan (default
XPath implementation in Java 5), whether Xalan uses its in-
terpretive processor or its high performance compiling pro
cessor XsLTC), when evaluatingtPath queries.

In summary, we provide the first practical and complete
solution to answering regula¢Path queries posed on (vir-
tual and possibly recursively definedML views. It is
provably efficient: it has éinear-timedata complexity and
a quadratic combined complexity. Furthermore it yields
the first efficient technique for processing regukiath
gueries, whose need is evident since regiaath is in-

Like XPath queries, when afieq query( is evaluated
at a nodev in anxmL treeT, it returns the set of nodes of
T reachable vi&) from v, denoted by [Q].

We also study aixPath fragmenbf Xy, denoted by,
which is defined by replacin@* with ‘//" in the definition
above. Note that given@rd D of the documents on which
queries are posed, ‘//’ is expressible ey as (|J Ele)*,
wherelJ Ele denotes the union of all the labelsin
Example 2.1:Consider axML documenfl’ conforming to
the documendbTD D in Fig. 1(a). The regulaxPath query

Q = departmerpatienf qo A (q1/(q1)"))/ pname

qo = visitltreatmenimedicatiofdiagnosiftext() = “heart disease”

q1 = parentpatienf—qo]/ parentpatientqo)
when evaluated off’, returns the names of patients who
have heart disease and the disease appears in their ascestor
but always skips a generation. Such queries, which look for
certain patterns, are often encountered in medical relearc
Note that the query is in the fragmeatey, but is not ex-
pressible in th&Path fragmentY’. |

In this work we focus on regulatPath queries with only
downward modalities since they are most commonly used
in practice. As will be seen shortly, rewriting queries is
already challenging in this setting. It is thus necessary to
understand rewriting of these basic queries before dealing
with full-fledgedxpPath orxqQuery.

creasingly being used both as a stand-alone query language 2 DTD

and as an intermediate language in query translation [11].
Organization. Section 2 reviews (regula®Path andxmL

views. Section 3 discusses the closure property of (regu-

lar) XPath rewriting. Section 4 introducesFA and Sec-

Following [9], we represent ebTD D as a triple
(Ele, P, r), whereEle s afinite set oklement types- is a
distinguished type izl e, called theoot type P defines the
element types: for each in Ele, P(A) is a regular expres-

tion 5 describes the rewriting algorithm. Section 6 present gjgn of the form:str. ¢, By, ..., By, Of By +- - -+ B,,. Here

themra evaluation algorithm, followed by experimental re- - sirdenotesPCDATA, ¢ is the empty word}; is either B or
sults in Section 7. Related work is discussed in Section 8, of the formB* whereB is in Ele (referred to as ahild type

followed by conclusions in Section 9.

2. Background

In this section we reviewPath [4], regularxPath [19],
DTDsandxML views considered in this paper.

2.1. XPath and Regular XPath

We consider a class aégular XPath queries proposed
and studied in [19], denoted By and defined as follows:

Qu=e|A]Q/Q|QUQ | Q| Q]

g ==Q | Q/text)="c | -Q | QNQ | QVQ
wheree is the empty pathseld), A is a label (tag),U’ repre-
sentsunion, /' is the child-axis andx is the Kleene stafy]
is referred to as #ilter, in which Q is anXieq expressions,
c is a string constant, and, A,V are the Boolean negation,
conjunction and disjunction, respectively. Regufdath
extends regular expressions by allowing filters [19], and ex
tendsxPath by supporting Kleene closuég as opposed to
the restricted recursion '/’ (théescendant-or-self axis

of A), and +’, ‘" and ‘«’ denotedisjunction(with n > 1),
concatenatiorand theKleene star respectively. We refer
to A — P(A) as theproductionof A. This form ofDTD’s
does not lose generality since anyD can be converted to
aDTD of this form by using new element types.

A DTD can be represented as a graph, as shown in Fig.
It is recursiveif the corresponding graph syclic. For ex-
ample, botlDTD’s depicted in Fig. 1 are recursive.

2.3. XML Views

We consider views defined by annotatingpap [9].
This is similar in spirit toxML view specification in com-
mercial systems, e.g. annotatgdD’s (AXSD) in Oracle
XML DB [21] andmicrosoftsQLserver 2000sQLXML [20],
andbocumentaccessbefinitions OAD) of IBM DB2 XML
Extender [15]. Specifically, we define atML view as a
mappinge : D — Dy, whereD is adocumenDdTD, Dy
is aviewDTD. Given anxML documentl’ of D, the map-
ping generates axmL view o (7T) that conforms to the view



[ Queryrewriting | Views [ Closure | Complexity |
from X to X non-rec. | Yes[9] | EXPTIME-complete
from X to X recursive No NA

from X to Afeg arbitrary Yes EXPTIME-complete
from Xregto Xreg | arbitrary Yes EXPTIME-complete

Figure 2. Closure property and complexity

DTD Dy . More specifically, for each element tygeand its
child typeBin Dy (i.e., each edgéA, B) in theDTD graph
of Dy), o maps(A, B) to a querys(A, B) defined on doc-
umentsT’ of D. Intuitively, given anA elemento (A, B)
generates it children in the view by extracting data from
T. The query (A, B) is in the regulaixPath fragment;eg
given above. ThemL view is recursiveif the view DTD
Dy, is recursive.

Example 2.2: Figure 1(c) defines the view, described in
Example 1.1. The semantics ef, informally presented,
is as follows: Given aospitaldocumentl’, oy generates
a view oy (7T') top-down, which conforms to the viewTD
of Fig. 1(b). The queng); (i.e., oo (hospital patieny) ex-
tracts fromT thosepatiens who have heart disease. For the
patients extracted b§);, (a) Q- finds theirparentnodes,
which are in turn processed 6y, and then inductively by
Q- and Qs to form the parenthierarchy, and (b})s finds
the record(i.e., visit) data, which can be either bempty
(i.e., tesy or diagnosishandled byQs, Q¢, respectively.0

3. The Closure Property of (Regular) XPath

We next study the closure property and complexity of
XPath and regulaxPath query rewriting. The main results
of this section are summarized in Fig. 2.

Formally, anxML query languagel is closed under
rewriting if there exists a computable functidn: L — L
that, given any view definition : D — Dy, and any query
Q@ in L overDy, computes quer®)’ = F(Q) in L such that
for any document” of D, Q(o(T)) = Q'(T). While one
may consider translating afPath queryQ to an equivalent
Q' in a richer language, e.kQuery or XSLT, it is vastly
preferable to have axiPath translation since it is more effi-
cient to evaluat&Path queries than queries in the aforemen-
tioned Turing-complete languages. The closure property is
desirable since rewriting should not be penalized by paying
the higher price for evaluating and optimizing queries in a
richer language than that of the original query.

It was shown in [9] that the clask of XPath queries de-
fined in Section 2 is closed under query rewriting fam-
recursiveviews. However, below we show that in the pres-
ence of recursion in a view definition, this is no longer the
case (even when the annotating queries ar¥)in

Theorem 3.1:For recursively definedmL views, the frag-
mentX is not closed under query rewriting. O

In contrast, the fragment,eq Of regularXpPath given in
the last section is closed under query rewriting:

Theorem 3.2: For arbitrary XML views (recursive or non-
recursive) Xieq is closed under rewriting. O

Example 3.1: Recall the viewo, D — Dy de-
fined in Example 2.2 and the query given in Exam-
ple 1.1. Using the querigd;, Q2, @3, Q4 andQg from the
view specification in Fig. 1(c), we can compute a correct
rewriting Q" of query Q. Specifically: Q' = Q1[Q2/Q4/
(Q2/Q4)*/Qs/Qes/text()="heart disease’]. For any docu-
mentT that conforms tdD, Q'(T) = Q(oo(T)). O

Although it is always possible to rewrite a (regular)
XPath query on a view to an equivalent regutdath query
on the source, it is often prohibitively expensive if it isdie
rectly computeYeq queries as output. Indeed, the rewriting
problem subsumes the problem for translation frera’s
to regular expressions. The latter problemEsPTIME-
complete [8]: the size of the explicit representation ofgx re
ular expression is exponential in the size of k. Worse
still, it remains exponential even if therA is acyclic.

Corollary 3.3: There exist a view definitioa : D —
Dy and a query@ in X such that for anyQ’ in Xeg, if
Q(o(T)) = Q'(T) for all xmL treesT of D, then the size
|Q’| of Q', when represented as atfeg query, is exponen-
tial in |Q| and the size Dy | of Dy . The lower bound re-
mains intact even whehR is non-recursive. O

4. Mixed Finite State Automata

The exponential lower bound of Corollary 3.3 tells us
that a direct rewriting into (regulatjPath is beyond reach
in practice. To overcome this, in this section we introduce
a new representation dteq queries, referred to asixed
finite state automatévrA). Along the same lines asFA
for regular expressionsjFA characterizeY,eg queries and
avoid the exponential blowup of rewriting. Leveragimga
we shall present a practical solution to the rewriting prob-
lem by providing (a) a low polynomial-time algorithm for
rewriting Xreg queries on a view into theFA-presentation
of equivalenttieq queries on the source (Section 5), and
(b) a linear-time algorithm for directly evaluating thveA-
presentation oft;eg queries on the source (Section 6).

While a regular expression can be efficiently represented
as a graph or aFA, for Xjeg queries a notion of automaton
representation is not yet available. The difficulties ofreha
acterizing amteg query( as an automaton include the fol-
lowing: (a)Q typically involves both “selecting” paths that
are to extract and return nodes, and filters that constrain th
extraction; (b) a filtefg] in @ may involve Boolean opera-
tors ‘A, vV, =" and constant tesi/text() = ‘c’, which are not
encountered in regular expressions; (c) worse still, it may
be nestedyq itself may be a query of the form|q:]; and
(d) the sub-query of p* may itself contain Kleene closure.

Mixed finite state automata (MFA). In light of this we
define anMFA M as anondeterministic finite automaton
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Figure 3. NFA N, and AFA Af' in Example 4.1

text()="heart discase”

(NFA) in which a state may be annotated withaternating
finite state automato(aFA). Intuitively, theNFA in M is to
capture the selecting paths of &g query@ and thearA’s
are to characterize the filters @.

Formally, anMFA M is defined to beN,, A), where
(a) A is a set of bindings\; = A™, X; is a name andi*
is anAFA as defined below; (bN, = (K, X5, ds, 8, F, A)
is a variation ofNFA, referred to as theelectingNFA of

M, whereK, >, ds, s, F' are the states, alphabet, transi-

1 hospital {517 33}

2 patient@’ sS4} patient9 {52,584}
parent” {1, 3} Trecord 10 parent {s1,83} rccorlé1
patient {55, 54} diagn 1 patient {s2, sS4} diagn
5recl)rd brain c{isease 12 reci)rd lung dlisease
6 dlagn 13diz}gn
lung dlsease X(2,541) F heart disease X(9,541) T
X(2,542) @ X(2,545) F T X(9,542) V X(9,545) F
(3?8,43) X(7,fsA6) F T X(1$7 sa3) X(14,546) F
419,;4) X(S,fsm) F TX(llt sa1) X(15,547)F
X éAQ) 3 X4, éAJ) - F X(11,52) UX(11,55) T
X (5, sAg) F X(12,s46) T
X(6 ng7 F X(13,s47) T

Figure 4. Conceptual evaluation of M,

tion function, start state and final states as in the standardyj| jts children labelegharentnodes3 and10) it associates

NFA definition; and\ is a partial mapping fronk ; to names
X,, l.e., a state inV, may be annotated with a singh&,.

We employ a variation oAFA’s [24] to representtieg
filters. We define amFa A™ to be (K, X, 4, s, F'), where
(a) K is a set of states partitioned intl,,, /; and F,
where K, is a set ofoperator statesnarked withAND,
ORor NOT, K is a set ofransitionstates, and” is a set of
final states optionally annotated with predicates of thenfor
text()='c’ or position()#:; (b) X is a set of labels; (¢ is the
start state in/{; and (d)J is the transition function defined
as follows. (1) For a state; in Ky, J is only defined for
empty stringe andd(s1,¢) = K’, whereK' is a subset of
K. In particular, ifs; is marked withNOT, K/ has a single
state in it. (2) For each statg in K, ¢ is only defined for
a single labeld € 3 andd(s2, A) contains a single state in
K. (3) ¢ is not defined for any state iA. Observe that ex-
cept for operator states marked wAND or OR, from each
state at most one state can be reached vighese operator
states capture Boolean operators/ and— in X filters.

Example 4.1:Consider amtieq queryQq posed on axmL
tree conforming to theTp of Fig. 1(b), which is to find all

them with states;, s3 and processes them in the same way
as at the parent node of the tree. In the case of state
since this state is annotated witj}, any node associated
with states, must also evaluatdf (the evaluation ofAf'
is described below). This is the case for both noziesd
9. Sinces, is a final state, ifAf* evaluates to true, the cor-
responding node is addedtd.M,] (theanswerof M).
When theAaFA AR is invoked, e.g., at nod® a Boolean
value 2[Af'] is computed as follows: Af* associates a
Boolean variableX (2, s 41) with node2, whose value is
to be computed and treatedZs1f'], wheres 4, is the start
state of AF*. It then traverses the subtree rooted at node
2 top-down. Fromsy; there are twee-transitions tos 4o
ands 5, and thus nodeé is also associated with variables
X (2,s42) and X (2, s 45) for theseaFA states. Since 4;
is an OR state, X (2,s41) is computed viaX (2,s542) V
X(2,s45). To computeX (2, s45), it inspects the chil-
dren of node2: if no child is labeledrecord no Ag* tran-
sition can be made from,5; and X (2, s45) is assigned
false; otherwise, forall childrenlabeledrecord in this case
node7, it associates a variabl& (7, s 4¢), moves down to

patients who have an ancestor diagnosed with heart diseasehese children and process them in parallel. Inductively,

Qo = (patientpareny*/patienfqo],
qo = (parentpatieny™/recorddiagnosibtext() =“heart disease”].

ConsiderMFA M, in Fig. 3. It consists of @electing
NFA N, (shown at the top of the figure), and ara Af,
corresponding to the filteg, (shown at the bottom). The
MFA My is equivalento g, in the sense that whesvalu-
ating M, at a noder in anxmL tree7" (described below),
it returns the same seff M,] of nodes as:[Qo].

The (conceptual) evaluation @#1, is illustrated, by ex-
ample, in Fig. 4. At the root nodkt of the tree, M, asso-
ciates a sefsi, s3} of N, states, where; is the start state
of N, andss is reached froms; via ane-transition. It then
inspects the children of node for all its children labeled
patieninodes2 and9), it associates them with states s,

X (7,s46) is true if node 7 has a child labeledliagno-
sisand carrying text “heart disease”, and if s6(2, s45)

is assignedtrue as well. Similarly, X (2, s42) is com-
puted and becomasue if it has a descendant that is reach-
able via(parent/patientyrecord/diagnosiand carries text
“heart disease”. If eitheX (2, s42) or X (2,545) IS true,
thenX (2, s41) is true and so is the outpW®[A;']. This is
not the case here, however, adft returnsfalse. ad

Observe the following. (a) Althougf' traverses
the subtree top-down, the Boolean variables are computed
bottom-up. (b) InA5 the only operator states a@R states
(sa,,s44); butAND andNOT states can be processed simi-
larly. (c) The conceptual evaluation requires multiplegess
over a subtree, one pass for each filter. In contrast, our eval

moves down to these children and processes them inducwuation algorithm in Section 6 requires only one pass of the

tively, in parallel. At a node associated with statg for

input tree, regardless of the number of filters.



Equivalence of MFA and Xieq queries. An MFA M and
an Xeg query@ areequivalentf for eachxmL treeT” and
any noden in T', n[M] = n[Q], wheren[M] (resp.n[Q])
denotes the result of evaluating ®mrA M (resp.QQ) atn.

The result below tells us that we can identify a class of
MFA’s, namely,MFA’s with a syntactic restriction oAFA’s
called thesplit property to precisely capture the fragment
Xreg Of regularXpPath queries; as a resultFA’s can be used
to represenftieq queries.

Theorem 4.1: For any Xeg query(, there exists an equiv-
alentmrFAa M with the split property, and vice versa. O

5. Rewriting Algorithm

We now present an efficient algorithm, calleglvrite
(not shown due to space constraints), for rewriting (regu-
lar) XPath queries on arbitrary views into equivalessa’s
on the underlying documents.

Algorithm rewrite takes as input arkieq query @ and
a view definition o D — Dy; it returns anMFA
M = (N,, A) as output, such that for amymL tree T’
of D, M onT yields the same result a3 on o(T). It
is based on dynamic programming: for each sub-qugry
of @ and each element typé in Dy, it computes a local
translationrewr(Q’, A), i.e., anMFA on D that is equiva-
lent to Q' when(@’ is evaluated at anyl elements oDy, .
The MFA rewr(Q’, A) is constructed inductively, based on
structure of@’. It assembles local translations to obtain
M =rewr(Q,r), wherer is the root type oDy, .

Example 5.1: Given query@, of Example 4.1 on the
view g, of Example 2.2, assume that we want to compute
rewr(Qo, hospitaj. Fig. 5(a) shows a simplified parse tree
of QQp. Algorithm rewrite uses this parse tree to induc-
tively build theMFA for Qq. In more detail, Fig. 5(b) shows
threemFAs and twoAFAs that are the basis of the induction
of the rewriting of Q. Specifically, MJ corresponds to
rewr(parent, patient), M} to rewr(patient, parent) and
M3 to rewr(patient, hospital). Notice that the construc-
tion of M2 also requires the construction 4ff.

Figure 5(c) shows how Algorithmewrite uses these ba-
sic blocks to build inductively theiFA rewr(Qo, hospital).
Specifically, it constructs\ii = rewr(Q9/Q}, hospital)
by concatenatingiFA M2 and M3. Then, it constructs
M3 = rewr((Q8/Q})*, hospital) by concatenating\(3
with M3 = rewr(Q3/Q}, parent) and adding appropriate
e-transitions for the recursion. Finally, the algorithm eon
siders the rewriting 0€)3[qo] and concatenates this terA
MG to compute the final result. O

Similarly rewrite constructsaFa’s for filters ¢, with the
following features. (a) For a “path sub-querigd” (i.e., of
the formp given in Section 2) of;, rewrite defines itsaFA
in same way asiFA for Q. (b) For logical connectives
A,V, or —, rewrite connects inductively obtainexFA’s by

introducing a new logical state, i.e., &ND, OR, or NOT
state. (c) For nested filters, i.e.= p[¢1] whereg; = p’[¢}],
rewrite constructs aingle AFA, rather than nestedra’s,
for ¢, by “concatenating” thara’s for p andg; .

Example 5.2: Consider the filtery, in the queryQ, of Ex-
ample 4.1. Figure 5(b) shows how A AT is constructed
step-wise, by reusing thera’s M9, M}, M3 for path sub-
gueries, and by concatenating these and “loeaA’s to
build Af* and A7*. Note that althougly, contains a nested
filter text(="heart disease’, the two filters are combined into
a singleara andno “nested” AFA’s are required. O

Concluding, we have the following result, which, in con-
trast to Corollary 3.3, justifies the usefA'’s.

Theorem 5.1: Given a view definitiorv : D — Dy
and andieg query(@ over Dy, Algorithmrewrite computes
an equivalenvra of size at mos©(|Q||o||Dy|) over the
original document in at mosd(|Q|?|o|| Dy |?) time. O

6 Evaluation Algorithm

To make query rewriting a practical approach it is nec-
essary to be able to efficiently evaluatiega’s. We next
present an evaluation algorithm ferFA’s, referred to as
HyPE (Hybrid Pass Evaluation, Fig. 6). AlgorithiyPE
takes as input a document tréea context node in 7" and
anMFA M = (N,, A); it outputsn[M]. The desired result
r[M] is obtained by invokingilyPE with the rootr of T'.

A salient feature oHyPE is that it requires only aingle
top-downpass over the document tree, angiagle pass
over an auxiliary structure, which in most cases is much
smaller than the document tree. It employs several pruning
strategies in its top-down pass to avoid visiting irrelévan
parts of the tree and the computation of irrelevaps’s.

Since any regulaxPath query can be transformed into
anMFA, HyPE serve as a stand-alone evaluation algorithm
for regularxpPath, beyond the rewriting context. To the best
of our knowledgeHyPE is the first practical algorithm for
evaluating regulaxpPath. Indeed, no practical algorithm has
been provided thus far that can be done within a bounded
number of tree traversals. F&Path only, a two-pass algo-
rithm was presented in [16]: a bottom-up phase for evaluat-
ing filters followed by a top-down phase for selecting nodes.
However, it requires a pre-processing step (another scan of
the tree) during which the document tree is converted to a
special data format (a binary representation of the trew), a
the construction of a tree automata which are more com-
plex thanmFA’s and are possibly large. AlgorithidyPE
requires neither pre-processing of the data nor the canstru
tion of tree automaton. Moreover, in contrasttgPE, the
two-passxPath evaluation algorithm may have to evaluate
filters at nodes in its first phase, although these nodes will
not be accessed in its second phase. As will be verified
in Section 7, the pruning technique ByPE speeds up the
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Algorithm HyPE(n, T, M).

Input: Context noden, treeT’, MFA M.
Output: Answer setn[M].

1. Initialize mstates(n), fstates|(n), andP = {n};
2. cans(n):=PCans(n, mstates(n), fstates| (n));
3. Traversecans(n) starting from sef of cans(n), add
4. visited nodes (v) for vertices incans(n) to n[M];
5. returnnM];

Procedure PCans(n, T, mstates(n), fstates | (n))

Input: Context noden, treeT’, statesmstates(n), vectorfstates|(n).
Output: Candidate answeGans(n).

1. if mstates(n) # 0 or fstates | (n) + { then
2. for each childv of n then

3 push(v, P);

4. mstates(v): NextNFAStates(mstates(n) v, Ns)
5.  fstates](v):=NextAFAStates(fstates| (n), v, A);

6 for eachs € mstates(v), s.t. A\(s) = X;,4 € [1..x], do
7 add initial state ofA"™" to fstatesl(v)[i];

8. cans(v):=PCans(v, mstates(v), fstates | (v));

9. cans(n):=connectmstates(n) to I of cans(v);

10. Set the sef of initial vertices incans(n) to mstates(n);
11. for eachi such thafstates| (n)[i] # # do

12. fstates?(n)[i]:=PrevAFAStates(fstates?(n)[i]);
13. fstates](n)[i]:=fstates|(n)[i{] U {f € F' | fis true atn};
14. for eachs € mstates(n) s.t. associatedFA is false do
15.  Deletes and all its in- and outgoing edges frat@ns(n);
16. for each final stat¢ of mstates(n) in cans(n) do

17. assigmto f,i.e.,v(f) :=mn;

18. pop(n,P);

19. if head(P) # 0 do

20. w=head(P);

21. fstates](u):=fstates](u) U fstates](n);

22. returncans(n);

Figure 6. Evaluation algorithm for ~ MFA's.

evaluation obothregularxpath andxPath queries.

In a nutshell,HyPE consists of two phases (not to be
confused with two passes of the trég. In the first phase,
the tre€l is traversed (top-down) depth-first, during which

this traversalHyPE also constructs an auxiliafAG struc-
ture, calledcans (for candidate answers), representing the
history of the run of the selectingFra N;. Vertices incans

will correspond to states in this run for which the associate
AFA evaluated tarue. Moreover, vertices imans are pos-
sible annotated with a node i which is potentially in the
answer sei[M]. A node inT associated with a vertex in
cans will be in n[M] if this node is reachable from a node
in cans corresponding to an initial state @f,; at context
noden. This allows for distinguishing between potential
and real answer nodesdans. In the second phaseans is
traversed top-down to identify the real answer nodes. The
size ofcans is typically much smaller thaff'.

Example 6.1: Consider thewra M, in Fig. 3 and the tree

T shown in Fig. 4. We illustrate howyPE evaluatesM

on T through the table in Fig. 7. In the figure, we assume
thatHyPE already traversed, top-down, the left-most patient
(node 2) in the tree and wein the execution oHyPE at the
point where nod@ is considered (the first row in the table).
Each row in the table corresponds to a step in the execution
of HyPE during which the node at the head of the stadk

is considered. In the table, we also show if&}ates(n),

e., thee-closure of states inV, (i.e., the set of states
reached by following one or morkemoves), reached by de-
scending ton in T'; (b) fstates|(n), i.e., a set of states in
AR If this set is non-empty then will be involved in the
bottom-up evaluation of\}'; and (c)fstates?(n), i.e., a set
of states (and their truth values) df;* used in the bottom-
up evaluation ofA§*. At the bottom of Fig. 7, we show the
auxiliary structurecans. It is constructed during the traver-
sal of T'. We indicate, through boxes, which rows in the
table are responsible for the corresponding updatearis
(note thatcans is constructed from left to right in Fig. 7).

Going back to the figure, the first row of the table in-
dicates two things. First, since, is a final state ofV,,

the MFA M prunes away irrelevant subtrees and identifies we know that node 9 is a candidate answer. Second, state
which AFA’s in A need to be evaluated at nodes in the tree. s, is annotated withAf* and therefore we need to evalu-

Visited nodes are pushed into a stgek This stack is used

to evaluate theFA’s in a synthesized (bottom-up) way. A
node is popped fror® once all its relatedFA’s have been

evaluated. The size @ is at mosthe depthof 7". During

ate A7 to determine whether nodgeis an actual answer.

We remembethat A7 needs to be evaluated on nogley

initializing fstates|(9) with the initial states ofd§*. Con-
sider now the second row in the table. Node 10 is in the
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Figure 7. HyPE evaluation.

top of P. Furthermoremstates(10) is {s1, s3} and is ob-
tained by calling functiorNextNFAStates with arguments
the mstates(9) = {s2,s4} (line 4 in algorithm of Fig. 6).
Similarly, NextAFAStates computedstates|(10) = {sas3}
fromfstates|(9) (line 5 in Fig. 6). The fact thestates| (10)

is non-empty tells us that nodé is relevant for the evalua-
tion of Af*. The actual evaluation off* starts when in the
head ofP is nodel3. At that point,fstates|(13) includes
the final state ofA7* and from that point om4§* is evalu-
ated bottom-up. This hybrid mixing of a top-down with a
bottom-up evaluation is the distinguishing characterisfi
HyPE. EssentiallyHyPE uses the former evaluation type to
determine when to initiate the latter. WhEQPE returns to

P = {1,9} (the dark grey row of the table), the fact that
fstates1(9) includes{sa1 = true} indicates that the evalu-
ation of A7 results intrue. Therefore, nod® is an actual
answer. Concerningans, this is constructed bottom-up.
For each node for which mstates(n) # (), mstates(n) is
connected to the existingans, each time the subtree be-
low a child of n has been traversed. For example, when
P = {1,9} (dark gray row)mstates(9) is connected (us-
ing the transitions inM,) to thecans structure to its left.
At this point, notice that by following the path, s3, s, we
reach node 11 ii". Furthermore, through the new state
node9 is also reachable. When the constructiorcads is
completed (row with dashed box), a traversataiis start-

requirement ofPCans is dominated by the size afans,
which, although in the worst case @(|T||M|), is typi-
cally much smaller thaifil’|. Traversingcans takes again
O(|T'||M|) time in the worst case. As a consequence:

Theorem 6.1: Given anMFA M and treeT’, HyPE com-
putesr[M] in at mostO(|T'||M]) time and space. O

Using the evaluation algorithm together with the rewrit-
ing algorithm, we obtain a complete practical method for
answering queries on (virtual) views. The overall complex-
ity of our method follows from Theorems 5.1 and 6.1.

Theorem 6.2: Given antieg query on a view of arxmL
sourceT’, our query answering method returns the answer
o Qin O(|Q?|o]|Dv[* + |Qllo]| Dv|T]) time. o

The sizdT'| of the document is dominant and is typically
much larger than the siz®y, | of the viewDTD and the size
|o| of the view definitiono; when only|T'| is concerned
(e.g., if Dy ando are fixed as commonly encountered in
practice), our method answers queriediirear-time (data
complexity), and in quadratic combined complexity.

Variants of HyPE. AlthoughHyPE already performs well

in practice (see Section 7), we developed a novel index
structure which enablesyPE to skip even more subtrees.
In the following, we denote byDptHyPE the version of
HyPE which is built on top of the index, and [@ptHyPE-C

the version oHyPE which uses a compressed version of the
index.

7. Experimental Study

We have developed a prototype systemmoQE[10] sup-
porting MFA’s and algorithmsrewrite and HyPE (and its
variantsOptHyPE and OptHyPE-C). In our experiments,
we focused on the most time-consuming modulsmdQE,

i.e., the query evaluator. The experiments were conducted
on a dual 2.8Hz Apple Xserve with B of memory. For

the generation of our datasets, we used ToXGene [1]. We
generatedxML documents that conform to our recursive
hospitalDTD shown in Fig. 1(a), with sizes ranging from
7mB to 70MB, in 7MB increments. Each increment roughly
corresponds to adding the medical history of 10,000 pa-
tients to our documenttree. Therefore, the largest doctimen
stores the medical history of approximately 100,000 pa-
tients. The maximal depth of the trees is 13. The generated

ing from the Init nodes shows that nodes 9 and 11 are still data consist mainly of element nodes, and to a lesser extent

reachable and hence are in the answeltf onT'. O

Complexity. The complexity ofHyPE is determined by
that of PCans (for constructingcans) and the traversal of
cans. PCans needs for each context nodet mostO (| M)
time. Moreover, connecting and updatingns takes at
mostO(|M]) time as well. Hence, the overall time com-
plexity of PCans is O(|T'||M|). Moreover,PCans requires

a single scan of the input documéntandcans. The space

of text nodes. Therefore, the size of the document has a
direct impact on query evaluation. For example, our small-
est document (WB) consists of 303,714 element nodes vs
151,187 text nodes. The text nodes are used to increase the
selectivity of queries but their size is kept to a minimum (so
as not to increase the document size).

Using the generated document trees, we conducted two
sets of experiments, one regardikgath evaluation, the
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Figure 9. regular XPath query evaluation times

other regarding regulaxPath. The reported times are av- conducted a series of experiments following this approach.
eraged over at least 5 runs of each experiment. Specifically, we translated several regubdPath queries

Evaluating XPath Queries. Since regulaxPath subsumes ~ INto XQuery and evaluated them inABax  (http://db.bell-

XPath, we investigate the performanceyPE and its vari- labs.com/galax These experiments consistently showed
ants for the evaluation ofPath queries. that the queries iXxQuery required considerably more time

We compared our performance with that of the Java API than their regulav(P:_alth counterparts. As a result we _omit
for xML Processing Reference ImplementatigaxP R GALAx from our discussion because even for a simple

1.3), which relies on XRCESand XaLAN [23]. We also regularXpPath query on the smallest used document tree,
compared withiAxP-COMPILE, a version obaxp that pre- ~ CALAX needed more time tharyPE for the same query

compiles the input query and converts it into a set of Java©n the largest tree. Heqce, we only focus on the relative
classes. The twoaxp versions had similar performance Performance of our algorithm. _ _
and thus we only report one of them. We ran different types of regula¢Path queries that in-

We ran various types ofPath queries with simple filters volve Kleene star outside a filter, inside a filter, filterddtes
on data values, unions of queries, and Boolean Combina_Kleene stars and combinations thereof. Figure 9 reports the

tions of filters. Figure 8 shows the evaluation time for three evalpatlpn t|me_ for thre_e of these queries. The ovgrall con-
different types ofxPath queries. We show the evaluation cIu3|_on is consistent with our observations regardﬂ?@th
time both for queries with result sizes of a few hundreds of queries. Indeed)ptHyPE andOptHyPE-C show consider-

nodes (Figures 8(b) and (c)) and queries that return a fewable improvement ovetyPE.

thousands of nodes (Fig. 8(a)). For each query type, we An. |Interezt|ng foblservatlondls thgtyPE_f_p::nes a sub-
report the evaluation time faraxp, HyPE, OptHyPE and stantial number of element nodes. SpecificAllyPE (resp.

OptHyPE-C. The figures show clearly that our algorithm OptHyPE) prunes, on average, 78.2% (resp. 88%) of the

consistently outperforrmaxp by a factor ofthreefor HyPE, element nodes for our example queries.
and four for OptHyPE and OptHyPE-C. We also observe 8. Related Work

that in most cases, both optimized versionsH9PE run
almost twice as fast asyPE. Note as well that the perfor-
mance ofOptHyPE-C is almost identical to that adptHyPE
(while OptHyPE-C uses a compressed index).

There has been a host of work on rewriting queries posed
on XML views to relational queries on top abswms (e.g.,
[22, 12]). Even in this setting, recursion in the viewvD
makes the translation challenging. As observed by [18],
Evaluating Regular XPath Queries. The second set of ex- most of the existing approaches cannot translate recursive
periments investigated the performance of evaluating-regu queries over recursive views (two exceptions are [22, 11]).
lar XPath queries with the different versions iefPE. Ex- There has been little work on query rewriting femL
isting alternatives rely on a translation of regubdpath views in the nativexML setting where one does not rely on
into a more powerful query language likQuery. We any RDBMS, i.e., the setting considered in this paper. To
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