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Abstract— We present ExpFinder, a system for finding experts
in social networks based on graph pattern matching. We demon-
strate (1) how ExpFinder identifies top-K experts in a social
network by supporting bounded simulation of graph patterns,
and by ranking the matches based on a metric for social impact;
(2) how it copes with the sheer size of real-life social graphs by
supporting incremental query evaluation and query preserving
graph compression, and (3) how the GUI of ExpFinder interacts
with users to help them construct queries and inspect matches.

I. INTRODUCTION

Social networks provide a rich source of information for us
to identify communities and social positions in a wide range
of real-life applications, e.g., social group identification [9],
social position analysis [2] and recommendations [7], [11],
[12]. These are typically conducted by using graph pattern
matching: given a pattern query @) and a (social) data graph
G, it is to find all the matches in G for @, denoted as M (Q, G),
which satisfy the search conditions specified in Q.

It is, however, nontrivial to effectively conduct graph pattern
matching in social networks modeled as graphs: (1) as shown
in [4], the traditional notions of subgraph isomorphism and
graph simulation are often too restrictive to match patterns in
real-life social graphs; (2) real-life graphs are typically large,
e.g., Facebook has 901 million users and 125 billion friend
connections [1]; it is often prohibitively expensive to query
such graphs based on subgraph isomorphism (NP-complete)
and graph simulation (quadratic time); and (3) the matches of
a pattern () in a social graph G are often excessively large:
exponential in the size |G| of G by subgraph isomorphism, and
O(|Q||G|) by graph simulation, where |Q| (resp. |G|) denotes
the total number of nodes and edges in @ (resp. G).

To effectively capture matches in real-life social graphs,
we adopt bounded simulation [4], a revision of the traditional
notion of graph simulation, and study its application in experts
searches in large and dynamic real-life social networks.

Example 1: Consider a fraction of a collaboration network
(excluding edge ep) depicted as graph G in Fig. 1(b). Each
node in GG denotes a person, with attributes such as name, field
(e.g., system architect (SA), system developer (SD), business
analyst (BA), system tester (ST)), specialty for the field (e.g.,
programmer and database administrator for SD), and expe-
rience (number of years). Each edge indicates collaboration,
e.g., (Bob, Dan) indicates that Dan worked in a project led
by Bob and collaborated well with Bob. Two people may also
collaborate indirectly via a path of collaboration [8].
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Fig. 1. Pattern query @ and collaboration network G

Suppose that a company wants to hire a system architecture
designer (SA) and form a team to develop a medical record
system [8]. The requirements are expressed as a bounded
simulation query @) [4] (Fig. 1(a)) as follows: (1) the SA
expert must have worked in a team consisting of three other
types of experts SD, BA, ST, represented by the labeled nodes
in @; (2) the SA should have at least 5 years of working
experience, shown as a search condition at node SA; (3)
there are SD and BA experts who collaborated well with
SA experts, via a collaboration chain no longer than 2 and
3, respectively, as indicated by labeled edges (SA,SD) and
(SA,BA) in Q. Similarly, the other nodes and edges in @
depict the requirements of the team and SA experts. Here SA
is marked as the “output node” with “x”, i.e., the users only
require the matches of SA to be returned as the desired experts.

The matches of (), denoted as M(Q,G), is a relation
between a query node and its valid matches [4] in G. More
specifically, M (Q, G) = {(SA, Bob), (SA, Walt), (BA, Jean),
(SD, Mat), (SD,Dan), (SD,Pat), (ST,Eva)}. Observe the
following: (1) the node SD in ) is mapped to both Mat
(programmer) and Pat (DBA) in GG, which is not allowed by
a bijection in subgraph isomorphism; and (2) the edge from
SA to BA in @ requires that the SA expert has supervised
a BA within 3 hops; the edge is mapped to a path (e.g., the
path from Bob to Jean) of a bounded length in G; in contrast,
graph simulation only allows edge to edge matching.

As SA may have multiple matches, a ranking metric should
be provided to select the best experts with social impact. For
example, both Bob and Walt are equally experienced matches
of SA. Nevertheless, Bob has collaborated with all other team
members more “closely” via shorter collaboration paths. Thus,
Bob has a stronger social impact [8], [10], and makes a better
expert for coordinating with team members. |



In this demo, we present ExpFinder, a system to effectively
identify experts by graph pattern matching in social networks.
It implements the techniques that we presented in [3]-[5].
In contrast to previous expert search systems (see [8] for
a survey), (1) ExpFinder supports searches for experts in
social networks via bounded simulation [4], (2) it provides
a new facility to find top-K matches based on a metric for
social impact, which was not studied in [3]-[5]; and (3) it
supports efficient searches and provides graph storage for
large and dynamic social data, by leveraging our incremental
evaluation methods [3] and query preserving scheme of graph
compression [5]. It should be remarked that expert search is
just one of the applications of these techniques. The same
methods can be used to, e.g., recommend movies, find jobs,
explore advertising strategies as well as to make travel plans.

II. THE EXPFINDER SYSTEM

The architecture of the ExpFinder system is shown in Fig. 2.
It consists four modules. (1) A Graphical User Interface (GUI)
provides a graphical interface to help users formulate queries,
manage data graphs and understand visualized query results.
(2) A Query Engine evaluates pattern queries and ranks query
results. (3) An Incremental Computation Module maintains
the query results of a set of frequently issued queries (decided
by the users) in response to updates incurred to data graphs.
(4) A Graph Compression Module constructs and dynamically
maintains compressed graphs, which can be directly queried
by the query engine. In addition, all the graphs and query
results are stored and managed as files. We next present the
components of ExpFinder and their interactions.

Graphical User Interface. The GUI helps the users manage
data graphs, construct queries and browse query results. (1)
It provides a task-oriented panel, which facilitates the users
to issue specific requests such as to view/select data graphs
and construct queries. (2) The users can construct a (bounded)
simulation query ) by drawing a set of query nodes and
edges on a query panel of the GUI, specifying the search
conditions (e.g., expertise="system developer”; experience="3
years”), bounds on the edges, and indicating the particular
“output” node for which users want to find matches (e.g., SA
in Fig. 1). They may also choose a data graph G to query.
(3) The GUI visualizes the query results expressed as result
graphs [4], in which each node is a match of a query node
in @, and each edge (marked with an integer d) represents a
shortest path with length d corresponding to a query edge.

Query Engine. The query engine performs (a) query evalua-
tion, and (b) top-K result selection for the output node. It finds
a unique, maximum match graph for the (bounded) simulation
query [4]. The query result is then visualized by the GUI.

Bounded simulation. Given a graph G and a pattern query @),
M(Q, G) is the maximum relation such that for each node v €
Q, there is a node v € G such that (1) (u,v) € M(Q,G), and
(2) for each (u,v) € M(Q,G), (a) the content of v satisfies
the search condition specified by the pattern node u, and (b)
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for each edge (u,u’) in @, there exists a nonempty path p from
v to v’ in G such that (v/,v") € M(Q,G), and the length of
p does not exceed the bound on (u,u). Example 1 illustrates
M(Q, G) for the query @ and graph G given in Fig. 1.

As shown by [4], (1) M(Q, Q) is unique for each G and
@, (2) graph simulation is a special case when the bound on
each pattern edge (u,w’) is 1, and (3) bounded simulation is
able to catch sensible matches that subgraph isomorphism and
simulation fail to identify, as we have seen in Example 1.

Query evaluation. To efficiently find M(Q,G) in a large
graph G, the query engine coordinates with the incremental
computation and graph compression modules as follows. Upon
receiving a pattern query @, (1) the query engine directly
returns M (Q,G) if it is already cached; (2) otherwise, if
a compressed graph G. for G is already computed by the
compression module, () is evaluated on G, directly [5] (as
will be discussed); and (3) if the users opt not to compress GG
at this stage, the query engine finds M (Q, G), by employing
a quadratic-time algorithm [6] to evaluate simulation queries,
and a cubic-time algorithm [4] for bounded simulation queries.
After M(Q,G) is computed, the query engine computes a
result graph to represent the result [4]. The users may decide
whether the query and its result need to be cached at this stage.

Results Ranking. As remarked earlier, the query result is
typically large, while the users may only be interested in the
best K experts that match the designated output node in @,
e.g., SA in Example 1. To this end, the query engine identifies
top-K matches by using a ranking function. The intuition of the
ranking function comes from the following observation about
social networks: two nodes that are closer to each other often
have more social impact to each other [8], [10]. Given an edge
(u’,u) in pattern query @, and two matches v, and vy of w in
a social network, where u is the output node, for a match v of
u/, vy is preferred to vy if v’ is closer to vy than to vs. Indeed,
in practice v; may represent an expert who collaborates with
expert v’ more closely than the other expert vo. In light of
this, given an output node u, and its match v in the result
graph G, = (V,, E,), the rank f(u,,v) is defined as:

Suev dist(u, v) + Xy ey, dist(v, u’)
V7]

f(uo,v) =



where (a) dist(u,v) (resp. dist(v, u')) represents the distance
(as the sum of the edge weight in a shortest path) from an
ancestor 4 to v (resp. from v to its descendant u') in G,
and (b) V;! is the set of nodes in G, that can reach v or can
be reached from v. Intuitively, f(u,,v) computes the average
distance of v from (to) other nodes in G,.. The top-K matches
of u, is the set of K matches with the minimum ranks.

The ranking function f() assesses the social impact in terms
of node distance, as one of the commonly used metrics in
social network analysis [8], [10]. Note that other metrics can
be readily supported by ExpFinder. We remark that top-K
matches were not studied in the previous work [3]-[5].

Example 2: Recall the match result M(Q,G) described in
Example 1. Its result graph G, is a weighted graph with a
set of nodes {Bob, Walt, Jean, Mat, Dan, Pat, Eva}. One may
verify that the rank f(SA,Bob) = (1+1+2+3+2)/5=2,
and f(SA,Walt) = (24 2+ 3)/3 = I. Therefore, Bob is the
top-1 match for SA, since compared to Walt, he has shorter
social distance to other collaborators, and hence has stronger

social impact on the group members. O

Incremental Computation Module. Real-life social graphs
are typically large and are constantly changed. Given a graph
G, a query @ and updates AG to G, it is costly to recompute
M(Q,G® AG) starting from scratch each time G is updated,
where G & AG denotes G updated by AG. The incremental
module copes with the dynamic nature of social networks by
incrementally identifying changes to M (Q, G) in response to
AG, without accessing G. When AG is small as commonly
found in practice, it is far more efficient to incrementally com-
pute M (Q, GBAAG) than to recompute it starting from scratch.
The module supports the incremental evaluation algorithms
of [3] for simulation and bounded simulation queries.

Example 3: Recall the query ) and graph G of Fig. 1, and
the matches M (Q,G) from Example 1. Suppose that G is
updated by inserting the edge e; (see Fig. 1(b)), denoted
by AG. Then AG incurs increment AM to M(Q,G) as a
new pair (SD, Fred). Instead of recomputing M (Q, G & AG),
the incremental module finds the change {(SD,Fred)} to
M(Q,G) by only accessing M (Q,G) and e;. a

Graph Compression Module. The incremental module effi-
ciently maintains matches in dynamic networks. Nevertheless,
it is costly to compute M (Q,G) and it is unlikely to lower
the computational complexity of query evaluation. The graph
compression module aims to reduce the size of the input for
query evaluation, by constructing smaller compressed graphs
G, for a data graph GG. The compressed graph G (1) has less
nodes and edges than G, and (2) can be directly queried by
the query engine and incremental module, such that for any
(bounded) simulation query @, M(Q, G) can be obtained by
a linear time post-processing from M (Q, G.) [5]. Moreover,
G, is incrementally maintained in response to changes to G.

The graph compression module is developed to (1) compute
the compressed graphs G of G, and (2) dynamically maintain
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G when G is updated, by implementing the techniques of [5].
The module works seamlessly with the other modules: it
invokes the compression algorithm to construct G, for data
graph G upon receiving requests from GUI, and dynamically
maintains G in response to changes to G issued through GUI.
The compressed graphs are then stored, and are accessed by
the query engine when processing query, as remarked earlier.

Example 4: Recall pattern query () and data graph G from
Fig. 1. Observe that both Fred and Pat (DBA) collaborated
with ST and BA people. Since they “simulate” the behavior
of each other in the collaboration network (G, they could be
considered equivalent when computing M (Q, G). Similarly,
pairs (Emmy, Eva) and (Dan, Mat) can also be considered
equivalent. The nodes that are pairwise equivalent form an
equivalence class, and the compressed graph G is constructed
by merging the nodes in the same equivalence class. a

III. DEMONSTRATION OVERVIEW

The demonstration is to show the following: (1) how the
GUI of ExpFinder handles users’ requests and displays query
results; (2) how efficient the query engine evaluates queries
and identifies top-K experts; (3) how the incremental module
manages batch updates to data graphs, and (4) how the com-
pression module computes and maintains compressed graphs.

DataSet. ExpFinder loads both synthetic and real-life datasets.
(1) We design a synthetic graph generator to generate arbitrar-
ily large graphs and show the efficiency of ExpFinder; and (2)
we use a fraction of Twitter to show the performance of each
module of ExpFinder, and interpret query results in details.

Interacting with the GUI. We invite users to use the GUI,
from query design to intuitive illustration of query results.
(1) Users may operate on ExpFinder Manager as the main
control panel. As shown in Fig. 3, users can select, view
and modify the detailed information of data graphs, and may
access the modules of ExpFinder as listed in the tools.

(2) Users can define their own queries through our Pattern
Builder (PB) panel as shown in Fig. 4. PB provides the users
with a canvas to create a new pattern query. For example, Fig-
ure 4 shows three pattern queries (01, (J2 and (3 constructed
via PB, with different search conditions and topology.

(3) The GUI provides various ways to help users understand
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query results. We show how the users can browse (a) result
graphs relevant to matches, and (b) top-K matches, by using
the GUI. As an example, the result graphs and the top 1 (best)
SA expert (marked in red) are shown in Fig. 5 for queries
@1, Q2 and Q3 (in Fig. 4), respectively. Besides visualizing
result graphs, ExpFinder also supports Drill Down and Roll
Up analysis. That is, the users can drill down to see profiles
of the nodes, edge weights and other detailed information in
a result graph, and can roll up to view the global structure of
the result graph. Hence the GUI enables ExpFinder to display
the result at different granularity.

Performance of query evaluation. This demonstration also
aims to show the performance of the query engine, the
incremental module and the graph compression module.

Performance of the query engine. We will show (a) how
(bounded) simulation queries are processed on large graphs by
generating optimized query plans, and (b) how top-K matches
are selected based on the ranking function. We will use real-
life datasets and queries to provide intuitive illustrations.

Coping with the dynamic world. We will also show the per-
formance gains of incremental computation compared to batch
computation that recomputes the matches in response to up-
dates. We show the improvement by varying the size of the
data graphs with unit update (single edge insertion/deletion)
as well as batch updates (a list of edge insertions/deletions).
We show that for batch updates and general (possibly cyclic)
patterns, our incremental module performs significantly better
than their batch counterparts, when data graphs are changed
up to 30% for simulation, and 10% for bounded simulation.

Querying compressed graphs. In addition, we will show (1)
how graph compression module effectively compresses a data
graph, (2) how substantial the performance is improved when
evaluating (bounded) simulation queries by using compressed
graphs instead of the original graphs, and (3) how the com-
pressed graphs are dynamically maintained. We show that in
average, the graphs can be reduced by 57%, which in turn
reduces query evaluation time by 70%. Moreover, the com-
pression module efficiently maintains the compressed graphs,
and outperforms the method that recomputes compressed
graphs, even when large batch updates are incurred.

Summary. This demonstration aims to show the key ideas and
performance of our expert search system ExpFinder based on
graph pattern matching. ExpFinder is able to (1) effectively
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identify top-K experts in social networks by using pattern
queries specified with search conditions and bounded connec-
tivity constraints, (2) efficiently evaluate the queries on large
real-life social graphs, (3) incrementally answer queries on
dynamic graphs in response to batch updates, (4) support graph
compression for efficient graph storage and query evaluation,
and (5) provide intuitive graphical interface to facilitate the
users to construct queries and interpret query results. We
contend that ExpFinder can serve as a promising tool for
expert finding in large and dynamic real-life social networks.
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