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Abstract | We study absolute and relative keys for XML, and investigate their associated decision
problems. We argue that these keys are important to many forms of hierarchically structured data
including XML documents. In contrast to other proposals of keys for XML, we show that these
keys are always (�nitely) satis�able, and their (�nite) implication problem is �nitely axiomatizable.
Furthermore, we provide a polynomial time algorithm for determining (�nite) implication in the size
of keys. Our results also demonstrate, among other things, that the analysis of XML keys is far more
intricate than its relational counterpart.
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1. INTRODUCTION

Keys are of fundamental importance in databases. They provide a means for locating a speci�c
object within the database and for referencing one object from another. Keys also constitute an
important class of constraints on the validity of data. In particular, keys { as opposed to addresses
or internal object identi�ers { provide an invariant connection between an object in the real world
and its representation in the database. This connection is crucial in modifying the database as the
world that it models changes.

As XML is increasingly used in data management, it is natural to require a value-based method
of locating an element in an XML document. Key speci�cations for XML have been proposed in
the XML standard [11], XML Data [28], and XML Schema [38]. However, existing proposals
cannot handle one or more of the following situations. First, as in databases, one may want to
de�ne keys with compound structure. For example, the name subelement of a person element
could be a natural key, but may itself have first-name and last-name subelements. Keys should
not be constrained to be character strings (attribute values). Second, in hierarchically structured
data, one may want to identify elements within the scope of a sub-document. For example, the
number subelement of a chapter element may be a key for chapters of a speci�c book, but would
not be unique among chapters of di�erent books. We will call a key such as number a relative

key of chapter since it is a key in the context of a given book element, i.e., it is to hold on the
sub-document rooted at the book element. If the context element is the root of the document,
the key is to hold on the entire document, and is referred to as an absolute key . The idea of keys
having a scope is not new. In relational databases, scoped keys exist in the form of weak entities.
Using the same example, chapter is a weak entity of book. A chapter number would only make
sense in the context of a certain book. Third, since XML is not required to conform to a DTD or
schema de�nition, it is useful to have a de�nition of keys that is independent of any speci�cation
(such as a DTD or XML Schema) of the type of an XML document.

To overcome these limitations, the authors have recently [13] provided a de�nition of keys for
XML which appears to be applicable { among other things { to a wide variety of hierarchical
scienti�c data sets. However, reasoning about keys, which is trivial in a relational setting, becomes
signi�cantly more complicated in a hierarchical setting. In [12] we described a set of rules for key
implication and outlined soundness and completeness results. This paper is a full version of that
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Fig. 1: Example of some XML data and its representation as a tree

conference presentation and includes motivation and full proofs. The authors understand [37] that
these de�nitions and results have signi�cantly inuenced the design of keys in the current version
of XML Schema [38].

In developing this notion of keys for XML, we start with a tree model of data as used in
DOM [4], XSL [17, 41], XQL [35] and XML Schema [38]. An example of this representation is
shown in Figure 1. Nodes are annotated by their type: E for element, A for attribute, and S
for string (or PCDATA). Some keys for this data might include: 1) A book node is identi�ed by
@isbn; 2) An author node is identi�ed by name, no matter where the author node appears; and
3) Within any subtree rooted at book, a chapter node is identi�ed by @number. These keys are
de�ned independently of any type speci�cation. The �rst two are examples of absolute keys since
they must hold globally throughout the tree. Observe that name has a complex structure. As a
consequence, checking whether two authors violate this constraint involves testing value-equality
on the subtrees rooted at their name nodes. The last one is an example of a relative key since it
holds locally within each subtree rooted at a book. It should be noted that a chapter @number is
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not a key for the set of all chapter nodes in the document since two di�erent books have chapters
with @number = 1. We remark that proposals prior to [13] were not capable of expressing the
second and third constraints.

The notion of relative keys is particularly natural for hierarchically structured data, and is mo-
tivated in part by our experience with scienti�c data formats. Many scienti�c databases represent
and transmit their data in one of a variety of data formats. Some of these data formats are general
purpose, e.g. ASN.1, which is used in GenBank [10] and AceDB [36]; Others, such as EMBL,
which is used in SwissProt [8], are domain-speci�c. All of these speci�cations have a hierarchical
structure. As a typical example, SwissProt [7] at the top level consists of a large set of entries, each
of which is identi�ed by an accession number. Within each entry there is a sequence of citations,
each of which is identi�ed by a number 1,2,3... within the entry. Thus, to identify a citation fully,
we need to provide both an accession number for the entry and the number of the citation within
the entry. Note that the same number for a citation (e.g. 3) may occur within many di�erent
entries, thus the citation number is a relative key within each entry.

All the non-XML data formats mentioned above have an easy conversion to XML. We have
also found that the data sets in these formats have a natural key structure. However, it is not
the case that it is easy to �nd a natural non-trivial DTD or XML Schema description for the
converted data. Finding an appropriate DTD for a given data format may be problematic, and
even if one exists, the conversion to XML conforming to that DTD may be a more complex task.
Indeed, in many applications XML data does not come with a DTD or schema. This observation
supports our claim that, in some applications, keys should be treated independently of any other
type constraints. It is worth mentioning that there has been recent work [5, 21] on the analyses of
XML keys in the presence of DTDs.

One of the most interesting questions involving keys is that of logical implication, i.e., deciding
if a new key holds, given a set of existing keys. This is important for minimizing the cost of
checking that a document satis�es a set of key constraints, and may also provide the basis for
reasoning about how constraints can be propagated through view de�nitions. Thus, a central task
for the study of XML keys is to develop an algorithm for determining logical implication. It is
also desirable to develop a sound and complete set of inference rules for generating symbolic proofs
of logical implication. The existence of a �nite set of such inference rules, referred to as �nite

axiomatizability , is a stronger property than the existence of an algorithm, because the former
implies the latter but not the other way around [2]. Another interesting question is whether a
set of keys is \reasonable", that is, if there exists some (�nite) document that satis�es the key
speci�cation. This is referred to as the (�nite) satis�ability problem.

In relational databases, the �nite satis�ability problem is trivial: Given any �nite set of keys
over a relational schema, one can always �nd a �nite instance of the schema that satis�es that
set. The (�nite) implication problem for keys and, more generally, functional dependencies is also
straightforward. It is well-known [2, 34] that the problem is decidable in linear time, and that
there are exactly two inference rules that are sound and complete for the implication analysis. Let
R be a relation schema and Att(R) denote the set of attributes of R. We use X ! R to denote
that X is a key of R, where X � Att(R). Then the rules can be given as:

Att(R)! R
(schema)

X ! R X � Y
Y ! R

(superkey)

The �rst rule says that for any relation schema R, the set of all the attributes of R is a key of
R. The second asserts that if X is a key of R then so is any superset of X .

For XML the story is more complicated since the hierarchical structure of data is far more
complex than the 1NF structure of relational data. In some proposals, keys are not even �nitely
satis�able. In XML Schema for example, it is possible to specify a key, in simpli�ed syntax,
(==�; [id]), where \==�", in XPath [18] syntax, traverses to any descendant of the root of an
XML document tree. This key asserts that any node in an XML tree must have a unique id

subelement (of text value) and its id uniquely identi�es the node in the entire document. However,
no �nite XML tree satis�es this key because any id node must have an id itself, and this yields
an in�nite chain of id nodes. For implication of XML keys, the analysis is even more intriguing.
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Keys in XML Schema are de�ned in terms of XPath [18], which is a limited yet complicated
language. Recently, it has been shown [29, 32] that it is rather expensive to determine containment
of XPath expressions, which is important in the implication analysis of XML keys. Indeed, the
containment problem is undecidable in the presence of disjunction, DTDs, and variables [32], and
it is coNP-complete even for a small fragment of XPath in the absence of DTDs [29]. For the
(�nite) axiomatizability of equivalence of XPath expressions, which is important in studying the
(�nite) axiomatizability of XML key implication, the analysis is even more intriguing [9]. Thus,
not surprisingly, reasoning about keys de�ned in XML Schema is prohibitively expensive: Even
for unary keys, i.e., keys de�ned in terms of a single subelement, the �nite satis�ability problem
is NP-hard and the implication problem is coNP-hard [6]. For the entire class of keys of XML
Schema, to the best of our knowledge, both the implication and axiomatizability problems are still
open. The reason that the implication problem in XML Schema is di�erent from that addressed
in this paper is twofold. First, there are bad interactions between DTDs and keys, as observed
in [5, 21]. Second, XML Schema imposes the additional constraint on keys that they exist and be
unique. These are the \strong keys" described in [13].

In contrast, we show in this paper that the basic keys of [13] can be reasoned about eÆciently.
More speci�cally, we show that they are �nitely satis�able and their implication is decidable in
PTIME. Better still, their (�nite) implication is �nitely axiomatizable, i.e., there is a �nite set of
inference rules that is sound and complete for implication of these keys. In developing these results,
we also investigate value-equality on XML subtrees and containment of path expressions, which
are not only interesting in their own right but also important in the study of decision problems for
XML keys.

Despite the importance of reasoning about keys for XML, little previous work has investigated
this issue. The only work closely related to this paper is [5, 21, 22]. For a class of keys and foreign
keys, the decision problems were studied in the absence [22] and presence [5, 21] of DTDs. The keys
considered there are de�ned in terms of XML attributes and are not as expressive as keys studied
in this paper. Integrity constraints de�ned in terms of navigation paths have been studied for
semistructured [1] and XML data in [3, 15, 16]. These constraints are generalizations of inclusion
dependencies commonly found in relational databases, and are not capable of expressing keys.
Generalizations of functional dependencies (FDs) have also been studied. In the context of object-
oriented data models, these generalizations include a de�nition of FDs in terms of navigation
paths [27, 39]; in the context of nested relational models, FDs have been de�ned in terms of
equality on set types [33] and within the scope of nested sets [24]. However, these constraints
were investigated in database settings, which are quite di�erent from the tree model for XML data
considered in this paper. Surveys on XML constraints can be found in [14, 40].

The remainder of the paper is organized as follows. Section 2 formally de�nes XML trees, value
equality, and (absolute and relative) keys for XML. Section 3 establishes the �nite axiomatizability
and complexity results: First, we give a quadratic time algorithm for determining inclusion of path
expressions. The ability to determine inclusion of path expressions is then used in developing infer-
ence rules for keys, for which a PTIME algorithm is given. Finally, Section 4 identi�es directions
for further research.

2. KEYS

Our notion of keys is based on a tree model of XML data, as illustrated in Figure 1. Although
the model is quite simple, we need to do two things prior to de�ning keys: The �rst is to give a
precise de�nition of value equality for XML keys; The second is to describe a path language that
will be used to locate sets of nodes in an XML document. We therefore introduce a class of regular
path expressions, and de�ne keys in terms of this path language.

2.1. A Tree Model and Value Equality

An XML document is typically modeled as a node-labeled tree. We assume three pairwise
disjoint sets of labels: E of element tags, A of attribute names, and a singleton set fSg denoting
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text (PCDATA).

De�nition 1 An XML tree is de�ned to be T = (V; lab; ele; att; val; r), where (1) V is a set of
nodes; (2) lab is a mapping V ! E [A [ fSg which assigns a label to each node in V ; a node v
in V is called an element (E node) if lab(v) 2 E, an attribute (A node) if lab(v) 2 A, and a text
node (S node) if lab(v) = S; (3) ele and att are partial mappings that de�ne the edge relation of
T : for any node v in V ,

� if v is an element then ele(v) is a list of elements and text nodes in V and att(v) is a set of
attributes in V ; for each v0 in ele(v) or att(v), v0 is called a child of v and we say that there
is a (directed) edge from v to v0;

� if v is an attribute or a text node then ele(v) and att(v) are unde�ned;

(4) val is a partial mapping that assigns a string to each attribute and text node: for any node v
in V , if v is an A or S node then val(v) is a string, and val(v) is unde�ned otherwise; (5) r is the
unique and distinguished root node. An XML tree has a tree structure, i.e., for each v 2 V , there
is a unique path of edges from root r to v. An XML tree is said to be �nite if V is �nite.

For example, Figure 1 depicts an XML tree that represents an XML document.
With this, we are ready to de�ne value equality on XML trees. Let T = (V; lab; ele; att; val; r)

be an XML tree, and n1; n2 be two nodes in V . Informally, n1; n2 are value equal if they have the
same label and, in addition, either they have the same string value, when they are S or A nodes,
or their children are pairwise value equal, when they are E nodes. Formally:

De�nition 2 Two nodes n1 and n2 are value equal , written n1 =v n2, i� the following conditions
are satis�ed:

� lab(n1) = lab(n2);

� if n1; n2 are A or S nodes then val(n1) = val(n2);

� if n1; n2 are E nodes, then 1) if att(n1) = fa1; : : : ; amg then att(n2) = fa01; : : : ; a
0
mg and for

all ai there exists a
0
j , i; j 2 [1;m], such that ai =v a

0
j ; and 2) if ele(n1) = [v1; : : : ; vk], then

ele(n2) = [v01; : : : ; v
0
k] and for all i 2 [1; k], vi =v v

0
i. Here, [v1; : : : ; vk] denotes a list of nodes

v1; : : : ; vk.

That is, n1 =v n2 i� their subtrees are isomorphic by an isomorphism that is the identity on string
values.

As an example, in Figure 1, the author subelement of the �rst book and the �rst author

subelement of the second book are value equal.

2.2. Path Languages

There are many options for a path language, ranging from very simple ones, involving just
labels, to more expressive ones, such as regular languages or XPath. However, to develop inference
rules for keys, we need to be able to reason about inclusion of path expressions, the so called
containment problem. It is well known that for regular languages, the containment problem is
not �nitely axiomatizable [26]; and for XPath, preliminary work [9] has shown that it is not much
easier. We therefore restrict our attention to the path language PL, which is expressive enough to
capture most practical cases, yet simple enough to be reasoned about eÆciently. We will also use
a simpler language (PLs) in de�ning keys, and therefore show both languages in the table below.

Path Language Syntax

PLs � ::= � j l:�
PL q ::= � j l j q:q j �

In PLs, a path is a (possibly empty) list of node labels. Here, � represents the empty path, node
label l 2 E [A [ fSg, and \." is a binary operator that concatenates two path expressions. The
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language PLs describes the class of �nite lists of node labels. The language PL is a generalization
of PLs that allows the symbol \ *", a combination of wildcard and Kleene closure. This symbol
represents any (possibly empty) �nite list of node labels. It should be noted that for any path
expression p in any of the path languages, the following equality holds: p:� = �:p = p. These path
languages are fragments of regular expressions [25], with PLs contained in PL.

A path in PLs or in PL is used to describe a set of paths in an XML tree T . Recall that an
attribute node or a text node is a leaf in T and it does not have any child. Thus, a path � in
PLs is said to be valid if for any label l in �, if l 2 A or l = S, then l is the last symbol in �.
Similarly, we de�ne valid path expressions of PL. In what follows, we only consider valid paths
and we assume that the regular language de�ned by a path expression of PL contains only valid
paths. For example, book:author:name is a valid path in PLs and PL, while � :author is a valid
path expression in PL but it is not in PLs. Note that although we have presented the language
PL using the syntax of regular expressions, there is an easy conversion from a PL expression to an
XPath expression: We replace \ *" of a PL expression with \//", and \." with \/". In addition,
if a PL path is meant to start from the root, the converted path is preceded with the symbol \/".

We now give some notation that will be used throughout the rest of the paper. Let � be a path
in PLs, P a path expression in PL and T an XML tree.

Length. The length of path �, denoted by j�j, is the number of labels in �, where the empty path
has length 0. By treating \ �" as a special label, we also de�ne the length of PL expression P ,
denoted by jP j, to be the number of labels in P .
Membership. We use � 2 P to denote that path � is in the regular language de�ned by path
expression P . For example, book:author:name 2 book:author:name and book:author:name 2
� :name.
Reachability. Let n1; n2 be nodes in T . We say that n2 is reachable from n1 by following path �,
denoted by T j= �(n1; n2), i� (1) n1 = n2 if � = �, and (2) if � = �0:l then there exists node n in
T such that T j= �0(n1; n) and n2 is a child of n with label l.

We say that node n2 is reachable from n1 by following path expression P , denoted by T j=
P (n1; n2), i� there is a path � 2 P such that T j= �(n1; n2).

For example, if T is the XML tree in Figure 1, then all the name nodes are reachable from the
root by following book:author:name; They are also reachable by following �.
Node set. Let n be a node in T . We use the notation n[[P ]] to denote the set of nodes in T that
are reachable from n by following path expression P . That is, n[[P ]] = fn0 j T j= P (n; n0)g. We
shall use [[P ]] as an abbreviation for r[[P ]], where r is the root node of T . For example, let n be
the �rst book element in Figure 1. Then n[[chapter]] is the set of all chapter elements of the �rst
book and [[ � :chapter]] is the set of all chapter elements in the entire document.

De�nition 3 The value intersection of n1[[P ]] and n2[[P ]], denoted by n1[[P ]] \v n2[[P ]], is de�ned
by:

n1[[P ]] \v n2[[P ]] = f(z; z0) j z 2 n1[[P ]]; z
0 2 n2[[P ]]; z =v z

0g

Thus n1[[P ]]\v n2[[P ]] consists of node pairs that are value equal and are reachable by following
path expression P starting from n1 and n2, respectively. For example, let n1 and n2 be the �rst and
second book elements in Figure 1, respectively. Then n1[[author]] \v n2[[author]] is a set consisting
of a single pair (x; y), where x is the author subelement of the �rst book and y is the �rst author
subelement of the second book.

2.3. A Key Constraint Language for XML

We are now in a position to de�ne keys for XML and what it means for an XML document to
satisfy a key constraint.

De�nition 4 A key constraint ' for XML is an expression of the form

(Q; (Q0; fP1; : : : ; Pkg));
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Fig. 2: Illustration of a key (Q; (Q0; fP1; : : : ; Pkg))

where Q, Q0 and Pi are PL expressions such that for all i 2 [1; k], Q:Q0:Pi is a valid path expression.
The path Q is called the context path, Q0 is called the target path, and P1, ..., Pk are called the
key paths of '.

When Q = �, we call ' an absolute key , and abbreviate the key to (Q0; fP1; : : : ; Pkg); otherwise
' is called a relative key. We use K to denote the language of keys, and Kabs to denote the set of
absolute keys in K.

As illustrated in Figure 2, a key ' = (Q; (Q0; fP1; : : : ; Pkg)) speci�es the following:

� the context path Q, starting from the root of an XML tree T , identi�es a set of nodes [[Q]];

� for each node n 2 [[Q]], ' de�nes an absolute key (Q0; fP1; : : : ; Pkg) on the subtree rooted at
n; speci�cally,

{ the target path Q0 identi�es a set of nodes n[[Q0]] in the subtree, referred to as the target
set ,

{ the key paths P1; : : : ; Pk identify nodes in the target set. That is, for each n0 2 n[[Q0]]
the values of the nodes reached by following the key paths from n0 uniquely identify n0

in the target set.

For example, the keys on Figure 1 mentioned in Section 1 can be written as follows:

1. @isbn is a key of book nodes: (book; f@isbng);

2. name is a key of author nodes no matter where they are: ( � :author; fnameg);

3. within each subtree rooted at a book, @number is a key of chapter: (book; (chapter; f@numberg)).

The �rst two are absolute keys of Kabs and the last one is a relative key of K.

De�nition 5 Let ' = (Q; (Q0; fP1; : : : ; Pkg)) be a key of K. An XML tree T satis�es ', denoted
by T j= ', i� for any n in [[Q]] and any n1; n2 in n[[Q0]], if for all i 2 [1; k] there exist nodes
x 2 n1[[Pi]], y 2 n2[[Pi]] such that x =v y, then n1 = n2. That is,

8n 2 [[Q]] 8n1 n2 2 n[[Q
0]] ((

^

1�i�k

n1[[Pi]] \v n2[[Pi]] 6= ;)! n1 = n2):

As mentioned earlier, the key ' de�nes an absolute key on the subtree rooted at each node n
in [[Q]]. That is, if two nodes in n[[Q0]] are distinct, then the two sets of nodes reached on some Pi
must be disjoint (by value equality.) More speci�cally, for any n 2 [[Q]] and for any distinct nodes
n1; n2 in n[[Q

0]], there must exist some Pi, 1 � i � k, such that for all x in n1[[Pi]] and y in n2[[Pi]],
x 6=v y.
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Observe that when Q = �, i.e., when ' is an absolute key, the set [[Q]] consists of a unique node,
namely, the root of the tree. In this case T j= ' i�

8n1 n2 2 [[Q0]] ((
^

1�i�k

n1[[Pi]] \v n2[[Pi]] 6= ;)! n1 = n2):

As an example, let us consider the keys de�ned earlier on the XML tree T in Figure 1.
1) T j= (book; f@isbng) because the @isbn attributes of the two book nodes in T have di�erent
string values. For the same reason, T j= (book; f@isbn; authorg). However, T 6j= (book; fauthorg)
because the two books agree on the values of their �rst author. Observe that the second book node
has two author subelements, and the key requires that none of these author nodes is value equal
to the author of the �rst book.

2) T 6j= ( � :author; fnameg) because the author of the �rst book and the �rst author of the
second book agree on their names but they are distinct nodes. Note that all author nodes are
reachable from the root by following � :author. However, T j= (book; (author; fnameg)) because
under each book node, the same author does not appear twice.

3) T j= (book; (chapter; f@numberg)) because in the subtree rooted at each book node, the
@number attribute of each chapter has a distinct value. However, observe that T 6j= (book:chapter;
f@numberg) since both book nodes have a chapter with @number = 1 but the two chapter's are
distinct.

Several subtleties are worth pointing out before we move on to the associated decision problems.
First, observe that each key path can specify a set of values. For example, consider again  =
(book; f@isbn; authorg) on the XML tree T in Figure 1, and note that the key path author

reaches two author subelements from the second book node. In contrast, this is not allowed in
most proposals for XML keys, e.g., XML Schema. The reason that we allow a key path to reach
multiple nodes is to cope with the semistructured nature of XML data. Second, the key has no
impact on those nodes at which some key path is missing. Observe that for any n 2 [[Q]] and n1; n2
in n[[Q0]], if Pi is missing at either n1 or n2 then n1[[Pi]] and n2[[Pi]] are by de�nition disjoint. This
is similar to unique constraints introduced in XML Schema. In contrast to unique constraints,
however, our notion of keys is capable of comparing nodes at which a key path may have multiple
values. Third, it should be noted that two notions of equality are used to de�ne keys: value
equality (=v) when comparing nodes reached by following key paths, and node identity (=) when
comparing two nodes in the target set. This is a departure from keys in relational databases, in
which only value equality is considered.

2.4. Decision Problems

In a relational database, one can specify arbitrary keys without worrying about their satis�-
ability. The analysis of implication of relational keys is also trivial. However, as mentioned in
Section 1, the satis�ability and implication analyses of XML keys are far more intriguing.

We �rst consider satis�ability of keys of our constraint language K. Let � be a �nite set of
keys in K and T be an XML tree. Following [20], we use T j= � to denote that T satis�es �. That
is, for any  2 �, T j=  .

The satis�ability problem for K is to determine, given any �nite set � of keys in K, whether
there exists an XML tree satisfying �. The �nite satis�ability problem for K is to determine
whether there exists a �nite XML tree satisfying �.

As observed in Section 1, keys de�ned in some proposals (e.g., XML Schema) may not be
�nitely satis�able. In contrast, any set of key constraints of K can always be satis�ed by a �nite
XML tree, including the single node tree. That is,
Observation. Any �nite set � of keys in K is �nitely satis�able.

Next, we consider implication of K constraints. Let � [ f'g be a �nite set of keys of K. We
use � j= ' to denote � implies ', that is, for any XML tree T , if T j= �, then T j= '.

There are two implication problems associated with keys: The implication problem is to deter-
mine, given any �nite set of keys � [ f'g, whether � j= '. The �nite implication problem is to
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determine whether � �nitely implies ', that is, whether for any �nite XML tree T , if T j= �, then
T j= '.

Given any �nite set � [ f'g of keys in K, if there is an XML tree T such that T j=
V
� ^ :',

then there must be a �nite XML tree T 0 such that T 0 j=
V
� ^ :'. That is, key implication has

the �nite model property and as a result:

Proposition 1 The implication and �nite implication problems for keys coincide.

Proof. Observe that given any �nite set � [ f'g of K constraints, � j= ' i� no XML tree T
exists such that T j=

V
� ^ :'. Thus it suÆces to show that if there exists an XML tree T such

that T j=
V
� ^ :', then there must be a �nite XML tree T 0 such that T 0 j=

V
� ^ :'. That

is, the complement of the implication problem for K has the �nite model property [20]. This can
be veri�ed as follows. Let ' = (Q; (Q0; fP1; : : : ; Pkg)). Since T 6j= ', there are nodes n 2 [[Q]],
n1; n2 2 n[[Q0]], xi 2 n1[[Pi]] and yi 2 n2[[Pi]] for all i 2 [1; k] such that xi =v yi but n1 6= n2. Let
T 0 be the �nite subtree of T that consists solely of all the nodes in the paths from root to xi; yi
for all i 2 [1; k]. It is easy to verify that T 0 j= � and T 0 j= :'. Clearly, T 0 is a �nite XML tree. 2

In light of Proposition 1, we can also use � j= ' to denote that � �nitely implies '. We
investigate the �nite implication problems for keys in the next section.

3. KEY IMPLICATION

In this section, we study the �nite implication problem for keys. Our main result is the following:

Theorem 2 The �nite implication problem for K is �nitely axiomatizable and decidable in poly-

nomial time in the size of keys.

We prove this theorem by showing that there is a �nite axiomatization (see Lemma 6) and
an algorithm for determining �nite implication of K constraints (see Lemma 7). A roadmap for
the proof of this theorem is as follows. Since our axioms for �nite implication for K rely on path
containment, we shall �rst study the containment of path expressions for the language PL in
Section 3.1. We then provide a �nite set of inference rules and show that it is sound and complete
for �nite implication of K constraints in Section 3.3. Based on the inference rules, we also develop
a polynomial time algorithm for determining �nite implication. We shall also present complexity
results in connection with �nite implication of absolute keys of Kabs in Section 3.2.

3.1. Inclusion of PL Expressions

A path expression P of PL is said to be included (or contained) in another PL expression Q,
denoted by P � Q, if for any XML tree T and any node n in T , n[[P ]] � n[[Q]]. That is, the nodes
reached from n by following P are contained in the set of nodes reached by following Q from n.
We write P = Q if P � Q and Q � P .

In the absence of DTDs, P � Q is equivalent to the containment of the regular language de�ned
by P in the regular language de�ned by Q. Indeed, if there exists a path � such that � 2 P but
� 62 Q, then one can construct an XML tree T with a path � from the root. It is obvious that in
T , [[P ]] 6� [[Q]]. The other direction is immediate. Therefore, P � Q i� for any path �, if � 2 P
then � 2 Q.

We investigate inclusion (containment) of path expressions in PL: Given any PL expressions
P and Q, is it the case that P � Q? As we shall shortly establish, this is important to the proof
of Theorem 2, and it is decidable with low complexity.

We provide in Table 1 a set of inference rules, denoted by Ip, and develop a quadratic time
algorithm for testing inclusion of PL expressions.

Theorem 3 Given two PL expressions P and Q, Ip is a set of sound and complete inference rules

for determining whether P � Q. Moreover, there is a quadratic time algorithm in the size of P
and Q for determining whether P � Q.
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P 2 PL
�:P � P P � �:P P:� � P P � P:�

(empty-path)

P 2 PL
P � P

(reexivity)

P 2 PL
P � �

(star)

P � P 0 Q � Q0

P:Q � P 0:Q0 (composition)

P � Q Q � R
P � R

(transitivity)

Table 1: Ip: rules for PL expression inclusion

a a c b
FS

Fig. 3: NFA for the PL expression a: �:a:c: �:b

Proof. The soundness of Ip is easily veri�ed by induction on the lengths of Ip-proofs. The proof
of completeness of Ip is more involved. Our goal is to establish that if P � Q, then this can be
proved by applying rules of Ip. A roadmap for the proof is as follows: First, nondeterministic
�nite state automata M(P ) and M(Q) are de�ned for P and Q, respectively. Then, we show that
there exists a simulation relation (see De�nition 6) between the start states of M(P ) and M(Q)
if and only if P � Q (see Lemma 1). Finally, we show that the existence of such relation can be
established using the rules of Ip (see Lemma 2), thus completing the proof.

A quadratic time algorithm that determines whether a PL expression P is contained in a PL
expression Q is given in Algorithm 1. The correctness and the complexity analyses of the algorithm
is shown in Lemma 3. 2

Next, we develop the lemmas used in establishing Theorem 3. To simplify discussion, we assume
that a PL expression P is in normal form. A PL expression P is in normal form if it does not
contain consecutive �'s and it does not contain � unless P = �. It is easy to see that given any
PL expression P , P can be rewritten into its normal form in linear time as stated by the following
proposition.

Proposition 4 Given any PL expression P , it takes linear time to transform P to an equivalent

PL expression in normal form.

Proof. It is easy to see that � : � can be reduced to � using the star and composition rules of
Ip. Moreover, by the empty-path rule, we can also assume that P does not contain � unless P = �.
Obviously, a single pass over P can transform P into its normal form. 2

The proofs of Lemmas 1, 2, and 3 rely on an underlying construction called a simulation

relation. Given two PL expressions P and Q, a simulation relation is de�ned on the transition
diagrams of the nondeterministic �nite state automata (NFAs) [25] associated with P and Q. We
�rst describe the NFA associated with a PL expression and then de�ne the simulation.

Let P and Q be path expressions in PL, and the NFAs for P and Q be M(P ) and M(Q),
respectively, de�ned as follows:

M(P ) = (N1; C [ f g; Æ1; S1; F1);

M(Q) = (N2; C [ f g; Æ2; S2; F2);

where N1; N2 are sets of states, C is the alphabet, Æ1; Æ2 are transition functions, S1; S2 are start
states, and F1; F2 are �nal states of M(P ) and M(Q), respectively. Observe that the alphabets of



Reasoning about Keys for XML 1047

the NFAs have been extended with the special character \ " which can match any character in C.
Observe also that the transition diagram of a PL expression is always a NFA that has a \linear"
structure as depicted in Figure 3. More speci�cally, M(P ) has the following properties (similarly
for M(Q)):

� There is a single �nal state F1.

� For any state n 2 N1, except the �nal state F1, there exists exactly one letter l 2 C such
that the NFA can make a move from n on input l to a single di�erent state n0 in N1. In
other words, Æ1(n; l) = fn0g, n 6= n0, and Æ1(n; l

0) = ; for all l0 2 C if l0 6= l. For the �nal
state, Æ1(F1; l) = ; for all l 2 C. We shall simply write Æ1(n; l) = n0 if Æ1(n; l) = fn0g.

� At any state n 2 N1, given the special letter \ ", the NFA either does not move at all, or
goes back to n. That is, either Æ1(n; ) = ; or Æ1(n; ) = n.

As shown in Figure 3, the only cycles in the transition diagram of the NFA are introduced by
\ ", which go from a state back to itself.

Given M(P ) and M(Q), we can de�ne a simulation relation, �, on N1 � N2. Similar to
simulations used in the context of semistructured data [1], the relation � de�nes a correspondence
between the nodes (or edges) inM(P ) andM(Q). Intuitively, the relation� is de�ned in such a way
that given an input string, every step taken by M(P ) in accepting this string has a corresponding
step in M(Q) according to the simulation relation.

De�nition 6 Let M(P ) and M(Q) be NFAs de�ned for path expressions P and Q, respectively.
Then, for any n1 2 N1 and n2 2 N2, there is a simulation relation n1 � n2 if all of the following
conditions are satis�ed:

� If n1 = F1 then n2 = F2.

� If Æ1(n1; ) = n1 then Æ2(n2; ) = n2.

� For any l 2 C, if Æ1(n1; l) = n01 for some n
0
1 2 N1, then

{ either there exists a state n02 2 N2 such that Æ2(n2; l) = n02 and n
0
1 � n

0
2, or

{ Æ2(n2; ) = n2 and n
0
1 � n2.

As Lemma 1 will show, given two PL expressions P and Q, showing that P � Q is equivalent to
showing that there is a simulation relation S1�S2. Observe that by the de�nition of the simulation
relation, the �nal state F1 of M(P ) can only correspond to the �nal state F2 of M(Q). Therefore,
if S1 � S2 and every transition in M(P ) corresponds to a transition in M(Q), whenever M(P )
accepts an input string, M(Q) also does, and thus P � Q.

Lemma 1 Let P and Q be two PL expressions and M(P ) = fN1; C[f g; Æ1; S1; F1g and M(Q) =
fN2; C [ f g; Æ2; S2; F2g be their respective NFAs. Then, P � Q if and only if S1 � S2.

Proof. The proof makes use of the closure of a transition function Æ as de�ned in [25]:

Æ̂(n; �) = fng

Æ̂(n; w:l) = fp j 9x 2 Æ̂(n;w); p 2 Æ(x; l)g

Let Æ̂1 and Æ̂2 be the closure functions of Æ1 and Æ2, respectively. Observe that P � Q if and
only if for any � 2 P , if F1 2 Æ̂1(S1; �) then F2 2 Æ̂2(S2; �). Using this observation, we show the

lemma as follows. Assume S1 � S2. We �rst show that if n1 2 Æ̂1(S1; �) where � is a path in P

then there exists n2 2 Æ̂2(S2; �) such that n1 � n2. This can be shown by induction on the length

of �, denoted by j�j. For the base case, if � = � then by the de�nition of Æ̂, Æ̂1(S1; �) = fS1g,

and Æ̂2(S2; �) = fS2g, and S1 � S2 by assumption. We now assume that the statement is true
when j�j < k and we shall show that the statement is also true when j�j = k. Assume � 2 P ,

j�j > 0 and let � = �0:l where l 2 C. Let n01 2 Æ̂1(S1; �
0) and by induction hypothesis, there

exists n02 2 Æ̂2(S2; �
0) such that n01 � n02. Since � 2 P , � is accepted by M(P ). Therefore, the last

transition taken by M(P ) on l from n01 to the �nal state can be one of the following cases:
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� l is consumed by a \ " transition from n01. More precisely, Æ1(n
0
1; ) = n01 and by the de�nition

of �, it must be that Æ2(n
0
2; ) = n02. Hence n

0
1 = F1 which implies that n02 = F2.

� l is consumed by a \l" transition from n01. More precisely, Æ1(n
0
1; l) = F1 and by the de�nition

of �, either

{ for some state n002 2 N2, Æ2(n
0
2; l) = n002 and F1 � n

00
2 which implies that n002 = F2 or

{ Æ2(n
0
2; ) = n02 and F1 � n

0
2 which implies that n02 = F2.

Thus, if F1 2 Æ̂1(S1; �) then we have F2 2 Æ̂2(S2; �). That is, P � Q.
For the other direction, we assume P � Q. Our goal is to show that for any path �, if

n1 2 Æ̂1(S1; �) then there exists n2 2 Æ̂2(S2; �) such that n1 � n2. To see this, note that for any

� 2 P , we have F1 2 Æ̂1(S1; �), and since P � Q, F2 2 Æ̂2(S2; �). Thus we can de�ne F1 � F2. In

addition, for any path �, if Æ̂1(S1; �) � N1, then there exists path �0 such that F1 2 Æ̂1(S1; �:�
0).

Thus the statement can be easily veri�ed by contradiction. Observe that Æ̂1(S1; �) = fS1g and

Æ̂2(S2; �) = fS2g. Thus S1 � S2 and the lemma follows. 2

The next lemma establishes the relationship between the existence of a simulation relation such
that S1 � S2 and the rules of Ip.

Lemma 2 Let P and Q be two PL expressions and M(P ) = fN1; C[f g; Æ1; S1; F1g and M(Q) =
fN2; C [ f g; Æ2; S2; F2g be their respective NFAs. If S1 � S2, then P � Q can be proven using the

inferences rules of Ip.

Proof. We prove the lemma by �rst assuming that there exists a simulation relation � such
that S1 � S2. By the de�nition of � and the properties of M(P ), there exists a total mapping
� : N1 ! N2 such that �(S1) = S2, �(F1) = F2, and for any state n1 2 N1, n1 � �(n1). Let the
sequence of states in M(P ) be ~v1 = p1; : : : ; pk, where p1 = S1 and pk = F1, and similarly, let the
sequence of states in M(Q) be ~v2 = q1; : : : ; ql, where q1 = S2 and ql = F2. It is easy to verify that
for any i; j 2 [1; k], if i < j, �(pi) = qi0 and �(pj) = qj0 , then i

0 � j0. We de�ne an equivalence
relation � on N1 as follows:

pi � pj i� �(pi) = �(pj):

Let [p]� denote the equivalence classes of p with respect to �. An equivalence class is non-trivial
if it contains more than one state. For any equivalence class [p], let pi and pj be the smallest and
largest states in [p] respectively. That is, for any ps 2 [p], i � s � j. By treating pi as the start
state, and pj as the �nal state, we have a NFA that recognizes a regular expression, denoted by
Pi;j . Similarly, we can de�ne P1;i and Pj;k such that P = P1;i:Pi;j :Pj;k. It is easy to verify that
if [p] is a non-trivial equivalence class, then there must be Æ2(�(pi); ) = �(pi). In other words,
�(pi) indicates an occurrence of \ �" in Q. Observe that P1;i:Pi;j :Pj;k � P1;i: � :Pj;k. This can be
proved by using the star and composition rules of Ip. By an induction on the number of non-trivial
equivalence classes, one can show that P � Q can always be proved using the star , composition,
transitivity and reexivity rules in Ip as illustrated above. Thus Ip is complete for inclusion of PL
expressions. 2

Based on the previous lemmas, we provide in Algorithm 1 a recursive function Incl(n1; n2) for
testing inclusion of PL expressions.

Lemma 3 Given two PL expressions P and Q, there exists a quadractic time algorithm for de-

termining whether P � Q.

Proof. The function Incl(n1; n2) is an implementation of De�nition 6, and assumes the existence of
M(P 0) andM(Q0), where P 0 and Q0 are the normal forms of PL expressions P and Q, respectively.
To test whether P � Q, the function Incl(n1; n2) is invoked with arguments Incl(S1; S2), where
S1 and S2 are the start states of M(P 0) and M(Q0) respectively. By Lemma 1, P � Q if and
only if S1 � S2. Since the function with inputs S1 and S2 determines whether S1 � S2, it in fact
determines whether P � Q.
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Algorithm 1 Incl(n1; n2): Inclusion of PL expressions

1. if visited(n1; n2)
then return false
else mark visited(n1; n2) as true;

2. process n1, n2 as follows:
Case (a): if n1 = F1 then

if n2 = F2 and (Æ1(F1; ) = ; or Æ2(F2; ) = F2)
then return true;
else return false;

Case (b): if Æ1(n1; a) = n0
1 and Æ2(n2; a) = n0

2 for letter a
and Æ1(n1; ) = ; and Æ2(n2; ) = ;

then return Incl(n0
1; n

0
2);

Case (c): if Æ1(n1; a) = n0
1 and Æ2(n2; ) = n2 and Æ2(n2; a) = n0

2 for letter a
then return (Incl(n0

1; n2) or Incl(n0
1; n

0
2))

else if Æ1(n1; a) = n0
1 and Æ2(n2; ) = n2 and Æ2(n2; a) = ;

then return Incl(n0
1; n2);

3. return false

We use visited(n1; n2) to keep track of whether Incl(n1; n2) has been evaluated before. Initially,
visited(n1; n2) is false for all n1 2 N1 and n2 2 N2.

We now show that the algorithm runs in quadractic time. By Proposition 4, P and Q can be
rewritten into their normal forms in O(jP j) and O(jQj) time respectively, where jP j and jQj are
the lengths of P and Q. The construction of M(P ) can also be done in O(jP j) time and the same
argument applies for Q. The initialization statement can be executed in O(jP j jQj) time. Since
each condition of the cases (a)-(c) can be tested in constant time and the �rst statement of the
algorithm ensures that any pair of states (n1; n2) from N1�N2 is never processed twice, it is easy
to see that Incl(S1; S2) runs in O(jP j jQj) time. We can therefore conclude that the algorithm is
in quadratic time. 2

3.2. Axiomatization for Absolute Key Implication

Recall that an absolute key (Q0; S) is a special case of a K constraint (Q; (Q0; S)) when Q = �.
Absolute keys are constraints imposed on the entire XML tree T rather than on certain subtrees
of T . Not surprisingly, the problem of determining (�nite) implication of absolute keys is simpler
than that for relative keys. We therefore start by giving a discussion on the rules for absolute key
implication. The set of rules, denoted as Iabs, is shown in Table 2 and is subsequently extended
as rules for relative key implication.

� superkey. If S is a key for the set of nodes in [[Q]] then so is any superset of S. This is the
only rule of Iabs that has a counterpart in relational key inference.

� subnodes. Observe that any node v 2 [[Q:Q0]] must be in the subtree rooted at some node
v0 in [[Q]] and since we have a tree model, there is no sharing of nodes. Hence v uniquely
identi�es v0. Therefore, if a key path P uniquely identi�es a node in [[Q:Q0]] then Q0:P
uniquely identi�es a node in [[Q]].

� containment-reduce. If S [ fPi; Pjg is the set of key paths that uniquely identi�es nodes in
[[Q]] and Pi � Pj then we can leave out Pj from the set of key paths. This is because for any
nodes n1; n2 in [[Q]], if n1[[Pi]] \v n2[[Pi]] 6= ;, then we must have n1[[Pj ]] \v n2[[Pj ]] 6= ; since
Pi � Pj . Thus, by the de�nition of keys, S [ fPig is also a key for [[Q]].

� target-path-containment. A key for the set [[Q]] is also a key for any subset of [[Q]]. Observe
that [[Q0]] � [[Q]] if Q0 � Q.
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(Q; S) P 2 PL
(Q; S [ fPg)

(superkey)

(Q:Q0; fPg)
(Q; fQ0:Pg)

(subnodes)

(Q; S [ fPi; Pjg) Pi � Pj
(Q; S [ fPig)

(containment-reduce)

(Q; S) Q0 � Q
(Q0; S)

(target-path-containment)

(Q; S [ f�; Pg) P 0 2 PL
(Q; S [ f�; P:P 0g)

(pre�x-epsilon)

S is a set of PL expressions
(�; S)

(epsilon)

Table 2: Iabs: Rules for absolute key implication

� pre�x-epsilon. If a set S [ f�; Pg is a key of [[Q]], then we can extend the key path P by
appending to it another path P 0, and the modi�ed set is also a key of [[Q]]. This is because
for any nodes n1; n2 2 [[Q]], if n1[[P:P

0]] \v n2[[P:P 0]] 6= ; and n1 =v n2, then we have
n1[[P ]] \v n2[[P ]] 6= ;. Note that n1 =v n2 if n1[[�]] \v n2[[�]] 6= ;. Thus, by the de�nition of
keys, S [ f�; P:P 0g is also a key for [[Q]]. Observe, however, that the implication of (Q; f�g)
from the premise is not sound. One can construct an XML tree with only two nodes n1 and
n2 in [[Q]] that are value equal but do not have any paths in P . Since paths of P are missing
in the trees of n1 and n2, the XML tree satis�es the premise trivially. However, this tree
clearly does not satisfy (Q; f�g) since n1 =v n2.

� epsilon. This rule is sound because there is only one root. In other words, [[�]] is exactly the
root node and therefore any set of path expressions forms a key for the root.

Observe that these rules are far more complex than the rules for relational key inference (given
in Section 1). Moreover, observe that some rules rely on the ability to reason about path inclusion.

As our next theorem shall show, the set of inference rules Iabs is sound and complete for
determining the (�nite) implication of absolute keys. Moreover, there is an O(n5) algorithm for
determining the (�nite) implication of absolute keys, where n is the size of keys.

Theorem 5 The �nite implication problem for Kabs is �nitely axiomatizable and decidable in

O(n5) time, where n is the size of keys.

Proof. We omit the proof of soundness and completeness of Iabs because most of the proof can
be veri�ed along the same lines as the proof of Lemma 6 discussed in Section 3.3.

A function for determining �nite implication of absolute keys is given in Algorithm 2. The
correctness of the algorithm follows from the axioms for �nite implication of absolute keys. Step 1
of the algorithm is a simple application of the epsilon rule. Step 2 applies containment-reduce to
transform keys to the key normal form. A key � = (Q; (Q0; S)) of K is in the key normal form if
for every pair of paths Pi and Pj in S, Pi 6� Pj . In Step 3, the algorithm checks whether a key �
in � can prove ' by verifying the applicability of rules of Iabs in three cases: when � has many
key paths (Step 3(i)), when � has only one key path (Step 3(ii)), and when � has no key paths
(Step 3(iii)). Note that Step 3(i) and Step 3(ii) coincide when � = (Q0; fP 0

1g).
In Step 3(i), we apply target-path-containment rule to infer (Q; fP 0

1; :::; P
0
mg) from �, if possible.

If successful, our remaining goal is to transform the set of key paths fP 0
1; :::; P

0
mg of � to fP1; :::; Pkg

of '. Since Step 2 has been applied, the set fP 0
1; :::; P

0
mg cannot be reduced further. Furthermore,

observe that at this point, only superkey, containment-reduce, and pre�x-epsilon rules are relevant
rules for key paths. Our goal is thus to transform every key path P 0

i into some Pj using these rules.
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Algorithm 2 Finite implication of absolute keys

Input: a �nite set � [ f'g of absolute keys, where ' = (Q; fP1; :::; Pkg)
Output: true i� � j= '

1. if Q = � then output true and terminate
2. for each (Qi; Si) 2 (� [ f'g) do

repeat until no further change
if Si = S [ fP 0; P 00g such that P 0 � P 00 then Si := Si n fP

00g
3. for each � 2 � do

(i) if � = (Q0; fP 0
1; :::; P

0
mg), Q � Q0 and for all

i 2 [1::m] there exists j 2 [1::k] such that either
(a) Pj � P 0

i or
(b) Pj = R1:R2, R1 � P 0

i and there exists l 2 [1; k] such that Pl = �

then output true and terminate
(ii) if � = (Q0:Q00; fPg), Q � Q0 and for some j 2 [1::k], either

(a) Pj � Q00:P or
(b) Pj = R1:R2, R1 � Q00:P , and there exists l 2 [1; k] such that Pl = �

then output true and terminate
(iii) if � = (Q0:Q00; fg), Q � Q0 and for some j 2 [1::k], either

(a) Pj � Q00 or
(b) Pj = R1:R2, R1 � Q00, and there exists l 2 [1; k] such that Pl = �

then output true and terminate
4. output false

The resulting set of key paths can be augmented, through the use of superkey rule, so that the �nal
set of key paths is fP1; :::; Pkg, as desired. Obviously, a key path P 0

i can be replaced with Pj for
some j 2 [1; k] if Pj � P 0

i (this corresponds to Step 3(i)(a)). The replacement can done through
the use of superkey rule, to add the path Pj , and then containment-reduce, to remove the path P 0

i .
Otherwise, if a proper pre�x of Pj is contained in P 0

i (see Step 3(i)(b)), then the replacement can
occur through the use of superkey rule to add the key path R1. Then through containment-reduce,
we remove the path P 0

i . The path R1 in the current set of key paths can then be extended to
R1:R2: We �rst add another key path � (if it does not already exist) through superkey rule. Then,
through pre�x-epsilon rule, R1:R2 can be obtained. This also explains the requirement that the
key path set of ' must contain �. Observe that these are the only possible ways to obtain the
desired set of key paths. No inference rules can be applied if P 0

i is contained in Pj or a proper
pre�x of Pj . Thus Step 3(i) is correct in the case when there are many key paths in �.

In Step 3(ii), the subnode rule is applied to �rst obtain (Q0; fQ00:Pg) from � and the rest of the
argument is similar to the preceding discussion. In Step 3(iii), the superkey rule must be applied
to obtain (Q0:Q00; f�g) before the subnode rule can be applied.

Observe that in Step 3, we test whether ' can be proven from � by going through each � 2 � at
most once. This is suÆcient because if indeed � j= ', then ' must be the consequence of a sequence
of applications of rules of Iabs on a single key in �, as illustrated in the previous discussion. That
is, since the applicability of epsilon rule has already been checked in Step 1 and every other rule
of Iabs has a premise that consists of only one key, the �rst rule applied in the sequence of rule
applications must have a premise that makes use of only one of the keys in �.

We next show that the algorithm runs in O(n5) where n is the size of keys. Let � [ f'g be a
�nite set of keys in Kabs. Without loss of generality, we assume that all path expressions in the set
are in the normal form. If not, by Proposition 4, it takes linear time to transform a PL expression
to an equivalent PL expression in the normal form. It only takes constant time to execute Step 1
of the algorithm. From Theorem 3, Step 2 can be done in cubic time. To see this, consider a key
� = (Qi; Si) in � [ f'g. It takes jSij � jSij units of time to check containment of path expressions
in Si. Since there are at most j�j+ j'j keys, Step 2 is O(n3) in the size of � and '. Case 3(i) of
the algorithm requires one to test for containment of path expressions Pj in P

0
i , which can be done

in O(jPj j � jP 0
i j) time, and, in case (b), partition Pj in jPj j possible ways and test for containment
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(Q; (Q0; S)) P 2 PL
(Q; (Q0; S [ fPg))

(superkey)

(Q; (Q0:Q00; fPg))
(Q; (Q0; fQ00:Pg))

(subnodes)

(Q; (Q0; S [ fPi; Pjg)) Pi � Pj
(Q; (Q0; S [ fPig))

(containment-reduce)

(Q; (Q0; S)) Q1 � Q
(Q1; (Q

0; S))
(context-path-containment)

(Q; (Q0; S)) Q2 � Q0

(Q; (Q2; S))
(target-path-containment)

(Q; (Q1:Q2; S))
(Q:Q1; (Q2; S))

(context-target)

(Q; (Q0; S [ f�; Pg)) P 0 2 PL
(Q; (Q0; S [ f�; P:P 0g))

(pre�x-epsilon)

(Q1; (Q2; fQ0:P1; : : : ; Q
0:Pkg)) (Q1:Q2; (Q

0; fP1; : : : ; Pkg))
(Q1; (Q2:Q

0; fP1; : : : ; Pkg))
(interaction)

Q 2 PL, S is a set of PL expressions
(Q; (�; S))

(epsilon)

Table 3: I: Inference rules for key implication

in P 0
i . This requires O(jPj j � jPj j � jP

0
i j) time. Therefore, for a key � 2 �, the cost of Case 3(i) is at

most (jP1j+ : : :+ jPkj)(jP 0
1j+ : : :+ jP 0

mj) + (jP1j2 + : : :+ jPkj2)(jP 0
1j+ : : :+ jP 0

mj), which is O(n3).
The cost of Cases 3(ii) and 3(iii) of the algorithm is O(n4) because they require one to execute
the same containment test as Case 3(i) for jQ0:Q00j possible ways to partition Q0:Q00. Since each
constraint � in � is examined at most once, the algorithm is O(n5), where n is the size of � and
'. It is possible that this algorithm can be improved further to achieve a lower complexity but
this is beyond the scope of this paper. 2

3.3. Axiomatization for Key Implication

We now turn to the �nite implication problem for K, and start by giving in Table 3 a set of
inference rules, denoted by I. Most rules are generalizations of rules shown in Table 2 except for
rules that deal with the context path in the setting of relative keys: context-path-containment,
context-target and interaction. We briey illustrate these rules below.

� context-path-containment . Note that [[Q1]] � [[Q]] if Q1 � Q. If (Q0; S) holds on all subtrees
rooted at nodes in [[Q]], then it must also hold on all subtrees rooted at nodes in any subset
of [[Q]].

� context-target . If a set S of key paths can uniquely identify nodes of a set X in the entire
tree T , then it can also identify nodes of X in any subtree of T . Along the same lines, if
in a tree T rooted at a node n in [[Q]], S is a key for n[[Q1:Q2]], then in any subtree of T
rooted at n0 in n[[Q1]], S is a key for n0[[Q2]]. Note that n

0[[Q2]] consists of nodes that are in
both n[[Q1:Q2]] and the subtree rooted at n0. In particular, when Q = � this rule says that
if (Q1:Q2; S) holds then so does (Q1; (Q2; S)). That is, if the (absolute) key holds on the
entire document, then it must also hold on any sub-document.

� interaction. This is the only rule of I that has more than one key in its precondition. By the
�rst key in the precondition, in each subtree rooted at a node n in [[Q1]], Q

0:P1; : : : ; Q
0:Pk
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uniquely identify a node in n[[Q2]]. The second key in the precondition prevents the existence
of more than one Q0 node under Q2 that coincide in their P1; : : : ; Pk nodes. Therefore,
P1; : : : ; Pk uniquely identify a node in n[[Q2:Q

0]] in each subtree rooted at n in [[Q1]]. More
formally, for any n 2 [[Q1]] and n1; n2 2 n[[Q2:Q

0]], there must be v1; v2 in n[[Q2]] such
that n1 2 v1[[Q

0]], n2 2 v2[[Q
0]] and for all i 2 [1; k], we must have n1[[Pi]] � v1[[Q

0:Pi]] and
n2[[Pi]] � v2[[Q

0:Pi]]. If n1[[Pi]]\vn2[[Pi]] 6= ;, then v1[[Q0:Pi]]\v v2[[Q0:Pi]] 6= ;, for any i 2 [1; k].
Thus, by the �rst key in the precondition, v1 = v2. Hence n1; n2 2 v1[[Q

0]] and as a result,
n1 = n2 by the second key in the precondition. Therefore, (Q1; (Q2:Q

0; fP1; : : : ; Pkg)) holds.

Given a �nite set � [ f'g of K constraints, we use � `I ' to denote that ' is provable from
� using I (and Ip for path inclusion).

To illustrate how I is used in an implication proof, let us consider two K constraints:

� = (A; (B:C: �; fD; D: �g));

 = (A:B; (C; f � :D; Eg)):

An I-proof for � j=  is given as follows.
1) � j= (A; (B:C: �; fDg)) by D � D: � and the containment-reduce rule. Note that D � D: � is
proved by using star , empty-path and composition of Ip.
2) � j= (A; (B:C; f � :Dg)) by 1) and subnodes .
3) � j= (A:B; (C; f � :Dg)) by 2) and context-target .
4) � j= (A:B; (C; f � :D; Eg)) by 3) and superkey .

As another example, observe that the following is provable from I:

(Q; (Q0; S [ fPg)) P 0 � P

(Q; (Q0; S [ fP 0g))
(key-path-containment)

Indeed, if (Q; (Q0; S[fPg)) holds then by superkey , so does (Q; (Q0; S[fP; P 0g)). By containment-

reduce we have that (Q; (Q0; S [ fP 0g)) holds.
We now show that I is indeed a �nite axiomatization for K constraint implication. The proof

for soundness and completeness is given in Lemma 6 and relies on the notion of abstract trees. An
abstract tree is an extension of an XML tree by allowing \ �" as a node label. Abstract trees have
the following property, given by Lemma 5: whenever a �nite abstract tree can be constructed such
that it satis�es a set of keys � but not a key ', then an XML tree can be derived with the same
property { it satis�es � but not '. Thus this XML tree is a proof witnessing � 6j= '. Given this,
to prove that I is complete for determining (�nite) implication of keys, it suÆces to show that
whenever � 6`I ', there exists an abstract tree T such that T satis�es � but not '.

We start by giving a discussion on abstract trees. In an abstract tree, \ �" is treated as an
ordinary label. Therefore, the sequence of labels in an abstract tree is a PL expression that may
contain occurrences of \ �". Let R be the sequence of labels in the path from node a to b in an
abstract tree T , and let P be a path expression in PL. We say that T j= P (a; b) if R � P . Given
this, the de�nitions of node sets can be easily generalized for abstract trees. Given a node n in an
abstract tree T and a PL expression P , the node set n[[P ]] in T consists of all nodes x such that
T j= P (n; x). The satisfaction of a K constraint for abstract trees uses this de�nition of node set and
is very similar to De�nition 5. An abstract tree T satis�es a key (Q; (Q0; fP1; : : : ; Pkg)) if for every
node n 2 [[Q]], n satis�es the key (Q0; fP1; : : : ; Pkg). A node n satis�es a key (Q0; fP1; : : : ; Pkg) if
for any n1; n2 in n[[Q

0]], if for all i 2 [1; k] there exist nodes xi and yi in T such that T j= Pi(n1; xi),
T j= Pi(n2; yi), and xi =v yi, then n1 = n2.

The following de�nition describes the construction of an XML tree from an abstract tree.

De�nition 7 Given an abstract tree T , and an element tag �, we say that G is the XML tree

de�ned from T using � if G is obtained by substituting every occurrence of \ �" in T by �.
Observe that G and T have the same set of nodes. In addition, for any nodes a; b in G, there

is a path � such that G j= �(a; b) i� there is a path R in T such that T j= R(a; b), where R is the
same as � except that for each occurrence of \ �" in R, the label � appears at the corresponding
position in �. Let us refer to R as the path expression w.r.t. � and conversely, � as the path w.r.t.

R.
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Our goal is to show that, given a set of keys �[ f'g, if T satis�es � but not ', then the XML
tree G de�ned from T using some label � also satis�es � and not '. To do so, we �rst establish
that there is a correspondence between nodes in T and in G reached by following a path expression
P in PL. This result in then used to prove the desired property.

Lemma 4 Let T be an abstract tree, � be an element tag that does not occur anywhere in T , and
G be the XML tree de�ned from T using �. Let P be a path expression in PL, and a; b be nodes

in G. Then, there exists a path � 2 P such that G j= �(a; b) if and only if T j= P (a; b), i.e.,
T j= R(a; b) and R � P where R is the path expression w.r.t. �.

Proof. (1) Assume that T j= P (a; b), i.e., there is a path R from a to b in T such that R � P .
By the de�nition of G, we must have G j= �(a; b), where � is the path w.r.t. R. Recall that � is
obtained by substituting � for occurrences of \ �". Since R � P , we have � 2 P .

(2) Conversely, assume that there exists a path � 2 P such that G j= �(a; b). By the de�nition of
G, we have T j= R(a; b), where R is the path expression w.r.t. �. Thus, it suÆces to show that
R � P . To do so, we consider the NFAs of R, P and � as de�ned in Section 3.1:

M(R) = (NR; A [ f g; ÆR; SR; FR);

M(P ) = (NP ; A [ f g; ÆP ; SP ; FP );

M(�) = (N�; A [ f�g; Æ�; S�; F�);

where A is an alphabet that contains neither \ " nor �. Recall that NFAs for PL expressions have
a \linear" structure as shown in Figure 3. In particular, since � does not contain \ �", M(�) has
a strict linear structure. More speci�cally, let the sequence of states in N� be s1; : : : ; sm, where
s1 = S� and sm = F�. Then for any i 2 [1;m � 1], there is exactly one l 2 A [ f�g such that
Æ�(si; l) 6= ;. More precisely, Æ�(si; l) = si+1, and for any l 2 A [ f�g, Æ�(F�; l) = ;. Let the
sequence of states in NR be n1; : : : ; nk, where n1 = SR and nk = FR. Then we can de�ne a
function f from N� to NR with the following properties:

� f(S�) = SR and f(F�) = FR.

� For any i; j 2 [1;m], if f(si) = ni0 , f(sj) = nj0 and i < j, then i0 � j0.

� For any i 2 [1;m] and l 2 A, Æ�(si; l) = si+1 i� ÆR(f(si); l) = f(si+1) and f(si) 6= f(si+1).

� For the special letters \ " and \�", for any i 2 [1;m], we let Æ�(si; �) = si+1 i� ÆR(f(si); ) =
f(si+1) and f(si) = f(si+1). In particular, if it is the case that ÆR(FR; ) = FR then we have
Æ�(sm�1; �) = F� and f(sm�1) = f(F�) = FR.

We de�ne an equivalence relation � on N� such that

s � s0 i� f(s) = f(s0):

Let us use [s] to denote the equivalence class of s w.r.t. �. Without loss of generality, assume
that R is in the normal form, i.e., it does not contain two consecutive �'s and it does not contain
� unless it is �. Then it is easy to verify that [s] consists of at most two states. More precisely, if
[s] = fsg, then either s is a �nal state or there is l 2 A such that Æ�(s; l) = s0, and if [s] = fs; s0g
then there is some i 2 [1;m� 1] such that s = si, s

0 = si+1, Æ�(s; �) = s0 and f(s) = f(s0). Given
these, we de�ne a function g from NR to the equivalence classes such that for all n 2 NR,

g(n) = [s] i� f(s) = n:

Recall that in Lemma 1, we have shown that given two PL expressions Q and Q0 with their
respective NFAs M(Q) andM(Q0) then, Q � Q0 if and only if SQ�SQ0 . The symbols SQ and SQ0

are the start states ofM(Q) andM(Q0) respectively and � is a simulation as de�ned in De�nition 6.
Furthermore, there is a function � from NQ to NQ0 such that �(SQ) = SQ0 , �(FQ) = FQ0 , and for
any state s 2 NQ, s � �(s). The symbols, NQ and NQ0 , denote the sets of states in M(Q) and
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M(Q0) respectively. Since � 2 P , the language de�ned by � (which consists of a single string �) is
contained in the language de�ned by P , i.e., � � P . Thus, there exists a function � from N� to
NP and a simulation relation � such that �(S�) = SP , �(F�) = FP , and for any s 2 N�, s� �(s).
It is easy to verify the following claim:

Claim: For all s; s0 2 [s], �(s) = �(s0).

Indeed, as observed earlier, if s; s0 2 [s], then there is some i 2 [1;m � 1] such that s = si,
s0 = si+1 and Æ�(s; �) = s0. Since � does not appear in P , if �(s) = n0 and �(s0) = n00, then there
must be ÆP (n

0; ) = n00 and n0 = n00, by the de�nition of simulation relations. As a result, we can
de�ne �([s]) to be �(s). Given these, to show R � P , it suÆces to show that for any n 2 NR,

n � �(g(n)):

For if it holds, then SR � �(g(SR)) = �(S�) = SP . We next show that this holds. Assume, by
contradiction, that there is n 2 NR such that it is not the case that n � �(g(n)). Let n be such
a state with the largest index in the sequence of states in NR starting from SR. Then by the
de�nition of simulation relations given in Section 3.1, we must have one of the following cases.
(i) n = FR and either

1. �(g(FR)) 6= FP , or

2. �(g(FR)) = FP but ÆR(FR; ) = FR, ÆP (FP ; ) = ;.

The �rst case contradicts the assumption that g(FR) = [F�] and �([F�]) = �(F�) = FP . If it were
the second case, then by ÆR(FR; ) = FR, we would have g(FR) = fF�; sm�1g and Æ�(sm�1; �) = F�.
By the above claim, there must be �(sm�1) = �(F�) = FP and ÆP (FP ; ) = FP . Again this
contradicts the assumption.

(ii) n 6= FR and either

1. ÆR(n; ) = n but ÆP (�(g(n)); ) 6= �(g(n)), or

2. there is some label l 2 A such that ÆR(n; l) = n0, but we have neither ÆP (�(g(n)); l) 6= �(g(n0))
nor ÆP (�(g(n)); ) = �(g(n)).

If it were the �rst case, then by the de�nition of the function g, we would have that g(n) = fsi; si+1g
and Æ�(si; �) = si+1. Thus by the above claim, there must be �(si) = �(si+1), ÆP (�(si); ) = �(si)
and, in addition, �(g(n)) = �(si). Hence ÆP (�(g(n)); ) = �(g(n)), which contradicts the assump-
tion. If it were the second case, then given ÆR(n; l) = n0, we would have either ÆP (�(g(n)); l) =
�(g(n0)) or ÆP (�(g(n)); ) = �(g(n)), by the de�nition of simulation relations and g(n) � �(g(n)).
Again this contradicts the assumption. Thus n� �(g(n)) for all n 2 NR. 2

We are now on position to show that abstract trees have the following property:

Lemma 5 Let � [ f'g be a �nite set of K constraints. If there is a �nite abstract tree T such

that T j= � and T j= :', then there is a �nite XML tree G such that G j= � and G j= :'.

Proof. Let � [ f'g be a �nite set of keys in K, and T be a �nite abstract tree such that T j= �
and T 6j= '. Let � be an element tag that does not occur in any key of � [ f'g, and G be the
XML tree de�ned from T using �. We shall prove that G j= � and G j= :'. From Lemma 4, it
follows immediately that for any path expression P in PL, [[P ]] consists of the same nodes in T
and G. For if T j= P (r; a), where r is the root, then there is a path R in T such that T j= R(r; a)
and R � P . By Lemma 4, we have G j= �(r; a), where � is the path w.r.t. R and � 2 P . That is,
a is in [[P ]] in the tree G. Conversely, if a is in [[P ]] in the tree G, then there is a path � 2 P such
that G j= �(r; a). Again by Lemma 4, T j= R(r; a) and R � P , where R is the path expression
w.r.t. �. Thus, a is in [[P ]] in the abstract tree T .

We are now ready to show that G j= � and G j= :'. Suppose, by contradiction, that there
exists a key � = (Q; (Q0; fP1; :::; Pkg)) in � such that G j= :�. Then there exist a node n 2 [[Q]],
two distinct nodes n1; n2 2 n[[Q0]] and, in addition, for all i 2 [1; k], there exist nodes xi 2 n1[[Pi]],
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Fig. 4: Abstract trees constructed in the proof of Lemma 6

yi 2 n2[[Pi]] such that xi =v yi. But by Lemma 4, we would have T j= Pi(n1; xi) ^ Pi(n2; yi) for
all i 2 [1; k]. Therefore, T 6j= �, which contradicts our assumption. We next show G j= :'. Let
' = (Q; (Q0; fP1; :::; Pkg)). Since T j= :', there must exist a node n 2 [[Q]], two distinct nodes
n1; n2 2 n[[Q0]], and for all i 2 [1; k], there exist nodes xi; yi such that xi =v yi and, in addition,
there exists a path Ri in T such that T j= Ri(n1; xi) ^ Ri(n2; yi), where Ri � Pi. Thus, by
Lemma 4, there is path �i 2 Pi such that xi 2 n1[[�i]], yi 2 n2[[�i]]. Hence G j= :'. 2

This property of abstract trees is now used to show that I is a �nite axiomatization for K
constraint implication.

Lemma 6 The set I is sound and complete for �nite implication of K constraints. That is, for

any �nite set � [ f'g of K constraints, � j= ' if and only if � `I '.

Proof. To simplify the discussion, we assume that all keys are in key normal form and all path
expressions are in normal form. In general, given constraints � and �0 in K, where �0 is the key
normal form of �, � and �0 are equivalent. That is, for any XML tree T , T j= � i� T j= �0. Thus,
the assumption does not lose generality.

Soundness of I can be veri�ed by induction on the lengths of I-proofs. For the proof of
completeness, let �[f'g be a �nite set of keys in K, where ' = (Q; (Q0; fP1; :::; Pkg)). A roadmap
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of the proof is as follows. Suppose � 6`I '. Assume Q0 6= �, since otherwise we have � `I ' by
the epsilon rule in I. We show � 6j= ' by constructing a �nite XML tree G such that G j= �
but G 6j= '. In other words, if � j= ' then � `I '. The construction of G involves the following
steps: First, we de�ne a �nite abstract tree T such that T 6j= '. Then, T is modi�ed in a way
that the resulting tree Tf satis�es �. That is, for each key � 2 �, we check whether T satis�es
�. If not, certain nodes in T are merged such that the modi�ed tree satis�es �. At the end of the
merging process, Tf j= � and either: (1) Tf 6j= ', and by Lemma 5, we can construct an XML tree
G from Tf that satis�es � but not '; or (2) Tf j= '. In this case, we show that our assumption
that � 6`I ' does not hold. That is, we show that each step of the merging operations corresponds
to applications of certain rules in I. Therefore, if Tf j= ' then � `I ', which contradicts the
assumption.

We start by giving the construction of a �nite abstract T that does not satisfy '. The abstract
tree T consists of a single path Q from the root leading to a node n, which has two distinct subtrees
T1 and T2. Each subtree has a Q0 path. These Q0 paths lead to nodes n1 and n2 from n in T1
and T2, respectively. From each of n1 and n2 there are paths P1; : : : ; Pk, as depicted in Figure 4
(a). For each i 2 [1; k], let xi be the (single) node at the end of the Pi path in T1, and yi be the
(single) node at the end of the Pi path in T2.
Assume that for each i 2 [1; k], xi =v yi, but for any other pair x; y in T , x 6=v y. This can be
achieved as follows: for each element in T we add a new text subelement. For any x; y in T , if
they are xi; yi then we let them have the same value when they are A or S nodes, and let their
text subelements have the same value when they are E nodes (in this case the text subelements
are their only subelements). If they are not xi; yi then we let them have di�erent values if they are
A or S nodes, and let their text subelements have di�erent values if they are E nodes. The only
exception is when there is i 2 [1; k] such that Pi = �. In this case, we have to assure n1 =v n2.
That is, for all j 2 [1; k] and for any P 0

j such that Pj = P 0
j :P

00
j for some P 00

j 2 PL, we let x0j =v y
0
j ,

where x0j ; y
0
j are the nodes in n1[[P

0
j ]] and n2[[P

0
j ]], respectively. For any other pair x; y in T , we let

x 6=v y as before. It is easy to see that T j= :'.
We next modify T such that T j= �. Using the following algorithm and starting with T

constructed above, we examine each � in �. If the abstract tree does not satisfy �, then we merge
certain nodes in the tree such that the modi�ed tree satis�es �. Assume that for each � in �,
� = (Q�; (Q

0
�; fP

0
1; : : : ; P

0
mg)).

repeat until no further change in T

if there exist key � 2 � and nodes x; x0
1; : : : ; x

0
m in T1, y; y

0
1; : : : ; y

0
m in T2,

and node w in T such that
T j= Q�(r; w) ^Q0

�(w; x) ^Q0
�(w; y) ^ P 0

1(x; x
0
1) ^ : : : ^ P 0

m(x; x0
m) ^

P 0
1(y; y

0
1) ^ : : : ^ P 0

m(y; y0
m) ^ x0

1 =v y
0
1 ^ : : : ^ x0

m =v y
0
m ^ x 6= y

then merge x; y and their ancestors in T as follows:

Case 1: if x; y are on Q0 paths from n to n1; n2
respectively, and they are not n1; n2

then merge nodes as shown in Figure 4 (b)

Case 2: if x; y are on some Pi in T1; T2, respectively, or if they are n1; n2
then (i) merge nodes as shown in Figure 4 (c)

(ii) terminate the algorithm

By the construction of T , x0i =v y
0
i i� they are corresponding nodes in T1 and T2, respectively.

Moreover, the node w can only be either on path Q or on path Q0. In Case 1, the subtree under
x and the subtree under y will both be under the same node x = y, as shown in Figure 4 (b). In
Case 2, under the node n1 (which is merged with n2) only a single copy of the Pi path is retained
and we discard the rest of the key paths in fP1; :::; Pkg. If x and y are n1 and n2, respectively, a
single copy of each of the Pi paths are retained under node n1.

The algorithm terminates since T is �nite and thus merging can be performed only �nitely
many times. Let Tf denote the tree obtained upon the termination of the algorithm. Note that
Tf j= ' i� n1 = n2, i.e., when the algorithm terminates in Case 2. If the algorithm does not
terminate in Case 2, then Tf j= � and Tf 6j= '. By Lemma 5, there is a �nite XML tree G such



1058 Peter Buneman et al.

that G j= � and G 6j= '. Thus what we need to do is to show that the algorithm does not terminate
in Case 2, i.e., Tf 6j= '.

We show Tf 6j= ' by contradiction, that is, if Tf j= ' then � `I ', which contradicts our
assumption. Let us also use T to denote the tree obtained after executing z merging operations.
We show by induction on z that each step of merging corresponds to applications of certain rules
of I, and thus if T j= ' (i.e., the algorithm terminates in Case 2 after step z), then � `I '. When
z = 0, the statement holds since Tf 6j= '. Assume the statement for z and we show that it also
holds for z + 1.

(1) First, consider the merging in Case 1 as shown in Figure 4 (b) and (d). This step generates
I-proofs for keys that will be used in establishing � `I ' if Tf j= '. By the de�nition of abstract
trees, Case 1 can only happen if there is a PL expression Rp such that Q:Q0 � Q�:Q

0
�:Rp and in

addition, for all j 2 [1;m], there is s 2 [1; k] such that either (i) Rp:Ps � P 0
j or (ii) there is a PL

expression Rj such that Rp:Ps � P 0
j :Rj . If it is (ii) then there must exist some l 2 [1; k] such that

Pl = � in ', by the de�nition of T . We consider the following cases.

(a) If the node w is on the path Q, i.e., it is above n in T , then there must be PL expression
Qt such that Q0 = Qt:Rp, and x; y 2 n[[Qt]] as illustrated in Figure 4 (b). Moreover, from � the
following can be proved:

(Q; (Qt; fRp:P1; : : : ; Rp:Pkg))

by using context-target , three containment rules (i.e., context-path-containment, target-path-contain-
ment and key-path-containment) and superkey . If it is (ii) then pre�x-epsilon is also needed.

(b) If the node w is on the path Q0, i.e., it is below n but above n1; n2 in T , then there must be
PL expressions Qc; Qt such that Q:Qc � Q�, Q

0 = Qc:Qt:Rp, w 2 n[[Qc]] and x; y 2 n[[Qc:Qt]]
as illustrated in Figure 4 (d). This can only happen when some descendants x0; y0 of n on path
Q0 above x; y were merged in a previous step by the algorithm. More precisely, there are PL
expressions Qt1; Qt2 such that Qt = Qt1:Qt2, x

0; y0 2 n[[Qc:Qt1]] and x
0; y0 were merged in Case 1

of the algorithm. Thus by the induction hypothesis, we have that the following is provable from �
by using I:

(Q; (Qc:Qt1; fQt2:Rp:P1; : : : ; Qt2:Rp:Pkg)):

From � the following can be proved

(Q:Qc; (Qt1:Qt2; fRp:P1; : : : ; Rp:Pkg))

by using the three containment rules and superkey . If it is (ii) then pre�x-epsilon is also needed.
Thus by context-target and interaction we have

(Q; (Qc:Qt1:Qt2; fRp:P1; : : : ; Rp:Pkg)):

That is, (Q; (Qc:Qt; fRp:P1; : : : ; Rp:Pkg)).

(2) Next, we consider the merging in Case 2 as shown in Figure 4 (c) and (e). If it is the case
then we show � `I '. By the de�nition of abstract trees, Case 2 can only happen if there is a PL
expression Rp such that Q:Q0:Rp � Q�:Q

0
� and in addition, for all j 2 [1;m], there is s 2 [1; k]

such that either (i) Ps � Rp:P
0
j or (ii) there is a PL expression Rj such that Ps � Rp:P

0
j :Rj . If

it is (ii) then there must exist some l 2 [1; k] such that Pl = � in ', by the de�nition of T . We
consider the following cases.

(a) If the node w is on the path Q, i.e., it is above n in T , then there must be PL expression Qt

such that Qt:Q
0:Rp � Q0

�, x 2 n1[[Rp]] and y 2 n2[[Rp]] as illustrated in Figure 4 (c). If Rp = �
then ' can be proved from � by using context-target , the three containment rules and superkey .
Note that if it is (ii) then pre�x-epsilon is also needed. If Rp 6= � then by the construction of T , we
must have m = 1. Thus, we can also prove ' from � by using subnodes , context-target , the three
containment rules and superkey . Thus, we have � `I ', which contradicts our assumption.

(b) If the node w is on the path Q0, i.e., it is below n but above n1; n2 in T , then there must be
PL expressions Qc; Qt such that Q:Qc � Q�, Q

0 = Qc:Qt, w 2 n[[Qc]], x 2 n1[[Rp]] and y 2 n2[[Rp]]
as illustrated in Figure 4 (e). This can only happen when some descendants x0; y0 of n on path
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Q0 above n1; n2 were merged in a previous step by the algorithm. More precisely, there are PL
expressions Qt1; Qt2 such that Qt = Qt1:Qt2, x

0; y0 2 n[[Qc:Qt1]] and x
0; y0 were merged in Case 1

of the algorithm. Thus, by the induction hypothesis, we have that the following is provable from
� by using I:

(Q; (Qc:Qt1; fQt2:P1; : : : ; Qt2:Pkg)):

If Rp = � then from � the following can be proved

(Q:Qc; (Qt1:Qt2; fP1; : : : ; Pkg))

by using the three containment rules and superkey . Observe that if it is (ii) then pre�x-epsilon is
also needed. If Rp 6= � then by the construction of T , we must have m = 1. Thus, we can also
prove it from � by using subnodes , context-target , the three containment rules and superkey . Thus
by interaction and context-target we have

(Q; (Qc:Qt1:Qt2; fP1; : : : ; Pkg)):

That is, (Q; (Q0; fP1; : : : ; Pkg)) = '. Thus again we have � `I ', which contradicts our
assumption.

This shows that I is complete for K constraint implication and thus completes the proof of
Lemma 6. 2

Finally, we show that K constraint implication is decidable in polynomial time.

Lemma 7 There is an algorithm that, given any �nite set � [ f'g of K constraints, determines

whether � j= ' in time O(n7), where n is the size of keys.

Proof. A function for determining �nite implication of K constraints is given in Algorithm 3.
The correctness of the algorithm follows from Lemma 6 and its proof. Similar to the algorithm

for implication of absolute keys (Algorithm 2), it applies I rules to derive ' if � j= '. Observe
that Steps 1 and 2 are identical in both algorithms, and Step 4(a), when ignoring the context path,
proves ' from � by applying exactly the same inference rules as Algorithm 2. In fact, if we replace
paths Q;Q�, and Qt by � in Step 4(a), it is identical to Algorithm 2.

The presence of a context path adds complexity to the algorithm for two reasons. First, it can
be the case that either the context path of a key in � is contained in a pre�x of Q, considered in
Steps 4(a) and (c); or Q is contained in a pre�x of the context path of a key in �, considered in
Steps 4(b) and (d). Second, the application of the interaction rule depends on the existence of two
distinct keys in �. As a consequence, we need to keep track of intermediate keys in the I-proof. In
the algorithm, these keys are produced by Steps 4(c) and (d), and they are kept in the set variable
X .

Next, observe that each conditional statement in step 4 corresponds to applications of certain
rules in I. More speci�cally:

� Steps 4(a) and (c) use the three containment rules (i.e., context-path-containment, target-
path-containment and key-path-containment), context-target , superkey , and subnodes. If it is
(ii) then pre�x-epsilon is also used.

� Steps 4(b) and (d) apply the three containment rules, superkey , subnodes, and interaction,
which need intermediate results of the I-proof stored in X . If it is (ii) then pre�x-epsilon is
also used.

For the interested reader, Step 4(a) corresponds to Figure 4(c). Since nodes n1 and n2 are
merged as a result of this key, we can prove '. Similarly, Step 4(b) corresponds to Figure 4(e).
The di�erence between Steps 4(a) and (b) is whether or not the context path of the key contains
a pre�x of Q. Steps 4(c) and (d) correspond to Figure 4(b) and (d) respectively. Here these keys
do not prove ' directly, but they generate intermediate results, which are saved in X . Again the
di�erence is whether the context path of the key contains a pre�x of Q.
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Algorithm 3 Finite implication of K constraints

Input: a �nite set � [ f'g of K constraints, where ' = (Q; (Q0; fP1; :::; Pkg))
Output: true i� � j= '

1. if Q0 = � then output true and terminate

2. for each (Qi; (Q
0
i; Si)) 2 � [ f'g do

repeat until no further change
if Si = S [ fP 0; P 00g such that P 0 � P 00 then Si := Si n fP

00g
3. X := ;;

4. repeat until no keys in � can be applied in cases (a)-(d).
for each � = (Q�; (Q0

�; fP
0
1; :::; P

0
mg)) 2 � do

// See Figure 4(c) for an illustration of this case.
(a) if there is Qt; Rp in PL such that Q � Q�:Qt, Qt:Q

0:Rp � Q0
�, Rp = � if m > 1

and for all j 2 [1;m] there is s 2 [1; k] such that either
(i) Ps � Rp:P

0
j or

(ii)Ps = R0
s:R

00
s , R

0
s � Rp:P

0
j , and there exists l 2 [1; k] such that Pl = �

then output true and terminate

// See Figure 4(e) for an illustration of this case.
(b) if there are Qc; Qt; Rp in PL such that

Q:Qc � Q�, Q
0:Rp � Qc:Q

0
�, Q

0 = Qc:Qt, Rp = � if m > 1, and
for all j 2 [1; m] there is there is s 2 [1; k] such that either
(i) Ps � Rp:P

0
j or

(ii)Ps = R0
s:R

00
s , R

0
s � Rp:P

0
j , and there exists l 2 [1; k] such that Pl = �;

and moreover, there is (Q; (Qc; fQt:P1; :::; Qt:Pkg)) in X

then output true and terminate

// See Figure 4(b) for an illustration of this case.
(c) if there are Qc; Qt; Rp in PL such that Q � Q�:Qc, Qc:Q

0 � Q0
�:Rp, Q

0 = Qt:Rp

and for all j 2 [1;m] there is s 2 [1; k] such that either
(i) Rp:Ps � P 0

j or
(ii) Ps = R0

s:R
00
s , Rp:R

0
s � P 0

j , and there exists l 2 [1; k] such that Pl = �

then
(1) if m = 1 then X := X [ f(Q; (Q1; fQ2:Rp:P1; : : : ; Q2:Rp:Pkg))g

where Qt = Q1:Q2 for some Q1; Q2 2 PL;
(2) if m > 1 then X := X [ f(Q; (Qt; fRp:P1; : : : ; Rp:Pkg))g;
(3) � := � n f�g;

// See Figure 4(d) for an illustration of this case.
(d) if there are Qc; Qt; Rp in PL such that Q:Qc � Q�, Q

0 � Qc:Q
0
�:Rp,

Q0 = Qc:Qt:Rp and for all j 2 [1; m] there is s 2 [1; k] such that either
(i) Rp:Ps � P 0

j or
(ii) Ps = R0

s:R
00
s , Rp:R

0
s � P 0

j , and there exists l 2 [1; k] such that Pl = �;
and moreover, there is (Q; (Qc; fQt:Rp:P1; :::; Qt:Rp:Pkg)) in X

then
(1) if m = 1 then X := X [ f(Q; (Q1; fQ2:Rp:P1; : : : ; Q2:Rp:Pkg))g

where Qc:Qt = Q1:Q2 for some Q1; Q2 2 PL;
(2) if m > 1 then X := X [ f(Q; (Qc:Qt; fRp:P1; : : : ; Rp:Pkg))g;
(3) � := � n f�g;

5. output false

We next show that this algorithm runs in polynomial time. To see this, observe that step 1
takes constant time and step 2 takes at most O((j�j + j'j)3) time. For step 4, the worst scenario
can happen as follows: for each key in �, the conditions of (a) - (d) are tested and only the last
key in � is removed after testing all keys in �. Hence, the second time the for loop is performed,
one less key is tested. Therefore if there are s keys in �, a total of O(s2) keys will be tested.
We next examine the complexity of each condition of steps (a) - (d). For step (a), we need
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to partition Q to �nd Qt. Also, for each such Qt, we need to partition Q0
� to �nd Rp. Since

containment of path expressions is tested in quadratic time, the �rst two inclusion tests cost at
most jQj � (j'j � (j�j+ j'j)+ jQ0

�j � ((j'j+ j�j) � j�j)), which is O(n4) in total, where n is the size of
keys. Then for each key path P 0

j in �, we check if there is a key path Ps in ' and partition Ps to
get R0s such that case (i) or (ii) is satis�ed. This costs jPsj � (jRpj+ jP 0

j j)+ jPsj � jPsj � (jRpj+ jP 0
j j).

Since there are m key paths in �, for all k key paths in ' these tests cost (jP1j + : : : + jPkj) �
(m � jRpj+ jP 0

1j+ : : :+ jP 0
mj) + (jP1j � jP1j+ : : :+ jPk j � jPk j)(m � jRpj+ jP 0

1j+ : : :+ jP 0
mj). Note

that Rp = � when m > 1, and there are jQj � jQ0
�j possible expressions for Qt, and Rp. Therefore,

the cost of step (a) is at most jQj � jQ0
�j � (j'j � (j�j + j�j) + j'j2 � (j�j + j�j)), which is O(n5).

It is easy to see that the steps (b), (c), and (d) involve at most the same cost. Since these tests
are performed O(s2) times, the overall cost of the algorithm is O(n7), and therefore we have a
polynomial algorithm. It is possible that this algorithm can be improved further to achieve a lower
complexity but this is beyond the scope of this paper. 2

4. DISCUSSION

We have investigated a key constraint language introduced in [13] for XML data and studied the
associated (�nite) satis�ability and (�nite) implication problems in the absence of DTDs. These
keys are capable of expressing many important properties of XML data. Moreover, in contrast to
other proposals, keys de�ned in this language can be reasoned about eÆciently. More speci�cally,
keys expressed in this language are always �nitely satis�able, and their (�nite) implication is �nitely
axiomatizable and decidable in PTIME in the size of keys. We believe that these key constraints
are simple yet expressive enough to be adopted by XML designers and maintained by systems for
XML applications.

For further research, a number of issues deserve investigation. First, despite their simple syntax,
there is an interaction between DTDs and our key constraints. To illustrate this, let us consider a
simple DTD D:

<!ELEMENT foo (X, X)>

and a simple (absolute) key ' = (X; ;). Obviously, there exists a �nite XML tree that conforms
to the DTD D (see, e.g., Figure 5 (a)), and there exists a �nite XML tree that satis�es the key
' (e.g., Figure 5 (b)). However, there is no XML tree that both conforms to D and satis�es '.
This is because D requires an XML tree to have two distinct X elements, whereas ' imposes the
following restriction: The path X , if it exists, must be unique at the root. This shows that in
the presence of DTDs, the analyses of key satis�ability and implication can be wildly di�erent. It
should be mentioned that keys de�ned in other proposals for XML, such as those introduced in
XML Schema [38], also interact with DTDs or other type systems for XML. This issue was recently
investigated in [5, 21] for a class of keys and foreign keys de�ned in terms of XML attributes.

Second, there are more general de�nitions of key constraints that should be considered. Among
them are keys de�ned requiring existence and uniqueness , as happens in XML Schema. This means
that a key path has to exist and be unique at every node in the target set. This is the strong-key
de�nition mentioned in [13]. Another possibility is to require equal keys to imply value-equality
on nodes rather than node identity y. This is useful in XML documents in which redundancy is
tolerated. It is sometimes useful to put the same information in more than once place in an XML
document in order to avoid having to do joins to recover this information.

Third, one might be interested in using di�erent path languages to express keys. The contain-
ment and equivalence problems for the full regular language are PSPACE-complete [23], and, as
mentioned earlier, they are not �nitely axiomatizable. Another alternative is to adopt the lan-
guage of [30], which simply adds a single wildcard to PL. Despite the seemingly trivial addition,
containment of expressions in their language is only known to be in PTIME. It would be inter-
esting to develop an algorithm for determining containment of expressions in this language with a
complexity comparable to the related result established in this paper. For XPath [18] expressions,

yThanks to David Maier for the observation.
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X

( a )

X X

( b )

foo foo

Fig. 5: Interaction between DTDs and XML keys

questions in connection with (�nite) satis�ability and (�nite) implication of keys de�ned in terms
of these complex path expressions are, to the best of our knowledge, still open.

Fourth, along the same lines as our XML key language, a language of foreign keys needs to be
developed for XML. As shown by [22, 21, 5], the implication and �nite implication problems for a
class of keys and foreign keys de�ned in terms of XML attributes are undecidable, in the presence
or absence of DTDs. However, under certain practical restrictions, these problems are decidable
in PTIME. Whether these decidability results still hold for more complex keys and foreign keys
needs further investigation.

A �nal question is about key constraint validation. Native constraint validators are emerging for
XML Schema keys [31, 42] as well as for the more general form of keys presented in this paper [44].
However, if the XML data is being stored using relational technology then it may also be possible to
validate keys using triggered procedures or PRIMARY KEY techniques. Using the restricted form
of keys found in XML Schema, a relational schema can be generated or augmented from the keys
to generate relational primary keys [43]. A di�erent strategy for generating a relational schema
to store XML data based on keys is to compute a minimum cover of all functional dependencies
propagated from XML keys on a universal relation and then re�ne the schema into a normal form
using the dependencies computed [19].
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