
Path Constraints in Semistructured Databases

PETER BUNEMAN �

Department of Computer and Information Science, University of Pennsylvania

200 South 33rd Street, Philadelphia, PA 19104-6389

peter@central.cis.upenn.edu

WENFEI FAN y

Department of Computer and Information Sciences, Temple University

1805 N. Broad Street, Philadelphia, PA 19122-2583

fan@joda.cis.temple.edu

AND

SCOTT WEINSTEIN z

Department of Philosophy, University of Pennsylvania

433 Logan Hall, Philadelphia, PA 19104-6304

weinstein@linc.cis.upenn.edu

Abstract

We investigate a class of path constraints that is of inter-

est in connection with both semistructured and structured

data. In standard database systems, constraints are typi-

cally expressed as part of the schema, but in semistructured

data there is no explicit schema and path constraints pro-

vide a natural alternative. As with structured data, path

constraints on semistructured data express integrity con-

straints associated with the semantics of data and are impor-

tant in query optimization. We show that in semistructured

databases, despite the simple syntax of the constraints, their

associated implication problem is r.e. complete and �nite

implication problem is co-r.e. complete. However, we es-

tablish the decidability of the implication and �nite impli-

cation problems for several fragments of the path constraint

language, and demonstrate that these fragments su�ce to

express important semantic information such as extent con-

straints, inverse relationships and local database constraints

commonly found in object-oriented databases.

�Partly supported by the Army Research O�ce (DAAH04-95-1-
0169) and NSF Grant CCR92-16122.

ySupported in part by a graduate fellowship from the Institute for
Research in Cognitive Science, University of Pennsylvania.

zSupported by NSF Grant CCR-9403447.

1 INTRODUCTION

Path inclusion constraints have been studied by Abite-
boul and Vianu in [5] for semistructured databases. In
semistructured databases, the data is unconstrained by
any type system or schema and typically has an irregu-
lar structure [2, 12]. The study of semistructured data
has generated the development of new data models and
query languages (e.g., [4, 14, 23, 33, 34]) appropriate
to this form of data representation, which already ex-
ists in certain scienti�c data formats. Recently, XML
(eXtensible Markup Language [11]) has emerged as a
standard for data exchange on the World Wide Web.
While a schema may be imposed on an XML document,
it is not required, and XML data is usefully treated
as semistructured data [20]. Certain kinds of integrity
constraints found in object-oriented databases are also
common in semistructured databases. Some of these
can be expressed as path constraints introduced in [5].

To illustrate the kinds of constraints that we want to
capture, let us �rst investigate the constraints that are
commonly placed on object-oriented databases. Con-

1

sider the following object-oriented schema (expressed
in O2 [6]):

class studentf
Name: string;

Taking: set(course);

g

class coursef
CName: string;

Enrolled: set(student);

g

Students: set(student);

Courses: set(course);

in which we assume that the declarations Students

and Courses de�ne (persistent) entry points into the
database. As it stands, this declaration does not
provide full information about the intended structure.
Given such a database one would often expect the fol-
lowing informally stated constraints to hold:

(a) 8 s 2 Students 8 c 2 s:Taking (c 2 Courses)

(b) 8 c 2 Courses 8 s 2 c:Enrolled (s 2 Students)

That is, any course taken by a student must be a course
that occurs in the database extent of courses, and any
student enrolled in a course must be a student that
similarly occurs in the database. We shall call such
constraints extent constraints. It should be noted that
there is a natural analogy between extent constraints
and (unary) inclusion dependencies developed for rela-
tional databases.

We might also expect an inverse relationship to hold
between Taking and Enrolled. Object-oriented data-
bases di�er in the ways they enable one to state and en-
force extent constraints and inverse relationships. Com-
pare, for example, O2 [6] and ObjectStore [30].

Let us develop a more formal notation for describing
such constraints. In our object-oriented database there
are two sets of objects, Students and Courses. We ex-
press this in semistructured data by building a graph
with a root node r and a node for each object. Edges
connect the root to these object nodes, and these edges
are labeled either Students or Courses. Edges emanat-
ing from these nodes indicate attributes or relationships
with other objects and are appropriately labeled. For
example, a node representing a student object has a sin-
gle Name edge connected to a string node, and multiple
Taking edges connected to course nodes. See Figure 1
for an example of such a graph.

Name

C1 S2S1 C2

Students Courses Students Courses

"Phil4""Smith" "Chem3" "Jones"

CName CNameName

Taking

Enrolled

Taking

Enrolled

Taking

Enrolled

r

Figure 1: Representation of a student/course database

Using this representation of data we can examine
certain kinds of constraints.

Extent Constraints. By taking edge labels as binary
predicates, constraints of the form (a) and (b) above
can be stated as:

8 c (9 s (Students(r; s) ^ Taking(s; c))
! Courses(r; c))

8 s (9 c (Courses(r; c) ^ Enrolled(c; s))
! Students(r; s))

Here r is a constant denoting the root node, and vari-
ables c, s range over vertices. The �rst constraint above
states that any vertex that is reached from the root
by following a Students edge followed by a Taking

edge can also be reached from the root by following a
Courses edge. Similarly, the second asserts that any
vertex that is reached from the root by following a
Courses edge followed by an Enrolled edge can also
be reached from the root by following a Students edge.

These constraints are examples of \word constraints"
studied in [5]; the implication problems for word con-
straints were shown to be decidable in semistructured
databases there. Also studied in [5] was a form of con-
straints in which paths are represented by regular ex-
pressions. We do not consider this general form of con-
straints here.

Inverse Constraints. These are common in object-
oriented databases [17]. With respect to our stu-
dent/course schema, the inverse relationship between
Taking and Enrolled is expressed as:

8 s (Students(r; s)!
8 c (Taking(s; c)! Enrolled(c; s)))

8 c (Courses(r; c)!
8 s (Enrolled(c; s)! Taking(s; c)))

The �rst constraint above states that for any student s

2

and any c, if c is reachable from s by following a Taking
edge, then s is also reachable from c by following an
Enrolled edge. Similarly, the second constraint asserts
that for any course c and any s, if s is reachable from c

by following an Enrolled edge, then c is also reachable
from s by following a Taking edge. Such constraints
cannot be expressed as word constraints or even by the
more general path constraints given in [5].

Local Database Constraints. In database integra-
tion it is sometimes desirable to make one database a
component of another database, or to build a \database
of databases". Suppose, for example, we want to bring
together a number of student/course databases as de-
scribed above. We might write something like:

class School-DBf
DB-identifier: string;

Students:set(student); // as defined above

Courses: set(course); // as defined above

g

Schools: set(School-DB);

Now we may want certain constraints to hold on com-
ponents of this database. For example, the \extent con-
straints" and \inverse constraints" described above now
hold on each member of the Schools set. Here we refer
to a component database such as a member of the set
Schools as a local database and its constraints as local
database constraints . Extending our graph representa-
tion by adding Schools edges from a new root node to
the roots of local databases, the local extent and inverse
constraints are:

8 d (Schools(r; d)! 8c (9 s (Students(d; s)^
Taking(s; c))! Courses(d; c)))

8 d (Schools(r; d)! 8 s (9 c (Courses(d; c)^
Enrolled(c; s))! Students(d; s)))

8 s (9 d (Schools(r; d) ^ Students(d; s))!
8c (Taking(s; c)! Enrolled(c; s)))

8 c (9 d (Schools(r; d) ^ Courses(d; c)) !
8s (Enrolled(c; s)! Taking(s; c)))

Again, these cannot be stated as word constraints or
by the more general constraints of [5].

These considerations give rise to the question
whether there is a natural generalization of the con-
straints of [5] which will capture these slightly more
complicated forms. Here we consider a class of path
constraints, Pc, of either the form

8x (�(r; x)! 8 y (�(x; y)!
(x; y)));

or the form

8x (�(r; x)! 8 y (�(x; y)!
(y; x)));

where �(x; y) (�(x; y),
(x; y)) represents a path, i.e.,
a sequence of edge labels, from node x to node y. As
demonstrated above, �(x; y) can be expressed as a �rst-
order logic formula with two free variables x and y by
treating edge labels as binary predicates. The path con-
straint language Pc is a mild generalization of the class
of word constraints studied in [5].

This class of path constraints can be used to ex-
press all the integrity constraints we have so far encoun-
tered. These constraints are not only a fundamental
part of the semantics of the data, but are also impor-
tant in query optimization. They have proven useful in
a variety of database contexts, ranging from semistruc-
tured data such as data on the World Wide Web and in
XML documents, to structured data as found in object-
oriented databases. In particular, among the numerous
proposals for adding structure or semantics to XML
documents, several [10, 26, 31, 32] advocate the need
for these integrity constraints. In standard database
systems, integrity constraints are typically expressed as
part of the schema, but in semistructured data there
is no explicit schema and path constraints provide a
natural alternative.

To illustrate how these constraints might be used in
query optimization, consider again the student/course
database given in Figure 1. Suppose, for example, we
want to �nd the names of all the courses enrolled by
students who are taking the course \Chem3". Without
the inverse and extent constraints described above, one
would write the query as Q1 (in OQL syntax [17]):

Q1 select distinct c.CName

from Courses c,

c.Enrolled s,

s.Taking c'

where c'.CName = "Chem3"

Given these inverse and extent constraints, one can
show that Q1 is equivalent to Q2 given below:

Q2 select distinct c.CName

from Courses c',

c'.Enrolled s,

s.Taking c

where c'.CName = "Chem3"

In other words, given these constraints, one can rewrite
Q1 to Q2. In most cases, Q2 is more e�cient than
Q1. Indeed, Q2 complies with the familiar optimiza-
tion principle originating in relational database theory:
performing selections as early as possible.

3

To take advantage of path constraints, it is impor-
tant to be able to reason about them. This gives rise
to the question of logical implication, the most impor-
tant theoretical question in connection with path con-
straints. In general, we may know that a set of path
constraints is satis�ed by a database. The question of
logical implication is: what other path constraints are
necessarily satis�ed by the database? To see why logical
implication is important, consider the queries Q1 and
Q2 against the student/course database given above.
To show that Q1 can be rewritten to Q2, the follow-
ing constraints of Pc are also needed in addition to the
given inverse and extent constraints:

8 s (9 c0 (Courses(r; c0) ^Enrolled(c0; s)) !
8 c (Taking(s; c)! Enrolled(c; s)))

8 c (9 c0 (Courses(r; c0) ^ 9 s (Enrolled(c0; s) ^
Taking(s; c)))! Courses(r; c))

To use these constraints, we need to show that they nec-
essarily hold if the given extent and inverse constraints
hold. That is, they are implied by the given path con-
straints.

There are two forms of implication problems associ-
ated with path constraints. Databases are usually con-
sidered to be �nite. Logical implication is called �nite
implication for the case in which only �nite database in-
stances are permitted. It is also interesting to consider
logical implication in the traditional logic framework in
which in�nite instances are also allowed. Logical im-
plication is called unrestricted implication, or simply
implication, for the case in which both �nite database
instances and in�nite instances are permitted.

In the remainder of the paper, we investigate the
implication and �nite implication problems associated
with path constraints of Pc in the context of semistruc-
tured data. Surprisingly, the implication problems for
this mild generalization of word constraints are unde-
cidable, whereas the implication problems for word con-
straints are decidable in PTIME [5]. However, certain
restricted cases are decidable, and these cases are suf-
�cient to express at least the constraints we have de-
scribed above.

Related work. There is a natural analogy between the
work on path constraints and inclusion dependency the-
ory developed for relational databases (see, e.g., [3] for
an in-depth presentation of inclusion dependency the-
ory). Path constraints specify inclusions among certain
sets of objects, and can be viewed as a generalization
of inclusion dependencies. Inclusion dependencies have
proven useful in semantic speci�cation and query op-
timization for relational databases. In the same way,

path constraints are important in a variety of database
contexts, ranging from semistructured data to object-
oriented databases.

Another form of constraints de�ned in terms of nav-
igation paths, called path functional dependencies , has
been studied by Weddell, et al. [8, 29]. These con-
straints di�er signi�cantly from the path constraints
investigated here because they are a generalization of
functional dependencies for a restricted type system,
while Pc constraints can be viewed as a generalization
of inclusion dependencies for both semistructured and
structured databases.

Closer to the work reported here is the path inclu-
sion constraint language introduced and investigated by
Abiteboul and Vianu in [5]. A constraint in this lan-
guage is an expression of the form p � q or p = q, where
p and q are regular expressions representing paths. In
particular, if p and q are simply paths, i.e., sequences of
edge labels, the constraint is called a word constraint .
Such a constraint expresses the inclusion or equality re-
lation between the two sets of nodes reachable along p
and q. The decidability of the implication problems for
this language was established for semistructured data
in [5]. In addition, it was also shown there that word
constraint implication is decidable in PTIME. This con-
straint language di�ers from the constraint language Pc
in expressive power. On the one hand, the language of
[5] allows a more general form of path expressions than
Pc. On the other hand, it cannot express inverse and lo-
cal database constraints, whereas these constraints are
expressible in Pc.

Recently, the application of integrity constraints to
query optimization was also studied by Popa and Tan-
nen in [35]. Among other things, [35] developed an
equational theory for query rewriting by using a cer-
tain form of constraints. Semantic optimization has
also been investigated for semistructured databases in
[13, 24] and for structured databases in [18, 19, 25].

Another issue is the interaction between path con-
straints and types. Structured data, e.g., data in object-
oriented databases, is constrained by a schema, in which
both types and integrity constraints are speci�ed. In
addition, although the XML standard itself does not re-
quire any type system, a number of proposals [10, 26, 32]
have been developed that roughly correspond to data
de�nition languages. These allow one to constrain the
structure of XML data by imposing a type on it. These
and other proposals (e.g., [31]) also advocate the need
for integrity constraints, which can be expressed as path
constraints. The type system or schema de�nition may
also be viewed as imposing a constraint on the data. It
is a constraint of a di�erent form. That is, type con-

4

straints cannot be expressed as path constraints and
vice versa. In structured data and possibly in XML
documents both forms of constraints are present, and
therefore, we need to understand the interaction be-
tween them. In general we can no longer expect results
developed for semistructured data to hold when a type
is imposed on the data. In other words, the imposi-
tion of a type can alter the computational complexity of
the path constraint implication problem in unexpected
ways. Indeed, in [16] we have shown that adding a
type system may in some cases simplify the analysis of
path constraint implication, and in other cases make
it harder. More speci�cally, some decidability results
on path constraint implication developed for semistruc-
tured data break down when some type system is added,
and on the other hand, some undecidability results on
untyped data also collapse when some type constraint
is imposed. This issue was �rst addressed in [15] and
then treated in detail in [16].

Organization. The remainder of the paper is orga-
nized as follows. Section 2 formally presents our path
constraint language Pc. Section 3 establishes the un-
decidability of the implication and �nite implication
problems associated with Pc in the context of semistruc-
tured databases. Section 4 identi�es several fragments
of Pc, and shows that the implication and �nite impli-
cation problems for each of these fragments are decid-
able in semistructured databases. It also demonstrates
that these fragments su�ce to express many important
integrity constraints such as extent, inverse and local
database constraints. Finally, Section 5 summarizes our
results.

2 PATH CONSTRAINTS

In this section, we �rst present an abstraction of
semistructured databases in terms of �rst-order logic,
and then de�ne paths and path constraints of Pc.

2.1 Semistructured Databases

Semistructured data is usually represented as an edge-
labeled (rooted) directed graph, e.g., in UnQL [14] and
in OEM [4, 34]. See [2, 12] for surveys of semistructured
data models. Along the same lines, here we use an
abstraction of semistructured databases as (�nite) �rst-
order logic structures of a relational signature

� = (r; E);

where r is a constant denoting the root and E is a �nite
set of binary relation symbols denoting the edge labels.

We specify a �-structure G by giving (jGj; rG; EG),
where

� jGj is a set called the universe (domain) of G, and
elements of jGj are called the nodes (vertices) of
G;

� rG is a distinguished element of jGj, called the root
node of G;

� EG is a �nite set of binary relations on jGj, each
of which is named by a relation symbol of E. For
any K 2 E, we write KG for the relation in G

named by K.

Structure G can be naturally depicted as a rooted edge-
labeled directed graph with jGj as the set of vertices,
EG the set of labeled edges and rG the root. For any
K 2 E and a; b 2 jGj, there is an edge labeled K from
a to b in the graph if and only if (a; b) 2 KG.

It should be mentioned that we do not assume the
reachability of all nodes from the root in a �-structure
(graph). However, none of our results or proofs are
a�ected if reachability is enforced.

2.2 Paths

A path, i.e., a sequence of labels, can be represented as a
logic formula with two free variables. More speci�cally,
a path is a �rst-order logic formula �(x; y) of one of the
following forms:

� x = y, denoted by �(x; y) and called an empty path;

� K(x; y), where K 2 E; or

� 9z(K(x; z) ^ �(z; y)), where K 2 E and �(z; y) is
a path.

Here the free variables x and y denote the tail and head
nodes of the path, respectively. We write �(x; y) as �
when the parameters x and y are clear from the context.
In particular, we may replace free variable x or y by
r, where r is the constant denoting the root given in
signature �. That is, we use �(r; y) or �(x; r) to denote
a path from or to the root.

We have seen many examples of paths in Section 1.
Among them are:

9 z (Students(x; z) ^ Taking(z; y))

9 z (Courses(x; z)^
9w (Enrolled(z; w) ^ Taking(w; y)))

5

The concatenation of paths �(x; z) and �(z; y), de-
noted by �(x; z) � �(z; y) or simply � � �(x; y), is the
path

� �(x; y), if � = �;

� 9 z (K(x; z) ^ �(z; y)), if � = K for some K 2 E;

� 9u (K(x; u)^(�0(u; z) ��(z; y))), if �(x; z) is of the
form 9u (K(x; u)^ �0(u; z)), where K 2 E and �0

is a path.

For example, the paths above can be written as:

Students � Taking(x; y)

Courses �Enrolled � Taking(x; y)

We use (�)m to denote the m-time concatenations
of �, de�ned by:

(�)m =

�
� if m = 0
� � (�)m�1 otherwise

A path � is said to be a proper pre�x of %, denoted
by � �p %, i� there exists a path � such that � 6= � and
% = � � �. A path � is said to be a pre�x of %, denoted
by � �p %, i� � �p % or � = %. Similarly, � is said to be
a su�x of %, denoted by � �s %, i� there exists � such
that % = � � �.

For example, the path Courses � Enrolled � Taking
has the following pre�xes: the empty path �, Courses,
Courses � Enrolled and itself. Its su�xes include �,
Taking, Enrolled � Taking and itself.

The length of path �, j�j, is de�ned by:

j�j =

(
0 if � = �
1 if � = K
1 + j�j if � = K � �

For example, jCourses � Enrolled � Takingj = 3 and
jStudents � Takingj = 2.

In particular, a path of the form �(r; x) or �(x; r),
i.e., a path from or to the root, can be expressed as a
�rst-order logic formula with at most two distinct vari-
ables. For example, the path

Students � Taking �Enrolled � Taking(r; x)

can be expressed as:

9 y (Taking(y; x) ^ 9x (Enrolled(x; y) ^
9 y (Taking(y; x) ^ Students(r; y))))

Observe that this logic formula uses only two distinct
variables. In general, a path �(x; y) can be expressed
as a �rst-order logic formula with at most three distinct
variables.

2.3 Path Constraint Language Pc

By using path formulas, the path constraint language
Pc is formalized as follows.

De�nition 2.1: A path constraint ' is an expression
of either the forward form

8x (�(r; x)! 8 y (�(x; y)!
(x; y)));

or the backward form

8x (�(r; x)! 8 y (�(x; y)!
(y; x)));

where �; �;
 are paths, called the pre�x , left tail and
right tail of ', and denoted by pf('), lt(') and rt('),
respectively.

A path constraint is called a forward constraint if it
is of the forward form, and is called a backward con-
straint if it is of the backward form.

The set of all path constraints is denoted by Pc.

For example, all the path constraints we have seen
in Section 1 are Pc constraints. Among these, the ex-
tent and local extent constraints are examples of for-
ward constraints, while the inverse and local inverse
constraints are backward constraints. By using path
concatenation \�", we may represent these constraints
in a simpler form. For example, the extent constraints
given in Section 1 can be rewritten as:

8 c (Students � Taking(r; c)! Courses(r; c))

8 s (Courses �Enrolled(r; s)! Students(r; s))

A forward constraint of Pc asserts that for any vertex
x that is reached from the root r by following path �
and for any vertex y that is reached from x by following
path �, y is also reachable from x by following path
.
Similarly, a backward Pc constraint states that for any
x that is reached from r by following � and for any y
that is reached from x by following �, x is also reachable
from y by following
.

As demonstrated in Section 1, path constraints of Pc
are capable of expressing, among other things, extent,
inverse and local database constraints.

Next, we identify several special subclasses of Pc.

We call a path constraint ' of Pc a simple (path)
constraint if pf(') = �. That is, the pre�x of ' is an
empty path. More speci�cally, ' is of either the form

8 y (�(r; y)!
(r; y));

or the form
8 y (�(r; y)!
(y; r)):

6

The set of all simple path constraints is denoted by Ps.

A proper subclass of simple path constraints, called
word constraints , was introduced and investigated in
[5]. A word constraint can be represented as

8 y (�(r; y)!
(r; y));

where � and
 are paths. The set of all word constraints
is denoted by Pw.

In other words, a word constraint is a simple forward
path constraint of Pc. As demonstrated in Section 1,
extent constraints can be expressed as word constraints.
However, inverse and local database constraints are not
expressible in Pw.

We borrow the standard notions of model and im-
plication from �rst-order logic [22].

Let G be a �-structure and ' a Pc constraint. We
use G j= ' to denote that G satis�es ' (i.e., G is a
model of '). Let � be a set of Pc constraints. We use
G j= � to denote that G satis�es � (i.e., G is a model
of �). That is, for every � 2 �, G j= �.

Let �[f'g be a �nite subset of Pc. We use � j= ' to
denote that � implies '. That is, for every �-structure
G, if G j= �, then G j= '. Similarly, we use � j=f '
to denote that � �nitely implies '. That is, for every
�nite �-structure G, if G j= �, then G j= '.

In the context of semistructured databases, the im-
plication problem for Pc is the problem of determining,
given any �nite subset � [f'g of Pc, whether � j= '.
Similarly, the �nite implication problem for Pc is the
problem of determining, given any �nite subset �[f'g
of Pc, whether � j=f '.

As observed by [5], every word constraint (in fact,
every simple path constraint) can be expressed by a sen-
tence in two-variable �rst-order logic (FO2), the frag-
ment of �rst-order logic consisting of all relational sen-
tences with at most two distinct variables. Recently,
Gr�adel, Kolaitis and Vardi [27] have shown that the
satis�ability problem for FO2 is NEXPTIME-complete
by establishing that any satis�able FO2 sentence has a
model of size exponential in the length of the sentence.
The decidability of the implication and �nite implica-
tion problems for word constraints follows immediately.
In fact, [5] directly established (without reference to
the embedding into FO2) that the implication and �-
nite implication problems for word constraints are in
PTIME.

In contrast to word constraints, many path con-
straints of Pc are not expressible in FO

2.

Example 2.1: Consider the structures G and G0 given
in Figure 2. It is easy to verify, using the 2-pebble

G

K

KK

G’

KK

K K

K

K K

K K

K K KK KKK K

r r

Figure 2: Structures distinguishable by Pc

Ehrenfeucht-Fra��ss�e style game [7, 21, 28], that G and
G0 are equivalent in FO2. However, G and G0 are dis-
tinguished by the path constraint

' = 8x (K(r; x)! 8 y (K(x; y)! K �K(x; y)));

because G j= ' but G0 6j= '. This shows that ' is not
expressible in FO2.

The central technical problems investigated in this
paper are the implication and �nite implication prob-
lems for Pc, and fragments thereof, in the context of
semistructured databases.

3 UNDECIDABLE IMPLICATION PROBLEMS

In this section, we show that despite the simple syntax
of Pc, the implication and �nite implication problems
for Pc are undecidable in the context of semistructured
databases.

Theorem 3.1: The implication problem for Pc is r.e.
complete, and the �nite implication problem for Pc is
co-r.e. complete.

In fact, these undecidability results also hold for two
proper subclasses of Pc. One of the subclasses, Pf , is
the set of all the constraints of Pc having the forward
form. The other, P+, is the set

f' j ' 2 Pc; lt(') 6= �; rt(') 6= �g;

where lt(') and rt(') are described in De�nition 2.1.
The set P+ is the largest subset of Pc without equality.

For P+ and Pf we have the following theorems, from
which Theorem 3.1 follows immediately.

Theorem 3.2: The implication problem for P+ is r.e.
complete, and the �nite implication problem for P+ is
co-r.e. complete.

Theorem 3.3: The implication problem for Pf is r.e.

7

complete, and the �nite implication problem for Pf is
co-r.e. complete.

To prove Theorem 3.2, we consider the satis�ability
and �nite satis�ability problems corresponding to Pf
constraint implication. First recall the following.

Let X be a recursive class of logic sentences. The
satis�ability problem for X is the problem of determin-
ing, given any 2 X , whether has a model. The
�nite satis�ability problem for X is to determine, given
any 2 X , whether has a �nite model.

The (�nite) implication problem for Pf corresponds
to the (�nite) satis�ability problem for the following set:

S(P+) = f
^

� ^ :' j ' 2 P+; � � P+; � is �niteg:

More speci�cally, to prove Theorem 3.2, it su�ces to
show that the satis�ability problem for S(P+) is co-r.e.
complete and the �nite satis�ability problem for S(P+)
is r.e. complete. The idea of the proof is to show that
there exists a conservative reduction from the set of
all �rst-order logic sentences to S(P+). To do this, we
establish a reduction from the halting problem for two-
register machines.

Along the same lines, to prove Theorem 3.3 we con-
sider the set

S(Pf) = f
^

� ^ :' j ' 2 Pf ; � � Pf ; � is �niteg:

We show that there exists a conservative reduction from

the set of all �rst-order logic sentences to S(Pf). Again,
this is established by reduction from the halting prob-
lem for two-register machines.

We prove Theorems 3.2 and 3.3 in Sections 3.2 and
3.3, respectively. Before we present these proofs, we
�rst recall the de�nitions of conservative reductions and
two-register machines (2-RMs. See, e.g., [1, 9]).

3.1 Conservative Reduction and 2-RM

We �rst review the notion of conservative reductions.
To do so, we borrow the following notations from [1, 9].

Let X be a class of sentences. We write N(X) for
the set of all unsatis�able sentences in X , i.e.,

N(X) = f j 2 X; does not have a modelg;

and F (X) for the set of all �nitely satis�able sentences
in X , i.e.,

F (X) = f j 2 X; has a �nite modelg:

We write FO for the set of all �rst-order sentences.

Conservative reductions are de�ned as follows.

De�nition 3.1 [9]: Let X and Y be recursive classes
of sentences. A conservative reduction from X to Y is a
recursive function f : X ! Y such that for any 2 X ,

� is satis�able i� f() is satis�able; and

� is �nitely satis�able i� f() is �nitely satis�able.

A recursive class of sentences X is said to be a con-
servative reduction class if there exists a conservative
reduction from FO to X .

Recall that the satis�ability problem for FO is well
known to be co-r.e. complete, and the �nite satis�a-
bility problem for FO is r.e. complete. Hence, if a re-
cursive class of sentences X is a conservative reduction
class, then,

� the satis�ability problem forX is co-r.e. complete;
and

� the �nite satis�ability problem for X is r.e. com-
plete.

As a result, to show Theorems 3.2 and 3.3, it su�ces to
show that S(P+) and S(Pf) are conservative reduction
classes.

To show that a recursive subset X of FO is a con-
servative reduction class, it su�ces to reduce N(FO)
and F (FO) to N(X) and F (X), respectively. This is
described by the notion of semi-conservative reductions.

De�nition 3.2 [9]: Let X and Y be recursive classes
of sentences. A semi-conservative reduction from X to
Y is a recursive function f : X ! Y such that

� f(N(X)) � N(Y); and

� f(F (X)) � F (Y).

Lemma 3.4 [9]: If there exists a semi-conservative
reduction from FO to a recursive subset X of FO, then
X is a conservative reduction class.

Hence, to show Theorems 3.2 and 3.3, it su�ces to
establish the existence of semi-conservative reductions
from FO to S(P+) and S(Pf).

We shall proceed to construct the semi-conservative
reductions by making use of the halting problem for
two-register machines. Before we present the construc-
tion, we �rst review the notion of two-register machines.

A two-register machine (2-RM) M has two registers
register1; register2, and is programmed by a numbered
sequence I0; I1; :::; Il of instructions. Each register con-
tains a natural number. An instantaneous description

8

(ID) of M is (i;m; n), where i 2 [0; l], m and n are
natural numbers. It indicates that M is ready to exe-
cute instruction Ii (or at \state i") with register1 and
register2 containing m and n, respectively.

An instruction Ii ofM can be either an addition or a
subtraction, which de�nes a relation !M between IDs,
described as follows:

� addition: (i; rg; j), where rg is either register1 or
register2, and 0 � i; j � l. Its semantics is: at
state i, M adds 1 to the content of rg, and then
goes to state j. Accordingly:

(i;m; n)!M

�
(j;m+ 1; n) if rg = register1
(j;m; n+ 1) otherwise

� subtraction: (i; rg; j; k), here rg is either register1
or register2, and 0 � i; j; k � l. Its semantics is:
at state i, M tests whether the content of rg is
0, and if it is, then goes to state j; otherwise M
subtracts 1 from the content of rg and goes to the
state k. Accordingly:

(i;m; n)!M

8>>>>>>>><
>>>>>>>>:

(j; 0; n) if rg = register1
and m = 0

(k;m� 1; n) if rg = register1
and m 6= 0

(j;m; 0) if rg = register2
and n = 0

(k;m; n� 1) if rg = register2
and n 6= 0

The relation !M can be understood as a set of
rewrite rules for IDs. We use)M to denote the re-

exive and transitive closure of !M . The relation of
M-reachability C)M D holds just in case M , started
from ID C, reaches ID D by application of zero or more
!M rules.

A two-register machine may halt at some states.
Without loss of generality, one can assume that a halt-
ing state has zeros in both registers. That is, halting
IDs have the form (i; 0; 0), where i is a halting state
and 0 � i � l.

Recall the following well-known result.

Lemma 3.5 [36]: There exists an e�ective partial
procedure by which, given a sentence in FO, we can
test whether it has no model, a �nite model, or only
in�nite models. The procedure terminates in the �rst
two cases, but does not terminate in the last case.

We �xML to be a 2-RM with the following behavior
(the existence of such a machine follows from the result
just quoted. See [1, 9] for further discussion). The 2-
RM ML has two halting states: (1; 0; 0) and (2; 0; 0).

For each 2 FO, let m() be an appropriate encoding
of (a natural number) and C() be the ID (0;m(); 0)
of ML. Started from C(),

� ML halts at (1, 0, 0) i� is not satis�able; and

� ML halts at (2, 0, 0) i� has a �nite model.

In other words, ML has the following property: for
i = 1; 2, let

HML;i = f j 2 FO; C())ML
(i; 0; 0)g:

Then HML;1 is N(FO) and HML;2 is F (FO).

If we can encode the description and computations
of this 2-RM in terms of path constraints, we can trans-
form certain decision problems regarding FO sentences
to the problems for path constraints. More speci�cally,
the idea of the proof of Theorem 3.2 is to encode the
description and computations ofML in terms of P+ con-
straints. Using this encoding, we are able to de�ne a
recursive function f : FO ! S(P+) such that for each
 2 FO,

1. if 2 HML;1, then f() is not satis�able; and

2. if 2 HML;2, then f() has a �nite model.

That is, f is a semi-conservative reduction from FO to
S(P+).

We can prove Theorem 3.3 along the same lines.

3.2 Implication Problems for P+

Next, we prove Theorem 3.2. It su�ces to show that
S(P+) is a conservative reduction class. By Lemma 3.4,
to establish the conservative reduction class property
for S(P+), it is su�cient to show that there is a semi-
conservative reduction from FO to S(P+).

We establish the existence of the semi-conservative
reduction by reduction from the halting problem for
2-RMs. To do this, we �rst present an encoding of 2-
RMs in terms of constraints in P+, and then prove a
reduction property of the encoding. Using this reduc-
tion property, we de�ne a semi-conservative reduction
from FO to S(P+).

3.2.1 Encoding

We encode the IDs, the contents of the registers and the
instructions of a 2-RM in terms of P+ constraints.

Let M be a 2-RM. Assume that M is programmed
by

I0; I1; : : : ; Il:

9

Without loss of generality, we also assume that the set
E of binary relation symbols in signature � includes:

� predicates encoding the states of M :

{ K0;K1; :::;Kl,

{ K�
0 ;K

�
1 ; :::;K

�
l ;

� predicates encoding the contents of the registers:

{ R+
1 ; R

�
1 : to encode the successor and prede-

cessor of the content of register1;

{ R+
2 ; R

�
2 : to encode the successor and prede-

cessor of the content of register2;

{ E01; E
�
01: to indicate that register1 is 0;

{ E02; E
�
02: to indicate that register2 is 0;

� predicates distinguishing register1 from register2
and identifying the root r:

{ L1; L
�
1 : to identify register1;

{ L2; L
�
2 : to identify register2; and

{ Lr: to identify the root r.

We should remark that all these predicates are bi-
nary. Using these predicates, we intend to construct
structures of the form shown in Figure 3 (E�

01, E
�
02, L

�
1 ,

L�
2 , R

�
1 , R

�
2 , K

�
i edges are omitted in the graph). Fig-

ure 3 illustrates the encoding of the 2-RMM . It has (at
least) two chains from the root node rt. One starts with
an edge labeled E01 followed by a sequence of R

+
1 edges.

The nodes in the chain are denoted by natural numbers
and intend to represent the contents of register1 of M .
The R+

1 edges can be viewed as the successor relation
on the contents of register1. In addition, there are R�

1

edges (not shown in the graph), which form the inverse
relation of R+

1 edges and can be viewed as the predeces-
sor relation on the contents of register1. The E01 edge
indicates that register1 has 0. There is also an E�

01

edge (not shown in the graph), which is the inverse of
E01. To each node in the chain there is an edge labeled
L1 from the root rt. These L1 edges are used to iden-
tify register1. There are also L�

1 edges (not shown in
the graph), which are the inverse of L1 edges. Similarly,
the other chain starts with an edge labeled E02 followed
by a sequence of R+

2 edges. It encodes the contents of
register2. Moreover, for each i 2 [0; l], there are Ki

edges from the nodes in the chain encoding register1
to the nodes in the chain representing register2. For
example, as shown in Figure 3, there is a Ki edge from
m to n0. This indicates that an ID of M is (i; m; n).
For the ease of encoding, we also have K�

i edges (not
shown in the graph), which form the inverse relation of

L

E

L

L

L

L L

L

L

L
1

1

1

1

2

2

2

2

K

R

R

R

R

+

+

+
0

1

2

m

0’

1’

2’

n’

R

R

R

R

R

+

+

+

+

+

2

2

1

1

1

1
+

2

2

rt

2

i

01

1
+

R

E 02

r

Figure 3: A structure depicting 2-RM encoding

Ki edges. Finally, there is an edge labeled Lr from rt

to rt, which is used to identify the root.

The above requirements on the structure encoding
the computations of the 2-RM M can be expressed by
P+ constraints. We should remark here that we need
not require the structure to consist of only these two
chains. Indeed, the structure may have many such
chains and others. To prove our results, it su�ces that
our structure has at least two chains with the properties
mentioned above.

We now present the encoding of M in terms of P+
constraints.

IDs. We encode each ID C = (i;m; n) of M by 'C :

8x (L1(r; x)!
8 y ((R�

1)
m � E�

01 � E02 � (R
+
2)
n(x; y)! Ki(x; y)));

where (�)m stands for the m-time concatenations of
�, as de�ned in Section 2. It should be noted that
'C is a forward constraint in P+ with pf('C) = L1,
lt('C) = (R�

1)
m � E�

01 � E02 � (R
+
2)

n, and rt('C) = Ki,
where pf , lt and rt are described in De�nition 2.1.

Observe that we require the contents of register1
and register2 to be encoded in a single path lt('C).
This leads to a lack of symmetry in the treatment of
the two registers in the encoding. In particular, the
content of register1, encoded as (R�

1)
m, is a pre�x of

lt('C), and the content of register2, encoded as (R
+
2)
n,

is a su�x of lt('C).

10

Registers. We encode the contents of the registers by
�N , which is the conjunction of the constraints of P+
given below.

� Successor, predecessor:

�1 = 8x (L1(r; x)! 8 y (R+
1 (x; y)! R�

1 (y; x)))
�2 = 8x (L1(r; x)! 8 y (R�

1 (x; y)! R+
1 (y; x)))

�3 = 8x (L2(r; x)! 8 y (R+
2 (x; y)! R�

2 (y; x)))
�4 = 8x (L2(r; x)! 8 y (R�

2 (x; y)! R+
2 (y; x)))

�5 = 8x (L1(r; x)! R+
1 � L

�
1 (x; r))

�6 = 8x (L2(r; x)! R+
2 � L

�
2 (x; r))

These are backward constraints. Constraints �1
and �2 (resp. �3 and �4) specify that R+

1 and
R�
1 (resp. R+

2 and R�
2) are inverse to each other.

Constraints �5 and �6 assert that the contents of
register1 and register2 always have successors.

� Register identi�cation:

�7 = 8x (L1 � R
+
1 (r; x)! L1(r; x))

�8 = 8x (L1 � R
�
1 (r; x)! L1(r; x))

�9 = 8x (L2 � R
+
2 (r; x)! L2(r; x))

�10 = 8x (L2 � R
�
2 (r; x)! L2(r; x))

These are simple forward constraints. They ensure
that for each node coding a content of register1,
there is always an edge labeled L1 from the root to
it. Similarly, for any node representing a content
of register2, there is an edge labeled L2 from the
root to it.

� States: for i 2 [0; l],

�i11 = 8x (L1(r; x)! 8 y (Ki(x; y)! K�
i (y; x)))

�i12 = 8x (L2(r; x)! 8 y (K�
i (x; y)! Ki(y; x)))

These are backward constraints. They assert that
there is an inverse relationship between Ki and
K�
i for each i 2 [0; l].

� Zeros:

�13 = 8x (L1(r; x)! 8 y (E�
01(x; y)! E01(y; x)))

�14 = 8x (L1 � E
�
01(r; x)! Lr(r; x))

�15 = 8x (Lr �E01(r; x)! E01(r; x))
�16 = 8x (L1 � E

�
01 �E02(r; x)! E02(r; x))

�17 = 8x (E01(r; x)! L1(r; x))
�18 = 8x (E02(r; x)! L2(r; x))

Constraints �13, �14 and �15 assert that if there is
an edge labeled L1 from the root to a node a and
a has an outgoing edge labeled E�

01, then there is

an edge labeled E01 from the root to a. Constraint
�16 ensures that if there exists a path L1 �E

�
01 �E02

from the root to a node b, then there is an E02

edge from the root to b. Constraint �17 states
that there is an edge labeled L1 from the root to
a node coding 0 in register1. Similarly, �18 states
that there is an edge labeled L2 from the root to
a node coding 0 in register2.

It should be mentioned that the constraints given
above enforce stronger properties than necessary. Some
of these constraints are not used in the proofs of our
results. We retain these constraints to simply the con-
structions below.

Instructions. For each i 2 [0; l], we encode the instruc-
tion Ii by �Ii given below. Constraint �Ii describes the
relation !M presented in Section 3.1.

� Addition:

For (i; register1; j), �Ii is

�ia1 = 8x (L1(r; x)!
8 y (R�

1 �Ki(x; y)! Kj(x; y))):

For (i; register2; j), �Ii is

�ia2 = 8x (L1(r; x)!
8 y (Ki � R

+
2 (x; y)! Kj(x; y))):

Note that �ia1 and �ia2 are forward constraints.

� Subtraction:

For (i; register1; j; k), �Ii is �is1 = �is1;0 ^ �
i
s1;n

,
where

�is1;0 = 8x (E01(r; x) ! 8 y (Ki(x; y)! Kj(x; y)));

�is1;n = 8x (L1(r; x)!

8 y (R+
1 �Ki(x; y)! Kk(x; y))).

Note that �is1;0 and �is1;n are forward constraints.

For (i; register2; j; k), �Ii is �is2 = �is2;0 ^ �
i
s2;n

,
where

�is2;0 = 8x (E02(r; x) ! 8 y (K�
i (x; y)! Kj(y; x))),

�is2;n = 8x (L1(r; x)!

8 y (Ki � R
�
2 (x; y)! Kk(x; y))).

Here �is2;0 is a backward constraint and �is2;n is a
forward constraint.

The encoding of the program of M is �M =

l̂

i=0

�Ii .

Clearly, �M is a conjunction of path constraints in P+.

11

Using the encoding given above, we are able to ex-
press the M -reachability problem C)M D as a logical
implication problem for P+ constraints. More speci�-
cally, we show that the encoding above has the following
reduction property.

Proposition 3.6: For all IDs C and D of M ,

C)M D i� �N ^ �M ^ 'C ! 'D is valid:

Proof: The proof consists of two parts.

(1) Assume C)M D. We show that for each model G
of �N ^ �M ^ 'C , G j= 'D. To show this, it su�ces
to show that for each natural number t and each ID C 0

of M , if C 0 is reached by M in t steps starting from C

(denoted by C)t
M C 0), then G j= 'C0 . We prove this

claim by induction on t.

Base case: If t = 0, then the claim holds since G j= 'C .

Inductive step: Assume the claim for t.

Suppose C)t
M C1 !

Ii
M C 0, where C1 = (i;m; n),

and C1 !
Ii
M C 0 means that C 0 is reached by executing

instruction Ii at C1. Then by the induction hypothesis,
we have G j= 'C1

. That is

G j=8x (L1(r; x)!
8 y ((R�

1)
m �E�

01 � E02 � (R
+
2)
n(x; y)! Ki(x; y))):

We argue by contradiction that the claim holds for t+1.
Suppose G 6j= 'C0 . We show that this assumption leads
to a contradiction in each case of Ii, which has six cases
in total.

Case 1 : Ii = (i; register1; j). In this case, C 0 must be
(j;m + 1; n). By the assumption, there are a; b 2 jGj
such that

G j=L1(r; a) ^
(R�

1)
m+1 �E�

01 � E02 � (R
+
2)

n(a; b) ^ :Kj(a; b).

Thus there exists c 2 jGj, such that

G j= R�
1 (a; c) ^ (R�

1)
m � E�

01 �E02 � (R
+
2)
n(c; b).

By �8 in �N , G j= L1(r; c). Therefore, by G j= 'C1
,

G j= Ki(c; b). Hence G j= L1(r; a) ^R
�
1 (a; c) ^Ki(c; b).

Thus by �ia1 in �M , we have that G j= Kj(a; b). This
contradicts the assumption.

Case 2 : Ii = (i; register2; j). In this case, C 0 must be
(j;m; n + 1). By the assumption, there are a; b 2 jGj
such that

G j=L1(r; a) ^
(R�

1)
m �E�

01 � E02 � (R
+
2)

n+1(a; b) ^ :Kj(a; b).

Hence there exists c 2 jGj, such that

G j= (R�
1)

m �E�
01 � E02 � (R

+
2)
n(a; c) ^R+

2 (c; b).

By G j= 'C1
, we have G j= Ki(a; c). As a result, we

have G j= L1(r; a)^Ki(a; c)^R
+
2 (c; b). Thus by �

i
a2

in
�M , G j= Kj(a; b). This contradicts the assumption.

Case 3 : Ii = (i; register1; j; k) and m = 0. In this case,
C 0 must be (j; 0; n). By the assumption, there exist
a; b 2 jGj, such that

G j= L1(r; a) ^ E
�
01 � E02 � (R

+
2)

n(a; b) ^ :Kj(a; b).

Thus by G j= 'C1
, we have G j= Ki(a; b). In addition,

there exists c 2 jGj, such that G j= L1(r; a) ^E
�
01(a; c).

By �13; �14 and �15 in �N , we have G j= E01(r; a).
Hence G j= E01(r; a) ^Ki(a; b). Thus by �is1;0 in �M ,
we haveG j= Kj(a; b). This contradicts the assumption.

Case 4 : Ii = (i; register1; j; k) and m = p+ 1. In this
case, C 0 must be (k; p; n). By the assumption, there
exist a; b 2 jGj, such that

G j= L1(r; a)^(R
�
1)

p �E�
01 �E02 �(R

+
2)
n(a; b)^:Kk(a; b):

Hence by �5 in �N , there exists c 2 jGj, such that

G j= L1(r; a) ^ R
+
1 (a; c):

By �7; �1 in �N , we have that G j= L1(r; c) ^R
�
1 (c; a).

Hence G j= L1(r; c) ^ (R�
1)

p+1 � E�
01 � E02 � (R

+
2)
n(c; b).

Thus by G j= 'C1
, we have G j= Ki(c; b). As a result,

G j= L1(r; a)^R
+
1 (a; c)^Ki(c; b). Thus by �

i
s1;n

in �M ,
G j= Kk(a; b). This contradicts the assumption.

Case 5 : Ii = (i; register2; j; k) and n = 0. In this case,
C 0 must be (j;m; 0). By the assumption, there exist
a; b 2 jGj, such that

G j= L1(r; a) ^ (R�
1)

m �E�
01 � E02(a; b) ^ :Kj(a; b):

Thus by G j= 'C1
, we have G j= Ki(a; b). By �i11 in

�N , G j= K�
i (b; a). Moreover, there exist c; d 2 jGj,

such that G j= (R�
1)

m(a; d) ^ E�
01(d; c) ^ E02(c; b). By

G j= L1(r; a) and �8 in �N , we have G j= L1(r; d).
Thus by �16 in �N , we have G j= E02(r; b). As a result,
G j= E02(r; b)^K

�
i (b; a). Thus by �

i
s2;0

in �M , we have
G j= Kj(a; b). This contradicts the assumption.

Case 6 : Ii = (i; register2; j; k) and n = p + 1. In this
case, C 0 must be (k;m; p). By the assumption, there
exist a; b 2 jGj, such that

G j= L1(r; a)^(R
�
1)

m �E�
01 �E02 �(R

+
2)
p(a; b)^:Kk(a; b):

Hence there exist c; d 2 jGj, such that

G j= (R�
1)

m(a; c) ^ E�
01 �E02(c; d) ^ (R+

2)
p(d; b):

By �8 in �N , we have G j= L1(r; c). By �16 in �N ,
G j= E02(r; d). By �18 in �N , G j= L2(r; d). By �9 in

12

�N , G j= L2(r; b). Therefore, by �6 in �N , there exists
e 2 jGj, such that G j= R+

2 (b; e). Hence

G j= L1(r; a) ^ (R�
1)

m �E�
01 � E02 � (R

+
2)
p+1(a; e):

By G j= 'C1
, we have G j= Ki(a; e). By �3 in �N and

G j= R+
2 (b; e), we have G j= R�

2 (e; b). As a result, we
have G j= L1(r; a) ^Ki(a; e) ^ R

�
2 (e; b). Thus by �

i
s2;n

in �M , we have G j= Kk(a; b). This contradicts the
assumption.

Hence the claim holds for t+1 for all the cases of Ii.

(2) Conversely, assume that C 6)M D. We show that
�N ^ �M ^ 'C ! 'D is not valid. To show this, we
construct a �-structure G such that G j= �N ^�M ^'C
and G j= :'D .

The structure G has the form shown in Figure 3.
It is de�ned as follows. The universe of G consists of
a distinguished node rt, which is the interpretation of
the constant r in G, and two distinct in�nite chains of
natural numbers. More speci�cally, let IN denote the
set of all natural numbers, then

jGj = frtg [IN [fi0 j i 2 INg:

The binary relations in G are populated as follows (the
superscript G is omitted in the relation names):

Lr = f(rt; rt)g

E01 = f(rt; 0)g
E�
01 = f(0; rt)g

E02 = f(rt; 00)g
E�
02 = f(00; rt)g

L1 = f(rt; i) j i 2 INg
L�
1 = f(i; rt) j i 2 INg

L2 = f(rt; i0) j i 2 INg
L�
2 = f(i0; rt) j i 2 INg

R+
1 = f(i; i+ 1) j i 2 INg

R�
1 = f(i+ 1; i) j i 2 INg

R+
2 = f(i0; (i+ 1)0) j i 2 INg

R�
2 = f((i+ 1)0; i0) j i 2 INg

Ki = f(m;n0) j C)M (i;m; n)g
K�
i = f(n0;m) j (m;n0) 2 Kig

It is easy to verify the following. First, G j= �N .
This is immediate from the construction of G. Second,
G j= 'C ^ :'D , because C)M C, C 6)M D and by
the de�nition of Ki. Finally, G j= �M . To see this, �rst
observe the following simple facts.

Fact 1 : G j= Ki(m;n
0) i� C)M (i;m; n).

Fact 2 : If C)M (i;m; n) !Ii
M C 0, then C)M C 0.

Moreover, C 0 is determined by the relation !M de-
scribed in Section 3.1.

Using these facts, we can verify that G j= �M by
contradiction. More speci�cally, suppose G 6j= �M .
Then there is i 2 [0; l] such that G 6j= �Ii . Here Ii has
six cases. For each of these cases, the assumption con-
tradicts the facts above. As an example, consider the
case in which Ii is (i; register1; j). Then there must be
m;n0 2 jGj, such that G j= Ki(m;n

0)^:Kj(m+1; n0).
By Fact 1, C)M (i;m; n0). In addition, by Fact 2,
we have C)M (j;m + 1; n0). Thus again by Fact 1,
G j= Kj(m + 1; n0). This contradicts the assumption.
The proofs for the other cases are similar.

Therefore, if C 6)M D, then �N ^ �M ^ 'C ^ :'D
is satis�able.

3.2.2 Semi-conservative reduction

Taking advantage of the reduction property established
above, we de�ne a recursive function f : FO ! S(P+)
by:

f() 7! �N ^ �M ^ 'C() ^ :'(1;0;0);

where C() is the ID (0;m(); 0) of the 2-RMML with
an appropriate encodingm() of , as described in Sec-
tion 3.1.

The proposition below shows that f is indeed a semi-
conservative reduction from FO to S(P+).

Proposition 3.7: Let ML be the 2-RM described in
Section 3.1. For each 2 FO,

1. 2 HML;1 i� f() is not satis�able; and

2. if 2 HML;2, then f() has a �nite model.

Proof: Recall HML;1 = N(FO) and HML;2 = F (FO)
from Section 3.1.

(1) By Proposition 3.6, we have C())ML
(1; 0; 0) i�

�N ^ �M ^ 'C() ! '(1;0;0) is valid. In other words,
C())ML

(1; 0; 0) i� �N ^�M ^ 'C() ^ :'(1;0;0) is
not satis�able. Since 2 HML;1 i� C())ML

(1; 0; 0),
we have that 2 HML;1 i� f() is not satis�able.

(2) We show that if 2 HML;2, then f() has a �nite
model.

First note that if 2 HML;2, then the computation
of ML with initial ID C() is �nite. Therefore, the set

SIDC() = f(i;m; n) j C())ML
(i;m; n)g

is �nite. Hence there is a natural number p, such that
for each (i;m; n) 2 SIDC(), m+2 � p and n+ 2 � p.

Now we construct a �nite �-structure H satisfying
�N ^ �M ^ 'C() ^ :'(1;0;0). The universe of H has

13

rt

L

E 01 E 02

L

L

L L

L

L

1

1

1

2

2

2R

R

R

R

R

+

+

+

+

+

1

1

1

1

1

R

R

R

R

R

+

+

+

+

+

2

2

2

2

2

0

1

2

m

0’

1’

2’

n’
K i

R R
+
1

+
2

p p’

R R1
+

2
+

L 1 2L

L 1 2L

K 2

r

Figure 4: The structure H in Proposition 3.7

2p+ 1 nodes. More speci�cally,

jH j = frt; 1; 2; :::; pg [f10; 20; :::; p0g;

where rt is the interpretation of the constant r in H .

The binary relations Lr; E01; E02; E
�
01; E

�
02;Ki and

K�
i inH are exactly the same as those in the �-structure

G given in the proof of Proposition 3.6. The binary re-
lations L1, L

�
1 , L2, L

�
2 , R

+
1 , R

�
1 , R

+
2 and R�

2 are pop-
ulated in H as follows (the superscript H is omitted in
the relation names):

R+
1 = f(i; i+ 1) j 0 � i < pg [f(p; p)g

R�
1 = f(i+ 1; i) j 0 � i < pg [f(p; p)g

R+
2 = f(i0; (i+ 1)0) j 0 � i < pg [f(p0; p0)g

R�
2 = f((i+ 1)0; i0) j 0 � i < pg [f(p0; p0)g

L1 = f(rt; i) j 0 � i � pg
L�
1 = f(i; rt) j 0 � i � pg

L2 = f(rt; i0) j 0 � i � pg
L�
2 = f(i0; rt) j 0 � i � pg

See Figure 4 for the structure H (E�
01, E

�
02, L

�
1 , L

�
2 ,

R�
1 , R

�
2 , K

�
i edges are omitted in the graph). Note that

the relations Ki and K
�
i in H are well-de�ned, since if

C())ML
(i;m; n), then m < p� 1 and n < p� 1.

We now show that H j= �N ^�M ^'C()^:'(1;0;0).

First, by C())ML
C() and C() 6)ML

(1; 0; 0),
we have that H j= 'C() ^ :'(1;0;0).

Second, it is easy to verify that H j= �N . It should
be mentioned that it is to ensure H j= �5 ^ �6 that we
require H j= R+

1 (p; p) ^R
+
2 (p

0; p0).

Finally, we show that H j= �M . Since 2 HML;2,
it is straightforward to verify the following simple fact.

Fact 3: If C())ML
(i;m; n), then m < p � 1 and

n < p� 1.

In addition, Facts 1 and 2 given in the proof of
Proposition 3.6 also hold here. Therefore, the argument
for showing G j= �M in the proof of Proposition 3.6, to-
gether with Fact 3 given above, proves H j= �M . This
veri�es that the structure H is indeed a �nite model of
�N ^ �M ^ 'C() ^ :'(1;0;0).

As an immediate result of Lemma 3.4 and Propo-
sition 3.7, we have the following corollary, from which
Theorem 3.2 follows immediately.

Corollary 3.8: The set S(P+) is a conservative reduc-
tion class.

3.3 Implication Problems for Pf

We next establish Theorem 3.3. As in the proof of The-
orem 3.2, we show that the set S(Pf) is a conservative
reduction class. To do this, we �rst present an encod-
ing of 2-RMs with constraints in Pf , and then de�ne a
semi-conservative reduction from FO to S(Pf).

3.3.1 Encoding

We encode 2-RMs in terms of Pf constraints. Recall
that Pf allows the left tail and right tail of a constraint
to be empty path �. In other words, equality is allowed
in Pf .

Let M be a 2-RM. Assume that the set E of binary
relation symbols in signature � is the same as the one
described in Section 3.2.1, except that the predicates
Lr and K

�
i for i 2 [0; l] are no longer required here. We

de�ne the encoding as follows.

IDs. The encoding of each ID C ofM , 'C , is the same
as the one given in Section 3.2.1. Note that 'C is in
Pf .

Registers. We encode the contents of the registers by
�fN , which is the conjunction of the constraints of Pf
given below.

14

� Successor, predecessor:

�1 = 8x (L1(r; x)! 8 y (R+
1 � R

�
1 (x; y)! �(x; y)))

�2 = 8x (L1(r; x)! 8 y (R�
1 �R

+
1 (x; y)! �(x; y)))

�3 = 8x (L2(r; x)! 8 y (R+
2 � R

�
2 (x; y)! �(x; y)))

�4 = 8x (L2(r; x)! 8 y (R�
2 �R

+
2 (x; y)! �(x; y)))

�5 = 8x (L1(r; x)! 8 y (�(x; y)! R+
1 � R

�
1 (x; y)))

�6 = 8x (L2(r; x)! 8 y (�(x; y)! R+
2 � R

�
2 (x; y)))

Constraints �1 and �2 (resp. �3 and �4) assert an
inverse relationship betweenR+

1 andR�
1 (resp. R+

2

and R�
2). It should be noted that since equality is

allowed in Pf , �1 and �2 (resp. �3 and �4) enforce
a node representing a content of register1 (resp.
register2) to be unique. Constraints �5 and �6
state that R+

1 and R+
2 edges form \in�nite" chains.

� Register identi�cation: �7; �8; �9 and �10 are the
same as given in Section 3.2.1.

� Zeros:

�11 = 8x (L1 �E
�
01(r; x)! �(r; x))

�12 = 8x (L1(r; x) !
8 y (E�

01(x; y)! E�
01 �E01 � E

�
01(x; y)))

�13 = 8x (L1(r; x) ! 8 y (E�
01 � E01(x; y)! �(x; y)))

�14 = 8x (L1 �E
�
01 � E02(r; x)! E02(r; x))

�15 = 8x (E02(r; x)! 8 y (�(x; y)! E�
02 �E02(x; y)))

�16 = 8x (E02(r; x)! L2(r; x))

Constraints �11, �12 and �13 assert that if there is
an edge labeled L1 from the root to a node a and
a has an outgoing E�

01 edge, then there is an E01

edge from the root to a. Constraint �14 states that
if there exists a path L1 �E

�
01 �E02 from the root to

a node b, then there is an E02 edge from the root
to b. Constraint �15 asserts that if there is an E02

edge from the root to a node c, then there exists
a node d such that there is an E�

02 edge from c to
d and there is an E02 edge from d to c. Finally,
�16 states that there is an edge labeled L2 from
the root to a node representing 0 in register2.

Instructions. The encoding of instruction Ii, �Ii , is
the same as the one given in Section 3.2.1, except that
here �is2;0 is

8x (L1(r; x)! 8 y (Ki �E
�
02 � E02(x; y)! Kj(x; y))):

The encoding of the program of M is �fM =

l̂

i=0

�Ii .

It is clear that �fM is a conjunction of constraints in Pf .

Analogous to Proposition 3.6, we show that the en-
coding above has the following reduction property.

Proposition 3.9: For all IDs C and D of M ,

C)M D i� �fN ^�fM ^ 'C ! 'D is valid:

Proof: The proof is similar to that of Proposition 3.6.

(1) Assume that C)M D. We prove by induction on
step t that for each ID C 0 of M and each model G of
�fN ^�

f
M ^'C , if C)t

M C 0 then G j= 'C0 . This can be
shown in basically the same way as for Proposition 3.6,
except for the following cases in the inductive step.

Case 3 : Ii = (i; register1; j; k) and m = 0. In this case,
C 0 must be (j; 0; n). Suppose, for a contradiction, that
there are a; b 2 jGj, such that

G j= L1(r; a) ^ E
�
01 � E02 � (R

+
2)

n(a; b) ^ :Kj(a; b):

Then by G j= 'C1
, we have G j= Ki(a; b). In addition,

there exists e 2 jGj, such that G j= L1(r; a) ^E
�
01(a; e).

By �12 in �fN , there exist c; d 2 jGj, such that

G j= L1(r; a) ^ E
�
01(a; c) ^ E01(c; d):

Thus by �13 in �fN , we have G j= �(a; d). As a result,

G j= L1(r; a) ^ E
�
01(a; c) ^ E01(c; a). By �11 in �fN and

G j= L1(r; a) ^ E
�
01(a; c), we have G j= �(r; c). Thus

G j= E01(r; a). Hence G j= E01(r; a) ^ Ki(a; b). Thus

by �is1;0 in �fM , we have G j= Kj(a; b). This contradicts
the assumption.

Case 4 : Ii = (i; register1; j; k) and m = p+ 1. In this
case, C 0 must be (k; p; n). Suppose, for a contradiction,
that there exist a; b 2 jGj, such that

G j= L1(r; a)^(R
�
1)

p �E�
01 �E02 �(R

+
2)
n(a; b)^:Kk(a; b):

Then by �5 in �fN , there exists node c 2 jGj, such that

G j= L1(r; a) ^ R
+
1 (a; c) ^ R

�
1 (c; a). By �7 in �fN , we

have G j= L1(r; c) ^ R
�
1 (c; a). As a result,

G j= L1(r; c) ^ (R�
1)

p+1 � E�
01 �E02 � (R

+
2)
n(c; b):

Thus by G j= 'C1
, G j= Ki(c; b). Therefore, we have

that G j= L1(r; a) ^ R
+
1 (a; c) ^Ki(c; b). Thus by �is1;n

in �fM , we have G j= Kk(a; b). This contradicts the
assumption.

Case 5 : Ii = (i; register2; j; k) and n = 0. In this case,
C 0 must be (j;m; 0). Suppose, for a contradiction, that
there exist a; b 2 jGj, such that

G j= L1(r; a) ^ (R�
1)

m �E�
01 � E02(a; b) ^ :Kj(a; b):

Then by G j= 'C1
, we have G j= Ki(a; b). Moreover,

there exist c; d 2 jGj, such that

G j= (R�
1)

m(a; d) ^ E�
01(d; c) ^E02(c; b):

15

By G j= L1(r; a) and �8 in �fN , we have G j= L1(r; d).

Thus by �14 in �fN , we have G j= E02(r; b). By �15 in

�fN , there is e 2 jGj, such that G j= E�
02(b; e)^E02(e; b).

Hence G j= L1(r; a) ^ Ki(a; b) ^ E
�
02(b; e) ^ E02(e; b).

Thus by �is2;0 in �fM , we have G j= Kj(a; b). This
contradicts the assumption.

Case 6 : Ii = (i; register2; j; k) and n = p + 1. In this
case, C 0 must be (k;m; p). Suppose, for a contradiction,
that there exist a; b 2 jGj, such that

G j= L1(r; a)^(R
�
1)

m �E�
01 �E02 �(R

+
2)
p(a; b)^:Kk(a; b):

Then there exist c; d 2 jGj, such that

G j= (R�
1)

m(a; c) ^ E�
01 � E02(c; d) ^ (R+

2)
p(d; b):

By �8 in �fN , we have G j= L1(r; c). By �14 in �fN ,

G j= E02(r; d). By �16 in �fN , G j= L2(r; d). By �9 in

�fN , G j= L2(r; b). Therefore, by �6 in �fN , there exists
e 2 jGj, such that G j= R+

2 (b; e) ^ R
�
2 (e; b). Therefore,

G j= L1(r; a) ^ (R�
1)

m �E�
01 � E02 � (R

+
2)
p+1(a; e):

By G j= 'C1
, G j= Ki(a; e). As a result, we have that

G j= L1(r; a)^Ki(a; e)^R
�
2 (e; b). Thus by �

i
s2;n

in �fM ,
G j= Kk(a; b). This contradicts the assumption.

(2) Conversely, assume that C 6)M D. It is easy to ver-
ify that the �-structure G (without Lr and K

�
i edges)

constructed in the proof of Proposition 3.6 is a model
of �fN ^ �fM ^ 'C ^ :'D .

3.3.2 Semi-conservative reduction

We de�ne a recursive function g : FO ! S(Pf) by:

g() 7! �fN ^ �fM ^ 'C() ^ :'(1;0;0);

where C() is the ID (0;m(); 0) of the 2-RMML with
an appropriate encodingm() of , as described in Sec-
tion 3.1.

Proposition 3.10 below shows that the function g is
indeed a semi-conservative reduction from FO to S(Pf).

Proposition 3.10: Let ML be the 2-RM described in
Section 3.1. For each 2 FO,

1. 2 HML;1 i� g() is not satis�able; and

2. if 2 HML;2, then g() has a �nite model.

Proof: The proof is similar to the proof of Proposi-
tion 3.7, except that here in the structure H shown in
Figure 4, there are no Lr and K

�
i edges.

From Proposition 3.10 and Lemma 3.4 follows the
corollary below. As a result, Theorem 3.3 follows.

Corollary 3.11: The set S(Pf) is a conservative re-
duction class.

4 DECIDABLE RESTRICTED IMPLICATION

The undecidability results established in the last sec-
tion suggest that we search for fragments of Pc which
possess decidable implication problems, and yet retain
su�cient expressive power of the full language. This
section identi�es several fragments of Pc which share the
following properties. First, they each properly contain
the set of word constraints. Second, each of them fails
to be included in two-variable �rst-order logic. Third,
they allow the formulation of many interesting semantic
relations. And �nally, the implication and �nite impli-
cation problems for each of them are decidable in the
context of semistructured databases.

We begin by introducing these fragments of Pc, and
then establish the decidability of their associated im-
plication and �nite implication problems. Finally, we
investigate a mild generalization of Pc, P

^
c .

4.1 Decidable Fragments of Pc

We describe three fragments of Pc and demonstrate
their expressive power.

4.1.1 Pre�x restricted implication for Pc

The implication problems for simple path constraints,
which are known to be decidable, can be viewed as a re-
stricted form of the implication problems for Pc. More
speci�cally, the implication problems for Ps are the im-
plication problems for Pc under the following restric-
tion: in any �nite subset of Pc in the implication prob-
lems, the pre�x of each constraint is the empty path.

By replacing this pre�x restriction with a weaker
one, we de�ne the pre�x restricted implication problems
for Pc as follows.

De�nition 4.1: A pre�x restricted subset of Pc is a
�nite subset of Pc in which the pre�xes of all the con-
straints have the same length.

The pre�x restricted (�nite) implication problem for
Pc is the problem to determine, given any pre�x re-
stricted subset � [f'g of Pc, whether � j= ' (� j=f ').

16

Obviously, the (�nite) implication problem for word
constraints is a special case of the pre�x restricted (�-
nite) implication problem for Pc. Moreover, in contrast
to word constraint implication, pre�x restricted impli-
cation cannot be stated in two-variable �rst-order logic
(FO2). A convenient argument for this is that f'g,
where ' is the constraint given in Example 2.1, is a
pre�x restricted subset of Pc. However, ' is not ex-
pressible in FO2.

Many cases of integrity constraint implication com-
monly found in databases are instances of the pre�x
restricted implication problem for Pc. Among these are
implications for inverse constraints and local database
constraints. As an example, consider the set � con-
sisting of the following local inverse constraints in the
school databases described in Section 1:

8 s (Schools � Students(r; s)!
8 c (Taking(s; c)! Enrolled(c; s)))

8 c (Schools � Courses(r; c)!
8 s (Enrolled(c; s)! Taking(s; c)))

and the constraint ':

8 s1 (Schools � Students(r; s1)!
8 s2 (�(s1; s2)! Taking � Enrolled(s1; s2))):

The question whether � j= ' (� j=f ') is an instance
of the pre�x restricted (�nite) implication problem for
Pc.

4.1.2 Sublanguage P�

Some cases of path constraint implication canvassed
earlier are not instances of the pre�x restricted implica-
tion. For example, recall the two extent constraints and
the two inverse constraints for student/course databases
given in Section 1:

8 c (Students � Taking(r; c)! Courses(r; c))

8 s (Courses �Enrolled(r; s)! Students(r; s))

8 s (Students(r; s)!
8 c (Taking(s; c)! Enrolled(c; s)))

8 c (Courses(r; c)!
8 s (Enrolled(c; s)! Taking(s; c)))

The set consisting of these constraints is not a pre�x
restricted subset of Pc.

The constraints in the last example, however, are in
the sublanguage P� of Pc de�ned below. Recall the no-
tations lt(') and pf(') for a Pc constraint ' described
in De�nition 2.1.

De�nition 4.2: A �-restricted path constraint ' is a
constraint in Pc with jlt(')j � 1. That is, either lt(')
is �, or lt(') = K for some K 2 E.

The sublanguage P� is de�ned to be the class of Pc
constraints ' such that either jpf(')j = 0 or jlt(')j � 1.
In other words, P� consists of all simple path constraints
and all �-restricted path constraints.

The (�nite) implication problem for P� is the prob-
lem of determining, given any �nite subset � [f'g of
P� , whether � j= ' (� j=f ').

Note that the class of word constraints is a proper
subset of P� . In addition, not all constraints in P� are
expressible in FO2. Indeed, the constraint ' given in
Example 2.1 is in P� , but is not in FO

2.

4.1.3 Extended implication for P�

Recall the local extent constraints given in Section 1:

8 d (Schools(r; d)!
8 c (Students � Taking(d; c)! Courses(d; c)))

8 d (Schools(r; d)!
8 s (Courses � Enrolled(d; s)! Students(d; s)))

Consider the set consisting of these local extent con-
straints and the local inverse constraints given in Sec-
tion 4.1.1. This set is neither a pre�x restricted sub-
set of Pc nor a subset of P� . However, the constraints
in this set share the following property: all of them
are constraints in student/course databases as shown
in Figure 1 augmented with a common pre�x Schools.
In general, when represented in a global environment,
path constraints in a local database are augmented with
a common pre�x. This example motivates the following
extension of P� .

De�nition 4.3: Let � be a path and ' be a constraint
in P� . The extension of ' with pre�x �, denoted by
�('; �), is the constraint de�ned either by

8x (� � pf(')(r; x)! 8 y (lt(')(x; y)! rt(')(x; y)))

when ' is of the forward form, or by

8x (� � pf(')(r; x)! 8 y (lt(')(x; y)! rt(')(y; x)))

when ' is of the backward form. Here � is the path
concatenation operator, and pf , lt and rt are de�ned in
De�nition 2.1.

Let � be a path and � be a �nite subset of P� .
The extension of � with pre�x � is the subset of Pc
de�ned by f�('; �) j ' 2 �g. Such a set is called a
pre�x extended subset of P� .

17

The extended (�nite) implication problem for P� is
the problem of determining, given any pre�x extended
subset � [f'g of P� , whether � j= ' (� j=f ').

For instance, the set described in the last example is
a pre�x extended subset of P� .

Note that the (�nite) implication problem for P� is a
special case of the extended (�nite) implication problem
for P� , namely, when the pre�x � described in De�ni-
tion 4.3 is the empty path �. As an immediate result,
implications of word constraints are special cases of ex-
tended implications of P� constraints. In addition, ex-
tended implications of P� constraints cannot be stated
in FO2.

4.2 Decidability of Pre�x Restricted Implication

In this section, we show the following:

Theorem 4.1: The pre�x restricted implication and
�nite implication problems for Pc are decidable.

The idea of the proof is to show that the satis�ability
and �nite satis�ability problems for the set Sp:

f
^

�^:' j �[f'g is a pre�x restricted subset of Pcg

are decidable. That is, we show that it is decidable to
determine, given any 2 Sp, whether there is a (�nite)
�-structure such that G j= .

To show that Sp possesses decidable satis�ability
problems, let us recall the following notion from [9].

De�nition 4.4 [9]: A class X of logic sentences has
the small model property for satis�ability i� there exists
a recursive function s such that for each 2 X , if
is satis�able, then has a �nite model of size at most
s(j j), where j j stands for the length of .

If a class X of logic sentences has the small model
property, then the satis�ability and �nite satis�ability
problems for X coincide and are decidable. In fact, for
any 2 X , one can determine whether is satis�able in
s(j j)-space, where s is the recursive function described
in De�nition 4.4. Therefore, to show the decidability of
the satis�ability and �nite satis�ability problems for Sp,
it su�ces to establish the small model property for Sp.
To do this, we use a path label criterion to characterize
whether a �-structure satis�es a sentence of Sp. More
speci�cally, given a structure G and a sentence of Sp,
we label each node of G with paths in . The path
label of G, LB(G;), is the collection of the labels of
all the nodes in G. This path label has the following
properties:

� for any �-structure H , if LB(H;) = LB(G;),
then H j= i� G j= ; and

� there is a �-structure H of size at most 2 2
2 j j

,
such that LB(H;) = LB(G;).

As a result, if is satis�able, then it has a model of

size at most 2 2
2 j j

.

We next de�ne the path labels and show that they
have the properties described above.

4.2.1 Path labels

Let G = (jGj; rG; EG) and 2 Sp, where =
V
�^:'.

To de�ne path labels, we need the following notations:

Paths�() = fpf(�) j � 2 � [f'gg

Paths�() = flt(�) j � 2 � [f'gg

Paths+
 () = frt(�) j � 2 � [f'g;
� has the forward formg

Paths�
 () = f�rt(�) j � 2 � [f'g;
� has the backward formg

Paths(�;
)() = Paths�() [Paths+
 () [Paths
�

 ()

Here the notation �� denotes the pair (�; �). We use
this notation merely to distinguish the occurrence of
a path as the right tail of a backward constraint as
opposed to a forward constraint. The notations pf , lt
and rt are described in De�nition 2.1.

For each node a in jGj, we de�ne a path label using
paths in Paths�() and Paths(�;
)(). This label con-
sists of a pair of sets. Its �rst component is the set of
paths in Paths�() from rG to a. That is,

lb�(a;G;) = f� j � 2 Paths�(); G j= �(rG; a)g:

The second component is a collection of sets of paths in
Paths(�;
)(). Each set consists of the paths between
the node a and some node in jGj. More speci�cally, for
each b 2 jGj, let:

lbs�(a; b;G;) = f� j � 2 Paths�(); G j= �(a; b)g

lbs
(a; b;G;) = f� j � 2 Paths
+

 (); G j= �(a; b)g [

f�� j � � 2 Paths�
 (); G j= �(b; a)g

We de�ne lbs(�;
)(a; b;G;) to be

lbs�(a; b;G;) [lbs
(a; b;G;):

The second component of the label is de�ned by:

lb(�;
)(a;G;) = flbs(�;
)(a; b;G;) j b 2 jGjg

More precisely, we de�ne the label of node a in G

w.r.t. , denoted by lb(a;G;) to be

18

� (;; ;), if lb�(a;G;) = ;; or

� (lb�(a;G;); lb(�;
)(a;G;)), otherwise.

The label of G w.r.t. is de�ned by

LB(G;) = flb(a;G;) j a 2 jGjg:

Every label l 2 LB(G;) is a pair of sets. We refer
to the �rst component of l as lb�(l), and the second as
lb(�;
)(l). In addition, we use the following notations:

LB�(G;) = flb�(l) j l 2 LB(G;)g

LB(�;
)(G;) = flb(�;
)(l) j l 2 LB(G;)g

Let us examine the cardinality of LB(G;). We use
the notation card(S) to denote the cardinality of a set
S. It is easy to verify that

card(Paths�()) � j j,

card(Paths(�;
)()) � j j.

Note that for any l 2 LB(G;), lb�(l) is a subset of
Paths�() and lb(�;
)(l) is a subset of the power set of
Paths(�;
)(). Therefore,

card(LB(G;)) � 2 j j+2 j j

.

In particular, if involves simple constraints only, i.e.,
�[f'g is a subset of Ps, then Paths�() = f�g. In this
case, it is easy to verify that card(LB(G;)) is at most
2. More speci�cally, LB(G;) � f(;; ;); lb(rG; G;)g.

We shall use s�() to denote the pre�x length of '.
That is, s�() = jpf(')j. Note that the pre�xes of all
the constraints in � [f'g have the same length.

The lemma below shows that LB(G;) characterizes
whether G j= . This lemma can be easily veri�ed by
contradiction.

Lemma 4.2: For any �-structures G, H , and any sen-
tence 2 Sp, if LB(G;) = LB(H;), then G j= i�
H j= .

4.2.2 The small model property

Next, we establish the small model property for Sp. By
Lemma 4.2, it su�ces to show the following.

Proposition 4.3: For each �-structure G and each
sentence in Sp, there is a �-structure H , such that

1. the size of H is at most 2 2
2 j j

; and

2. LB(H;) = LB(G;).

For if the proposition holds, then every satis�able

sentence in Sp has a model of size at most 2 2
2 j j

.
That is, Sp has the small model property.

The idea of the proof of Proposition 4.3 is as fol-
lows. Let G be a �-structure and a sentence in Sp.
We �rst construct a graph G� that includes precisely
one node al representing lb�(l) for each l 2 LB(G;).
We then construct a graph Gl for each l 2 LB(G;),
such that the root of Gl represents lb(�;
)(l). Finally,
we glue to each node al the root of the corresponding
graph Gl. This yields the �-structure H described in
Proposition 4.3.

The implementation of the idea requires two lemmas
and the following notation.

De�nition 4.5: Let G be a �-structure, m be a natural
number and a 2 jGj. The m-neighborhood of a in G is
the structure G(a) = (jG(a)j; rG(a); EG(a)), where

� jG(a)j = fc j c 2 jGj; there is path �, j�j � m

and either G j= �(a; c) or G j= �(c; a)g;

� rG(a) = a; and

� for all b; c 2 jG(a)j and anyK 2 E, G(a) j= K(b; c)
i� G j= K(b; c).

That is, G(a) is the restriction of G to jG(a)j with a as
the new root.

Given a �-structure G and a sentence in Sp, the
�rst lemma below proves the existence of a �-structure
G� which has the following properties.

� LB�(G�;) = LB�(G;). In addition, for each
l 2 LB(G;), there is a distinguished node al in
jG�j such that lb�(al; G�;) = lb�(l).

� For each a 2 jG�j, if lb�(a;G�;) 6= ;, then a

does not have any outgoing edge. That is, for each
K 2 E and b 2 jG�j, G� j= :K(a; b).

We shall proceed to construct the �-structure H de-
scribed in Proposition 4.3, such that in H , G� is the
s�()-neighborhood of rH . This will ensure that

LB�(H;) = LB�(G;):

Lemma 4.4: For each �-structure G and 2 Sp, there
is a �-structure G� = (jG�j; rG� ; EG�), such that

1. the size of G� is at most j j+ 2 j j+2 j j

;

2. there is a subset L� of jG�j, such that

19

(a) there exists a bijection f : LB(G;) ! L�,
such that lb�(l) = lb�(f(l); G�;) for each
label l 2 LB(G;); and in addition, for every
K 2 E and b 2 jG�j, G� j= :K(f(l); b);

(b) for each b 2 jG�j n L�, lb�(b;G�;) = ;.

Proof: Let I�() = f� j % 2 Paths�(); � �p %g.
Here � �p % stands for that � is a proper pre�x of %, as
de�ned in Section 2. We construct G� using LB(G;)
and I�() as follows. For each � 2 I�(), let a� be a
distinguished node, and for each l 2 LB(G;), let al
be a distinguished node. Let

� L� = fal j l 2 LB(G;)g;

� jG�j = L� [fa� j � 2 I�()g;

� rG� =

�
a� if s�() � 1
alb(rG;G;) otherwise;

� for all a; b 2 jG�j and K 2 E, G� j= K(a; b) i�
there exists � 2 I�(), such that a = a� (i.e.,
a 62 L�), and one of the following conditions is
satis�ed:

{ there exists % 2 I�(), such that b = a% (i.e.,
b 62 L�), and % = � �K; or

{ there exists l 2 LB(G;), such that b = al
(i.e., b 2 L�), and there exists % 2 lb�(l),
such that % = � �K.

It should be noted that when s�() = 0, i.e., when
involves simple constraints only, I�() = ; and jG�j
consists of rG� and at most another node. This is be-
cause in this case, LB(G;) � f(;; ;); lb(rG; G;)g.
Here rG� represents the label of the root rG if G, i.e.,
rG� = alb(rG;G;). The other node, if it exists, is a(;;;).

The structure G� is basically a rooted acyclic di-
rected graph. It has the following properties.

� The restriction of G� to fa� j � 2 I�()g is a tree
of height s�() � 1. For each node a� in the tree,
there is a single path � from the root rG� to a�.

� At level s�(), there are card(LB(G;)) many
nodes. Each of these nodes is uniquely marked
with a label in LB(G;). In addition, it does not
have any outgoing edge, and all its incoming edges
are from leaves of the tree mentioned above.

We now verify that G� indeed meets all the require-
ments of the lemma.

(1) The size of G�. Let size(A) denote the size of a
structure A. It is easy to verify that

card(I�()) � j j,

card(L�) = card(LB(G;)).

Therefore, size(G�) is at most j j+ 2 j j+2 j j

. In par-
ticular, when s�() = 0, size(G�) is at most 2.

(2) Properties of L�. The bijection f from LB(G;)
to L� can be de�ned by: l 7! al. To verify the other
properties of L�, �rst observe the following:

Claim: For any % 2 I�(), j%j < s�() and

f� j � is a path; G� j= �(rG� ; a%)g = f%g:

This claim can be veri�ed by a straightforward induc-
tion on j%j. By this claim and the de�nition of G�, it is
easy to verify the second statement of the lemma.

The next lemma deals with LB(�;
)(G;). More
speci�cally, given a label l in LB(G;), it constructs
a �-structure Gl = (jGlj; rGl ; EGl) such that

lb(�;
)(r
Gl ; Gl;) = lb(�;
)(l):

We shall construct the structure H described in Propo-
sition 4.3 such that for each l in LB(G;), Gl is part
of H , and moreover,

lb(�;
)(r
Gl ; H;) = lb(�;
)(r

Gl ; Gl;):

Lemma 4.5: Let G be a �-structure and 2 Sp. For
each l 2 LB(G;), there is a �-structure Gl, such that

1. the size of Gl is at most 2
j j; and

2. lb(�;
)(r
Gl ; Gl;) = lb(�;
)(l).

Proof: We give a �ltration argument. Since l is in
LB(G;), there exists a 2 jGj such that lb(a;G;) = l.
Let

I+() = f� j % 2 Paths�() [Paths+
 (); � �p %g,

I�() = f�� j � % 2 Paths�
 (); � �s %g,

I() = I+() [I�().

Here � �p % (� �s %) means that � is a pre�x (su�x)
of %, as de�ned in Section 2. It is easy to verify that
card(I()) � j j.

We de�ne a function g from jGj to the power set of
I() such that for any b 2 jGj,

g(b) 7! f� j � 2 I+(); G j= �(a; b)g [
f�� j � � 2 I�(); G j= �(b; a)g.

20

Clearly, the action of g induces an equivalence relation�
on jGj:

b � b0 i� g(b) = g(b0):

We denote the equivalence class of b with respect to �
as [b]. We proceed to construct a �-structure Gl whose
nodes are these equivalence classes.

� jGlj = f[b] j b 2 jGjg;

� rGl = [a];

� for each K 2 E and o1; o2 2 jGlj, Gl j= K(o1; o2)
i� there exist b1; b2 2 jGj, such that [b1] = o1,
[b2] = o2, and G j= K(b1; b2).

Obviously, the size of Gl is no larger than the cardinal-
ity of the power set of I(), and therefore, is at most
2 j j. In addition, it can be veri�ed by a straightfor-
ward induction on j�j and j%j that for any � 2 I+(),
�% 2 I�() and b 2 jGj,

G j= �(a; b) i� Gl j= �(rGl ; [b]),

G j= %(b; a) i� Gl j= %([b]; rGl).

From these follows that lb(�;
)(r
Gl ; Gl;) = lb(�;
)(l).

Finally, we prove Proposition 4.3. As mentioned ear-
lier, given a �-structure G and a sentence in Sp, we
de�ne the structureH described in Proposition 4.3 such
that

� the structure G� described in Lemma 4.4 is the
s�()-neighborhood of rH in H ;

� for each l 2 LB(G;), Gl in Lemma 4.5 is part of
H such that

{ rGl = f(l), where f is the function speci�ed
in Lemma 4.4,

{ lb(�;
)(r
Gl ; H;) = lb(�;
)(l), and

{ lb�(r
Gl ; H;) = lb�(l).

Proof of Proposition 4.3: Given a �-structure G
and 2 Sp, let G� be the �-structure speci�ed in
Lemma 4.4, and for each l 2 LB(G;), let Gl be the
structure speci�ed in Lemma 4.5. Without loss of gen-
erality, assume that jGlj \ jG�j = ; and jGlj \ jGl0 j = ;
if l 6= l0. Using these, we now construct a �-structure
H = (jH j; rH ; EH), as follows.

� jH j = jG�j [
[

l2LB(G;)

(jGlj n frGlg);

� rH = rG� ;

rG α

G

rG rGa l = =

α

a l’

. . .
l’GG l

l l’

Figure 5: The structure H in Proposition 4.3

� For all a; b 2 jH j and each K 2 E, H j= K(a; b) i�
one of the following conditions is satis�ed:

{ a; b 2 jG�j and G� j= K(a; b);

{ There are l 2 LB(G;), a; b 2 jGlj such that
Gl j= K(a; b);

{ Let L� be the subset of jG�j and f be the
function speci�ed in Lemma 4.4. For some
l 2 LB(G;),

� a = f(l), b 2 jGlj and Gl j= K(rGl ; b); or

� b = f(l), a 2 jGlj and Gl j= K(a; rGl); or

� a = b = f(l) and Gl j= K(rGl ; rGl).

Intuitively, H is built from G� and Gl's by identifying
f(l) with rGl for each l 2 LB(G;). See Figure 5 for
the structure H .

We now show that H is indeed the structure desired.

(1) The size of H . Obviously, size(H) is no larger than

size(G�) +
X

l2LB(G;)

size(Gl)� card(LB(G;)):

By Lemmas 4.4 and 4.5, it can be shown that size(H)

is no larger than 2 2
2 j j

. Note that when s�() = 0,
size(H) is at most 2 j j.

(2) LB(H;) = LB(G;). By Lemmas 4.4, 4.5 and
the de�nition of H , it is easy to verify the following:

Claim: Let L� be the set and f the function speci�ed
in Lemma 4.4. They have the following properties.

1. For each a 2 jH j n L�, lb(a;H;) = (;; ;).

2. For each l 2 LB(G;), lb(f(l); H;) = l.

By the claim, LB(G;) � LB(H;). In addition, by
Lemma 4.4, f is a bijection between LB(G;) and L�.
Therefore, LB(H;) = LB(G;). It should be noted
that the proof of the claim uses the restriction on pre-
�xes described in De�nition 4.1.

21

4.3 Decidability of Implication Problems for P�

We now establish the following:

Theorem 4.6: The implication and �nite implication
problems for P� are decidable.

In the same way as in the proof of Theorem 4.1,
we show Theorem 4.6 by establishing the small model
property for the set:

S(P�) = f
^

� ^ :' j ' 2 P� ; � � P� ; � is �niteg:

To do this, we give a �ltration argument. Given a sat-
is�able sentence in S(P�), we �nd the set of paths
in and use a path labeling mechanism similar to the
one employed in the proof of Theorem 4.1. More specif-
ically, let G be a model of . We use the paths in

to label each node of G, and therefore, obtain the label
of G with respect to . The cardinality of this label
is determined only by j j, the length of . We then
construct a �-structure H , such that H and G have the
same label with respect to , and moreover, H j= . In
addition, each node of H has a unique path label. The
size of H is, therefore, bounded by the cardinality of
the label of G with respect to , which is at most 2 j j.
Thus the small model property is established.

We �rst de�ne the path labels, called relative path
labels . Using the path labels, we then establish the
small model property for S(P�).

4.3.1 Relative path labels

Let be a satis�able sentence of S(P�), where isV
� ^ :'. We use the following to denote paths in :

Paths(�;�)() = fpf(�) j � 2 � [f'gg [
flt(�) j � 2 � [f'g; � 2 Psg

I(�;�)() = f� j % 2 Paths(�;�)(); � �p %g

I(') =

�
f� j � �p rt(')g if ' has forward form
f� j � �s rt(')g if ' has backward form

Here � �p % (� �s %) means that � is a pre�x (su�x)
of %, as de�ned in Section 2.

Let G be a model of , G = (jGj; rG; EG), and (a; b)
be a pair of nodes in jGj such that

G j= pf(')(r; a) ^ lt(')(a; b) ^ :rt(')(a; b)

if ' is a forward constraint, and

G j= pf(')(r; a) ^ lt(')(a; b) ^ :rt(')(b; a)

if ' is a backward constraint. This pair is referred to
as a witness of :' in G.

For each c 2 jGj, we label c with a pair. The �rst
component of the pair is

ls(�;�)(c;G;) = f� j � 2 I(�;�)(); G j= �(rG; c)g:

The second component, ls'(c; a;G;), is de�ned to be

� f� j � 2 I('); G j= �(a; c)g if ' is a forward con-
straint, and

� f� j � 2 I('); G j= �(c; a)g if ' is a backward con-
straint.

The path label of node c in G relative to and a is
de�ned to be:

ls(c;G; ; a) = (ls(�;�)(c;G;); ls'(c; a;G;))

The path label of G relative to and a is de�ned to be:

LS(G; ; a) = fls(c;G; ; a) j c 2 jGjg

We now examine the cardinality of LS(G; ; a). It is
easy to verify that card(I(�;�)()) + card(I(')) � j j.
Note that for each c 2 jGj, ls(�;�)(c;G;) � I(�;�)()
and ls'(c; a;G;) � I('). Hence card(LS(G; ; a)) is
at most 2 j j.

The notion of relative path labels di�ers from the
one described in Section 4.2.1 in the following respects.
First, relative path labels are de�ned for models of sat-
is�able sentences in S(P�), rather than for arbitrary
�-structures. Second, the relative path label of a node
a in a structure involves only the paths between a and
two �xed nodes in the structure, namely, the root node
and a node in a witness of :', whereas the one given
in Section 4.2.1 contains paths connecting all pairs of
nodes in the structure. As a result, a relative path label
has a much smaller cardinality. Third, a relative path
label does not characterize whether a �-structure is a
model of a sentence in S(P�), but based on it we are
able to construct a �ltration argument to establish the
small model property for S(P�).

4.3.2 The small model property

Using relative path labels we show the following:

Proposition 4.7: Every satis�able sentence of S(P�)
has a model of size at most 2 j j.

Proof: Let be a satis�able sentence in S(P�), where
 =

V
�^:', and �[f'g is a �nite subset of P� . Since

 is satis�able, there is a �-structure G = (jGj; rG; EG)
such that G j= . It follows that there exist a, b in
jGj such that (a; b) is a witness of :' in G. Consider

22

LS(G; ; a). As in the proof of Lemma 4.5, we de�ne
an equivalence relation � on jGj by:

b � b0 i� ls(b;G; ; a) = ls(b0; G; ; a):

For each b 2 jGj we denote the equivalence class of b
with respect to � as [b]. By taking these equivalence
classes as nodes, we proceed to construct a �-structure
H as follows:

� jH j = f[b] j b 2 jGjg;

� rH = [rG];

� for each K 2 E and o1; o2 2 jH j, H j= K(o1; o2)
i� there exist b1; b2 2 jGj, such that [b1] = o1,
[b2] = o2, and G j= K(b1; b2).

We next show that H j= , and moreover, the size
of H is at most 2 j j.

(1) The size of H . Since size(H) = card(LS(G; ; a)),
size(H) is at most 2 j j.

(2) H j= . It su�ces to show the following claims.

Claim 1: For any path � and c; d 2 jGj, if G j= �(c; d),
then H j= �([c]; [d]).

Claim 2: For each c 2 jGj,

ls(c;G; ; a) = ls([c]; H; ; [a]):

Claim 1 can be easily veri�ed by induction on j�j.
Similarly, Claim 2 can be veri�ed by showing that for
any � 2 I(�;�)(), % 2 I(') and c 2 jGj,

� 2 ls(�;�)(c;G;) i� � 2 ls(�;�)([c]; H;),

% 2 ls'(c; a;G;) i� % 2 ls'([c]; [a]; H;).

Again, these can be shown by induction on j�j and j%j.

Using these claims, we prove H j= as follows.

We �rst show that H j= �. Suppose, for a contra-
diction, that there exists � 2 � such that H j= :�.
Without loss of generality, assume that � is a forward
constraint (the argument for the backward case is anal-
ogous). Then there exist c; d 2 jH j, such that

H j= pf(�)(rH ; c) ^ lt(�)(c; d) ^ :rt(�)(c; d):

We have two cases to consider.

Case 1: � is a simple constraint. That is, pf(�) = � and
c = rH . In this case, we have lt(�) 2 ls(�;�)(d;H;)
and H j= :rt(�)(rH ; d). By the de�nition of H , there
exists d1 2 jGj, such that [d1] = d. By Claim 2,
ls(d1; G; ; a) = ls(d;H; ; [a]). By the de�nition of
ls, we have ls(�;�)(d1; G;) = ls(�;�)(d;H;). Hence

lt(�) 2 ls(�;�)(d1; G;). That is, G j= lt(�)(rG; d1).
Since G j= �, we have that G j= rt(�)(rG ; d1). By
Claim 1, we have H j= rt(�)(rH ; d). This contradicts
the assumption.

Case 2: � is a �-restricted constraint, i.e., jlt(�)j � 1.

If jlt(�)j = 0, then c = d. Thus by the assumption,
pf(�) 2 ls(�;�)(c;H;) and H j= :rt(�)(c; c). By the
de�nition of H , there exists c1 2 jGj, such that [c1] = c.
By Claim 2, ls(�;�)(c1; G;) = ls(�;�)(c;H;). Thus
pf(�) 2 ls(�;�)(c1; G;). That is, G j= pf(�)(rG; c1).
By G j= �, G j= rt(�)(c1; c1). Thus by Claim 1, we
have H j= rt(�)(c; c). This contradicts the assumption.

If jlt(�)j = 1, then lt(�) = K for some K 2 E. By
the assumption, we have pf(�) 2 ls(�;�)(c;H;) and
H j= K(c; d) ^ :rt(�)(c; d). By the de�nition of H ,
there exist c1; d1 2 jGj, such that [c1] = c, [d1] = d

and moreover, G j= K(c1; d1). By Claim 2, we have
that ls(�;�)(c1; G;) = ls(�;�)(c;H;). As a result, we
have G j= pf(�)(rG; c1). By G j= �, G j= rt(�)(c1; d1).
Thus by Claim 1, we have H j= rt(�)(c; d). Again, this
contradicts the assumption.

We next show that H j= :'. Since (a; b) is a witness
of :' in G, G j= pf(')(rG; a)^ lt(')(a; b). By Claim 1,

H j= pf(')(rH ; [a]) ^ lt(')([a]; [b]):

By Claim 2, ls'(b; a;G;) = ls'([b]; [a]; H;). Hence
when ' is a forward constraint, by G j= :rt(')(a; b),
we have that H j= :rt(')([a]; [b]); and when ' is a
backward constraint, by G j= :rt(')(b; a), we have that
H j= :rt(')([b]; [a]). Therefore, H j= :'.

4.4 Decidability of Extended Implication for P�

Next, we prove the following:

Theorem 4.8: The extended implication and �nite
implication problems for P� are decidable.

We prove the theorem by reduction to the implica-
tion problems for P� , whose decidability is established
by Theorem 4.6.

Let Pts be the set of all paths, and let Se(P�) be

f
^

�^:' j �[f'g is a pre�x extended subset of P�g:

Recall the set S(P�) de�ned in Section 4.3. We de�ne
the pre�x extension function from S(P�) to Se(P�) to
be the mapping f : S(P�)� Pts! Se(P�), such that

f(
^

� ^ :'; �) 7!
^
�2�

�(�; �) ^ :�('; �);

23

where � is described in De�nition 4.3.

To prove Theorem 4.8, it su�ces to show:

Proposition 4.9: Let be a sentence in S(P�), � a
path, and f the pre�x extension function from S(P�)
to Se(P�). Then

1. is satis�able i� f(; �) is satis�able;

2. is �nitely satis�able i� f(; �) is �nitely satis-
�able. In addition, if has a �nite model of size
N , then f(; �) has a model of size N + j�j.

For if Proposition 4.9 holds, then Se(P�) has the
small model property for satis�ability. More speci�-
cally, given � 2 Se(P�), we can determine a path � and
 2 S(P�) in linear time, such that � = f(; �). In ad-
dition, j�j � j j+ j�j. If � is satis�able, then by Propo-
sition 4.9, so is . By Proposition 4.7, has a model
of size at most 2 j j. Thus again by Proposition 4.9, �
has a model of size at most 2 j j+ j�j, which is no larger
than 2 j�j. Therefore, Se(P�) has the small model prop-
erty and it follows that the extended implication and
�nite implication problems for P� are decidable.

Proof of Proposition 4.9: We only prove (2) of the
proposition. The proof of (1) is similar.

Let =
V
� ^ :'. Note that if j�j = 0, then

f(; �) = . Obviously, the proposition holds in this
case. Hence in the sequel, we assume that j�j � 1.

Assume that has a �nite modelG = (jGj; rG; EG).
We show that f(; �) has a model H = (jH j; rH ; EH),
and moreover, the size of H , size(H), is size(G) + j�j.

Let R� = f� j � is a path, � �p �g, where � �p �
means that � is a proper pre�x of �. We construct H
as follows. For each � 2 R�, let c� be a distinct node
which is not in jGj. Let

� jH j = jGj [fc� j � 2 R�g;

� rH = c�;

� For all a; b 2 jH j and each K 2 E, H j= K(a; b) i�
one of the following conditions is satis�ed:

{ there exists � 2 R�, such that a = c� and
b = c��K and � �K 2 R�; or

{ there exists � 2 R�, such that � = � �K and
a = c� and b = rG; or

{ a; b 2 jGj and G j= K(a; b).

Obviously, size(H) = size(G) + j�j. In addition, it is
straightforward to verify that H j= f(; �).

Conversely, suppose that f(; �) has a �nite model
G = (jGj; rG; EG). We construct a �nite model of .

Without loss of generality, assume that ' is a for-
ward constraint (the proof for the backward case is anal-
ogous). Since G j= :�('; �), there exist a; b; c 2 jGj,
such that

G j= �(rG; a) ^ pf(')(a; b) ^ lt(')(b; c) ^ :rt(')(b; c):

Let m be the largest natural number in the following
set: fjpf(�)j + jlt(�)j + jrt(�)j j � 2 � [f'gg. Let
G(a) be the m-neighborhood of a in G, as described in
De�nition 4.5. Clearly, G(a) is a �nite �-structure. We
next prove that G(a) j= .

We �rst show G(a) j= :'. By jpf(')j+ jlt(')j < m

and jpf(')j+ jrt(')j < m, we have that b 2 jG(a)j and
c 2 jG(a)j. Thus by the de�nition of G(a), we have

G(a) j= pf(')(a; b) ^ lt(')(b; c) ^ :rt(')(b; c):

That is, G(a) j= :'.

Second, we show by contradiction that for any � 2 �,
G(a) j= �. Suppose that there exists � 2 � such that
G(a) j= :�. Without loss of generality, assume that �
is a forward constraint (the proof for the backward case
is analogous). Then there exist d; e 2 jG(a)j such that

G(a) j= pf(�)(a; d) ^ lt(�)(d; e) ^ :rt(�)(d; e):

Thus by the de�nition of G(a), we have

G j= �(rG; a) ^ pf(�)(a; d) ^ lt(�)(d; e) ^ :rt(�)(d; e):

That is, G j= :�(�; �). This contradicts the assumption
that G j= f(; �).

4.5 Conjunctive Path Constraints

We next show that the complexity results established
above also hold for an extension of path constraints.
This extension is de�ned as follows.

De�nition 4.6: A conjunctive path constraint � is an
expression of either the forward form

8x (
^
�2A

�(r; x) ! 8 y (
^
�2B

�(x; y)!
(x; y)));

or the backward form

8x (
^
�2A

�(r; x) ! 8 y (
^
�2B

�(x; y)!
(y; x)));

where A;B are non-empty �nite sets of paths, and are
denoted by pf(�) and lt(�), respectively. Here
 is a
path, denoted by rt(�). The set of all conjunctive path
constraints is denoted by P^

c .

As an example, consider the following conjunctive
path constraints:

24

8x (dept(r; x)! 8 y (ta(x; y) ! student(x; y)))

8x (dept(r; x)! 8 y (ta(x; y) ! employee(x; y)))

8x (dept(r; x)! 8 y ((student(x; y) ^ employee(x; y))
! ta(x; y)))

Abusing object-oriented database terms, these P^
c con-

straints assert:

� TA of a department is a \subclass" of both Student
and Employee of the department; and

� the \extent" of TA is the intersection of the \ex-
tents" of Student and Employee.

Obviously, Pc is a subclass of P^
c . Therefore, the

corollary below follows from Theorem 3.1 immediately.

Corollary 4.10: The implication problem for P^
c is

r.e. complete, and the �nite implication problem for
P^
c is co-r.e. complete.

Below we de�ne fragments of P^
c analogous to the

fragments of Pc discussed above.

De�nition 4.7: A �nite subset � of P^
c is called a

pre�x restricted subset of P^
c i� for all �, in �, all the

paths in pf(�) [pf() have the same length.

The pre�x restricted (�nite) implication problem for
P^
c is the problem to determine, given any �nite pre�x

restricted subset � [f�g of P^
c , whether all the (�nite)

models of � are also models of �.

De�nition 4.8: A simple conjunctive path constraint
� is a constraint of P^

c with pf(�) = f�g.

A �-restricted conjunctive path constraint � is a con-
straint of P^

c such that for each � 2 lt(�), j�j � 1.

The sublanguage P^
� is de�ned to be the class of

P^
c constraints � such that either for any � 2 pf(�),
j�j = 0, or for any � 2 lt(�), j�j � 1. That is, P^

c is
the set of all simple conjunctive path constraints and
all �-restricted conjunctive path constraints.

De�nition 4.9: Let � be a path and � be a constraint
in P^

� . The extension of � with pre�x �, denoted by
�(�; �), is the constraint in P^

c de�ned either by

8x (
^

�2 pf(�)

� � �(r; x)! 8 y (
^

� 2 lt(�)

�(x; y)! rt(�)(x; y)))

when � is of the forward form, or by

8x (
^

�2 pf(�)

� � �(r; x)! 8 y (
^

� 2 lt(�)

�(x; y)! rt(�)(y; x)))

when � is of the backward form.

Let � be a path and � a �nite subset of P^
� . The ex-

tension of � with pre�x � is the subset of P^
c de�ned by

f�(�; �) j � 2 �g. Such a set is called a pre�x extended
subset of P^

� .

The extended (�nite) implication problem for P^
� is

the problem of determining, given any pre�x extended
subset � [f�g of P^

� , whether all the (�nite) models
of � are also models of �.

On semistructured data we have the following, which
are analogous to Theorems 4.1, 4.6 and 4.8.

Theorem 4.11: The following problems are decidable:

� The pre�x restricted implication and �nite impli-
cation problems for P^

c .

� The implication and �nite implication problems
for P^

� .

� The extended implication and �nite implication
problems for P^

� .

With slight modi�cation, the proofs of Theorems 4.1,
4.6 and 4.8 are applicable to Theorem 4.11.

With thanks to an anonymous referee, we observe
that the arguments for these theorems can even be used
to establish the decidability of certain extensions of the
decidable fragments of Pc and P^

c . For example, the
proof of Theorem 4.1 yields a stronger result: the sat-
is�ability of any Boolean combination of constraints in
pre�x restricted subsets of Pc is decidable. More specif-
ically, let � be a a pre�x restricted subset of Pc. We
de�ne a set B(�) of logic sentences as follows:

� � � B(�);

� if ' 2 B(�), then so is :';

� if ' and � are in B(�), then so are '^� and '_�.

The (�nite) satis�ability problem for Boolean combi-
nations of constraints in pre�x restricted subsets of Pc
is the problem to determine, given any pre�x restricted
subset � of Pc and any ' 2 B(�), whether ' has a
(�nite) model.

With slight modi�cation, the argument for Theo-
rem 4.1 can be used to prove the following:

Proposition 4.12: The satis�ability and �nite satis�a-
bility problems for Boolean combinations of constraints
in pre�x restricted subsets of Pc are decidable.

25

5 CONCLUSIONS

We have introduced a class of path constraints, Pc,
and investigated its associated implication and �nite
implication problems. These path constraints capture
many natural integrity constraints that commonly arise
in both structured and semistructured databases. They
are not only a fundamental part of the semantics of the
data; they are also useful in query optimization. The
importance of these constraints was also emphasized in
several XML proposals (e.g., [10, 26, 31, 32]). Due to
the recent popularity of the World Wide Web and the
success of the XML standard [11], these constraints have
found a wide range of applications.

In the context of semistructured data, we have shown
that, despite the simple syntax of the language Pc, its
associated implication problem is r.e. complete and its
�nite implication problem is co-r.e. complete. These
results are rather surprising since Pc is a mild gener-
alization of word constraints introduced and studied
in [5], for which the implication and �nite implication
problems are in PTIME. In light of these undecidability
results, we have also identi�ed several fragments of Pc
which su�ce to express many interesting semantic re-
lations such as extent, inverse and local database con-
straints, and properly contain the class of word con-
straints. We have established the decidability of the
implication and �nite implication problems associated
with each of these fragments.

Another issue of equal importance is the interac-
tion between path and type constraints. Although the
XML standard itself does not require any schema or
type system, a number of proposals have been devel-
oped that allow one to constrain the structure of XML
data by imposing a schema or a type constraint on it.
These and other proposals also advocate the need for
certain integrity constraints, which can be expressed
as Pc constraints. It is likely that future XML pro-
posals will involve both forms of constraints, and it is
therefore appropriate to understand the interaction be-
tween them. It would be tempting to directly apply the
complexity results developed for semistructured data to
typed data. However, we have shown in [15, 16] that
path constraints interact with type constraints. More
speci�cally, a number of decidability and undecidability
results have been established there which demonstrate
that adding a type system may in some cases simplify
reasoning about path constraints, and in other cases
make it harder. A full treatment of these results will
appear in a future publication.

ACKNOWLEDGEMENTS

We thank Leonid Libkin, Val Tannen and Victor Vianu
for valuable comments and discussions. We also thank
the referees whose detailed suggestions have substan-
tially improved this paper.

REFERENCES

[1] S. O. Aanderaa, On the decision problem for for-
mulas in which all disjunctions are binary, Proc.
2nd Scandinavian Logic Symp., 1971, pp. 1-18.

[2] S. Abiteboul, Querying semi-structured data, Proc.
6th Int. Conf. on Database Theory , 1997, pp. 1-18.

[3] S. Abiteboul, R. Hull, and V. Vianu, \Foundations
of Databases", Addison-Wesly, 1995.

[4] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and
J. Weiner, The lorel query language for semistruc-
tured data, J. Digital Libraries 1(1), 1997, pp. 68-
88.

[5] S. Abiteboul and V. Vianu, Regular path queries
with constraints, Proc. 16th ACM Symp. on Prin-
ciples of Database Systems , 1997, pp. 122-133.

[6] F. Bancilhon, C. Delobel, and P. Kanellakis (ed.),
\Building an object-oriented database system: the
story of O2", Morgan Kaufmann, San Mateo, Cal-
ifornia, 1992.

[7] J. Barwise, On Moschovakis closure ordinals, J.
Symbolic Logic 42, 1977, pp. 292-296.

[8] M. F. van Bommel and G. E. Weddell, Reason-
ing about equations and functional dependencies
on complex objects, IEEE Trans. on Knowledge
Data Engrg. 6(3), 1994, pp. 455-469.

[9] E. B�orger, E. Gr�adel, and Y. Gurevich, \The clas-
sical decision problem", Springer-Verlag, 1997.

[10] T. Bray, C. Frankston, and A. Malhotra, Docu-
ment Content Description for XML, W3C Note
NOTE-dcd-19980731. See http://www.w3.org/TR
/NOTE-dcd.

[11] T. Bray, J. Paoli, and C. M. Sperberg-McQueen,
Extensible Markup Language (XML) 1.0, W3C
Recommendation REC-xml-19980210. Available as
http://www.w3.org/TR/REC-xml.

[12] P. Buneman, Semistructured data, Tutorial in
Proc. 16th ACM Symp. on Principles of Database
Systems , 1997, pp. 117-121.

26

[13] P. Buneman, S. Davidson, M. Fernandez, and
D. Suciu, Adding structure to unstructured data,
Proc. 6th Int. Conf. on Database Theory , 1997, pp.
336-350.

[14] P. Buneman, S. Davidson, G. Hillebrand, and D.
Suciu, A query language and optimization tech-
niques for unstructured data, Proc. ACM SIGMOD
Int. Conf. on Management of Data, 1996, pp. 505-
516.

[15] P. Buneman, W. Fan, and S. Weinstein, Path con-
straints on semistructured and structured data,
Proc. 17th ACM Symp. on Principles of Database
Systems , 1998, pp. 129-138.

[16] P. Buneman, W. Fan, and S. Weinstein, Interac-
tion between path and type constraints, Proc. 18th
ACM Symp. on Principles of Database Systems ,
1999, pp. 56-67. Full paper available as Technical
Report MS-CIS-98-16, Department of Computer
and Information Science, University of Pennsylva-
nia, 1998.

[17] R. G. G. Cattell (ed.), \The object-oriented stan-
dard: ODMG-93" (Release 1.2), Morgan Kauf-
mann, San Mateo, California, 1996.

[18] U. S. Chakravarthy, J. Grant, and J. Minker, Foun-
dations of semantic query optimization for deduc-
tive databases, J. Minker (ed.), \Foundations of
Deductive Databases and Logic Programming",
Morgan Kaufmann, San Mateo, California, 1988,
pp. 243-273.

[19] S. Cluet and C. Delobel, A general framework
for the optimization of object-oriented queries,
Proc. ACM SIGMOD Int. Conf. on Management
of Data, 1992, pp. 383-392.

[20] A. Deutsch, M. Fernandez, D. Florescu, A. Levy,
and D. Suciu, XML-QL: a query language for XML,
W3C Note NOTE-xml-ql-19980819. See http://

www.w3.org/TR/NOTE-xml-ql.

[21] H.-D. Ebbinghaus and J. Flum, \Finite Model The-
ory", Springer, 1995.

[22] H. B. Enderton, \A mathematical introduction to
logic", Academic Press, 1972.

[23] M. Fernandez, D. Florescu, J. Kang, A. Levy,
and D. Suciu, Catching the boat with Strudel:
experience with a Web-site management system,
Proc. ACM SIGMOD Int. Conf. on Management
of Data, 1998, pp. 414-425.

[24] M. Fernandez and D. Suciu, Optimizing regular ex-
pressions using graph schemas, Proc. Int. Conf. on
Data Engineering , 1998, pp. 14-23.

[25] D. Florescu, L. Raschid, and P. Valduriez, A
methodology for query reformulation in CIS using
semantic knowledge, Int. J. Cooperative Informa-
tion Systems 5(4), 1996, pp. 431-468.

[26] M. Fuchs, M. Maloney, and A. Milowski, Schema
for object-oriented XML, W3C Note NOTE-SOX-
19980930. See http://www.w3.org/TR/NOTE-SOX.

[27] E. Gr�adel, P. Kolaitis, and M. Vardi, On the deci-
sion problem for two-variable �rst-order logic, Bul-
letin of Symbolic Logic 3(1), 1997, pp. 53-69.

[28] N. Immerman, Upper and lower bounds for �rst
order expressibility, J. Comput. System Sci. 25(1),
1982, pp. 76-98.

[29] M. Ito and G. E. Weddell, Implication problems
for functional constraints on databases supporting
complex objects, J. Comput. System Sci. 50(1),
1995, pp. 165-187.

[30] C. Lamb, G. Landis, J. Orenstein, and D. Wein-
reb, The ObjectStore Database system, Communi-
cations of the ACM 34(10), 1991, pp. 51-63.

[31] O. Lassila and R. R. Swick, Resource Description
Framework (RDF) model and syntax speci�cation,
W3C Working Draft WD-rdf-syntax-19981008. See
http://www.w3.org/TR/WD-rdf-syntax.

[32] A. Layman, E. Jung, E. Maler, H. S. Thompson,
J. Paoli, J. Tigue, N. H. Mikula, and S. De Rose,
XML-Data, W3C Note NOTE-XML-data-980105.
http://www.w3.org/TR/1998/NOTE-XML-data.

[33] A. O. Mendelzon, G. A. Mihaila, and T. Milo,
Querying the World Wide Web, J. Digital Libraries
1(1), 1997, pp. 54-67.

[34] Y. Papakonstantinou, H. Garcia-Molina, and J.
Widom, Object exchange across heterogeneous in-
formation sources, Proc. 11th Int. Conf. on Data
Engineering , 1995, pp. 251-260.

[35] L. Popa and V. Tannen, An equational chase for
path-conjunctive queries, constraints, and views,
Proc. 7th Int. Conf. on Database Theory , 1999, pp.
39-57.

[36] H. Wang, Dominoes and the 898-case of the de-
cision problem, Proc. of Symp. on Mathematical
Theory of Automata, Brooklyn Polytechnic Insti-
tute, 1962, pp. 23-55.

27

