Dependencies for Graphs: Challenges and Opportunities

WENFEI FAN, University of Edinburgh, Beihang University, and Shenzhen Institute of Computing Sciences

What are graph dependencies? What do we need them for? What new challenges do they introduce? This
paper tackles these questions. It aims to incite curiosity and interest in this emerging area of research.

CCS Concepts: » Information systems — Inconsistent data;

Additional Key Words and Phrases: Dependencies, graphs, satisfiability, implication, validation, dependency
discovery, error detection, certain fixes

ACM Reference Format:
Wenfei Fan. 2019. Dependencies for Graphs: Challenges and Opportunities. ACM J. Data Inform. Quality 1, 1
(April 2019), 10 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Relational dependencies specify a fundamental part of the semantics of relations, and are found in
almost every database textbook. For example, among our familiar dependencies are functional de-
pendencies (FDs), which help us design database schema, optimize queries, and clean relational data.
Do we need dependencies for graphs, e.g., social networks, knowledge bases and finance trans-
actions? Yes, the need for dependencies is even more evident for graphs. Unlike relational data,
real-life graphs often do not come with a schema, and dependencies provide one of few means
for us to specify the integrity and semantics of the data. They are useful in consistency checking,
entity resolution, knowledge base expansion, spam and fraud detection, among other things.

Example 1.1. Consider knowledge bases and finance transactions, which are modeled as graphs.

(1) Consistency checking. It is common to find inconsistencies in real-life knowledge bases, e.g.,

o DBPedia: all birds can fly, and moa are birds, although moa are “flightless”;
o DBPedia: Philip Sclater is marked as both a child and a parent of William Lutley Sclater;

o Yago: psychologist Tony Gibson is credited for creating Ghetto Blaster, while the video game
was actually created by programmer Tony ‘Gibbo’ Gibson;

o Yago: an institute BBC Trust was created in 2007 but destroyed in 1946; and

o Yago: a village Bhonpur in India has 600 females and 722 males; its total population is 1572.
As shown in [11, 12], such errors can be easily caught by functional dependencies (FDs) on graphs.
(2) Knowledge base expansion. When adding a newly extracted album to a knowledge base G, to
avoid duplicates, we need rules to uniquely identify an album entity in G, specified in terms of

1 its title and the id of its primary artist, or
1, its title and the year of initial release.

Author’s address: Wenfei Fan, University of Edinburgh , Beihang University , Shenzhen Institute of Computing Sciences,
wenfei@inf.ed.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1936-1955/2019/4-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Journal of Data and Information Quality, Vol. 1, No. 1, Article . Publication date: April 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

:2 Fan

As shown in [6], these rules can be expressed as keys on graphs. Note that the title of an album
and the name of its artist cannot uniquely identify an album. For instance, an American band and a
British band are both called “Bleach”, and both bands had an album “Bleach”.

To cope with 14, we also need a key to identify artists:

/5: the name of the artist, and the id of an album recorded by the artist.

As opposed to our familiar keys for relations, these keys are “recursively defined” on graphs: to
identify an album, we may need to identify its primary artist, and vice versa.

(3) Fraud detection. Fraud causes U.S. banks to lose tens of billions of dollars every year, and 10%-20%
of bad debt at leading US and European banks is actually fraud (cf. [23]). Fraud rings often operate
as follows [23]: (a) a group of people organize a fraud ring; the ring shares a subset of legitimate
contact information, e.g., phone numbers and addresses, combining them to create a number of
synthetic identities; (b) ring members open accounts using these “fake” identities; (c) the accounts
are used normally, with regular purchases and timely payments; (d) banks increase the revolving
credit lines over time, due to the observed responsible credit behavior; and (e) one day the ring
“busts out”, coordinating their activity, maxing out all of their credit lines, and disappearing.

For instance, 3 people each sharing 2 valid identifiers (phone numbers and addresses) lead to 9
interconnected synthetic identities. A ring of n people sharing m elements of data (such as name,
date of birth, phone number, address, SSN, etc.) can create up to n™ synthetic identities.

As will be seen shortly, we can detect such fraud by using graph dependencies that capture
associations among accounts (synthetic identities), phone numbers and addresses. a

Challenges. No matter how useful, the study of graph dependencies is challenging. Graph depen-
dencies are a departure from their relational counterparts. As an example, consider a traditional
FD R(X — Y). It is defined on a relation schema R with attributes X and Y, where R specifies the
“scope” of the FD, i.e, X — Y is to be applied to an instance D of R such that for any tuples ¢; and
ty in D, if t1[X] = t,[X], then #4[Y] = £[Y] [1]. In contrast, graphs are semistructured and are often
schemaless. To define an FD on graphs G, we need a combination of (a) a topological constraint Q
to identify associated entities in G, specifying its “scope”, i.e., it identifies entities to which the FD
is applied; and (b) a dependency X = Y on the attributes of the entities identified.

As another example, relational keys are a simple special case of FDs and are based on value
equality. In contrast, keys for graphs are often necessarily “id-based” and recursively defined, as
shown by ;-3 of Example 1.1. That is, they are based on node identity. Moreover, if two vertices
are identified as the same entity, then they must have the same set of attributes and edges.

To make practical use of graph dependencies, several questions have to be answered. How should
we define dependencies on schemaless graphs, to associate entities and specify their regularity?
What is the complexity of reasoning about graph dependencies? What new challenges are introduced
by such dependencies? How can we make practical use of the dependencies?

A brief history. In light of the practical need, graph dependencies are being investigated by
W3C [19] and the industry (e.g., [22]). While relational dependency theory makes an important part
of database theory [1], the study of graph dependencies is still in its infancy. Even a “standard” form
of FDs is not yet in place. This line of work started from [21]. It defines simple keys, foreign keys
and FDs by extending relational methods to RDF, and treating relation names as class types. Also
for RDF, FDs are defined with path patterns [24] and tree patterns [4] of entities. Using RDF triple
patterns with variables, keys [6], equality-generating dependencies (EGDs) [2] and tuple-generating
dependencies (TGDs) [5] are formulated. Over generic graphs, FDs and their extensions are defined
with (possibly cyclic) graph patterns with variables [11, 16] and node identities [12].

ACM Journal of Data and Information Quality, Vol. 1, No. 1, Article . Publication date: April 2019.

Dependencies for Graphs: Challenges and Opportunities :3

x 2 y x x
Pl i person : person i i - P area
e ° P ® ° : pe male
; 3 P i i 5 i female population
is{a chil< p}rent i i create i created dgstroyed populatiop/total
: : P P P opulation
[e 3 . P ° P o o P o o o
oz : person : product : date date integer integer integer
Y Yy z P Y z P Y w z
Q1 : Qa : Qs

] 1 : . 1 9 x5
1w y 2 P P :
5 album aIbqu()§ iaIbTum P adress ° ° ° ;
PR TN AN A
i ! accomt © e e 6 o e e e e |

recorded by | i recofded_by
% v : - yi Z1,1 212 21,3 221 222 223 231 232 233 |

« il | o

artist Pl artist {album i : phone ° ° °

%' Py Pe P n Yo Y3
Qs Q7 Os

Fig. 1. Graph patterns

Organization. This paper aims to incite interest in the study of graph dependencies. As examples,
we present graph dependencies introduced in [11, 12, 16] and their associated fundamental problems
in Section 2, highlighting their differences from traditional relational dependencies. As a case study,
we demonstrate how GEDs help us clean graph-structured data in Section 3, identifying technical
problems underlying the application. We identify open problems in Section 4.

2 DEPENDENCIES FOR GRAPHS

As examples, we present graph functional dependencies of [16] and their extensions [11, 12].

2.1 Preliminaries
We first review some basic notations. We consider directed and (node and edge) labeled graphs.

Graphs. A graph G is specified as (V, E, L, F4), where (a) V is a finite set of nodes, in which each
node v has label L(v); (b) E is a finite set of edges, in which (v, 1, v") denotes an edge from node v
to v’ labeled with ; and (c) each node v € V carries a (finite) tuple Fa(v) = (A; = a1, ..., A, = ay)
of attributes for e.g., properties, keywords and ratings, written as v.A; = a;,and A; # A; if i # j. In
particular, each node v € V carries a special attribute id denoting its node identity.

Unlike relational databases, there is typically no schema for graphs. Hence for an attribute A
and a node v € V, v.A may not exist, except that v has a unique attribute v.id denoting its identity
such that when two nodes have the same id, the two are the same node.

Graph patterns. A graph pattern is a directed graph Q[x] = (Vp, Ep, L), where (1) Vo (resp. Ep) is
a finite set of pattern nodes (resp. edges); (2) Lo is a function that assigns a label Lo (u) (resp. Lo(e))
to each node u € Vy (resp. edge e € Ep); and (3) is a list of distinct variables, each denoting a
node in V. We allow wildcard °_ as a special label for nodes or edges in Q that matches any label.
For example, Figure 1 depicts a few graph patterns. Note that nodes in e.g., Q;, carry wildcard _.

Matches. A match of pattern Q[x] in graph G is a homomorphism A from Q to G such that (a) for
each node u € Vp, Lo(u) < L(h(u)); and (b) for each edge e = (u,1,u’) in Q, there exists an edge
e’ = (h(u), ', h(u’)) in G such that 1 < /. Here ¢ < ¢’ if either the two labels are identical or one of
them is wildcard ‘. Distinct wildcards may match different label valuations. We denote the match
as h(x), where h(x) consists of h(x) for all variables x € x. Intuitively, X is a list of entities to be
identified by pattern Q, and h(x) is an instantiation of x in graph G, one node for each entity.

ACM Journal of Data and Information Quality, Vol. 1, No. 1, Article . Publication date: April 2019.

4 Fan

2.2 Graph Dependencies
A graph functional dependency (GFD) [16] ¢ is defined as Q[x](X = Y), where Q[x] is a graph
pattern, X and Y are conjunctions of literals of x. A literal has the following form: for x, y € *,
(a) constant literal x.A = ¢, where c is a constant, and A is an attribute that is not id; or
(b) variable literal x.A = y.B, where A and B are attributes that are not id.

Intuitively, GFD ¢ is a pair of (1) a topological constraint imposed by pattern Q, to identify entities
in a graph, and (2) an attribute dependency X = Y to be applied to the entities identified by Q.

Example 2.1. We can use GFDs as rules to detect some errors and fraud observed in Example 1.1.

(1) Consistency checking. The following GFDs are taken from [12], defined with patterns of Figure 1.

(@) @1 = Q1[x,y](x.A = x.A= y.A = x.A), where A is an attribute of x. It says that if entity y is_a
x and if x has property A, then y inherits x.A, i.e., y also has attribute A and y.A = x.A. Note that x
and y are labeled ‘_, representing generic entities regardless of their labels. When A is can_fly, ¢,
catches the inconsistency between birds and moa in the classification of DBPedia.

(b) p2 = Qa2[x, y](true = false), where true and false are syntactic sugar for Boolean values. More
specifically, true is empty X, i.e., when X imposes no pre-conditions, and false can be expressed as
y.A = c and y.A = d for distinct constants ¢ and d. The GFD states that graph pattern Qs is “illegal”,
i.e., no person can be both a child and a parent of another person.

(©) @3 = Os]x, y](x.type = “video game” = y.type = “programmer”). Here Qs[x, y] specifies a
person y and a product x, linked by a create edge; both entities carry attribute type. The GFD says
that a video game is only created by programmers; it catches the error in Yago about Ghetto Blaster.

(2) Fraud detection. Recall behaviors of fraud rings observed in [23] and described in Example 1.1.

(d) ¢ = Qs[x, 2, §](true = false). Pattern Qg shows bank accounts opened with “fake” identities by
a fraud ring of 3 people, where X = (x1, x2, x3) of 3 legitimate addresses; § = (y1,y2, y3), for 3 phone
numbers; and Z = (z1,1, . . ., 23,3); each z; ; denotes a bank account opened with a synthetic identity;
it shares address with z; ; and phone number with z; ; for i,k € [1,3]. The GFD says that if a
group of accounts match pattern Qs, then these accounts need to be monitored and scrutinized. O

Semantics. We next interpret GFD Q[x](X = Y). Consider a match h(x) of Q in a graph G, and
a literal x.A = c of x. We say that h(X) satisfies the literal if attribute A exists at node v = h(x),
and moreover, v.A = c; similarly for literals x.A = y.B. We denote by A(X) |= X if the match h(x)
satisfies all the literals in X. We write h(x) = X = Y if h(x) |= X implies h(X) |= Y.

A graph G satisfies GFD ¢, denoted by G |= ¢, if for all matches h(x) of Qin G, h(x) F X = Y.
We say that G satisfies a set X of GFDs if for all ¢ € 2, G |= ¢, i.e., G satisfies each GFD in 3.

Intuitively, if h(x) violates X = Y, i.e,, h(x) |= X but h(x) | Y, then the subgraph induced by
h(x) is inconsistent. Hence we can detect errors using GFDs as demonstrated in Example 2.1.

Recall that for a relational FD R(X — Y), all attributes in X U Y are assured to exist by schema
R. In contrast, for a literal x.A = ¢ in a GFD Q[x](X = Y), node h(x) does not necessarily have
attribute A in a schemaless graph. By the definition of satisfaction, (a) when x.A = c is a literal in X,
if h(x) has no A-attribute, then h(x) trivially satisfies X = Y. (b) In contrast, if x.A = ¢ is in Y, then
for h(x) |= Y, node h(x) must have A-attribute; similarly for x.A = y.B. That is, graph dependencies
have to cope with the semistructured nature of graphs, as opposed to traditional dependencies.

Extensions. GFDs extend conditional functional dependencies (CFDs) [8] to graphs, by supporting
bindings of semantically related constants with constant literals. CFDs have proven effective in
catching semantics inconsistencies in relational data [7]. However, there are still errors in real-life
graphs that GFDs cannot capture. To cope with these, several extensions of GFDs have been studied.

ACM Journal of Data and Information Quality, Vol. 1, No. 1, Article . Publication date: April 2019.

Dependencies for Graphs: Challenges and Opportunities :5

(1) NGDs. Semantic inconsistencies often involve numeric values. To catch such errors, NGDs
extend GFDs by supporting linear arithmetic expressions and built-in comparison predicates [11].
That is, for a graph pattern Q[x], we allow literals of x of the form e; ® e;, where (a) ® is one of
=,#,<,<,>and >, and (b) e; and e; are linear arithmetic expressions defined in terms of attributes
x.A and constants ¢ connected with +, —, X, +, with degree 1 by treating x.A as variables.

Example 2.2. Continuing with Example 2.1, we use the NGDs below to catch inconsistencies
with numeric values. These NGDs are defined with patterns in Figure 1 and are borrowed from [11].

(d) NGD ¢4 = Q4[x,y, z](true = z.val — y.val > ¢). From Q, of Figure 1, we can see that x,y and
z denote an entity, the date when the entity was created and the date when it was destroyed,
respectively; val is an attribute for the integer values of y and z in days; and c is a constant. The
NGD states that an entity cannot be destroyed within ¢ days of its creation.

(€) NGD ¢5 = Qs[w, x,y, z](true = y.val + z.val = w.val). It says that in any area x, its total
population w.val should equal the sum of its female population y.val and male population z.val. O

(2) GEDs. Relational keys are a special case of FDs. In contrast, GFDs cannot identify entities (nodes)
in a graph. To uniformly express FDs and keys on graphs, GEDs extend GFDs by supporting id liter-
als x.id = y.id, identifying entities x and y [12]. In particular, GEDs of the form Q[z](X = xo.id =
yo.id) are called keys, denoted as GKeys, where xy and y, are two designated nodes in Q[x].

Example 2.3. The GKeys below are taken from [12], defined with patterns in Figure 1.
For album: ¢ = Qg[x, x’, y, y’'](x.title = y.title A x".id = y".id = x.id = y.id),
Vo = Q7[x, y](x.title = y.title A x.release = y.release = x.id = y.id).
For artist: 13 = Q[x, x’",y, y'](x.name = y.name A x.id = y.id = x’.id = y’.id).
Note that pattern Qs[x,x’,y,y’] consists of a pattern Q;[x,x’] and a “copy” QZ[y,y’] of Q; by
renaming variables x +— y and x” — y’. To identify albums x and y, we check either their title
attributes and the ids of their artists (1), or their title and release attributes (i/;). Similarly, to
identify artists x” and y’ as required by /4, we check the ids of albums they recorded (¢/3) in turn. O

(3) GEDVs. Real-life graphs are typically schemaless. Can we express a schema using graph depen-
dencies, by enforcing a node to carry certain attributes of a particular type? As remarked earlier,
we can enforce the existence of attribute A at a node x by using GFD Q[x](true = x.A = x.A).
However, we cannot enforce attribute x.A to have a finite domain, e.g., Boolean.

To this end, GED"s extend GEDs by adding limited disjunctions [12]. A GED" has the same
syntactic form ¢ = Q[x](X = Y) as GEDs, but Y is interpreted as the disjunction of its literals. That
is, for a match h(x) of Q in a graph G, h(x) |= Y if there exists a literal [in Y such that h(x) satisfies [.

We can enforce each node of “type” 7 to have an attribute with a finite domain, e.g., Boolean:

Qe[x](true =>x.A=0Vx.A=1),
where Q, is a single node labeled 7. Note that NGDs can also express the “domain constraint”:

¢1: Qe[x](true = x.A = x.A), ¢2: Qe[x](x.A# 0 A x.A# 1= false).
That is, each 7-node x must have an A-attribute (¢), and x.A can only takes values 0 or 1 (¢,).

2.3 Classical Problems

What graph dependencies should we adopt in practice? A guideline is to strike a balance between
the expressive power of the dependencies we need for our applications, and the complexity of
reasoning about these dependencies. There are three classical problems for reasoning about graph
dependencies, namely, the satisfiability, implication and validation problems, to be stated shortly.
Table 1 shows the complexity bounds of these problems for the graph dependencies we have seen
in Section 2.2, compared with their counterparts for relational FDs and CFDs.

ACM Journal of Data and Information Quality, Vol. 1, No. 1, Article . Publication date: April 2019.

:6 Fan
Dependencies | Satisfiability Implication Validation Remark
GFDs [16] coNP-complete | NP-complete | coNP-complete CFDs on graphs: Q[x](X = Y)
GKeys [12] | coNP-complete | NP-complete | coNP-complete O[x](X = x.id = y.id)
GEDs [12] coNP-complete | NP-complete | coNP-complete GFDs extended with id literals
NGDs [11] Z‘g -complete HIZJ -complete | coNP-complete | (linear) arithmetic and comparison
GEDVs [12] Z‘g-complete Hg-complete coNP-complete disjunctive Y in Q[x](X = Y)
FDs (cf. [1]) 0(1) linear-time PTIME R(X — Y) on relation R
CFDs [8] NP-complete | coNP-complete PTIME FDs extended with value patterns

Table 1. Complexity of fundamental problems

Satisfiability. Consider a class C of graph dependencies and a set = of dependencies in C. A model
of ¥ is a graph G such that (a) G |= X, and (b) for each Q[%](X = Y) in %, Q has a match in G.

Intuitively, if X has a model, then each dependency in ¥ is sensible and the dependencies in ¥ do
not conflict with each other. We say that X is satisfiable if it has a model.

The satisfiability problem for C is to decide whether a given set ¥ of C-dependencies is satisfiable.

For relational FDs, the satisfiability problem is trivial: for any set 3 of FDs, there always exists a
nonempty relation that satisfies 3 (cf. [7]). In contrast, it is more intriguing for graph dependencies.
As shown in Table 1, it is coNP-complete for GFDs, GKeys and GEDs, and is 212] -complete for NGDs
and GED". The intractability is quite robust: it remains intractable even when 3 consists of a fixed
number of dependencies, and when each dependency in ¥ is defined with a tree pattern [12].

The satisfiability problem for relational CFDs is NP-complete [8], but it is in PTIME in the
absence of attributes that have a finite domain, e.g., Boolean [8]. GFDs cannot enforce an attribute
to have a finite domain, and their satisfiability problem is intractable in the absence of finite-domain
attributes. Hence its intractability is not inherited from CFDs, as indicated by the difference between
coNP and NP (unless P = NP). While NGDs and GED" can specify finite-domain constraints, the
satisfiability problem for NGDs and GED" is Zg -complete, as opposed to NP-complete for CFDs.

To see the need for striking a balance between the complexity and expressive power, the satisfiabil-
ity problem for NGDs extended with non-linear arithmetic expressions is undecidable, even when no
expressions have degree above 2 [11]. That is why NGDs support linear arithmetic expressions only.

Implication. A set X of dependencies implies another dependency ¢, denoted by X |= ¢, if for all
graphs G, if G |= X then G |= ¢. We consider finite implication, when graphs G are finite.

The implication problem for a class C of graph dependencies is to decide, given a finite set X of
dependencies in C and another dependency ¢ in C, whether ¥ |= ¢.

Intuitively, the implication analysis helps us optimize data quality rules, among other things.

As shown in Table 1, the implication problem is NP-complete for GFDs, GKeys and GEDs, and
is H‘g -complete for NGDs and GED". The intractability remains intact when ¥ consists of a fixed
number of dependencies, and when ¢ and all dependencies in ¥ carry a tree pattern. In contrast, it
is in linear time for relational FDs, and coNP-complete for CFDs with finite-domain attributes [8].

Validation. The validation problem for a class C of graph dependencies is to decide, given a finite
set 2 of dependencies in C and a graph G, whether G |= .

The validation analysis is the basis of inconsistency, spam and fraud detection, to find violations
of graph dependencies in a knowledge base, a social graph and finance transactions, respectively.

While the validation problem for relational FDs and CFDs is in PTIME, it is more intriguing
for graph dependencies unless P = NP. As shown in Table 1, the validation problem is coNP-
complete for GFDs, GKeys, GEDs, NGDs and GED", even when ¥ consists of a constant number of
dependencies and when the dependencies in X carry tree patterns only. The result is a bit surprising
since it is in PTIME to decide, given graphs Q and G, whether there exists a homomorphism from Q

ACM Journal of Data and Information Quality, Vol. 1, No. 1, Article . Publication date: April 2019.

Dependencies for Graphs: Challenges and Opportunities :7

to G when Q is a tree. These tell us that when graph pattern matching and attribute dependencies
X =Y (in graph dependencies) are put together, the analysis becomes harder [12].

Finite axiomatization. Recall Armstrong’s axioms for relational FDs [3]: reflexivity, augmentation
and transitivity. The axioms reveal insight of (finite) implication of FDs.

We naturally want a finite set A of inference rules to characterize graph dependencies, along the
same lines as Armstrong’s axioms. For a class C of graph dependencies, we use X F # ¢ to denote
that ¢ is provable from ¥ using A, where ¥ is a set of dependencies in C and ¢ is a dependency in
C. That is, ¢ can be deduced from X by applying the rules in A (see [1] for the notion of proofs).

For a class C of graph dependencies, we say that an inference system A is

o soundif ¥ + 4 ¢ implies X |= ¢, and

o complete if ¥ |= ¢ implies 2 + 4 ¢,
for all sets X of dependencies in C and all dependencies ¢ in C. We say that A is

o independent if for any rule r € A, there exist X and ¢ in C such that X + 4 ¢ but X ¥.a\, ¢,
where A \ r denotes A excluding r, i.e., removing any rule from A makes it no longer complete.

Despite the complications introduced by graph dependencies, there exists a set A of six inference
rules that is sound, complete and independent for GEDs (and hence for GFDs and GKeys) [12].
That is, graph dependencies may retain the finite axiomatizability of relational FDs.

2.4 Graph Dependencies versus Relational Dependencies

We can see that graph dependencies depart from our familiar relational dependencies and introduce
new challenges. We summarize their differences by considering the following dichotomies.

(1) Definition. Graph dependencies are defined on graphs that often do not come with a schema.
To cope with schemaless graphs, a graph dependency is typically a combination of a topological
constraint (graph pattern Q) and an attribute dependency X = Y. It is to be applied to matches
of pattern Q in a (possibly big) graph G, rather than to tuples. Moreover, X and Y may contain id
literals x.id = y.id, such that when two entities (vertices) x and y are identified, they must carry
the same set of attributes and adjacent edges. These are a departure from relational dependencies.

(2) Expressive power. To cope with the semistructured nature of schemaless graphs, graph depen-

dencies such as GEDs are not a mere extension of equality-generating dependencies (EGDs); they
can express limited tuple-generating dependencies (TGDs) and are able to “generate new attributes”,
not only by merging nodes with GKeys, but also by applying GFDs (see [12] for details).

(3) Complexity. As shown in Table 1, graph dependencies are harder to reason about than their
relational counterparts (unless P = NP). This is not surprising: graph dependencies are interpreted in
terms of graph homomorphism, which is already intractable (cf. [17]). Nonetheless, the complexity
of the static analyses (satisfiability and implication) of, e.g., GFDs and GEDs, is comparable to their
counterparts for relational CFDs. That is, their analyses do not make our lives much harder.

(4) Techniques. We can make use of, e.g., the data locality of graph homomorphism to check graph
dependencies. More specifically, for any graph G and any node v in G, to decide whether a pattern Q
has a match in G at node v, it suffices to inspect only those nodes of G that are within dg hops of v,
where d is determined only by the size |Q| of pattern Q. We do not have to scan the entire (possibly
big) G. Such native graph techniques yield efficient implementation strategies for supporting graph
dependencies, which are not offered by relational reasoning methods for EGDs and TGDs.

Better yet, graph patterns embedded in graph dependencies are able to explicitly characterize
associations among entities. As demonstrated by Examples 2.1, 2.2 and 2.3, this property is useful
in, e.g., fraud detection, knowledge base expansion and social media marketing.

ACM Journal of Data and Information Quality, Vol. 1, No. 1, Article . Publication date: April 2019.

:8 Fan

3 MAKE PRACTICAL USE OF GRAPH DEPENDENCIES

Graph dependencies find applications in knowledge acquisition, knowledge base enrichment, spam
detection in social networks, and fraud detection in finance transactions, among other things.
As an example, below we demonstrate how graph dependencies help us improve the quality of
graph-structured data, highlighting technical challenges introduced by real-life graphs.

Parallel scalability. Real-life graphs easily have billions of nodes and trillions of edges, e.g., the
social graph at Facebook [18]. Add to the challenge that the analyses of graph dependencies are
costly (Table 1). To support dependencies on real-life graphs, parallel processing is often a must.
The assumption is that the more processors are used, the less time it takes to process dependencies.
However, many parallel algorithms in the literature provide no such performance guarantee.

A criterion to characterize the effectiveness of parallel algorithms is the notion of parallel
scalability proposed in [20], which has been widely used in practice. Consider a serial (single-
machine) algorithm M for processing graph dependencies, with cost #(|G|, |2|) measured in the
sizes of graph G and a set X of graph dependencies. A parallel algorithm M, for the same task is
said to be parallel scalable relative to yardstick M if its parallel running time can be expressed as:

T(|G, =], p) = O(M),

where p is the number of processors used. Intuitively, parallel scalability measures speedup over
serial algorithms by parallelization. It is a relative measure w.r.t. a yardstick algorithm M. A parallel
scalable M, “linearly” reduces the running time of M when p increases. Hence a parallel scalable
algorithm is able to scale with large graphs G by adding processors as needed, to an extent.
Parallel scalability is within reach of graph dependency analyses, despite their intractability.
Indeed, parallel scalable algorithms for GFD satisfiability and implication are developed in [10].

Discovering graph dependencies. No matter how useful, it is nontrivial to find interesting graph
dependencies. This highlights the need to study discovery of graph dependencies.

o Input: A graph G, and a support threshold o > 0.

o Output: A cover 2, of the set 3 of all graph dependencies ¢ satisfied by G with supp(¢, G) > o.
Here we measure the interestingness of ¢ in terms of the support of ¢ in G, denoted by supp(¢p, G),
indicating how often ¢ can be applied and thus whether ¢ captures regularity. The notion of support
on graphs is rather different from its counterpart in data mining over itemsets (see [9] for details).
We want to find a cover X, of X such that (a) G |= 2., i.e., all dependencies in 3. are sensible; (b)
3. is “equivalent to” 3, i.e., for each ¢ € %, 3. |= ¢, and vice versa; (c) for each ¢ = Q[3](X = Y)
in X, reducing its pattern Q or dependency X = Y makes it no longer satisfied by G; and (d) =,
is minimal itself, i.e., removing any dependency from 3. makes it no longer a cover of X. That is,
graph dependencies in X are frequent, non-trivial, non-redundant and hence, interesting.

Parallel scalable algorithms have been developed for discovering interesting GFDs [9].

Detecting errors. After we discover a set =, of graph dependencies, we want to detect errors by
using the dependencies of X, as data quality rules. Consider a graph dependency ¢ = Q[x](X = Y).
A wviolation of ¢ in graph G is a match h(x) of Q in G such that h(x) violates X = Y, i.e., there exist
inconsistencies in the subgraph of G induced from h(x). The error detection problem is as follows.
o Input: A graph G, and a set 3. of graph dependencies treated as data quality rules.
o Output: The set of all violations of the dependencies of 3. in G, denoted by Vio(Z., G).

We have seen how to detect errors using GFDs (Example 2.1), NGDs (Example 2.2) and GKeys
(Example 2.3). However, detecting errors in graphs is nontrivial, since the validation problem we
have seen in Section 2.3 is its decision problem and is known to be coNP-complete.

A related problem is the incremental error detection problem, stated as follows.

ACM Journal of Data and Information Quality, Vol. 1, No. 1, Article . Publication date: April 2019.

Dependencies for Graphs: Challenges and Opportunities 9

) = e = John} [-
Fi(ar2) = {name = Jack} gt arfist
={

) ¥ ~ ~
eoguadl.by Fa(ar3) = {name = Jack} H oMy Fy(a1) = {name = John}
L Oy Fy(al1) = {title = Today, type = soundtrack} i eglledy Fa(a2) = {name = Jack}

al2) = {title = Today, release_type = album} E _

(al Fulal itle = -
® ° 2= a(al) = {title = Today, type = soundtra
+ album album album album Fa(al3) = {title = Today} ¥ album release type = album, release = 1998} |
all al2 al3 At Fa(ald) = {title = Today, type = soundtrack, 1 al ‘n
G release_type = album, release = 1998} [¢ .

Fig. 2. Graph for repairing

o Input: A graph G, a set 2. of graph dependencies, and updates AG to graph G.
o Output: The changes AVio(Z,, G, AG) to Vio(Z., G), where AVio(Z., G, AG) consists of new
errors introduced by updates AG and errors removed from Vio(2., G) by AG.
The need for incremental error detection is evident. As remarked earlier, real-life graphs G are often
big, and error detection is expensive (coNP-complete). Moreover, real-life graphs are constantly
changed. It is often too costly to recompute Vio(Z., G ® AG) starting from scratch in response to
frequent AG. Hence we want to compute Vio(Z., G) once, and then incrementally compute changes
AVio in response to AG. The rationale behind this is that in the real world, changes are typically
small. Moreover, when AG is small, AVio is often small as well, and is much less costly to compute
than Vio(Z., G @ AG) by making use of previous computation for Vio(Z., G).
However useful, the incremental error detection problem is already coNP-complete for GFDs,
even when both graph G and updates AG have a constant size [11].
Not all is lost. Parallel scalable algorithms have been developed for error detection [16] and
incremental error detection [11], when GFDs and NGDs are used as data quality rules.

Correcting errors with certainty. After we detect a set Vio(Z, G) of inconsistencies, how do
we fix the errors? A rule-based approach is to employ dependencies in X as data quality rules.

Example 3.1. Consider graph G depicted in Fig. 2, having three artists (ar1, ar2, and ar3) and four
albums (al1, al2, al3, and al4), where artists ar2 and ar3 have the same name, and all albums have
the same title. Consider X, including GKeys 11 —/3 of Example 2.3, and a GFD ¢4 = Q7[x, y](x.title =
y.title A x.type = y.type A x.release_type = y.release_type = x.release = y.release), where Q; is
shown in Figure 1. Observe that Vio(Z, G) is nonempty, e.g., all, al2 and al3 violate GKey ;.

We fix the errors using the dependencies in 2. as follows: (1) merge al1, al2 and al3 using GKeys
Y1; (2) add attribute al3.release = 1998 to album al3 by applying GFD ¢4 to al3 and al4; (3) merge
al3 and al4 with GKeys i»; and (4) merge ar2 and ar3 using GKeys /3. This yields a “repair” G’
of G shown in Fig. 2. Note that the process interleaves object identification with GKeys (steps (1),
(3) and (4)) and data repairing with GFDs (step (2)). Before step (1), node al3 has neither attribute
type nor release_type, and GFD ¢4 cannot be applied to al3 and al4. After step (1), attributes type
and release_type are added to al3, which are inherited from al1 and al2, respectively; this step
“generates” new attributes of al3. Then we can apply ¢4, and further apply GKeys /3 to merge ar2
and ar3. The process fixes all the violations of the dependencies in 2., including the violation of ¥
by al3 and al4 that becomes obvious only after ¢4 is applied to al3 and al4. O

Formally, the graph cleaning process can be modeled as the chase on graphs [12], which has the
Church-Rosser property: the chase converges at the same set of fixes regardless of the order of
dependencies applied. Better yet, assume a block I of ground truth, i.e., attribute values and entity
matches that are assured correct by, e.g., domain experts or crowd-sourcing. Then if we apply a
rule Q[x](X = Y) only when X involves facts that are either in I' or deduced in the chase, the fixes
generated are certain, i.e., they are guaranteed correct as logical consequences of ¥, and I'.

o Input: A graph G, a set 2. of graph dependencies, and a block I' of ground truth.
o Output: Fixes to all errors in Vio(Z, G) by chasing graph G with (2., T).
We refer to this as the graph cleaning problem. It is even more challenging than error detection.

ACM Journal of Data and Information Quality, Vol. 1, No. 1, Article . Publication date: April 2019.

:10 Fan

4 CONCLUSION

This paper provides an overview of recent advances in the study of graph dependencies, from
formalism and theory to practice. The study, however, has raised as many question as it has
answered. Below we highlight several topics for future work in this line of research.

(1) Other forms of graph dependencies. We have only presented counterparts of relational FDs, CFDs
and EGDs on graphs. Extensions of other well-studied relational dependencies, e.g., TGDs, also
deserve a full treatment over graphs. For instance, association rules on graphs [14, 15] are a special
case of TGDs on graphs and have found applications in social media marketing.

(2) Applications of graph dependencies. Graph dependencies are expected to find a wide range of
applications. We have only discussed graph cleaning. Practical techniques need to be developed
for, e.g., social media marketing and fraud detection, based on graph dependencies. Even for graph
cleaning, scalable algorithms are not yet in place for (incrementally) fixing errors with certain.

(3) Scalable techniques. The analyses of graph dependencies are expensive. While parallel com-

putation helps, we need other scalable processing techniques for effective applications of graph
dependencies, especially approximation algorithms (e.g., [13]) with provable accuracy guarantees.

(4) Explainable Al Graph dependencies naturally characterize associations and regularity of real-
world entities, and are promising to interpret, e.g., the outcome of machine learning classifiers. An
interesting topic is to combine machine learning and reasoning about graph dependencies.

REFERENCES

1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases. Addison-Wesley.

2] Waseem Akhtar, Alvaro Cortés-Calabuig, and Jan Paredaens. 2010. Constraints in RDF. In SDKB. 23-39.

3] William Ward Armstrong. 1974. Dependency Structures of Data Base Relationships. In IFIP Congress. 580-583.

4] Diego Calvanese, Wolfgang Fischl, Reinhard Pichler, Emanuel Sallinger, and Mantas Simkus. 2014. Capturing Relational
Schemas and Functional Dependencies in RDFS. In AAAL

[5] Alvaro Cortés-Calabuig and Jan Paredaens. 2012. Semantics of Constraints in RDFS. In AMW. 75-90.

[6] Wenfei Fan, Zhe Fan, Chao Tian, and Xin Luna Dong. 2015. Keys for Graphs. PVLDB 8, 12 (2015), 1590-1601.

[7] Wenfei Fan and Floris Geerts. 2012. Foundations of Data Quality Management. Morgan & Claypool Publishers.

[8] Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. 2008. Conditional Functional Dependencies for

Capturing Data Inconsistencies. TODS 33, 1 (2008).
[9] Wenfei Fan, Chunming Hu, Xueli Liu, and Ping Lu. 2018. Discovering Graph Functional Dependencies. In SIGMOD.

[10] Wenfei Fan, Xueli Liu, and Yingjie Cao. 2018. Parallel Reasoning of Graph Functional Dependencies. In ICDE.

[11] Wenfei Fan, Xueli Liu, Ping Lu, and Chao Tian. 2018. Catching Numeric Inconsistencies in Graphs. In SIGMOD.

[12] Wenfei Fan and Ping Lu. 2017. Dependencies for Graphs. In PODS. 403-416.

[13] Wenfei Fan, Xin Wang, and Yinghui Wu. 2014. Querying Big Graphs within Bounded Resources. In SIGMOD. 301-312.
]
]
]
]

[
[
[
[

[14] Wenfei Fan, Xin Wang, Yinghui Wu, and Jingbo Xu. 2015. Association Rules with Graph Patterns. PVLDB 8, 12 (2015).
[15] Wenfei Fan, Yinghui Wu, and Jingbo Xu. 2016. Adding Counting Quantifiers to Graph Patterns. In SIGMOD.

[16
[17

Wenfei Fan, Yinghui Wu, and Jingbo Xu. 2016. Functional Dependencies for Graphs. In SIGMOD.

Michael Garey and David Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H.

Freeman and Company.

[18] Ivana Grujic, Sanja Bogdanovic-Dinic, and Leonid Stoimenov. 2014. Collecting and Analyzing Data from E-Government
Facebook Pages. In ICT Innovations.

[19] Holger Knublauch and Dimitris Kontokostas. 2017. Shapes Constraint Language (SHACL). W3C Working Draft. (Feb.
2017). https://www.w3.org/TR/shacl/#dfn-shacl-instance.

[20] Clyde P Kruskal, Larry Rudolph, and Marc Snir. 1990. A Complexity Theory of Efficient Parallel Algorithms. TCS 71, 1
(1990), 95-132.

[21] Georg Lausen, Michael Meier, and Michael Schmidt. 2008. SPARQLing Constraints for RDF. In EDBT. 499-509.

[22] Neo4j Team. 2017. The Neo4j Developer Manual v3.1 (Chapter 3.5.2: Constraints). (2017).
http://neodj.com/docs/developer-manual/current/.

[23] Gorka Sadowksi and Philip Rathle. 2014. Fraud Detection: Discovering Connections with Graph Databases.
http://asiandatascience.com/wp-content/uploads/2018/01/Neodj WP-Fraud-Detection-with-Graph-Databases.pdf. (2014).

[24] Yang Yu and Jeff Heflin. 2011. Extending Functional Dependency to Detect Abnormal Data in RDF Graphs. In ISWC.

ACM Journal of Data and Information Quality, Vol. 1, No. 1, Article . Publication date: April 2019.

	Abstract
	1 Introduction
	2 Dependencies for Graphs
	2.1 Preliminaries
	2.2 Graph Dependencies
	2.3 Classical Problems
	2.4 Graph Dependencies versus Relational Dependencies

	3 Make Practical Use of Graph Dependencies
	4 Conclusion
	References

