
TREX: DTD-Conforming XML to XML Transformations

Aoying Zhou Qing Wang Zhimao Guo Xueqing Gong Shihui Zheng
Hongwei Wu Jianchang Xiao Kun Yue

Fudan University, China
fayzhou,qingwang,zmguo,xqgong,shzheng0,hwwu,jcxiao,kunyg@fudan.edu.cn

Wenfei Fan
Bell Laboratories, USA

wenfei@research.bell-labs.com

1. Overview
With the popularity of XML, it is increasingly common to

�nd data in the XML format. This highlights an important
question: given an XML document S and a DTD D, how
to extract data from S and construct another XML docu-
ment T such that T conforms to the �xed D? Let us refer
to this as DTD-conforming XML to XML transformation.
The need for this is evident in, e.g., data exchange: en-
terprises exchange their XML documents with respect to a
certain prede�ned DTD. Although a number of XML query
languages (e.g., XQuery, XSLT) are currently being used
to transform XML data, they cannot guarantee DTD con-
formance. Type inference and (static) checking for XML
transformations are too expensive [1] to be used in prac-
tice; worse, they provide no guidance for how to specify a
DTD-conforming XML to XML transformation.
In response to the need we have developed TREX (TRans-

formation Engine for XML), a middleware system for DTD-
conforming XML to XML transformations. TREX is based
on the novel notion of XTG (XML Transformation Gram-
mar), which extends a DTD by incorporating semantic rules
de�ned with XML queries (expressed in Quilt [5]). This
allows one to specify how to extract relevant data from a
source XML document via the queries, and to construct
a target XML document directed by the embedded DTD.
TREX supports XTGs using Kweelt [6] as the underlying
engine for XML queries (the reason for choosing Quilt rather
than XQuery/XSL is that we could access the source code of
Kweelt to incorporate our optimization algorithms). Given
an XTG and a source document, it provides two evalua-
tion modes: (1) in the batch mode, it generates a complete
XML document, which is guaranteed to conform to the DTD
embedded in the XTG; (2) in the lazy mode, it constructs
a partial XML (DOM) tree, interacts with users, and ex-
pands the tree upon users' requests. As observed by [3],
the lazy mode allows users to generate partial XML docu-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD2003, June 9-12, 2003, San Diego, CA.
Copyright 2003 ACM 1-58113-634-X/03/06 ...$5.00.

ments based on their interest; it also reduces resource uti-
lization and presents more opportunities for optimization.
TREX evaluates XTGs eÆciently by implementing several
optimization techniques: query composition, XPath simpli-
�cation and graph reduction (a technique borrowed from
functional programming for identifying repeated queries and
reusing their results).
To our knowledge, TREX is the �rst attempt to deal with

DTD-conforming XML transformations. Close to our work
is [2], a DTD-directed publishing system for relational data.
But XML transformations present new challenges, and thus
demand new solutions, both at the conceptual level (XTG)
and at the implementation level (TREX); these are beyond
the issues investigated by [2] in the relational context.
With a prototype of TREX, the demonstration is to show

that XTGs present a novel approach to handling DTD-
conforming XML transformations, and that the optimiza-
tion techniques of TREX are e�ective in practice. Our ulti-
mate goal is to provide a systematic method and a practical
system to support DTD-conforming XML transformations.

2. XTG: XML Transformation Grammar
We �rst brie
y describe XTGs, the backbone of TREX.
Given a target DTD D, an XTG speci�es a transforma-

tion as follows: (1) For each element type A inD, it de�nes a
variable $A; intuitively, each A element in an XML tree is to
have a variable $A, which contains a single XML element as
its value. (2) For each element type de�nition (production)
A ! � in D, where � is a regular expression, it speci�es a
set of semantic rules such that for each element type B in
�, there is a rule for computing the values of $B via Quilt
queries; the query is treated as a function that may take
$A as a parameter. (3) For each attribute @l of A, denoted
by A) @l, the XTG also de�nes a variable $l and a se-
mantic rule as above, treating $A as a parameter. Given
a source XML document, the XTG is evaluated top-down:
starting at the root element type of D, evaluate semantic
rules associated with each element type/attribute encoun-
tered, and create nodes following the DTD to construct the
target XML tree. The values of the variable $A are used to
control the construction.
As an example, consider DBLP XML data, which collects

records about papers (inproceedings). For each paper, it
provides information about its authors, title, year, url, cita-
tion (cite), key, etc. Suppose that one wants to construct
a target XML document T that contains all the papers co-

<!ELEMENT dblp (paper*)>
<!ELEMENT paper (title, url | nourl, citation)>
<!ATTLIST paper key CDATA #REQUIRED

year CDATA #IMPLIED>
<!ELEMENT citation (paper*)>

/* #PCDATA is omitted here. */

Figure 1: Example of a target DTD

authored by Vardi and published in 2002, along with all the
papers that are cited directly or indirectly by these papers
and published in or after 1995. Furthermore, it is required
that T conforms to the DTD D0 given in Fig. 1. Observe
that D0 is recursive: paper is de�ned in terms of itself.
That is, below each paper, the papers cited by it must be
presented; this leads to an XML tree of an unbounded depth.
The DTD is also nondeterministic: a paper may have either
url or nourl, but not both; moreover, it may have an op-
tional attribute @year. To do this transformation one might
want to use an XQuery or XSLT query to generate an XML
tree and then check whether the tree conforms to D0. The
problem is that if the query does not type check, then one
has to start all over again. In other words, one can get a
transformation that type checks only after repeated failures.
An XTG � specifying the transformation is shown in Fig. 3.

When being evaluated on a source XML document S con-
taining DBLP records, � produces a target XML tree T of
the form depicted in Fig. 2 as follows.

(1) It �rst creates the root element, dblp, and then triggers
the rules associated with the production dblp ! paper*.
Observe that the production contains a Kleene star; thus
there is no bound on the number of the paper children of the
root. These children are determined by the evaluation of the
Quilt query Q1 over S, which returns all the inproceedings
elements (representing papers in S) that are co-authored by
Vardi and published in 2002. For each p of these elements,
a paper element is created as a child of the root, carrying p
as the value of its variable $paper. The operator \ " in the
rule denotes the iteration for generating the paper children,
corresponding to the Kleene star in the DTD production.

(2) At each paper element p, T is expanded by generating
the children for p. In contrast to the last case, the produc-
tion for paper tells us that p has exactly three children: one
title child, one citation child and either a url child or
a nourl child. The query Q2 extracts title from $paper.
The choice of url or nourl is made by a condition query
Q3 on the data in $paper: p has a url child if and only if
the value of the variable $url is not the special value #NULL#;
similarly for nourl. For citation, Q4 collects all the papers
cited by p, which are put in a single element c0. A citation

child is then created, carrying c0 as the value of $citation.
Note that Q4 uses $paper as a parameter.
The attributes of p are generated similarly, by extracting

the relative text data. The optional attribute @year is cre-
ated only if the information exists in $paper, as speci�ed by
the condition query Q6. In contrast, the @key attribute is
treated di�erently by Q5 as it is required in the DTD D0.

(3) At each citation element c, the target tree T is ex-
panded by generating paper children for c. Speci�cally, for
each (inproceedings) element c0 in $citation of c, it creates
a paper child carrying c0 as the value of its variable $paper.
Each paper element is then processed as described in (2).

(4) For a title element t, the query Q8 extracts the text
data from $title as the PCDATA of t; similarly for url and
nourl. If Q8 returns multiple string values, then their con-

��
��
��
��
�
�
�
�

��
��
��
��

paper paper paperpaper

url citationtitle @year @key

paper paperpaper

title citation @keynourl

"Not available"

dblp

Figure 2: An XML tree conforming to D0

dblp ! paper*
Q1: $paper LET $doc:=document(\dblp.xml")

FOR $p IN DISTINCT ($doc//inproceedings)
WHERE CONTAINS($p/author,\Vardi")

AND $p/year = 2002
RETURN $p

paper ! title, url + nourl, citation
Q2: $title = RETURN $paper/title
Q3: ($url, $nourl) = RETURN

IF (EXISTS($paper/url))
THEN ($paper/url, #NULL#)
ELSE (#NULL#,

<nourl>\Not available"</nourl>)
Q4: $citation = <citation>

LET $doc:=document(\dblp.xml")
FOR $cite IN ($paper/cite)
FOR $cpaper IN ($doc//inproceedings)
WHERE $cpaper/year .>=. 1995

AND $cpaper/@key = $cite/text()
RETURN $cpaper
</citation>

paper) @key
Q5: $key = RETURN $paper/@key

paper) @year?
Q6: $year =LET $yr := $paper/year

RETURN IF (EXISTS($yr))
THEN $yr/text()
ELSE #NULL#

citation ! paper*
Q7: $paper FOR $p IN $citation

RETURN $p

A ! PCDATA /* A is one of title, url, nourl */
Q8: $PCDATA = RETURN $A/text()

Figure 3: Example of an XTG

catenation (with a default ordering) is treated as PCDATA.

Steps (2) and (3) are repeated until the target tree T can-
not be further expanded, i.e., when all the papers at the
leaves of T no longer cite papers published in or after 1995.
At this point the evaluation of the XTG is completed.

XTG has several salient features. First, when the evalua-
tion of an XTG terminates, the target XML tree generated
is guaranteed to conform to its embedded DTD. Second, it
adopts a data-driven semantics: the decisions on the choice
of a nondeterministic production and on the expansion of
an XML tree in the recursive case are made based on the
source data. Third, it is fairly easy to use XTGs to specify
XML transformations. Comparing to the grammar-based
formalism of [2], XTGs are more involved: XTG variables
carry XML (trees) elements rather than simple tuples.

3. TREX: A middleware system
We next give an overview of TREX, a middleware system

supporting XTG evaluation. The system is built on top of
Kweelt [6], which is a query engine for the Quilt XML query

Source
XML

Documents

XTG files

batch evaluation
lazy expansion

target XML views/documents

optimization

Query
Execution

Caching
Intermediate

Results

Visual
User

Interface

Path
Expansion

XTG Parsing

XTG
Unfolding

DTD/XML
Parsing

Query
Composition/

Tuning

Graph
Reduction

Figure 4: System architecture

Figure 5: Visual user interface

language. TREX is currently implemented in Java.
As depicted in Fig. 4, TREX takes an XTG � and a source

XML document as inputs and generates a target XML doc-
ument T that conforms to the DTD embedded in �. It con-
sists of a parsing phase, an optimization phase and a gen-
eration phase. In the parsing phase, an XTG is loaded and
parsed into a graph representation, called an XTG graph,
which is a DTD graph with nodes labeled with XML queries.
The graph is cyclic if the DTD is recursive. The source doc-
ument is also loaded and parsed in this phase. In the opti-

mization phase, the XTG graph is �rst unfolded to a certain
depth, which yields a partial XTG tree (the sub-graph down
to the unfolding depth); then, a query plan is generated for
the XTG tree by applying several optimization techniques.
In the generation phase the query plan is submitted to the
underlying Kweelt engine; using the query results TREX ex-
pands the target document T . The second and third phases
are repeated until the construction of T is completed.
The user interface of the system is shown in Fig. 5. In

a window it provides the DOM tree of the partial target
document generated at each stage. A user can click on any
node in the DOM tree and choose between two evaluation
modes to generate its subtree. In the batch mode, the entire
subtree is constructed. In the lazy mode, the subtree is
expanded for one level, i.e., only the children of the node are

created; the user can then decide whether further expansion
is needed. Thus, TREX is quite
exible: one can use it to
produce just the interested parts of a document instead of
the entire document, along the same lines as [3].
Below we focus on the optimization techniques.

Query composition and tuning. TREX has implemented
several techniques for optimizing middleware XML queries [4,
2]. One is query composition: to reduce traÆc to the un-
derlying Kweelt engine, TREX extracts connected queries
from a partial XTG tree, composes them into a single query
and submits it to Kweelt. This is commonly used in batch
evaluation. Another is caching: intermediate query results
are cached and reused at later stages of the evaluation. As
opposed to [2], to improve the response time we keep the
intermediate results as DOM trees in the main memory; the
bu�er is maintained by a swapping algorithm. The lazy
mode typically involves query tuning: after a query at a
node is evaluated, we substitute its result for the parame-
ters in the queries associated with the children of the node;
furthermore, repeated queries are identi�ed and their cached
results are used to rewrite the subsequent queries.

Graph reduction. To reduce unnecessary repeated com-
putations, TREX treats a parameterized query as a function
and caches its evaluation results. If the function is invoked
again with the same parameter, TREX reuses the cached

0

60

120

180

240

300

360

420

480

540

600

100 200 300 400 500 600 700 800 900 1000

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
)

File Size (K)

with graph reduction
without graph reduction

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10

E
x
e
c
u
t
i
o
n

T
i
m
e

(
m
i
n
)

File Size (M)

with graph reduction
without graph reduction

Figure 6: Bene�ts of graph reduction

result instead of re-evaluating it. The analysis is conducted
along the same lines as graph reduction extensively studied
for functional programming, by extending the XTG graph
with an auxiliary indexing structure (for parameters). This
strategy is e�ective when deep XML trees are constructed,
especially when recursive DTDs are involved.

Path expansion. Quilt queries heavily use XPath expres-
sions, which are a major cost of XTG evaluation. To reduce
the cost, TREX parses the source document S, extracts con-
crete (simple) paths from S, and rewrites XPath expressions
in XTG queries by substituting concrete paths for expansive
traversals such as \//" (descendant) and *" (child). This is
done at compile time for all the queries in the XTG. When
the DTD of the source document is available, TREX uses
the DTD for certain expansions (*" and even \//" for non-
recursive DTDs) without looking into the source document.

4. Performance
We next present some preliminary experimental results,

which demonstrate that our optimization techniques { graph
reduction and path expansion { are e�ective. The bene�ts
of query composition are not presented here as there have
been extensive experiments conducted for it [4, 2].
Our experiments were conducted on a 1.8GHz Pentium 4

machine with 40G of hard disk and 512MB of main memory
running Windows 2000. We adopted DBLP XML records as
source XML documents. We used an XTG similar to (yet
more complicated than) the one described in Section 2; the
evaluations were conducted in the batch mode.
Fig. 6 depicts the impact of graph reduction as a func-

tion of the source document size. We evaluated the XTG
both with and without graph reduction. The execution time

0

5

10

15

20

25

30

35

40

45

50

100 200 300 400 500 600 700 800 900 1000

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
)

File Size (K)

with path expansion
without path expansion

0

6

12

18

24

30

36

42

48

54

60

1 2 3 4 5 6 7 8 9 10

E
x
e
c
u
t
i
o
n

T
i
m
e

(
m
i
n
)

File Size (M)

with path expansion
without path expansion

Figure 7: Bene�ts of path expansion

measures the time from loading the XTG �le until the tar-
get XML document is generated. The experimental results
indicate that graph reduction can speed up the evaluation
by a factor of up to 9.6. The bene�t of the technique is more
evident when the size of the source document increases.
The next experiment demonstrates the bene�t of path ex-

pansion: the XTG was evaluated both with and without
path expansion. The results, shown in Fig. 7, tell us that
path expansion can reduce the traversing time and improve
the performance by a factor of up to 4.5. Better still, as the
size of the source document increases, the bene�t of path
expansion becomes more signi�cant.
We are currently exploring other optimization techniques

for TREX, such as indexing, partitioning large XTG graphs,
and and more sophisticated caching strategies.

Acknowledgment: Aoying Zhou is supported in part by
NSFC 60228006. Wenfei Fan is supported in part by NSF
Career Award IIS-0093168 and NSFC 60228006.

5. References
[1] N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu. XML

with data values: Typechecking revisited. In PODS, 2001.
[2] M. Benedikt, C. Y. Chan, W. Fan, R. Rastogi, S. Zheng, and

A. Zhou. DTD-directed publishing with attribute translation
grammars. In VLDB, 2002.

[3] P. Bohannon, S. Ganguly, H. Korth, P. Narayan, and
P. Shenoy. Optimizing view queries in rolex to support navi-
gable result trees. In VLDB, 2002.

[4] M. F. Fernandez, A. Morishima, and D. Suciu. EÆcient eval-
uation of XML middleware queries. In SIGMOD, 2001.

[5] J. Robie, D. Chamberlin, and D. Florescu. Quilt: an XML
query language. http://www.almaden.ibm.com/
cs/people/chamberlin/quilt euro.html.

[6] SourceForge. Kweelt. http://kweelt.sourceforge.net.

