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ABSTRACT

A query Q is boundedly evaluable under a set A of access
constraints if for all datasets D that satisfy A, there exists
a fraction DQ of D such that Q(D) = Q(DQ), and the size
of DQ and time for identifying DQ are both independent of
the size of D. That is, we can compute Q(D) by accessing a
bounded amount of data no matter how big D grows. How-
ever, while desirable, it is undecidable to determine whether
a query in relational algebra (RA) is bounded under A.

In light of the undecidability, this paper develops an effec-
tive syntax for bounded RA queries. We identify a class of
covered RA queries such that under A, (a) every boundedly
evaluable RA query is equivalent to a covered query, (b) ev-
ery covered RA query is boundedly evaluable, and (c) it takes
PTIME in |Q| and |A| to check whether Q is covered by A.
We provide quadratic-time algorithms to check the coverage
of Q, and to generate a bounded query plan for covered Q.
We also study a new optimization problem for minimizing
access constraints for covered queries. Using real-life data,
we experimentally verify that a large number of RA queries
in practice are covered, and that bounded query plans im-
prove RA query evaluation by orders of magnitude.
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1. INTRODUCTION
Querying big data is cost prohibitive. Given a query Q

and a dataset D, it is NP-complete to decide whether a tuple
t is in the query answer Q(D) when Q is an SPC query
(selection, projection and Cartesian product), and PSPACE-
complete if Q is in relational algebra (RA) [5]. When D is
big, it is hard, if not impossible, to compute Q(D) within
constrained resources such as time and available processors.

To tackle this problem, a notion of boundedly evaluable
queries has recently been studied [13, 14, 18, 19]. The idea
is to compute Q(D) by accessing only a fraction DQ of D
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that suffices to answer Q in D, instead of the entire D. To
identify DQ, it makes use of a set A of access constraints,
which are a combination of simple cardinality constraints
and their indices. Under A, Q is boundedly evaluable if for
all datasets D that satisfy A, there exists DQ such that

◦ Q(DQ) = Q(D), and
◦ the time for identifying DQ from D and hence the size

|DQ| of DQ are determined by Q and A only.

That is, Q(D) can be computed by accessing (identifying
and fetching) a small DQ with the indices in A, such that
|DQ| is independent of |D|, no matter how big D grows.

The idea has proven effective: on some real-life datasets,
77% of SPC queries [14] and 60% of graph pattern queries
[13] are found boundedly evaluable on average, under a few
hundreds simple access constraints, outperforming conven-
tional query evaluation approaches by orders of magnitude.

However, it is undecidable to determine whether an RA

query Q is boundedly evaluable under a set A of access con-
straints [19]. Set difference (universal quantification) of RA

makes the bounded evaluability analysis far more intriguing.

Example 1: Consider an example query Q0 from Graph
Search of Facebook [17]: find me all restaurants in nyc

which I have not been to, but in which my friends have dined
in May, 2015. The query is posed on dataset D0, which con-
sists of three relations: (a) friend(pid, fid), stating that fid is
a friend of pid, (b) dine(pid, cid, month, year) indicating that
a person pid dined in restaurant cid in month of year, and
(c) cafe(cid, city), stating that cid is located in city.

Query Q0 is given in RA, with constant p0 denoting “me”:

Q0(cid) = Q1(cid)−Q2(cid), where
Q1(cid) = πcid

`

friend(p0, fid) 1fid=pid dine(pid, cid,may, 2015)
1cid=cid′ cafe(cid′,nyc)

´

, and
Q2(cid) = πcid dine(p0, cid, month, year).

Dataset D0 may be big, with billions of users and trillions
of friend links [21]. It is costly to compute Q0(D0) directly.

Now consider a set A0 of real-life cardinality constraints:

◦ ψ1: friend(pid → fid, 5000);
◦ ψ2: dine((pid, year, month) → cid, 31);
◦ ψ3: dine((pid, cid) → (pid, cid), 1);
◦ ψ4; cafe(cid → city, 1).

Here ψ1 specifies a constraint imposed by Facebook [16]: a
limit of 5000 friends per user; ψ2 states that each person
dines in at most 31 restaurants each month; ψ3 says that
(pid, cid) is a “key” of the pair, and ψ4 states that each
restaurant id is associated with a single city. Indices can
be built on D0 based on ψ1 such that given a person, it



returns all the ids of her friends by accessing at most 5000
friend tuples; similarly for ψ2, ψ3 and ψ4. These indices and
constraints together are called access constraints [19].

Given the access constraints, we can compute Q1(D0) by
accessing at most 315000 tuples from D0, instead of trillions.
(1) We identify and fetch T1 of at most 5000 fid’s of friend

tuples with pid = p0, by using the index built for ψ1. (2)
For each fid value f in T1, we fetch T2 of at most 31 cid’s
of dine tuples with fid = f , year = 2015 and month = may,
leveraging the index for ψ2. (3) For each cid in T2, we fetch
its cafe tuple by using the index for ψ4, and return a set
T3 of cid’s from these tuples with city = nyc. The query
plan fetches at most 5000 + 5000 × 31 × 2 tuples only, all
using indices, to compute Q1(D0) no matter how big D0 is.
Therefore, Q1 is boundedly evaluable under A0.

However, query Q2 is not bounded under A0: we cannot
make use of any indices above when accessing the (possibly
huge) dine relation given pid = p0 alone. Since the set differ-
ence operator in Q0 forces us to check all tuples in Q2(D0),
one might think that Q0 is not bounded either.

Nonetheless, observe that Q0 is equivalent to Q′
0(cid) =

Q1(cid)−Q3(cid), where Q3(cid) = Q1(cid) 1cid=cid′ Q2(cid
′).

Moreover, Q3 is boundedly evaluable. Indeed, for each cid

value returned by Q1(D0) (i.e., T3 above), we can check
whether (p0, cid) is a pair occurring in relation dine, by
accessing one tuple via the index for ψ3. We return all those
cid’s that pass the check. Thus we can answer Q3(D0) by
accessing 5000 × 31 tuples. Therefore, Q0 is equivalent to
bounded Q′

0, with a query plan consisting of the plan for
Q1 above, followed by the plan for Q3; it accesses at most
470000 tuples only, no matter how big D0 grows. This shows
that Q0 is actually boundedly evaluable under A0. 2

This example tells us that to decide whether an RA (SQL)
query is bounded, it is often necessary to check query equiv-
alence, which is undecidable for RA queries in the presence of
set difference [5]. An open question [14,18,19] asks whether
it is still possible to make practical use of bounded evalua-
bility for answering RA queries, given the undecidability?

Contributions. This paper is to answer the open question.
We approach the problem by identifying an effective syntax
for boundedly evaluable RA queries. That is, a class L of
RA queries such that under a set A of access constraints,

(a) every boundedly evaluable RA query is equivalent to a
query in L, i.e., L expresses all bounded RA queries;

(b) every query Q in L is boundedly evaluable; and

(c) it takes PTIME (polynomial time) in |Q| and |A| to
syntactically check whether Q is in L.

That is, L identifies the core subclass of boundedly evaluable
RA queries, without sacrificing their expressive power.

The study of bounded evaluability is analogous, to an ex-
tent, to the study of safe relational calculus queries, which
are also undecidable. Effective syntax was first studied 30
years ago [20,32,34], to express all safe queries up to equiv-
alence. As observed in [20], “several commercial database
query systems give intuitively unexpected results on such
queries” (unsafe queries); this is evidenced by a real-life ex-
ample tested with SQL and QUEL [35]. Effective syntax
imposes syntactical restrictions on undecidable safe queries,
such that the restricted class is efficiently decidable.

Along the same lines, effective syntax allows us to make
practical use of bounded evaluability. (1) It provides us with

a guideline for formulating bounded evaluable queries, just
like its counterpart for safe queries. (2) As will be shown
shortly, bounded evaluability analysis can be readily incor-
porated into commercial DBMS. Given an input RA query
Q, it first checks whether Q is in L, in PTIME by condition
(c) above; if so, it generates a bounded query plan for Q
by using indices in A, which is warranted to exist by (b).
(3) By (a), if Q is boundedly evaluable, it can be expressed
in L. Hence query rewriting rules can be implemented to
transform Q to an equivalent query in L, to an extent.

More specifically, we provide theoretical results and prac-
tical methods for the bounded evaluability of RA as follows.

(1) We develop an effective syntax L for boundedly evaluable
RA queries (Section 3), referred to as covered queries. In a
nutshell, an RA query Q is covered if for any relation in Q,
its attributes needed for answering Q can be fetched via the
indices in A, in time bounded by the cardinality constraints
of A. We prove that every boundedly evaluable RA query
under A is also covered by A (i.e., property (a)).

(2) We develop an algorithm for checking covered queries
(Section 4). Given an RA query Q and a set A of access
constraints, the algorithm decides whether Q is covered by
A in O(|Q|2 + |A|)-time, where |Q| is the size of Q and |A|
is the total length of access constraints in A, independent
of the size |D| of dataset D. In practice, |Q| and |A| are
typically much smaller than |D|. This proves property (c).

(3) We provide an algorithm to generate query plans for cov-
ered queries (Section 5). Given an RA query Q covered by A,
the algorithm generates a query plan ξ of length O(|Q||A|)
such that for any dataset D that satisfies A, ξ computes
Q(D) by accessing a bounded amount of data determined
by Q and A. The algorithm is based on a nontrivial charac-
terization of covered RA queries and takes O(|Q|(|Q|+ |A|))
time, again independent of |D|. This proves property (b).

(4) We also study a new optimization problem (Section 6).
Given a query Q covered by A, it is to find a subset Am ⊆ A
such that Q remains covered by Am and the estimated data
access via Am is minimized. We show that the problem
is NP-complete and is not in APX, i.e., it has no PTIME

constant-factor approximation algorithm. Nonetheless, we
develop efficient heuristic algorithms with performance guar-
antees, some with reasonable approximation bounds.

(5) We show how bounded evaluability analysis can be
integrated into existing DBMS (Section 7). Given an RA

query Q and a set A of access constraints, we check whether
Q is covered by A, and if so, we generate a bounded query
plan for Q with minimal constraints in A, and compute
Q(D) by accessing a small fraction DQ of D, all by using the
algorithms described above. We also show how access con-
straints can be discovered and incrementally maintained.

(6) We implement our approach on top of MySQL and Post-
greSQL and experimentally evaluate its effectiveness using
two real-life datasets and a commercial benchmark (query
templates and datasets; Section 8). We find the following
on the real-life data: under a set A of at most 266 access
constraints, on average (a) 67.5% of randomly generated RA

queries are boundedly evaluable, among which 83.5% are
covered; (b) our query plans outperform MySQL and Post-
greSQL that use the same indices by at least 3 orders of mag-
nitude, and the gap gets larger on bigger data; (c) our plans



access only 0.0019% of the data; that is, they “reduce” D
from PB to GB; and (d) the indices account for 14.8% of the
original data. We also find that (e) our algorithms for cov-
erage checking, plan generation and minimizing access con-
straints are all efficient: they take at most 199ms in all cases.

These results settle the open question for the study of
RA boundedly evaluability, from theory to practice. They
suggest an approach to answering queries within bounded
resources, by adding the functionality of bounded evaluation
to existing DBMS. It is a common practice for decades in
query evaluation to access as little data as possible, rather
than the entire dataset, by making use of various indices.
This work is an effort to formalize the idea, to decide when
it is feasible to answer a query within bounded resources,
and to provide a systematic method to achieve it.

Related work. We categorize previous work as follows.

Bounded evaluability and effective syntax. The study of
bounded evaluability was motivated by the idea of scale
independence [6, 7], which is to guarantee that a bounded
amount of work is required to execute all queries in an ap-
plication, regardless of the size of the underlying data. The
notion was formalized in [19], focusing on query answering
in a particular given dataset. Bounded evaluability was pro-
posed in [18], which extends [19] by ranging over all datasets
that satisfy a set A of access constraints. A query Q is called
boundedly evaluable under A if it has a bounded query plan;
such a plan allows data access only via indices embedded in
A, and interleaves data fetching and relational operations,
to answer Q by accessing a bounded amount of data.

It is shown that for any SPCU query Q and any set A
of access constraints, it is decidable but EXPSPACE-hard to
decide whether Q is boundedly evaluable under A [18]; but
it is undecidable when Q is in RA [19]. Effective syntax
was explored for bounded SPC queries [18]. However, it was
left open in [18] whether there exists an effective syntax for
boundedly evaluable RA (i.e., FO, first-order logic) queries.

This work answers the open question in positive by pro-
viding a PTIME effective syntax for boundedly evaluable RA

queries. It is radically different from the one for SPC [18],
which becomes Πp

2-complete when extended to SPCU, and
undecidable for RA. The result of this work allows existing
DBMS to support boundedly evaluable RA queries.

Effective boundedness. A notion of effective boundedness
was studied for SPC [14], based on a restricted form of query
plans in which data fetching must be completed before any
relational operations can start. It was also studied for graph
pattern queries via simulation and subgraph isomorphism
[13], which are quite different from relational queries.

This work differs from [14] in the following. (1) We study
effective syntax for RA, while [14] focuses on checking and
answering SPC queries of a special form. Our main result
is an effective syntax for boundedly evaluable RA queries,
which is nontrivial since not every query class has an
effective syntax [32]. This issue is not considered in [14]. (2)
Bounded evaluability is much harder to decide than effective
boundedness. For SPC, bounded evaluability is EXPSPACE-
hard [18], but effective boundedness is in PTIME [14]. (3)
We study RA, in contrast to SPC [14]. RA is equivalent to
FO on relations [5], while SPC is a conjunctive fragment of
FO, and does not support disjunction (union) and universal
quantification (set difference). (4) Our methods for checking
covered RA queries and for generating query plans are differ-

ent from those of [14]. While effective boundedness for SPC

is characterized by five syntactic rules [14], it is impossible
to extend the rules to RA. It is much harder to decide which
attributes to retrieve and how their values propagate for RA

queries. (5) Our results substantially extend [14] and allow
existing DBMS to support bounded evaluable RA queries.
Even when SPC is concerned, we provide a PTIME solution
that allows generic query plans, as opposed to the restric-
tion of [14]. (6) We also study a new optimization problem
for minimizing estimated data access, which is nontrivial
(NP-complete and not in APX) and is not studied by [14].

Access constraints. Related to query answering under access
constraints is the notion of access patterns. They require a
relation to be only accessed by providing certain combina-
tions of attributes [10–12, 25, 28]. Unlike access patterns,
access constraints impose both cardinality constraints and
“restricted” data accesses via indices. Moreover, we study
how to answer RA queries by accessing a bounded amount
of data. Hence the results on bounded evaluability are quite
different from those for access patterns. In addition, we de-
velop effective syntax for bounded RA queries, an issue that
has not been studied for access patterns.

2. BOUNDED EVALUABILITY
In this section we review the notions of access constraints

and bounded evaluability, following [14,18,19].

Access schema. Over a relational schema R, an access
schema A is a set of access constraints of the form [14,19]:

ψ = R(X → Y, N),

where R is a relation schema in R, X and Y are sets of
attributes of R, and N is a natural number.

A relation instance D of R satisfies the constraint if

◦ for any X-value ā in D, |DY (X = ā)| ≤ N , where
DY (X = ā) = {t[Y ] | t ∈ D, t[X] = ā}; and

◦ there exists an index on X for Y that given an X-value
ā, retrieves DY (X = ā) by accessing at most N tuples.

That is, for any given X-value, there exist at most N dis-
tinct corresponding Y values in D, and these Y values can
be retrieved by using the index for ψ. Intuitively, ψ is a
combination of a cardinality constraint and its index.

We say D satisfies access schema A, denoted by D |= A,
if D satisfies all the constraints in A.

For instance, denote by R0 the collection of relation
schemas friend, dine and cafe. Then the set A0 consisting
of ψ1 −ψ4 given in Example 1 is an access schema over R0.

Remark. (1) Traditional functional dependencies (FDs) are
a special case of access constraints (N = 1). (2) Access
constraint discovery will be discussed in Section 7.

Query plans under access schema A. We study rela-
tional algebra (RA) queries, defined over a relational schema
R with selection σ, projection π, Cartesian product ×, union
∪, set-difference − and renaming ρ operators [5]. Follow-
ing [18], we define a query plan ξ for Q under A simply as
a sequence of relational algebra operators and an additional
fetch(X ∈ T, R, Y ) operator returning

S

ā∈T DXY (X = ā)
from D, where T is returned by some operation in the se-
quence prior to it, such that the plan retrieves data with
constants in Q and these fetch operations only (see formal
definition in Appendix A). Intuitively, query plans under ac-
cess schema restrict traditional query plans to access data
in an controlled and quantified manner, via fetch operations.



Bounded evaluability [18]. A query plan ξ is boundedly
evaluable under an access schema A (or simply bounded) if

(1) for each operation fetch(X ∈ T, R, Y ) in ξ, there exists
an access constraint R(X → Y, N) in A; and

(2) the length of ξ is determined by |R|, |A| and |Q| only,
which are the sizes of R, A, and Q, respectively.

An RA query Q is boundedly evaluable under A (or
bounded) if it has a boundedly evaluable query plan under A.

Intuitively, if Q is bounded, then there exists a bounded
query plan ξ for Q such that for all instances D of R that
satisfy A, it fetches DQ from D via the indices in A such that
Q(D) = Q(DQ). Moreover, |DQ| is determined by Q and
constants in A only, independent of |D|, where |D| denotes
the total number of tuples in D. The time for identifying
DQ (checking indices) and fetching DQ is also independent
of |D| (assuming that given an X-value ā, it takes O(N) time
to fetch DXY (X = ā) in D with the index in R(X → Y, N)).

Example 2: Recall Q0 and A0 from Example 1. A bound-
edly evaluable query plan for Q0 under A0 is as follows.

T1 = {p0}, T2 = fetch(T1, friend, fid), T3 = πfid(T2),
T4 = {2015}, T5 = {may}, T6 = T4 × T5, T7 = T3 × T6,
T8 = fetch(X ∈ T7, dine, cid), T9 = πcid(T8),
T10 = fetch(X ∈ T9, cafe, city), T11 = σcity=nyc(T10),
T12 = πcid(T11),
T13 = T1 × T12, T14 = fetch(X ∈ T13, dine, (pid, cid)),
T15 = πcid(T14), T16 = T13 \ T15.

Note that the sequence T1, . . . , T12 forms a boundedly
evaluable query plan for sub-query Q1 of Q0 under A0. 2

The analysis of bounded evaluability is more intriguing
for RA queries than for SPC, as illustrated below.

Example 3: Consider an access schema A1 and RA query
Q4 defined on relation schemas R(A, B, E) and S(F, G, H):

◦ A1 ={R(AB→E, N), S(F → GH, 2), S(GH → GH, 1)}.

◦ Q4 = Q1
4 − Q2

4, where Q1
4 = πx(R(1, x, y) 1 S(w, x, y) 1

S(w, 1, x) 1 S(w, x, x)) and Q2
4 = πx(R(1, x, x) 1

S(u, 1, x) 1 S(u, x, x)), where 1 denotes natural join.

At a first glance, Q4 seems not boundedly evaluable, since
we cannot retrieve x and w values using indices in A1 and
thus cannot get y for Q1

4. Similarly, we cannot get u and x
values for Q2

4. However, under S(F → GH, 2) in A1, observe
that (x, y) must be equal to either (1, x) or (x, x) in all tuples
retrieved from instance of S by any query plan for Q1

4. In
other words, under A1, the SPC sub-query Q1

4 reduces to

SPCU Q1′

4 ∪ Q1′′

4 , where Q1′

4 = πx(R(1, 1, x) 1 S(w, 1, x) 1

S(w, x, x) and Q1′′

4 = Q2
4. Thus, under A1, Q4 is equivalent

to Q1′

4 , which is boundedly evaluable under A1. 2

The presence of union (∪) allows us to convert SPC to

SPCU under A (e.g., Q1
4 to Q1′

4 ∪ Q1′′

4 ), which may further

interact with set difference (−) (e.g., Q4 and Q1′

4 ).

Notations. We will use the following notations.

(1) Under an access schema A, an RA query Q1 is A-
equivalent to Q2, denoted by Q1 ≡A Q2, if for all instances
D of R with D |= A, Q1(D) = Q2(D). That is, in all D
satisfying A, Q1 and Q2 return the same answer. This no-
tion is stronger than the conventional equivalence Q1 ≡ Q2,
which holds if for all instances D of R, Q1(D) = Q2(D) [5].

(2) To simplify the exposition, we consider RA queries Q in a
normal form in which all occurrences of each relation name

are made distinct via renaming. For an access constraint φ
= R(X → Y, N) and a renaming S of R in Q, we refer to
S(X → Y, N) as the actualized constraint of φ on S, and to
the set of all actualized constraints of A as the actualized
access schema of A on Q. We consider w.l.o.g. normalized
Q and actualized A only, based on the lemma below.

Lemma 1: Given any RA query Q and access schema A
over relational schema R, one can compute the actualized
access schema A′ from Q and A in O(|Q||A|)-time such that
(1) for any instance D of R, D |= A iff D |= A′; and
(2) Q is boundedly evaluable under A iff Q′ is boundedly

evaluable under A′ (iff for if and only if). 2

3. AN EFFECTIVE SYNTAX
Essential to practical use of bounded evaluability is the

following problem. Given a query Q and an access schema
A, it is to decide whether Q is boundedly evaluable under
A. The problem is undecidable for RA queries Q [19].

The undecidability motivates us to find an effective syntax
L for boundedly evaluable RA queries (see Section 1). We
identify such an L, referred to as the class of covered queries.

Covered queries. We now define covered queries, starting
with SPC. Intuitively, an SPC query Q is covered if for any
relation S in Q, all the attributes of S needed to answer Q
can be fetched via indices in A and moreover, their sizes are
bounded by the cardinality constraints of A.

Consider an SPC query Q = πZσC(S1 × . . .× Sn) defined
over a relational schema R, where Z is a set of attributes
of R, C is the selection condition of Q, and Si’s are distinct
relations after renaming (Lemma 1). We use ΣQ to denote
the set of all equality atoms A = A′ or A = c derived from
C by the transitivity of equality. For any sets X and X ′ of
attributes of Q, we write ΣQ ⊢ X = X ′ if X = X ′ can be
derived from ΣQ, which can be checked in O(max(|X|, |X ′|))
time (after an O(|Q|2)-time preprocessing of Q).

Coverage. The set of covered attributes of Q by an access
schema A, denoted by cov(Q,A), includes attributes that
can be accessed via indices in A. It is defined as follows:

◦ if ΣQ ⊢ σA=c, then A ∈ cov(Q,A);
◦ if R(∅ → X, N) ∈ A, then R[X] ⊆ cov(Q,A);
◦ if R[X] ⊆ cov(Q,A) and ΣQ ⊢ R[X] = S[Y ], then

S[Y ] ⊆ cov(Q,A); and
◦ if R(X → Y, N) ∈ A and R[X] ⊆ cov(Q,A), then

R[Y ] ⊆ cov(Q,A).

Here R(∅ → X, N) is an access constraint stating that there
are at most N distinct X values in an instance of R, e.g.,
there exist at most 12 distinct months per year.

Covered SPC. Denote by XQ the set of attributes in an SPC

query Q that occur in either its selection condition C or the
projection attributes Z of Q. We say that Q is

◦ fetchable via A if XQ ⊆ cov(Q,A); and

◦ indexed by A if for each relation name S in Q, there is
an actualized constraint S(X → Y, N) of A such that

– S[X] ⊆ cov(Q,A), and
– S[XY ] includes all attributes of S that are in XQ,

i.e., attributes XY come from the same tuple.

An SPC query Q is covered by A if Q is both fetchable via
A and indexed by A. That is, all attributes needed by Q
can be fetched using indices of A and are bounded by A.



Covered RA. We represent an RA query Q as its query (syn-
tax) tree T Q [5]. To simplify the discussion, we say that an

RA query Q′ is a sub-query of Q if T Q′

is a sub-tree of T Q.
A max SPC sub-query of Q is a sub-query Qs such that

◦ Qs is an SPC query, and

◦ there exists no sub-query Q′
s of Q such that it is also

in SPC, Qs 6= Q′
s, and Qs is a sub-query of Q′

s.

An RA query Q is covered by an access schema A if for all
max SPC sub-queries Qs of Q, Qs is covered by A. Similarly,
Q is fetchable via A (resp. indexed by A) if each max sub-
SPC sub-query is fetchable via A (resp. indexed by A).

Intuitively, an RA query Q is “normalized” by pushing
set difference to the top level, on (unions of) max SPC sub-
queries. These max SPC sub-queries characterize all relation
attributes that need to be accessed when answering Q.

Example 4: For the queries and A0 of Example 1, Q1 and
Q3 are covered by A0, but Q2 is not. Indeed, XQ1

= {xp0
,

fid, pid, cid, xmay, x2015, cid
′, xnyc} = cov(Q1,A0), where xd

denotes the attribute corresponding to a constant d in Q1.
Hence Q1 is fetchable via A0; moreover, Q1 is indexed by
A0 since friend, dine and cafe are indexed by ψ1, ψ2 and ψ4,
respectively; similarly for Q3. However, Q2 is not fetchable
via A0 since cov(Q2,A0) = {xp0

} but XQ2
= {xp0

, cid}, and
relation dine is not indexed by any constraint in A0 for Q2.
As a result, Q′

0 is covered by A0 since both of its max SPC

sub-queries Q1 and Q3 are covered by A0. In contrast, Q0

is not covered by A0 since Q2 is not. 2

The main result of the paper is as follows.

Theorem 2: Under access schema A, for any RA query Q,

(1) if Q is boundedly evaluable under A, then Q is A-
equivalent to an RA query Q′ that is covered by A;

(2) if Q is covered, then Q is boundedly evaluable; and

(3) it takes PTIME to check whether Q is covered by A.2

That is, we reduce the problem of deciding RA bounded
evaluability to syntactic checking of covered queries, without
losing the expressive power. Indeed, all boundedly evaluable
RA queries have an A-equivalent covered version. For these
RA queries, covered queries play the same role as range-safe
RA queries for checking “the safety” SQL queries [5].

Proof sketch of Theorem 2(1). We will prove Theo-
rem 2(3) and (2) in Sections 4 and 5, respectively. For (1),
we show that for any RA query Q, if it has a bounded query
plan ξ under A, then ξ can be converted to a query Qξ

covered by A such that Qξ ≡A Q (see Appendix B). 2

4. CHECKING COVERED QUERIES
We next give a constructive proof of Theorem 2(3) by pro-

viding an algorithm for checking covered queries, denoted
by CovChk. Given an access schema A and an RA query Q,
CovChk returns “yes” if Q is covered by A, and “no” other-
wise. Below we show a result stronger than Theorem 2(3).

Proposition 3: Given an access schema A and an RA

query Q, algorithm CovChk determines whether Q is cov-
ered by A in O(|Q|2 + |A|) time. 2

Note that checking is conducted at the meta level on Q
and A only, independent of (possibly big) datasets D.

The algorithm is shown in Fig. 1, consisting of two parts.
It first finds the set SQ of all max SPC sub-queries of Q

Algorithm CovChk

Input: An RA query Q and an access schema A.
Output: “yes” if Q is covered by A and “no” otherwise.

1. identify the set SQ of all max SPC sub-queries of Q
2. for each max SPC sub-query Qs in SQ do
3. if Qs is not indexed under A then return “no”;
4. construct induced FDs ΣQs,A for Qs and A;

5. if ΣQs
6|= X̂

Qs
C → X̂Qs

then return “no”;
6. return “yes”;

Figure 1: Algorithm CovChk

(line 1). It then checks whether all queries in SQ are covered
by A (lines 2–5). It returns “yes” if and only if so (line 6).

Identifying max SPC sub-queries. CovChk computes the
set SQ by a bottom-up scan of the query tree of Q. This is
done in time linear in |Q|, since each relation of Q occurs in
only one max SPC sub-query of Q, by the assumption that
relation names in Q are distinct (see Section 2).

Checking coverage of SPC sub-queries. We next focus
on how to check whether an SPC sub-query Qs is covered by
A, i.e., indexed by A and fetchable via A (Section 3). While
index checking is straightforward, the fetching condition is
more involved, and is based on its connection with the im-
plication analysis of functional dependencies (FDs) [5]. To
establish the connection, we need the following notions.

Unification. A unification function ρU is an attribute re-

naming function: for all attributes A and A′ in SQ, ρU (A) =
ρU (A′) (assigned the same name) if and only if ΣQ ⊢ A = A′.
For a set X,we denote by ρU (X) the set {ρU (A) | A ∈ X}.

Induced FDs. For φ = R(A → B, N) in A, we call ρU (R[A])
→ ρU (R[B]) an induced FD from Q and φ. We denote the
set of all induced FDs from Q and constraints in A by ΣQ,A.

Example 5: For Q1 and A0 of Example 1, define a
unification function ρU such that ρU (friend[pid]) = pid,
ρU (friend[fid]) = fid, ρU (dine[pid]) = fid, ρU (dine[cid])
= cid, ρU (dine[year]) = year, ρU (dine[month]) = month,
ρU (cafe[cid]) = cid and ρU (cafe[city]) = city. Then ΣQ1,A0

consists of the following induced FDs: pid → fid, (fid, year,
month) → cid, (fid, cid) → (fid, cid), and cid → city. 2

We now give the connection between induced FDs and
fetchable SPC queries. For an SPC query Qs, let XQs be
the set of all its attributes that occur in its selection condi-
tion or projection attributes, and XQs

C ⊆ XQs be the set of
attributes A in Qs such that ΣQs ⊢ A = c for some constant

c. Let X̂Qs = ρU (XQs) and X̂Qs

C = ρU (XQs

C ). Then we have:

Lemma 4: An SPC query Qs is fetchable under A if and
only if ΣQs,A |= X̂Qs

C → X̂Qs . 2

Here Σ |= ϕ denotes the standard FD implication: for all
databases D, if D satisfies Σ, then D also satisfies ϕ (see [5]).

Intuitively, X̂Qs

C is the set of attributes whose values are

already provided by Qs, and X̂Qs includes all the attributes
whose values are needed for answering Qs. The computation
of cov(Q,A) (Section 3) is a chasing process with A to de-

duce X̂Qs from X̂Qs

C . The process coincides with the impli-

cation analysis of ΣQs,A |= X̂Qs

C → X̂Qs (see Appendix B).

Lemma 4 reduces the problem of checking whether an
SPC query Qs is fetchable via A to the implication anal-
ysis of FDs. Based on the lemma, algorithm CovChk checks



Notation Description

A (actualized) access schema
|A| the total length of access constraints in A
||A|| the number of constraints in A
Qs a max SPC sub-query of Q

ΣQs equality A = A′ and A = c derived from Qs

XQ attributes in σC or πY of some max Qs of Q

X
Q
C

attributes A such that ΣQs ⊢ A = c for a Qs of Q

XS
Q attributes in both S and XQs for some Qs of Q

ρU (A) renaming of A with unification function ρU

ρU (X) {ρU (A) | A ∈ X}
ΣQs,A the set of induced FDs from Qs and A

ξc canonical bounded query plan
ξc

F (A) unit fetching plan for attribute A

GQ,A 〈Q,A〉-hypergraph for Q and A
ΠVS,uA

hyperpath from set VS to node uA

Table 1: Notations

whether Qs is fetchable by firstly constructing the set ΣQs,A

of induced FDs from Qs and A, and then checking whether
ΣQs,A |= X̂Qs

C → X̂Qs by invoking a linear-time FD im-
plication algorithm [5] (lines 4–5). It checks whether Qs is
indexed under A simply by definition (line 3).

Example 6: Given Q0, Q
′
0 and A0 of Example 1, by exam-

ining max SPC sub-queries, algorithm CovChk finds that Q′
0

is covered by A0 but Q0 is not (see Appendix C). 2

Correctness & Complexity. The correctness of CovChk

follows from the definition of covered queries and Lemma 4.
Algorithm CovChk can be implemented in O(|Q|2+|A|) time
(see Appendix D for more details). This completes the proof
of Proposition 3 and Theorem 2(3).

The notations of the paper are summarized in Table 1.

5. GENERATING BOUNDED PLANS
We now verify Theorem 2(2) by proving a stronger result.

Theorem 5: (1) For any RA query Q covered by an access
schema A, Q has a canonical bounded query plan under A.
(2) There exists an algorithm that given Q covered by A,
generates a canonical bounded query plan of length O(|Q||A|)
in O(|Q|(|Q| + |A|)) time. 2

Here canonical bounded query plans are boundedly evalu-
able query plans that characterize covered RA queries. That
is, every covered query Q warrants a boundedly evaluable
query plan ξ. Better still, ξ can be generated in a bounded
amount of time and has a bounded length, both determined
by Q and A, independent of the underlying datasets.

The proof is nontrivial. Below we first introduce canonical
bounded query plans (Section 5.1). We then provide an
algorithm with the property of Theorem 5(2) (Section 5.2).

5.1 Capturing Covered Queries with Plans
We define canonical query plans and show that an RA

query Q is covered by A if and only if Q has a canonical
bounded plan under A. From this Theorem 5(1) follows.

Canonical bounded query plans. For an RA query Q
under an access schema A, a canonical bounded query plan
ξc is a boundedly evaluable query plan for Q that consists
of a fetching plan ξc

F , followed by an indexing plan ξc
I and

then an evaluation plan ξc
E , as follows (see Appendix A).

Fetching plan ξc
F : A fetching plan ξc

F is a sequence of unit
fetching plans ξc

F (A1), . . . , ξc
F (Am), for all attributes A1,

. . . , Am in XQ of Q. Here unit plan ξc
F (Ai) fetches all

the necessary values for Ai; it may use fetch by employing

an access constraint φ of A, projections (π) and Cartesian-
product (×), but has no need for selection (σ).

Indexing plan ξc
I . An indexing plan ξc

I is a sequence of unit
indexing plans ξc

I(S1), . . . , ξc
I(Sm) for all relations S1, . . . ,

Sm in Q. For each Si, ξc
I(Si) ensures that the combinations

of attributes fetched by ξc
F (Aj) are from the same tuples in

D. Let Qs be the max SPC sub-query in which Si occurs,
XSi

Qs
= {A1, . . . , AK} be the set of attributes of Si that are

also in XQs , and Si(X → Y, N) be a constraint in A that in-
dexes Si. Then ξc

I(Si) works in three steps: (1) join ξc
F (A1),

. . . , ξF (AK) together; (2) apply fetch under Si(X → Y, N);
and (3) return the intersection of (1) and (2).

Evaluation plan ξc
E . Plan ξc

E is the RA expression of Q, in
which each relation Si in Q is replaced by Tk, where Tk =
ξc

I(Si) is the output of the indexing plan ξc
I(Si) for Si.

Intuitively, given a dataset D with D |= A, a canonical
bounded query plan ξc first executes ξc

F to fetch necessary
data values from D via indices in A. This is followed by ξc

I

to combine and filter partial tuples for each relation that is
needed for answering max SPC sub-queries of Q. Finally, ξc

E

is executed against the fetched partial tuples instead of D
directly. That is, ξc accesses data only via ξc

F and ξc
I .

By the definitions of bounded evaluability and canonical
bounded query plans, one can verify the lemma below (see
Appendix B for a proof), from which Theorem 5(1) follows.

Lemma 6: For RA query Q and access schema A, (1) Q is
fetchable via A iff Q has a fetching plan under A; and (2) Q
is indexed by A iff Q has an indexing plan under A. 2

5.2 Generating Canonical Bounded Plans
We next give a constructive proof of Theorem 5(2) by

developing an algorithm that, given an access schema A and
an RA Q covered by A, returns a canonical bounded query
plan ξc of bounded length in O(|Q|(|Q| + |A|)) time. The
idea of the algorithm is to encode Q and A in a hypergraph
representation such that (i) there is a certain hyperpath in
the hypergraph iff Q is fetchable under A; and (ii) each such
hyperpath encodes a canonical fetching plan for Q under A.

Below we first introduce structures used by the algorithm
(see Table 1). We then present the algorithm.

〈Q,A〉-hypergraph GQ,A. A directed hypergraph H (cf. [9]) is

a pair (V, E), where V is a nonempty set of nodes and E is
a set of hyperedges. A hyperedge e in E is an ordered pair
(H, t), where H ⊆ V , H 6= ∅, and t ∈ V \ H. Here H and t
are called the head and tail of e, and are denoted by head(e)
and tail(e), respectively. The size |H| of H is the sum of the
cardinality of its hyperedges, i.e.,

P

e∈E |head(e)|. Hyper-
graphs have been used to model FDs with single attribute
on their RHS (called RHS-FD) by its hyperedges [9].

Given an RA query Q and an access schema A, we use a
hypergraph to encode the induced FDs for all max SPC sub-
queries of Q. For each induced FD X → Y , there are |Y \

X| + 1 induced RHS-FDs X → Ỹ and Ỹ → Yi for each Yi ∈

Y , where Ỹ is a new attribute name denoting Y . A 〈Q,A〉-
hypergraph GQ,A for Q and A is a directed hypergraph (V, E)
with a special node r, such that (1) E encodes all the induced

RHS-FDs; (2) for all induced RHS-FDs of form ∅ → Ỹ , ∅ is
encoded by r; and (3) for each attribute A in {ρU (A) | A ∈

XQs

C , Qs is a max SPC sub-query of Q}, there is a hyper-
edge from r to the node encoding A (see Appendix A).
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Figure 2: 〈Q,A〉-hypergraph GQ′
0
,A0

for Q′
0 and A0

Example 7: The 〈Q,A〉-hypergraph GQ′
0
,A0

for Q′
0 and A0

of Example 1 is depicted in Fig. 2 (see Appendix C). 2

Hyperpath. A sub-hypergraph of H = (V, E) is a hypergraph

H′ = (V ′, E′) such that V ′ ⊆ V , E′ ⊆ E, and E′ is restricted
to V ′. A hyperpath [9] in H from a set S ⊆ V (S 6= ∅) to a
target node t ∈ V is a sub-hypergraph ΠS,t = (VΠS,t

, EΠS,t
)

of H satisfying the following: if t ∈ S, then EΠS,t
= ∅;

otherwise its k ≥ 1 hyperedges can be ordered in a sequence
〈e1, . . . , ek〉 such that (a) for any ei ∈ EΠS,t

, head(ei) ⊆ S
∪ {tail(e1), . . . , tail(ei−1)}; (b) t = tail(ek); and (c) no sub-
hypergraph of ΠS,t other than itself is a hyperpath from S
to t in H. For example, a hyperpath Π{r},ucid′

from r to ucid′

in GQ′
0
,A0

of Example 7 is highlighted in bold in Fig. 2.

We now establish the connection between hyperpaths and
canonical fetching plans as follows.

Lemma 7: For any RA query Q, access schema A and
attribute A in XQ of Q, there exists a unit fetching plan
ξc(A) for Q under A if and only if there exists a hyperpath
from r to uρU (A) in the hypergraph GQ,A. 2

Lemma 7 tells us that to get a canonical fetching plan for
Q under A, it suffices to find hyperpaths from r to uA in
GQ,A for all attribute A ∈ XQ. Based on this we develop
our algorithm for canonical bounded plan generation.

Algorithm. The algorithm, denoted by QPlan and shown
in Fig. 3, takes as input an access schema A and an RA

query Q covered by A; it returns a canonical bounded query
plan PQ,A for Q under A. It generates PQ,A in three steps:
it first generates unit fetching plans for attributes in XQ

(lines 1-6). It then builds an indexing plan ξc
I(S) for each

relation name S that occurs in Q on top of the fetching plans
(lines 7-9). Finally it adds the evaluation plan ξc

E (line 10).
More specifically, it first constructs the 〈Q,A〉-hypergraph

GQ,A for Q and A (line 1), and initializes data structures for
storing unit fetching plans (LF ) and the final query plan
(PQ,A) (line 2). It then iteratively finds unit fetching plans
for attributes in XQ (lines 3-6). For each attribute A in
XQ, it finds a hyperpath Π{r},uA

from r to uA that en-
codes A in GQ,A, by invoking procedure findHP (line 4; not
shown). Here findHP can be implemented in O(|GQ,A|) =
O(|Q| + |A|) time by traversing GQ,A [9]. It then converts
the hyperpath into a unit fetching plan ξc

F (A) via procedure
transQP (line 5) (see Appendix D for details), and adds the
plan to PQ,A (line 6). After these, algorithm QPlan gener-
ates indexing plans for all relations in Q, by manipulating
the unit fetching plans stored in LF , following the definition
of indexing plan (lines 7-9). It finally adds the evaluation
plan of Q to PQ,A (line 10), and returns PQ,A (line 11).

Example 8: Given Q′
0 and A0 of Example 1, QPlan first

constructs the hypergraph GQ′
0
,A0

shown in Fig 2 for Q′
0 and

A0. It then iteratively finds unit fetching plans for attributes
in XQ′

0
. Take cid′ in sub-query Q1 of Q′

0 as an example

Algorithm QPlan

Input: An access schema A and an RA query Q covered by A.
Output: A canonical bounded query plan ξc for Q under A.

1. construct the 〈Q,A〉-hypergraph GQ,A for Q and A;
2. LF [ ] := nil; PQ,A = nil;
3. for each attribute A ∈ XQ of Q do

/* find a hyperpath from r to uρU (A) in GQ,A for ρU (A) */

4. Π{r},u
Â

:= findHP(r, u
Â

,GQ,A); /* Â = ρU (A) */

/* translate hyperpath to a unit fetching plan for A */
5. LF [A] := transQP(Π{r},u

Â
);

6. append LF [A] to PQ,A;
7. for each relation S in Q do

8. construct indexing plan ξc
I(S) with LF [A] for all A in XS

Q;

9. append ξc
I(S) to PQ,A;

10. append evaluation plan ξc
E for Q to PQ,A;

11. return PQ,A;

Figure 3: Algorithm QPlan

(recall the setting of Example 7 in Appendix C). It finds a
hyperpath Π{r},ucid′

in GQ′
0
,A0

, marked in bold in Fig. 2. It
then translates Π{r},ucid′

into a unit fetching plan consisting
of T1-T9 given in Example 2. Similarly, it generates unit
fetching plans for all the other attributes in XQ′

0
. It then

finds indexing plans for relations in Q′
0. For instance, an

indexing plan for dine′′ is as follows: T ′
1 = T9 (since T1,

. . . , T9 form a unit fetching plan for cid′), T ′
2 = {p0}, T ′

3

= T ′
1 × T ′

2, T ′
4 = fetch(X ∈ T ′

3, dine′′, (pid′′, cid′)). Finally,
it adds the evaluation plan. A complete canonical bounded
query plan for Q′

0 under A0 is given in Appendix C, which
is essentially the same as the one given in Example 2. 2

Correctness & Complexity. The correctness of QPlan is
ensured by Theorem 5(1) and Lemma 7. By Theorem 5(1),
a covered Q has a canonical bounded query plan, including
a unit canonical fetching plan ξc

F (A) for each attribute A
in XQ of Q. By Lemma 7, there exists a hyperpath from r
to uA for each A ∈ XQ, encoding ξc

F (A). Hence QPlan is
warranted to be able to find such a plan.

Algorithm QPlan can be implemented in O(|Q|(|Q|+ |A|))
time (See Appendix D for a detailed analysis).

The lemma below completes the proof of Theorem 5(2).

Lemma 8: Given an RA query Q covered by A, QPlan finds
a canonical bounded query plan of length O(|Q||A|). 2

6. ACCESS MINIMIZATION
In this section, we study a new optimization problem for

bounded evaluability, referred to as the access minimization
problem and denoted by AMP(Q,A). It is stated as follows.

◦ Input: Access schema A, RA query Q covered by A.

◦ Output: A subset Am ⊆ A such that Q is also cov-
ered by Am and Am is minimum, i.e., for any other
subset A′ ⊆ A, if Q is also covered by A′, then
P

R(X→Y,N)∈Am
N ≤

P

R(X→Y,N)∈A′ N .

That is, it is to identify a small set Am of access constraints
in A that covers Q and moreover, Am estimates a “mini-
mum” amount of data to be accessed for answering Q. It
also suggests how many access constraints we need to cover
a query, and the size of indices built for the constraints.

While useful, the problem is hard. We show that the prob-
lem is intractable (Section 6.1). Nonetheless, we provide effi-
cient algorithms with performance guarantees (Section 6.2).



6.1 Intractability & Approximation Hardness
The decision version of AMP, denoted dAMP(Q,A, K), is

to decide, given access schema A, RA query Q covered by A
and a natural number K, whether there exists Am ⊆ A such
that Am covers Q and

P

R(X→Y,N)∈Am
N ≤ K. Its corre-

sponding optimization problem, denoted by oAMP(Q,A), is
to find the minimum K for dAMP(Q,A, K) to answer “yes”.

We also study two practical special cases. We say that a
〈Q,A〉-hypergraph GQ,A is acyclic if GQ,A is acyclic, where
GQ,A is a directed graph derived from GQ,A by replacing
each hyperedge e = ({u1, . . . , up}, v) with p edges (u1, v),
. . . , (up, v). Intuitively, GQ,A is acyclic when the dependency
relation on attributes of Q imposed by A is not “recursive”.
We study the following two special cases:

◦ acyclic: when GQ,A is acyclic; and
◦ elementary: for each φ = R(X → Y, N) in A, either

φ is an indexing constraint, i.e., of the form R(X →
X, 1), or a unit constraint, i.e., when |X| = |Y | = 1.

Both cases are quite common in practice: access constraints
rarely incur recursive dependencies, and are often of the form
of indexing or unit constraints. For example, (1) Q′

0 and A0

in Example 1 are an acyclic case since GQ′
0
,A0

(Fig. 2) is

acyclic; and (2) Q′
0 and A0 \ {ψ2} are an elementary case.

These problems are nontrivial, even their special cases.

Theorem 9: (1) dAMP(Q,A, K) is NP-complete.

(2) oAMP(Q,A) is not approximable within c∗ log |XQ\XQ
C |

for any constant c > 0.
(3) When (Q,A) is acyclic or elementary, dAMP(Q,A, K)
remains NP-hard, and oAMP(Q,A) is not in APX. 2

The class APX is the set of NP optimization problems that
can be approximated by a constant-factor approximation
algorithm, i.e., a PTIME algorithm within some constant.

6.2 Approximation Algorithms
Theorem 9 tells us that for AMP(Q,A), any efficient algo-

rithm is necessarily heuristic. Below we provide an efficient
heuristic that guarantees to find a minimal Am ⊆ A that
covers Q, i.e., removing any constraint from Am makes Q
not covered by Am. Moreover, for the two special cases,
there are approximation algorithms with accuracy bounds.

Theorem 10: (1) There is an algorithm for AMP(Q,A)
that finds minimal Am in O(|Q|2 + ||A||(|Q| + |A|)) time.
(2) For acyclic (Q,A), oAMP(Q,A) is approximable within

O(1 + |XQ \ XQ
C |) in O(|Q| + |A|) time.

(3) For elementary Q(Q,A), oAMP(Q,A) is approximable

within O(1+ |XQ\XQ
C |ǫ) in O((|Q|+ |A|)

1

ǫ |XQ\XQ
C |

2

ǫ time,
for any constant ǫ > 0. 2

As a proof, we outline the algorithms as follows.

General case. As a proof of Theorem 10(1), we give an
algorithm for AMP(Q,A) for the general case, denoted by
minA (not shown). It is based on the following heuristics:
a constraint φ = R(X → Y, Nφ), if it is not used to index
a relation (Section 3), then it is less likely in the optimum
solution Am if Q remains covered by A\{φ}, and moreover,
(a) cov(Q,A) \ cov(Q,A\{φ}) is small; and (b) Nφ is large.

Based on the observation, algorithm minA works as fol-
lows. It first constructs the set ΣQ,A of induced FDs of Q and
A. It then iteratively removes “redundant” FDs from ΣQ,A.
In each iteration, it greedily selects an induced FD that cor-
responds to access constraint φ, such that (a) Q remains cov-

ered by A\{φ}; and (b) w(φ) =
c1·Nφ

c2·(|cov(Q,A)\cov(Q,A\{φ})|+1)

is maximum among all constraints A, where c1 and c2 are
user-tunable coefficients for normalizing the numbers. It re-
turns all access constraints corresponding to the remaining
FDs in ΣQ,A when it cannot remove more FDs from ΣQ,A.

Example 9: Consider Q1 and A0 given in Example 1.
Let A1 consist of constraints in A0 and an additional ψ5:
dine((pid, year) → cid, 366), i.e., each person dines out at
most 366 times per year. For AMP(Q1,A1), algorithm minA

returns Am = {ψ1 ψ2, ψ4} (see details in Appendix C). 2

Analysis. Algorithm minA always returns minimal Am ⊆
A for AMP(Q,A) since it keeps removing FDs until Am is
minimal, in O(|Q|2+||A||2(|Q|+|A|)) time (see Appendix D).

Acyclic case. We prove Theorem 10(2) by giving an ap-
proximation algorithm, denoted by minADAG (omitted). The
algorithm capitalizes on the connection between hyperpaths
and coverage (Lemma 7). It uses the following notion.

Weighted 〈Q,A〉-hypergraph. For an RA query Q and

an access schema A, the weighted 〈Q,A〉-hypergraph is a
weighted hypergraph, where each hyperedge carries a weight
defined as follows. Recall GQ,A from Section 5.2. For each
induced FD X → Y in ΣQ,A derived from an constraint
R(X → Y, N) in A, the hyperedge encoding the induced

RHS-FD X → Ỹ has weight N , and hyperedges encoding
the remaining induced Ỹ → Yi (for Yi ∈ Y ) have weight 0.
Moreover, all hyperedges emanating from the special node
r have weight 0. For instance, for Q1 and A1 of Example 9,
its weighted 〈Q,A〉-hypergraph GQ1,A1

is depicted in Fig. 7
in Appendix C (see Appendix A for a formal definition).

Algorithm minADAG. Based on this notion, minADAG simply
computes the shortest hyperpaths from node r in GQ,A to

nodes encoding attributes in (X̂Q \ X̂Q
C ) (recall X̂ = ρU (X)

and Table 1) w.r.t. the sum of weights of hyperedges on it. It
returns access constraints corresponding to the induced FDs

encoded by edges of the hyperpaths, plus one constraint with
the minimum N to index each relation S in Q (Section 3).

Example 10: For Q1 and A1 of Example 9, its weighted
〈Q,A〉-hypergraph GQ1,A1

is acyclic (see Fig. 7 in Appendix
B). Given Q1 and A1, minADAG computes shortest hyper-
paths from r to upid, ufid, ucid, umonth, uyear and ucity. For
example, the shortest hyperpath from r to ucid is the one
containing edge ({fid, year, month}, cid) with weight 31. Al-
gorithm minADAG returns constraints ψ1, ψ2, ψ4 in A1 that
correspond to the edges in those hyperpaths. As Q1 is al-
ready indexed by them, no more constraints are needed. 2

Analysis. By Lemma 7, minADAG always returns A′ ⊆ A that
covers Q. The approximation bound can then be proved
based on the following (see details in Appendix B): the
weight of the shortest hyperpaths from r to a node uA de-
noting attribute A is the minimum“cost” to cover A with A.

Observe that the search for shortest hyperpaths emanat-
ing from r can be conducted by BFS in GQ,A in O(|GQ,A|)
time. Hence, algorithm minADAG is in O(|Q| + |A|) time.

Elementary case. As a proof of Theorem 10(3), we de-
velop an algorithm, denoted by minAE (omitted), for the
elementary case (Q,A) of AMP(Q,A). The idea is by reduc-
tion to the directed minimum steiner arborescence problem
(dminSAP(G, u, VT )) (cf. [15]), which is to find the minimum



Figure 4: Bounded evaluability on DBMS

weighed arborescence rooted at node u spanning all nodes
in a set VT in a weighted directed graph G.

The reduction is as follows. Given an elementary case
(Q,A), we construct an instance (G, u, VT ) of dminSAP:

(a) G is the weighted 〈Q,A〉-hypergraph GQ,Ani for Q and
Ani ⊂ A, where Ani contains all unit constraints in A;

(b) u is the special node r in GQ,Ani ; and
(c) VT is the set of nodes in GQ,Ani that correspond to

attributes in X̂Q \ X̂Q
C (see Table 1).

For elementary (Q,A), GQ,Ani is actually a weighted di-
rected graph rooted at node r. Thus this is an instance of
dminSAP(G, u). The reduction guarantees the following.

Lemma 11: For elementary (Q,A), oAMP(Q,A) has a
c-approximation algorithm that takes O(f(Q,A))-time if
dminSAP(GQ,Ani , r, V ) has a (c−1)-approximation algorithm
in O(f(|Q|, |Ani|) + |A|)-time. 2

Algorithm. Based on Lemma 11, algorithm minAE works as
follows. (a) It first builds the reduction described above.
(b) It then computes the minimum weighted arborescence
DTr rooted at r of GQ,Ani that spans all nodes in VT , for
(GQ,Ani , r, VT ) constructed in (a). (c) It returns the follow-
ing constraints in A: (i) constraints corresponding to edges
in DTr; and (ii) constraints that index relations in Q.

Analysis. It is known that for dminSAP(GQ,Ani , r, V ), there
exists an O(|VT |

ǫ)-approximation algorithm that takes at

most O(|GQ,Ani |
1

ǫ |VT |
2

ǫ )-time for any constant ǫ > 0 [15].

Moreover, observe that |VT | = |X̂Q \ X̂Q
C | ≤ |XQ \ XQ

C |.
Thus minAE is the algorithm promised by Theorem 10(3).

This completes the proof of Theorem 10.

7. SUPPORTING BOUNDED QUERIES
We next present a framework for incorporating bounded

evaluation of RA queries into existing DBMS, based on cov-
ered queries. To simplify the discussion, we use IA to denote
the indices for all constraints in an access schema A.

A framework of bounded evaluation. The framework
is shown in Fig. 4. Given an application for queries over
instances of a relational schema R, it works as follows. As
offline preprocessing (C1 in Fig. 4), it discovers an access
schema A from (sample) instances of R, builds indices IA

for A on the instance D of R in use, and maintains IA in
response to updates to D. Given a user RA query posed
on D, it first checks whether Q is covered by A (C2). If
so, it picks a minimum set Am of A that covers Q (C3),
generates a bounded query plan ξ for Q under Am (C4), and
translates it into an SQL query Qξ (C5). Query Qξ can then

be evaluated directly by the underlying DBMS on a bounded
dataset DQ identified by the bounded plan ξ (C6). If Q is
not covered, it is executed against D by the DBMS. As will
be seen shortly, a large fraction of RA queries are covered
and hence, can be evaluated by accessing a small DQ.

We next present its components in more details.

(1) Building and maintaining 〈A, IA〉. It has three parts.

(a) Discovering A. Like FDs, access constraints are defined
on schema R. They can be mined by extending depen-
dency discovery tools [26], e.g., TANE [23] for FDs. More
specifically, on samples of a relation schema R, we search
candidate attributes X and Y via revised FD mining, and
use group by on X and aggregates count on Y to form access
constraint R(X → Y, N). These include those composed
of attributes with a finite domain, e.g., R(X → month, 12),
stating that a year has 12 months. These constraints hold
on all instances of R, just like discovered FDs.

Discovered constraints also include those determined by
policies and statistics, e.g., ψ1 of Example 1 imposing a limit
of 5000 friends per person, and one stating that US airports
host carriers of at most 28 airlines (see Section 8). Such con-
straints may change if Facebook changes their policy or some
US airports expand, and are thus maintained (see below).

(b) Building indices IA. For each discovered constraint
φ = R(X → Y, N) in A, the index for φ is constructed
by creating a partial table TXY = πXY (DR) and building a
hash index on X over TXY , where DR is the instance of R
in D. The index is no larger than |DR| and is constructed
in O(|DR|) time. Thus, it takes O(||A|||D|) time to build all
indices in A, and the total size IA is at most O(||A|||D|).

(c) Incremental maintenance of 〈A, IA〉. Now consider up-
dates ∆D to D, i.e., sequences of tuple insertions and dele-
tions (which can simulate value modifications). We show
that in response to ∆D, both constraints in A and indices
IA can be maintained by bounded incremental algorithms:
their costs are determined by A and the size |∆D| of updates
∆D only, and are independent of D and IA. In practice, ∆D
is typically small, and hence so are the costs.

Proposition 12: In response to updates ∆D to D, both A
and IA can be updated in O(NA|∆D|) time, where NA =
ΣR(X→Y,N)∈AN . 2

(2) Checking whether Q is covered by A. This can be car-
ried out by algorithm CovChk of Section 4.

(3) Minimizing accessed data. This is conducted by the al-
gorithms in Section 6 to minimize index access in IA.

(4) Generating boundedly evaluable query plans ξ(Q,A).

This is done by using algorithm QPlan of Section 5.

(5) Interpreting ξ(Q,A) as SQL query Qξ. We develop an al-

gorithm, denoted by Plan2SQL (omitted), to translate a
bounded plan ξ into an SQL query Qξ, such that Qξ can
be directly executed by DBMS. Given ξ and A, Plan2SQL

returns Qξ such that for any dataset D |= A, Qξ returns
Q(D) by accessing the same amount of data in index IA as
ξ does in D. For instance, recall Q1 and A0 of Example 1, A′

0

= A0 \{ψ3}, and the bounded query plan ξ for Q1 under A′
0

given in Example 2. Let the index relations in IA under ψ1,
ψ2 and ψ4 in A′

0 be ind friend, ind dine and ind cafe, respec-
tively. Plan2SQL(ξ,A′

0) returns the following SQL query:

select distinct cid
from ind cafe



where city = nyc and cid in

(select distinct cid
from ind dine /* no access to the underlying D */
where month = may and year = 2015 and pid in

(select distinct fid from ind friend where pid = p0))

Thus, bounded evaluation can be built on top of DBMS.

Added functionality. While indices and constraints are
already employed by DBMS, their current mechanism stops
short of taking advantage of bounded evaluation.

Indices and query plans. Query plans generated by conven-
tional query engines fetch entire tuples first and then filter
tuples based on the query (see, e.g., [5]), by employing tuple-
based indices, e.g., hash index and tree-based index [31]. In
contrast, a boundedly evaluable query plan makes use of
attribute-based indices. It identifies what attributes are nec-
essarily needed, fetches values of the attributes, infers their
connection with other attributes, composes attribute values
into tuples and validates the tuples (via the indexing condi-
tion of Section 3). However, existing DBMS stops short of
exploring this, no matter what indices are provided.

This observation is verified by examining system logs of
commercial DBMS, which shows excessive duplicated and
unnecessary attributes in tuples fetched by DBMS, and the
redundancies get inflated rapidly when joins are involved.

We also check whether a query Q is boundedly evaluable
before Q is executed, as opposed to conventional DBMS.

(2) Constraints. Query optimization has been studied for re-
formulating a query Q as another query by“chasing”Q with
constraints [5, 24, 30]. However, to the best of our knowl-
edge, conventional query engines have made little use of it,
partly because the chasing process is costly and may not
even terminate. Moreover, cardinality constraints have not
been explored for this purpose. In contrast, we use cardinal-
ity constraints to generate boundedly evaluable query plans,
instead of query reformulation. These constraints are easy
to reason about and can be readily supported by DBMS.

(3) Join ordering. Query engines may reorder joins in a

query plan to minimize estimated data access [22, 27]. It
is an effective optimization strategy complementary to this
work. However, to comply with bounded data access via ac-
cess constraints, some joins in a boundedly evaluable query
plan cannot be reordered. It is an interesting topic to study
what joins can be reordered in boundedly evaluable plans.

8. EXPERIMENTAL STUDY
Using real-life data, we conducted two sets of experiments

to evaluate (1) the effectiveness of the RA-query evaluation
approach based on the bounded evaluability analysis, and
(2) the efficiency of algorithms ChkCov, QPlan and minA.

Experimental setting. We used three datasets: two real-
life (AIRCA and TFACC) and one benchmark (MCBM).

(1) US Air carriers (AIRCA) records flight and statistic data
of US air carriers from year 1987 to 2014. It consists of
Flight On-Time Performance data [4] for departure and ar-
rival data, and Carrier Statistic data [3] for airline market
and segment data of the air carriers. It has 7 tables, 358
attributes, and over 162 million tuples, about 60GB of data.

(2) UK traffic accident (TFACC) integrates the Road Safety

Data [2] of road accidents that happened in the UK from
1979 to 2005, and National Public Transport Access Nodes

(NaPTAN) [1]. It has 19 tables with 113 attributes, and
over 89.7 million tuples in total, about 21.4GB of data.

(3) Mobile communication benchmark (MCBM) was gener-
ated by using a commercial benchmark from Huawei Tech-
nologies Co. Ltd. The dataset consists of 12 relations with
285 attributes, simulating mobile communication scenarios.
We varied the number of tuples from 2−5 × 360 to 360 mil-
lion, and used 360 million by default, about 90GB of data.

All of the three datasets were stored in MySQL.

Access schema. We extracted 266, 84 and 366 access
constraints for AIRCA, TFACC and MCBM, respectively,
by using the discovery method in Section 7. For example,
a constraint on AIRCA is OnTimePerformance(Origin →
AirlineID, 28), i.e., each airport hosted carriers of at most
28 airlines. On TFACC, we had Accident((data, police force)
→ accident ID, 304), i.e., each police force in the UK had
handled no more than 304 accidents within a single day from
1979 to 2005. In fact there are many more access constraints
in the datasets, which were not used in our tests. We built
indices for the constraints by using DBMS (see Section 7).

RA queries generator. We generated queries by using at-
tributes that occurred in the access constraints and con-
stants randomly extracted for those attributes. For MCBM,
the query generation also complied with the provided query
templates. We generated 300 RA queries Q on these
datasets, 100 for each. The queries vary in the number #-sel
of equality atoms in the selection conditions in the range of
[4, 9], #-join of joins in the range of [0,5] and #-unidiff of
set difference and union operators in the range of [0, 5].

Algorithms. We implemented the following algorithms in
Python: (1) ChkCov (Section 4) to check whether an RA

query is covered; (2) QPlan (Section 5) to generate canoni-
cal query plans for covered queries; (3) minA, minADAG and
minAE (Section 6) to find minimum access constraints for
covered queries; (4) Plan2SQL to interpret canonical query
plans generated by QPlan as SQL queries (Section 7); (5)
evalQP− and evalQP to evaluate the translated queries Qξ

with and without minimized Am (via minA; by Plan2SQL)
using DBMS, respectively; and (6) evalDBMS that directly
uses DBMS engine for query evaluation, with a configuration
in favor of DBMS, which is described as follows.

Configuration. For DBMS, we used MySQL 5.5.44 (My-
ISAM engine) and PostgreSQL 9.3.9, both with optimization
enabled. Both original queries and query plans generated by
our algorithms are executed on the same database server. In
favor of MySQL and PostgreSQL, besides indices for access
constraints, we also built extra indices when testing original
queries on the DBMS, e.g., primary and foreign key indices
and B-tree on numerical attributes, while these were all dis-
abled when testing our query plans. The experiments were
conducted on an Amazon EC2 d2.xlarge instance with 14
EC2 compute units and 30.5GB memory. All the experi-
ments were run 3 times. The average is reported here.

Experimental Results. We next report findings. As re-
sults for PostgreSQL are even worse than MySQL when com-
pared with ours, we mainly report MySQL to save space.

Exp-1: Effectiveness of bounded evaluability.
(I) Percentage of bounded evaluable and covered RA queries.
Varying the number of access constraints, we tested the
percentage of covered queries (via ChkCov) and boundedly
evaluable queries (by manual examination). The results
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Figure 6: Percentage of covered (bounded) queries

are shown in Figure 6, and tell us the following. (a) When
all the discovered constraints are used, (i) at least 70, 65
and 48 out of 100 queries are boundedly evaluable, and (ii)
61, 52 and 42 are covered, on AIRCA, TFACC and MCBM,
respectively. That is, at least 70%, 65% and 51% of the
queries are boundedly evaluable, and among them 87%,
80% and 87.5% are covered. Hence, covered queries are
indeed effective for determining the bounded evaluability
of RA queries. (b) The more access constraints are used,
the more queries are covered and boundedly evaluable,
as expected. Nonetheless, among all the covered queries,
78.7%, 84.6% and 80.9% are already covered by only 25%
of the discovered access constraints on AIRCA, TFACC and
MCBM, respectively. That is, a large number of queries can
be covered by a small number of constraints.

(II) Effectiveness of covered queries. We next evaluated the
effectiveness of query plans generated by QPlan, by compar-
ing the run time of evalQP and evalDBMS, both executed by
MySQL. The results are reported in Figure 5, on datasets
AIRCA, TFACC and MCBM, by varying |D|, Q and ||A||. We
report (i) the average evaluation time (the left y-axis), and
(ii) ratio P (DQ) = |DQ|/|D|, measuring the total amount

of data DQ accessed by our query plans (the right y-axis),
which is assessed by using MySQL’s Explain statement. Un-
less stated otherwise, we used the full-size datasets, all access
constraints, and 5 covered queries randomly chosen.

(1) Impact of |D|. To evaluate the impact of |D|, we varied
the datasets by using scale factors from 2−5 to 1. As shown
in Figures 5(a), 5(e) and 5(i), the results tell us the following.

(a) The evaluation time of evalQP is indifferent to the size
of D, as expected for covered queries.

(b) Bounded query plans work well with large D. Indeed,
evalQP took less than 5.9s, 8.3s, 6.5s with MySQL, and 5.5s,
9.0s, 7.0s with PostgreSQL, on AIRCA, TFACC and MCBM,
respectively, no matter how large the datasets were. In
contrast, even on the smallest subsets with scale factor 2−5,
evalDBMS took 2398s, 2759s, 5675s by MySQL, and 3598s,
3851s, 7301s by PostgreSQL; it could not terminate within
2 hours for all larger subsets. This is why few points are
reported for evalDBMS in the figures. In fact, evalDBMS

could not finish within 14 hours on all three full-size datasets
(both MySQL and PostgreSQL). That is, evalDBMS is at
least 8.5×103, 6.1×103 and 7.8×103 times slower on AIRCA,
TFACC and MCBM, respectively. The larger the dataset is,
the bigger the gap between evalDBMS and evalQP is.

(c) Query plans generated by QPlan accessed a very small
fraction of the data: P (DQ) is 1.7× 10−6, 3.7× 10−5, 2.2×
10−6 on full-size AIRCA, TFACC and MCBM. i.e., 0.00017%,
0.0037% and 0.00022% of these datasets, respectively.

Remark. As shown above, evalQP outperforms evalDBMS by
at least 3 orders of magnitude, for reasons explained in Sec-
tion 7. We also find that when queries Q use key attributes
only, evalDBMS is as fast as evalQP if extra key/foreign key



indices are built for MySQL and PostgreSQL, e.g., less than
3s with one join on full AIRCA. However, as long as Q in-
volves non-key attributes, evalDBMS performs poorly on big
tables, even provided with all indices. It gets worse when
the number of non-key attributes increases. By looking into
MySQL’s log and its Explain output, we verified that this
is partially due to the following. Given an access constraint
R(X → Y, N), evalQP fetches only distinct values of the
relevant XY attributes, but evalDBMS fetches entire tuples
with irrelevant attributes of R, although those attributes are
not needed for answering Q at all, no matter what indices
are provided. This led to duplicated (X, Y ) values when
X is not a key, and the duplication got rapidly inflated by
joins, e.g., Explain output shows that MySQL consistently
accesses entire tables when there are non-key attributes.

(2) Impact of Q. To evaluate the impact of queries, we varied
#-sel of Q from 4 to 9, #-join from 0 to 5 and #-unidiff of
set operators (union and set-difference) from 0 to 5, while
keeping the other factors unchanged.

The results are reported in Figures 5(b), 5(f), 5(j) for
varying #-sel and Figures 5(c), 5(g), 5(k) for varying #-join.
We find the following. (a) The complexity of Q has impacts
on the query plans generated by QPlan. The larger #-sel
or the smaller #-join is, the faster the query plans are, and
the smaller data DQ is accessed. This is because with more
selections or fewer joins, our plans generated by QPlan took
less steps to fetch all attribute values needed. (b) Algorithm
evalQP scales well with #-sel and #-join. It found answers
for largest Q within 89.5s, on the three full-size datasets.
(c) Algorithm evalDBMS is almost indifferent to #-sel; in
fact it only terminated within 3000s on extremely restricted
(constant) selection queries, with at most one join on
non-key attribute. But it is very sensitive to #-join: it
did the best when #-join = 0, i.e., if there is no join (or
Cartesian product) at all; but it cannot finish the job within
3000s for queries with 2 joins on all three datasets.

Our query plans are indifferent to #-unidiff (hence the
results are not shown). This is because our query plans fetch
data via max SPC sub-queries, independent of the number
of union and set-difference operations in the queries. We do
not report the results of evalDBMS since it did not complete
its computation within 3000s on all three datasets.

(3) Impact of ||A||. To evaluate the impact of access con-
straints, we varied ||A|| with scale factors from 0.2 to 1 in 0.2
increments, and tested the queries that are covered. Accord-
ingly we varied the indices used by evalDBMS. We report
P (DQ) and run time of evalQP. As shown in Figures 5(d),
5(h) and 5(l), (a) more constraints help QPlan generate bet-
ter query plans, as expected. For example, when all access
constraints were used, evalQP took 5.8s, 8.5s and 6.3s for
queries on AIRCA, TFACC and MCBM, respectively, while
they took 10.2s, 20.1s and 9.6s given 20% of the constraints.
(b) The more access constraints are used, the smaller |DQ|
is, as QPlan can find better plans given more options. (c) Al-
gorithm evalDBMS did not produce results in any test within
3000s, even given the indices in full-size A of constraints.

(III) Effectiveness of minA. We also evaluated the effective-
ness of minA for minimizing access schemas by comparing
evalQP and evalQP−. As reported in Figures 5(a), 5(e) and
5(i), (1) minA helps QPlan generate query plans that access
less data; indeed, evalQP accessed much smaller DQ than
evalQP− in most cases; for example, P (DQ) is 0.0037% for

evalQP on full-size TFACC, while it is 0.0051% for evalQP−;
and (2) minA also enables query plans to use indices of
smaller size (i.e., index relations; not shown). For exam-
ple, on full-size TFACC, evalQP used index no larger than
2.1% of the size of D while it was 3.3% for evalQP−.

(IV) Size and creation time of indices. The total indices
for all access constraints are of 7.7GB, 3.6GB and 9.5GB,
accounting for 12.8%, 16.8% and 10.6% of |D|. They are
smaller than the bound estimated in Section 7, since many
constraints use attributes with small domains. They took
3.1, 2.2 and 4.2 hours to build offline for AIRCA, TFACC and
MCBM, respectively, and were used to answer all queries.

Exp-2: Efficiency. The second set of experiments evalu-
ated the efficiency of our algorithms ChkCov, QPlan, minA,
minADAG and minAE on queries and access schemas for each
of AIRCA, TFACC and MCBM. We found that ChkCov,
QPlan, minA, minADAG and minAE took at most 65ms, 199ms,
86ms, 84 ms and 74 ms, respectively, for all queries on three
datasets, with all the access constraints.

Summary. From the experiments we find the following.
(1) Covered queries give us a practical effective syntax for
boundedly evaluable RA queries. Over 80% of boundedly
evaluable queries are covered. (2) Bounded evaluability
is promising for querying large datasets. Indeed, (a) it
is easy to find access constraints from real-life data, and
many queries are covered under a small number of such
constraints; and (b) for covered queries, the evaluation time
and the amount of data accessed are independent of the size
of the underlying dataset. As a result, on a real-life dataset
of 60GB, evalQP answers queries in 5.9 seconds by accessing
at most 0.00017% of the data on average, while evalDBMS

is unable to find answers within 3000 seconds even on a
dataset of 3.75 GB, with even more indices than evalQP can
use. The performance gap between evalQP and evalDBMS

gets bigger on larger datasets. (3) The size of the indices
needed is 13.4% of |D| on average. (4) Our algorithms are
efficient: they take at most 0.2 second in all cases tested.

9. CONCLUSION
We have answered an open question about the bounded

evaluability of RA. Our solution consists of both fundamen-
tal results and practical algorithms. Our experimental re-
sults have shown that it is promising to make practical use of
bounded evaluability. Indeed, a large number of RA queries
are covered, and covered queries can be efficiently evaluated
without worrying about the size of the underlying datasets.

One topic for future work is to develop algorithms for
discovering a (minimum) set of access constraints to cover a
workload. While an approach is outlined in Section 7, the
topic needs a full treatment. Another topic is to develop
algorithms that, when a query is not boundedly evaluable,
compute its approximate answers with provable accuracy
bound, by accessing only a small fraction of data.
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APPENDIX A: Formal Definitions

Query plans (Section 2)

We define a query plan ξ for Q under A as a sequence:

ξ(Q,R) : T1 = δ1, . . . , Tn = δn,

such that (1) for all instances D of R, Tn = Q(D); and (2)
for all i ∈ [1, n], δi is one of the following:

◦ {a}, where a is a constant in Q; or

◦ fetch(X ∈ Tj , R, Y ), where j < i, and Tj has attributes
X; for each ā ∈ Tj(D), it retrieves DXY (X = ā) from
D, and returns

S

ā∈Tj(D) DXY (X = ā); or

◦ πY (Tj) or σC(Tj), for j < i, a set Y of attributes in Tj ,
and Boolean condition C defined on Tj ; or

◦ Ti × Tk, Tj ∪ Tk or Tj \ Tk, for j < i and k < i.

We denote Tn by ξ(D), as the result of applying ξ to D.

Canonical bounded query plans (Section 5.1).

Fetching plan ξc
F : A fetching plan ξc

F is a sequence of unit
fetching plans ξc

F (A1), . . . , ξc
F (Am), for all attributes A1,

. . . , Am in XQ of Q, where ξc
F (Ai) is inductively defined as

follows (assuming Ai is in a max SPC sub-query Qs of Q):

(i) if Ai ∈ XQs

C , then ξc
F (Ai) is {c}, where σAi=c is in Qs;

(ii) if σAi=A′ is in Qs and there exists a unit fetching plan
ξc

F (A′) for A′, then ξc
F (Ai) = ξc

F (A′); and

(iii) if there exists a constraint R(W → U, N) in A such
that Ai ∈ R[U ], and moreover, if for each wi ∈ R[W ] =
{w1, . . . , wm}, there exists a unit fetching plan ξc

F (wi)
for wi, then ξc

F (Ai) is:



◦ T1 = ξc
F (w1), . . . , Tm = ξc

F (wm),

◦ Tm+1 = T1 × · · · × Tm,

◦ Tm+2 = fetch(X ∈ Tm+1, R, U),

◦ Tm+3 = πAi(Tm+2).

Indexing plan ξc
I . An indexing plan ξc

I is a sequence of unit
indexing plans ξc

I(S1), . . . , ξc
I(Sm) for all relations S1, . . . ,

Sm in Q. For each Si, let Qs be the max SPC sub-query
in which Si occurs, XSi

Qs
= {A1, . . . , AK} be the set of at-

tributes of Si that also occur in XQs , and Si(X → Y, N) be
a constraint in A that indexes Si. Then ξc

I(Si) is as follows:

◦ T1 = ξc
F (A1), . . . , TK = ξc

F (AK),

◦ TK+1 = T1 × · · · × TK ,

◦ TK+2 = πSi[X](TK+1),

◦ TK+3 = fetch(X ∈ TK+2, Si, Y ), and

◦ TK+4 = TK+1 ∩ TK+3 (expressed in terms of ×, σ, π).

That is, ξc
I ensures that each Si in Q is indexed.

〈Q,A〉-hypergraph GQ,A (Section 5.2)

Given an RA query Q and an access schema A, we use a
hypergraph to encode the induced FDs for all max SPC sub-
queries of Q. Let ΣQ,A be the union of ΣQs,A (the set of
induced FDs for Qs and A) for all max SPC sub-queries Qs

in Q. We assume w.l.o.g. that for any two max SPC sub-
queries Qs and Qs′ of Q, ΣQs,A ∩ ΣQs′ ,A = ∅. A 〈Q,A〉-
hypergraph (or simply hypergraph) GQ,A for Q and A is a
directed hypergraph (V, E) derived from ΣQ,A as follows.

(1) For each induced FD X → Y in ΣQ,A, with X = {x1,
. . . , xp}(p ≥ 1) and Y \ X = {y1, . . . , yq}(q ≥ 1), there are
p + q + 1 nodes ux1

, . . . , uxp , uy1
, . . . , uyq and uY in V

to encode x1, . . . , xp, y1, . . . yq and the set Y , respectively,
and there exist q + 1 hyperedges e1 = ({ux1

, . . . , uxp}, uY ),
e2 = ({uY }, uy1

), . . . , eq+1 = ({uY }, uyq ) in E.

(2) There is a dummy node r such that for each induced FD

∅ → Y in ΣQ,A with Y = {y1, . . . , yq} (q ≥ 1), there exist
q + 1 nodes uY , uy1

, . . . , uyq in V and q + 1 hyperedges
({r}, uY ), ({uY }, uy1

), . . . , ({uY }, uyq ) in E.

(3) For each attribute A in X̂Q
C = {ρU (A) | A ∈ XQs

C ,
Qs is a max SPC sub-query of Q}, there exist a node uA in
V and a hyperedge ({r}, uA) in E.

Weighted 〈Q,A〉-hypergraph (Section 6.2).

For an RA query Q and an access schema A, the weighted
〈Q,A〉-hypergraph is a pair (GQ,A, w(·)), where GQ,A =
(V, E) is the 〈Q,A〉-hypergraph for Q and A, and w(·) : E →
N

+ assigns an natural number w(e) to each hyperedge e in E.
More specifically, w(·) is defined as follows. Recall the defi-
nition of GQ,A given above. For each induced FD X → Y in
ΣQ,A with X = {x1, . . . , xp} and Y \X = {y1, . . . , yq}, sup-
pose that X → Y is derived from R(X → Y, N) in A. Then

(i) w(e1) = N , where e1 is the hyperedge ({ux1
, . . . , uxp},

uY ) in GQ,A w.r.t. X → Y ;

(ii) w(e2) = . . . = w(eq+1) = 0, for e2 = ({uY }, uy1
), . . . ,

eq+1 = ({uY }, uyq ); and

(iii) w({r}, uA) = 0 for all hyperedges emanating from the
dummy node r of GQ,A.

APPENDIX B: Proofs

Proof sketch of Theorem 2(1)

It suffices to show that for any boundedly evaluable query
plan ξ under A, there exists a covered RA query Qξ such
that Qξ ≡A ξ, i.e., Qξ(D) = ξ(D) for any D |= A. We
show this in two steps. We first rewrite ξ into an equivalent
RA query Q′ by replacing every fetch(X ∈ Tj , R, Y ) with
πS[XY ]σYQj

=S[X](Qj × R(X, Y, Z)), where Qj is the rewrit-

ing of the first j operations T1 = δ1, . . . , Tj = δj of ξ, and
YQj is the set of attributes of the output relation of Qj . We
then show by induction on the length of Qξ that Qξ can be
transformed into an equivalent Q′

ξ that is covered by A, by
equivalence-preserving rewriting laws of set algebra [33]. 2

Proof of Lemma 4

Since ΣQs,A |= X̂Qs

C → X̂Qs iff X̂Qs ⊆ (X̂Qs

C )∗ (cf. [5]), to

show that Qs is fetchable via A iff ΣQs,A |= X̂Qs

C → X̂Qs , we

just need to show that XQs ⊆ cov(Qs,A) iff X̂Qs ⊆ (X̂Qs

C )∗,

where (X̂Qs

C )∗ is the FD closure of X̂Qs

C under ΣQs,A. We
prove this by showing the following:

(1) XQs ⊆ cov(Qs,A) iff ρU (XQs) ⊆ ρU (cov(Qs,A)); and

(2) ρU (cov(Qs,A)) = (ρU (XQs

C ))∗ (recall ρU (X) = X̂).

Here (1) can be prove by contradiction based on the defi-
nitions. We prove (2) below. We first define a chasing proce-
dure that computes cov(Qs,A) for any SPC query Qs under

A. Based on it we then show ρU (cov(Qs,A)) = (ρU (XQs

C ))∗.
A chasing sequence of cov(Qs,A) for Qs is defined as

cov(Qs,A) = cov0(Qs,A), . . . , covn(Qs,A),

such that (1) cov0(Qs,A) = XQs

C , and (2) for each i ≥ 0,
covi+1(Qs,A) is obtained by applying some rules given in
the definition of coverage cov(Q,A) so that covi(Qs,A) 6=
covi+1(Qs,A). Obviously such a chasing sequence is ter-
minal; moreover, by the definition of cov(Qs,A), the re-
sult covn(Qs,A) of the chasing sequence (the last ele-
ment) is exactly cov(Qs,A) for Qs and A. One can show

ρU (cov(Qs,A)) = (ρU (cov0(Qs,A)))∗ (thus = (ρU (XQs

C ))∗)
by induction on the length n of the chase. 2

Proof of Lemma 6

By the definition of indexed queries, Q is indexed by A iff
Q has an indexing plan. Below we show that Q is fetchable
via A iff Q has a fetching plan under A.

⇒ Assume that Q is fetchable via A. Then each max SPC

sub-query Qs is fetchable via A, i.e., XQs ⊆ cov(Qs,A).
Thus for each attribute A ∈ XQs , A ∈ cov(Qs,A). Con-
sider the chasing sequence cov(Qs,A) = cov0(Qs,A), . . . ,
covn(Qs,A) described in the proof of Lemma 4, where

cov0(Qs,A) = XQs

C and covn(Qs,A) = cov(Qs,A). There
must exist i ∈ [0, n] such that A ∈ covi(Qs,A) but A 6∈
covi−1(Qs,A) (if exists). We refer to cov0(Qs,A), . . . ,
covi(Qs,A) as the deduced chasing for attribute A. One
can verify that there exists a unit fetching plan for A under
A by induction on the length of the deduced chasing for A.

⇐ This direction can be readily verified by induction on
the length of ξc

F (A), by the definitions of unit fetching plans
and fetchable queries, similar to above. 2
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Proof of Lemma 7

This is verified by giving translation algorithms Γξ from
ξc(A) to ({r}, uρU (A)), and Γr from ({r}, uρU (A)) to ξc(A).
Below we outline Γr, which will be used later in our algo-
rithm. Given a hyperpath Π{r},uA

from {r} to uA, Γr in-
ductively generates fetching plans as follows: (a) if Π{r},uA

is a hyperedge ({r}, uA) constructed in case (3) of 〈Q,A〉-
hypergraph above, then return T1 = {c}; (b) if Π{r},uA

is a
hyperedge ({r}, uY ) constructed in case (2) for induced FD

∅ → Y , then return T1 = ξc
F (A′); and (c) if the last hyper-

edge of Π{r},uA
is a hyperedge (VY , uA) constructed in case

(1) of 〈Q,A〉-hypergraph, and if for each uBi in VS = {uY1
,

. . . , uYp}, the unit fetching plan translated from hyper-
path Π{r},uY

is ξc
F (Yi), then return T1 = ξc

F (Y1), . . . , Tp =
ξc

F (Yp), Tp+1 = T1×· · ·×Tp, Tp+2 = fetch(X ∈ Tp+1, R, Y ),
and Tp+3 = πA(Tp+3). 2

Proof of Theorem 9

(1) For dAMP(Q,A, K), we give an NP algorithm that guess
Am and checks whether Q is covered by Am in PTIME. The
lower bound follows from (3) below.

(2) We show the approximation-hardness of oAMP(Q,A) by
L-reduction from the Minimum Set Cover problem [29].

(3) We show that dAMP(Q,A, K) is NP-hard for both spe-
cial cases by reduction from the Vertex Cover problem,
which is NP-complete (cf. [29]). We show the approximation-
hardness of the special cases by AP-reduction from the Min-

imum Set Cover problem, which is not in APX [8]. 2

Proof of Lemma 11

We prove Lemma 11 by showing step (c) of algorithm minAE

maps feasible solutions to dminSAP with approximation ra-
tio c to feasible solutions to oAMP with approximation ratio
c + 1 in the elementary case. This can be verified along the
same lines as the performance bound analysis of minADAG

outlined in Section 6.2, and the analysis of approximation
bound of algorithm minADAG in Appendix D below. 2

APPENDIX C: Examples

Example 6 (Section 4). Given Q0 and A0 of Example 1,
algorithm CovChk examines the max SPC sub-queries Q1

and Q2 of Q0, and finds that Q1 is covered by A0 while Q2

is not. It first computes the set ΣQ1,A0
of induced FDs from

Q1 and A0 (see Example 5), with X̂Q1
= {pid, fid, cid, year,

month, city} and X̂Q1

C = {pid, year, month, city}. It verifies

that Q1 is covered by A0 since ΣQ1,A0
|= X̂Q1

C → X̂Q1
, and

Q1 is indexed by A (see Example 4). Along the same lines,

it finds that Q2 is not covered, and concludes that Q0 is not
covered. In contrast, it finds that max SPC sub-queries Q1

and Q3 of Q′
0 are both covered by A0, and thus so is Q′

0. 2

Example 7 (Section 5). For Q′
0 and A0 of Example 1,

its 〈Q,A〉-hypergraph GQ′
0
,A0

is depicted in Fig. 2, after

the following conversions. We write Q′
0 = Q1 − Q3 (Q3 =

Q1(cid) 1cid=cid′ Q2(cid
′)) in the normal form of Section 2

such that it keeps relation names of Q1 unchanged, and
renames (a) each relation S in sub-query Q1(cid) of Q3 to
S′ (e.g., dine of Q1(cid) in Q3 is renamed to dine′), and
(b) each relation S in sub-query Q2(cid

′) of Q3 to S′′ (e.g.,
dine of Q2(cid) in Q3 to dine′′). In Fig. 2, we extend the
unification function ρU given in Example 5. (a) For each
attribute S′[A] that occurs in sub-query Q1(cid

′) of Q3,
if ρU (S[A]) = A in Q1, then ρU (S′[A]) = A′ for Q1(cid

′)
in Q3. (b) For sub-query Q2(cid) of Q3, ρU (dine′′[pid]) =
pid′′, ρU (dine′′[cid]) = cid′, ρU (dine′′[month]) = month′′ and
ρU (dine′′[year]) = year′′. 2

Example 8 (Section 5). A complete fetching plan for Q′
0

under A0 is as follows.

T1 = {p0} (ξc
F (pid)),

T2 = fetch(X ∈ T1, friend, fid);
T3 = πfid(T2) (ξc

F (fid);
T4 = {2015} (ξc

F (year));
T5 = {may} (ξc

F (month);
T6 = T3 × T4;
T7 = T6 × T5;
T8 = fetch(X ∈ T7, dine, cid);
T9 = πcid(T8) (ξc

F (cid));
T10 = {nyc} (ξc

F (city));
T11, . . . , T20; T21 = {p0} (ξc

F (pid′′)).

Here T11 - T20 are unit fetching plans for attributes in Q3,
and are the same as T1 - T10 w.r.t. attribute renaming.

An indexing plan ξc
I(dine′′) for relation dine′′ is:

T I
1 = T19;

T I
2 = T20;

T I
3 = T19 × T20;

T I
4 = fetch(X ∈ T I

3 , dine, (pid, cid));

similar for other relations. Finally, an evaluation plan for Q′
0

under A0 is exactly Q′
0 with each relation name S replaced

by the TS with TS = ξc
I(S). 2

Example 9 (Section 6). For AMP(Q1,A1), algorithm
minA works as follows. It first finds that either ψ2 and
ψ3, or ψ3 and ψ5 can be removed from A1 while keeping
Q1 covered. It then calculates w(ψ2) = c1·31

c2·1
and w(ψ5) =

c1·366
c2·1

. Suppose that c1 = c2 = 1. Then minA greedily picks
ψ5 instead of ψ2. It finds that no more constraints can be
removed while keeping Q1 covered. Thus minA returns Am

= {ψ1 ψ2, ψ4}. 2

Example 10 (Section 6). The complete weighted 〈Q,A〉-
hypergraph GQ1,A1

for Q1 and A1 is shown in Fig. 7. 2

APPENDIX D: Algorithm Analysis

Complexity of algorithm CovChk (Section 4)

We next show that CovChk can be implemented in O(|Q|2 +
|A|) time. (1) It takes O(|Q|) time to compute the set SQ



of all max SPC sub-queries of Q. (2) Checking whether
all Qs’s in SQ are indexed by A can be implemented in
O(|Q|+ |A|) time, by building an index from relations in Q
to constraints of A in O(|Q|+ |A|) time before the iteration.
(3) It takes O(|Qs|

2) time to construct induced FDs ΣQs,A,
and the size of ΣQs,A is bounded by |AQs | for each Qs. (4)
FD implication checking can be done in linear time (cf. [5]),

i.e., O(|ΣQs,A|+ |XQs

C |+ |XQs |) = O(|AQs |+ |Qs|) for each
Qs. Putting these together, CovChk is in O(|Q|2 + |A|) time.

Complexity of Algorithm QPlan (Section 5)

Algorithm QPlan can be implemented in O(|Q|(|Q| + |A|))
time. Indeed, (1) constructing the 〈Q,A〉-hypergraph GQ,A

takes O(|Q| + |A|) time. (2) In each iteration (lines 3-6),
findHP takes O(|Q| + |A|) time to find hyperpath Π{r},u

Â

(cf. [9]), and transQP takes O(|Π{r},u
Â
|) = O(||A||) time to

translate P into a unit fetching plan, where ||A|| denotes the
cardinality of A. There are no more than |Q| iterations. (3)
Indexing plan generation takes O(|Q|) time in total. (4) The
size of the evaluation plan is bounded by |Q|. Putting these
together, QPlan takes O(|Q|+ |A|) + O(|Q|(|Q|+ |A|+ ||A||))
+ O(|Q|) + O(|Q|) = O(|Q|(|Q| + |A|)) time in total.

Algorithm transQP (Section 5.2)

It is the translation algorithm Γr given in the proof of
Lemma 7 in Appendix B.

Complexity of Algorithm minA (Section 6.2)

Algorithm minA can be implemented in O(|Q|2 + ||A||2(|Q|+
|A|)) time. Indeed, (1) it takes O(|Q|2 + |A|) time to con-
struct ΣQ,A; (2) it iterates at most ||A|| times; and (3) in
each iteration, it takes O(||A|| · |ΣQ,A|) = O(||A||(|Q|+ |A|))
time to update the scores of all constraints in A and check
whether removing each of them will make Q not covered.

Approximation bound of Algorithm minADAG (Sec-
tion 6.2).

Let c(A) denote the sum of the N ’s in all the constraints
in A. Let A′

I be the set of constraints in A′ indexing a
relation, and A′

ni be all the other constraints. Let AOPT be
the optimal solution to AMS(Q,A). We define AOPT

I and
AOPT

ni analogous to A′
I and A′

ni, respectively. One can verify

that c(A′)

c(AOP T )
=

c(A′
ni)+c(A′

I )

c(AOP T
ni

)+c(AOP T
I

)
≤

k∗c(AOP T
ni )+c(A′

I )

c(AOP T
ni

)+c(AOP T
I

)
≤

k + 1, where k = |ρU (XQ) \ ρU (X)| ≤ |XQ \ XQ
C |.


