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ABSTRACT
Numeric inconsistencies are common in real-life knowledge bases
and social networks. To catch such errors, we propose to extend
graph functional dependencies with linear arithmetic expressions
and comparison predicates, referred to as NGDs. We study fun-
damental problems for NGDs. We show that their satisfiability,
implication and validation problems are Σp2 -complete, Πp

2 -complete
and coNP-complete, respectively. However, if we allow non-linear
arithmetic expressions, even of degree at most 2, the satisfiabil-
ity and implication problems become undecidable. In other words,
NGDs strike a balance between expressivity and complexity.

To make practical use of NGDs, we develop an incremental
algorithm IncDect to detect errors in a graph G using NGDs, in
response to updates ∆G toG . We show that the incremental valida-
tion problem is coNP-complete. Nonetheless, algorithm IncDect is
localizable, i.e., its cost is determined by small neighbors of nodes
in ∆G instead of the entire G. Moreover, we parallelize IncDect
such that it guarantees to reduce running time with the increase of
processors. Using real-life and synthetic graphs, we experimentally
verify the scalability and efficiency of the algorithms.
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1 INTRODUCTION
A variety of dependencies have recently been studied for graphs [8,
15, 23, 24, 34, 57]. These dependencies are often defined in terms of
graph patterns, and aim to capture inconsistencies among entities in
a graph. They are useful in, e.g., knowledge acquisition, knowledge
base enrichment, and spam detection in social networks.

However, semantic inconsistencies in real-life graphs often in-
volve numeric values. To catch such errors, arithmetic calculation
and comparison predicates are often a must. These expressions are,
unfortunately, not supported by existing graph dependencies.

Example 1: Consider the following inconsistencies taken from
real-life knowledge bases and social graphs.
(1) Yago. It is recorded that an institute BBC Trust was created
in 2007 but destroyed in 1946, as shown in graph G1 of Fig. 1.
To detect this, we need to check whether wasDestroyedOnDate -
wasCreatedOndate ≥ c for a constant c . However, neither arith-
metic operator − nor comparison predicate ≥ is supported by exist-
ing proposals for graph dependencies.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3183753

(2) Yago. A village Bhonpur in India is claimed to have 600 females
and 722 males, but its total population is 1572 (see G2 of Fig. 1).
To catch this, we need an arithmetic equation femalePopulation +
malePopulation = populationTotal.

(3) DBpedia. There are two cities, Corona and Downey, in Cal-
ifornia. Based on the 2014 population census, it is known that
Corona has a larger population than Downey. However, Downey
is ranked ahead of Corona in population (11th vs. 33rd; see G3 of
Fig. 1). The inconsistency should be checked by using a condition
that x .population < y.population implies x .populationRank >
y.populationRank, where x and y denote places.

(4) Twitter. Suppose that two accounts refer to the same company.
If the two substantially differ in the numbers of their followers and
followings, then the one with less followers and followings is likely
to be a fake account [45]. To specify this rule, we need a condition
a×(x .follower − y.follower) + b×(x .following − y.following) > c ,
for accounts x and y, and constants a,b and c . The condition is
specified by both arithmetic expressions and comparison predicate.
It helps us find, e.g., fake account NatWest_Help in G4. 2

The example raises several questions. How should we extend
graph dependencies to catch numeric errors? Does the extension
make it harder to reason about the dependencies? Can we strike
a balance between the expressive power and complexity? Can we
uniformly catch inconsistencies in real-life graphs, numeric or not?
Contributions. This paper tackles these questions.
(1) NGDs. We propose a class of numeric graph dependencies, re-
ferred to as NGDs (Section 3). NGDs are a combination of (a) a
pattern Q to identify entities by graph homomorphism, and (b) an
attribute dependency X → Y on the entities identified. They ex-
tend graph functional dependencies (GFDs [23, 24]) by supporting
linear arithmetic expressions and built-in comparison predicates
=,,, <, ≤, >, ≥. We show that NGDs are able to catch numeric in-
consistencies commonly found in real-life graphs. Moreover, they
subsume GFDs [23, 24] and relational conditional functional depen-
dencies (CFDs [19]) as special cases. Thus they are able to capture
all inconsistencies that can be detected by GFDs and CFDs, besides
numeric errors that are beyond the capacity of GFDs and CFDs.
(2) Fundamental results. We study two classical problems for rea-
soning about NGDs (Section 4), stated as follows.

◦ The satisfiability problem is to decide whether a given set Σ
of NGDs has a model i.e., a graph satisfying Σ.

◦ The implication problem is to decide whether a set Σ ofNGDs
entails another NGD φ, i.e., for all graphsG that satisfy Σ,G
also satisfies φ.

These problems are not only of theoretical interest, but also find
practical applications. The satisfiability analysis enables us to check
whether a set of NGDs is consistent themselves before the NGDs
are used as, e.g., data quality rules. The implication analysis helps
us remove redundant rules, and optimize the data cleaning process.
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Figure 1: Numeric inconsistencies in real-life graphs

(a) We show that the increased expressive power of NGDs comes
with a price. Their satisfiability and implication problems be-
come Σp2 -complete and Πp

2 -complete, as opposed to coNP-complete
and NP-complete for GFDs, respectively [23, 24]. The complexity
bounds are robust: they remain Σ

p
2 -hard and Π

p
2 -hard, respectively,

even when only equality = is used, in the absence of ,, <, ≤, >, ≥,
or when no arithmetic operations are used at all. These tell us that
unless P = NP, it is harder to reason about NGDs than about GFDs.
(b) We show that if we expand NGDs by allowing non-linear arith-
metic expressions, then both problems become undecidable, even
when the degree of the arithmetic expressions is at most 2, and
even in the absence of comparison predicates ,, <, ≤, >, ≥.

The undecidability results justify the choice of linear arithmetic
expressions. That is, NGDs strike a balance between expressivity
and complexity when arithmetic and comparison are a must.
(3) Practical applications. We develop techniques for detecting in-
consistencies in real-life graphs, numeric or not, by employing
NGDs as data quality rules (Sections 5 and 6).

(a)We show that the validation problem is coNP-complete forNGDs,
to decide whether a given graph satisfies a set of NGDs. The com-
plexity is the same as for GFDs [23, 24]. That is, NGDs do not
complicate the process of error detection. Better still, the parallel
algorithms developed in [24] for detecting errors with GFDs can
be readily extended to NGDs, retaining the same complexity.

(b) In light of this, we focus on incremental inconsistency detection
in graphs, a problem that has not been studied by previous work,
to the best of our knowledge (Section 5). Given a graphG and a set
Σ of NGDs, suppose that we have already identified a set Vio(Σ,G)
of violations of Σ in G, i.e., entities in G that violate at least one
NGD in Σ. We want to find changes ∆Vio to Vio(Σ,G), such that

Vio(Σ,G ⊕ ∆G) = Vio(Σ,G) ⊕ ∆Vio,
where X ⊕ ∆X denotes X updated by ∆X .

The need for incremental detection is evident. Real-life graphs
G are often big, e.g., the social graph of Facebook has billions of
nodes and trillions of edges [32]. Error detection is expensive (coNP-
complete). Moreover, real-life graphs are constantly changed. It is
often too costly to recomputeVio(Σ,G⊕∆G) starting from scratch in
response to frequent ∆G . These highlight the need for incremental
algorithms. We use (an extension of) the batch algorithms of [24] to
compute Vio(Σ,G) once, and then incrementally compute changes
∆Vio in response to ∆G . The rationale behind this is that in the real
world, changes are typically small, e.g., less than 5% on the entire
Web in a week [46]. When ∆G is small, ∆Vio is often small as well,
and is much less costly to compute than Vio(Σ,G ⊕ ∆G) by making
use of previous computation for Vio(Σ,G).

(c) While desirable, the incremental detection problem is nontrivial.
We show that the problem is also coNP-complete, even when both
graphs G and updates ∆G have constant sizes (Section 5).
(d) In response to the practical need, we develop two algorithms for
incremental error detection with NGDs (Section 6), which make
incremental error detection feasible in large-scale graphs.

One is a sequential localizable algorithm IncDect. It incremen-
talizes subgraph search by update-driven evaluation. Its cost is de-
termined by the dΣ-neighbors of nodes in ∆G, where dΣ is the
maximum diameter of the patterns in Σ [20]. In practice, Σ is much
smaller than G , and so is dΣ. It reduces the computations on (possi-
bly big) graphs G to smaller dΣ-neighbors of those nodes in ∆G.

The other one is a parallel algorithm PIncDect. We show that it is
parallel scalable relative to IncDect: its cost isO(t(|G |, |Σ|, |∆G |)/p),
where p is the number of processors used, and t(|G |, |Σ|, |∆G |) is
the cost of IncDect. That is, PIncDect guarantees to reduce running
time when more processors are used. We propose a hybrid strategy
to split skewedwork units and dynamically balanceworkload, based
on cost estimation, to balance computation and communication.

(4) Experimental study. Using real-life and synthetic graphs, we em-
pirically evaluate the scalability and efficiency of our algorithms
(Section 7). We find the following. (a) Incremental error detection
with NGDs is effective: IncDect is on average 6.7 times faster than
its batch counterpart when |∆G | accounts for 10% of |G |, and still
does better even when |∆G | is 33% of |G |. (b) The incremental al-
gorithms scale well with G. (c) PIncDect is parallel scalable and
efficient: it is on average 3.7 times faster when the number p of pro-
cessors increases from 4 to 20. It takes 225s on graphs of 28 million
nodes and 33.4 million edges when p = 20. (d) Hybrid workload
balancing improves the performance by 1.73 times on average.

The novelty of the work consists of (1)NGDs to capture semantic
inconsistencies in graphs, numeric or not; (2) fundamental results
for NGDs, demonstrating the complications introduced by arith-
metic expressions and comparison predicates (see below); and (3)
the first incremental error detection algorithms for graphs.
Related work. We categorize the related work as follows.
Dependencies for graphs. Dependencies have been studied for RDF
[8, 15, 17, 34, 42, 57], and for generic graphs [23, 24]. This line
of work started from [42]. It extends RDF vocabulary to define
keys, foreign keys and functional dependencies (FDs). Using triple
patterns with variables, [8, 15] interpret FDs with triple embedding
and homomorphism. A class of FDs was also formulated in [57]
with path patterns; these FDs were extended in [34] to support
CFDs. [13, 29] study a class of first-order Horn clause on binary
predicates as soft constraints to facilitate knowledge base reasoning.
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Closer to this work are GFDs on general graphs [24], defined
in terms of (a) a graph pattern Q that is interpreted via subgraph
isomorphism, and (b) an extension of an FD carrying constant and
variable literals. GFDs are extended to graph entity dependencies
(GEDs) in [23], by supporting literals with node identities to express
keys of [17], interpreted via graph homomorphism.

This work defines NGDs by extending GFDs, and interprets pat-
tern matching by graph homomorphism following [23]. It differs
from [23, 24] in the following. (1) NGDs support both arithmetic
operations and comparison predicates. (2) As shown by the fun-
damental results, the presence of either arithmetic or comparsion
makes satisfiability and implication problems Σ

p
2 -complete and

Π
p
2 -complete, respectively, as opposed to NP-complete and coNP-

complete for GFDs and GEDs. The good news is that they do not
complicate the validation problem. (3) We develop the first (parallel)
incremental error detection algorithms for graphswith performance
guarantees, which complement the batch ones for GFDs [24].
Dependencies on numeric data. Several dependency classes have
been studied for detecting numeric errors in relations [16, 25, 27, 31,
39, 51]. Metric functional dependencies [39] and sequential depen-
dencies [31] extend FDs by supporting (numeric) metrics and inter-
vals on ordered data, respectively. Differential dependencies [51]
constrain distances of numeric attribute values among different tu-
ples. However, none of these supports arithmetic operations. There
has also been work on repairing numeric data using constraints
defined in terms of aggregate functions [25] and disjunctive logic
programming [27]. Their satisfiability and implication problems are
open, and the complexity is suspected high. Numeric functional de-
pendencies (NFDs) [16] extend CFDs and support linear arithmetic
expressions and built-in predicates like NGDs.

This work differs from the prior work as follows. (1) NGDs
are defined on schemaless graphs with a graph pattern and an at-
tribute dependency. They cannot be expressed as dependencies of
[16, 31, 39, 51]. As shown in [23], GFDs, a special case of NGDs,
are not expressible even as equality-generating dependencies with
constants, which subsume CFDs. As an evidence, the validation
problem is coNP-complete for NGDs and GFDs, but is in polyno-
mial time (PTIME) forCFDs [19] andNFDs [16]. (2) The techniques
for handling graph dependencies are quite different. For instance,
we make use of the data locality of graph homomorphism to check
NGDs (Section 6), a departure from relational dependencies. (3) To
strike a balance between the complexity and expressivity, we do not
consider aggregations; in fact, most numeric errors we encounter
in real-life graphs can be caught without using aggregations.

Comparison predicates have been included in dependencies for
data exchange [7] and views for query rewriting [5, 6]. However, (1)
the comparisons in [5–7] are posed over dense orders, whereas we
study linear arithmetic constraints over integers, whose satisfiabil-
ity problem is NP-complete [47], as opposed to PTIME for densely
ordered domains. (2) Chasing with NGDs, e.g., testing satisfiability,
always terminates [23], but the chase in [7] may not. (3) [5–7] do
not consider any arithmetic operators supported by NGDs.
Algorithms for error detection. Error detection has been studied for
relations [21, 48, 55] and RDF [38, 54, 56]. [21] studies (incremental)
CFD validation in horizontally or vertically partitioned relations. A

continuous framework is developed in [55] to clean relations that
may change, using FDs that may also evolve. The method of [48]
combines logical and quantitative data cleaning by using metric
FDs. Consistency checking in RDF is conducted by logical reasoning
on [54], or by unsupervised detection of numerical outliers [56].
[38] detects errors in RDF with SPARQL queries. On general graphs,
[52] studies repairing of vertex labels to make graphs satisfy a form
of neighborhood constraints. Batch algorithms are developed for
catching violations of GFDs [24] or keys [17] in graphs, in parallel.

Different from the prior work, (1) we provide the first incremental
error detection algorithms that are localizable [20] and relatively
parallel scalable. As far as we know, none of the previous error
detection algorithms is parallel scalable except the batch ones of [17,
24]. However, they cannot be directly incrementalized. Localizable
algorithms have only been developed for graph queries [20], e.g.,
keyword search. (2) We propose update-driven search and a hybrid
dynamic strategy to achieve relative parallel scalability. The strategy
balances the workload at run time, at two levels: (a) it makes use of
cost estimation to split and distribute stragglers, and (b) it monitors
the status of processors and reassigns work units from a busy
processor to those with a light load. While (b) is along the same
lines as work stealing and shedding [11, 33], we find that it does
not work very well alone unless in combination with (a).

Incremental detection of NGD violations is more intriguing than
conventional graph pattern matching: we have to compute viola-
tions that are newly introduced or removed by updates only. As
a consequence, previous algorithms for parallel pattern matching,
e.g., [35, 41], cannot be applied directly in this context.

2 PRELIMINARIES
We first review basic notations. Assume alphabets Γ, Θ andU de-
noting labels, attributes and constant values, respectively.

Graphs. We consider directed graphs G = (V ,E,L, FA), where (1)
V is a finite set of nodes; (2) E ⊆ V ×V is a set of edges, in which
(v,v ′) denotes an edge from node v to v ′; (3) each node v in V
(resp. edge e in E) carries label L(v) (resp. L(e)) in Γ, and (4) for each
node v , FA(v) is a tuple (A1 = a1, . . . ,An = an ) such that Ai , Aj
if i , j, where ai is a constant in U , and Ai is an attribute of v
drawn from Θ, written as v .Ai = ai , carrying the content of v such
as keywords and blogs as found in social networks.

We use two notions of subgraphs. A graph G ′ = (V ′,E ′,L′, F ′A)
is a subgraph of G = (V ,E,L, FA), denoted by G ′ ⊆ G, if V ′ ⊆ V ,
E ′ ⊆ E, and for each node v ∈ V ′, L′(v) = L(v) and F ′A(v) = FA(v);
similarly for each edge e ∈ E ′, L′(e) = L(e).

A subgraph G ′ is induced by a set V ′ of nodes if V ′ ⊆ V and E ′
consists of all the edges in E whose endpoints are both in V ′.

Graph patterns. A graph pattern is a directed graph Q[x̄] = (VQ ,
EQ , LQ , µ), where (1) VQ (resp. EQ ) is a set of pattern nodes
(resp. edges), (2) LQ is a function that assigns a label LQ (u)
(resp. LQ (e)) in Γ to each pattern node u ∈ VQ (resp. edge e ∈ EQ ),
(3) x̄ is a list of distinct variables; and (4) µ is a bijective mapping
from x̄ toVQ , i.e., it assigns a distinct variable to each node v inVQ .

For x ∈ x̄ , we use µ(x) and x interchangeably when it is clear in
the context. We allow wildcard ‘_’ as a special label in Q[x̄].

3



keyskeys

w
companyaccount account

y

s1

integer

m1

integer Boolean

followerfollowing

integer integerBoolean

s2n2 m2

following
status

follower
status

n1

x

y
date date

OnDate
wasCreated

OnDate

wasDestroyed

z

female

Population

area

x

population
Total

Population

male

Q4Q3Q2Q1

_

w z
integer integer integer

y
m2 n2

rank populationrank

integer integer

date

partof

w
date

date

partof

place
z

place

y
place

m1 n1
integer integer

population

x

x

Figure 2: Graph patterns

Example 2: Four graph patterns are shown in Fig. 2. Here Q1
depicts an entity x connected to date y and z with edges labeled
wasCreatedOndate and wasDestroyedOndate, respectively. Node
x is labeled ‘_’, denoting arbitrary entities regardless of their labels.
In G1 of Fig.1, x is mapped to BBC_Trust. Similarly, Q2–Q4 can be
interpreted by referencing their counterparts in Fig. 1. 2

Pattern matching. We adopt the homomorphism semantics of
matching following [8, 15, 23]. A match of pattern Q[x̄] in graph
G is a mapping h from Q to G such that (a) for each node u ∈ VQ ,
LQ (u) = L(h(u)); and (b) for each e = (u,u ′) inQ , e ′ = (h(u),h(u ′))
is an edge in G and LQ (e) = L(e ′). Here LQ (u) = L(h(u)) if LQ (u)
is ‘_’, i.e., wildcard matches any label to indicate generic entities.

We denote the match as a vector h(x̄), consisting of h(x) for all
x ∈ x̄ , in the same order as x̄ . Intuitively, x̄ is a list of entities to be
identified by Q , and h(x̄) is such an instantiation in G.

3 NUMERIC GRAPH DEPENDENCIES
We extend the GFDs of [23, 24] to incorporate arithmetic expres-
sions and built-in predicates. We start with basic notations.
Literals. Consider a graph pattern Q[x̄]. A term of Q[x̄] is either
an integer c inU or an integer “variable” x .A, where x ∈ x̄ and A is
an attribute in Θ (note that attributes are not specified in Q).

A linear arithmetic expression e of Q[x̄] is defined as
e ::= t | |e | | e + e | e − e | c × e | e ÷ c

where t is a term, c is an integer, and |e | is the absolute value of e .
We consider linear expression e , i.e., its degree is at most 1, where
the degree of e is the sum of the exponents of its variables (e.g., x .A).

For instance, all the arithmetic expressions given in Example 1
are linear. As will be seen in Section 4, we adopt linear e to strike a
balance between the expressive power and complexity.

A literal l of Q[x̄] is of the form e1 ⊗ e2, where e1 and e2 are
linear arithmetic expressions of Q[x̄], and ⊗ is one of the built-in
comparison operators =,,, <, ≤, > and ≥.
NGDs. A numeric graph dependency, denoted by NGD, is of the
form Q[x̄](X → Y ), where

◦ Q[x̄] is a graph pattern, called the pattern of φ; and
◦ X and Y are (possibly empty) sets of of literals of Q[x̄].

Intuitively, NGD φ is a combination of (a) a topological constraint
Q , to identify entities in a graph, and (b) an attribute dependency
X → Y , defined with linear arithmetic expressions connected with
built-in predicates, to be enforced on the entities identified by Q .

NGDs extend GFDs of [23, 24] by supporting
(a) linear arithmetic expressions with +,−,×,÷ and | · |, and
(b) comparisons with built-in predicates =,,, <, ≤, >, ≥.

In other words, GFDs of [23, 24] are a special case of NGDs when
literals are restricted to terms connected with equality ‘=’ only, i.e.,
literals of the form x .A = c or x .A = x .B.

Example 3: To catch those errors spotted in Example 1, we define
the following NGDs, in terms of the patterns depicted in Fig. 2.
(1) Yago. NGD φ1 = Q1[x ,y, z](∅ → z.val − y.val ≥ c). Here X is
empty set ∅ andY includes a single literal. FromQ1 of Fig. 2, we can
see that x ,y and z denote an entity, the date when it was created
and the date when it was destroyed, respectively; val is an attribute
for the integer values of y and z in days (not shown in Q1); and c
is a constant integer. It states that an entity cannot be destroyed
within c days of its creation. It catches the error in G1 of Fig. 1.
(2) Yago. NGD φ2 = Q2[w,x ,y, z](∅ → y.val + z.val = w .val). The
NGD says that in any area x , its total populationw .val should equal
the sum of its female population y.val and its male population z.val.
It catches the inconsistency in graph G2.
(3) DBPedia. NGD φ3 = Q3[x̄](m1.val < m2.val → n1.val >
n2.val), where x̄ includes x and y in the same area z. It states that if
the populationm1.val of x is less than the populationm2.val ofy in
the same censusw , then the populationRank n1.val of x is behind
the populationRank n2.val of y. It captures the inconsistency inG3.
(4) Twitter. NGD φ4 = Q4[x̄]({s1.val = 1,a×(m1.val −m2.val) +
b×(n1.val − n2.val) > c} → s2.val = 0). Here x̄ includes two ac-
counts x and y about the same companyw , where x (resp. y) has
n1.val (resp. n2.val) followers and is followingm1.val (resp.m2.val)
people; and has status s1.val (resp. s2.val) indicating the realness.
Integers a and b specify the weights of following and followers,
respectively; and c is the threshold for their difference (see Exam-
ple 1). It states that if the gap between the followers and followings
of a real account x and account y exceeds c , then the chances are
that y is fake. It catches NatWest_Help in G4 as a fake account.

Note that φ4 cannot be expressed as NFDs [16], since NFDs do
not support preconditions with arithmetic operations. 2

As shown in [23], GFDs can express (a) conditional functional
dependencies (CFDs [19]) and (b) equality generating dependen-
cies (EGDs [4]) when relational tuples are represented as vertices
in a graph. Since NGDs subsume GFDs, NGDs can also express
CFD and EGDs. In particular, NGDs support constant bindings of
CFDs [19], which have proven useful in detecting errors in rela-
tions [18]. Hence, NGDs can catch non-numeric inconsistencies
that GFDs and CFDs can detect, in addition to numeric errors.
Semantics. Consider a match h(x̄) of Q in a graph G.

We say that match h(x̄) satisfies a literal l = e1 ⊗ e2 of Q[x̄] if
(a) for each term x .A in l , node v = h(x) carries attribute A, and
(b) h(e1) ⊗ h(e2), where h(ei ) denotes the arithmetic expression
obtained from ei by substituting h(x) for each x in ei for i ∈ [1, 2];
here h(e1) ⊗ h(e2) is interpreted following the standard semantics
of arithmetic operations and build-in predicates.

For instance, for e1 > e2, where e1 is x .A + x .B and e2 is 3, h(x)
satisfies e1 > e2 if (a) node v = h(x) carries attributes A and B, and
(b) the value of v .A +v .B is greater than 3.
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For a set Z of literals, we write h(x̄) |= Z if h(x̄) satisfies all
literals in Z , i.e., their conjunction. We write h(x̄) |= X → Y if
h(x̄) |= X implies h(x̄) |= Y , i.e., if h(x̄) |= X , then h(x̄) |= Y .

A graph G satisfies NGD φ = Q[x̄](X → Y ), denoted by G |= φ,
if for all matches h(x̄) of Q in G, h(x̄) |= X → Y . Graph G satisfies
a set Σ of NGDs, denoted by G |= Σ, if for all NGDs φ ∈ Σ, G |= φ.

Intuitively, to check whether G |= φ, we need to examine all
matches h(x̄) of Q in G. We check whether h(x̄) |= Y if h(x̄) is a
match of Q and it satisfies the precondition X .
Example 4: Consider graphG1 of Fig. 1 and NGD φ1 of Example 3.
ThenG1 ̸ |= φ1, since there exists a match h(x ,y, z): x 7→ BBC_Trust,
y 7→ 2007-#-# and z 7→ 1946-08-28, such that h(y).val > h(z).val,
i.e., h(x ,y, z) ̸|= Y . That is, h(x ,y, z) denotes entities that make a
violation of φ1 inG1. Similarly,G2 ̸ |= φ2,G3 ̸ |= φ3 andG4 ̸ |= φ4. 2

4 FUNDAMENTAL PROBLEMS FOR NGDS
We next study two fundamental problems associated with NGDs.
The main conclusion of this section is that the presence of either lin-
ear arithmetic expressions or built-in predicates necessarily makes
these problems harder unless P = NP. Nonetheless, NGDs pay a
minimum price for supporting both arithmetic and comparison,
striking a balance between the complexity and expressivity.
(1) Satisfiability. We consider two notions of satisfiability.

A set Σ of NGDs is satisfiable if there exists a graph G such that
(a)G |= Σ, and (b) there exists an NGDQ[x̄](X → Y ) in Σ such that
Q has a match in G. Intuitively, condition (b) is to ensure that the
NGDs can be applied to nonempty graphs.

We say that Σ is strongly satisfiable if there exists a graphG such
that (a) G |= Σ, and (b) for each NGD Q[x̄](X → Y ) in Σ, there
exists a match hQ (x̄) of Q in G. Intuitively, condition (b) requires
that all graph patterns in Σ find a model in G, to ensure that the
NGDs in Σ do not conflict with each other.

The satisfiability problem for NGDs is to decide, given a set Σ of
NGDs, whether Σ is satisfiable. The strong satisfiability problem is
to decide whether Σ is strongly satisfiable.
Example 5: Consider a set Σ0 consisting of two NGDs: φ5 =
Q[x](∅ → x .A = 7 ∧ x .B = 7) and φ6 = Q[x](∅ → x .A+ x .B = 11),
where Q has a single node x labeled ‘_’. Then there exist nonempty
graphs that satisfy φ5 and φ6 when taken separately. However, φ5
and φ6 are not satisfiable when put together. Indeed, the values of
attributes A and B on each node must be 7 as required by φ5, while
their sum is required to be 11 by φ6, which is impossible.

Suppose that pattern Q in φ6 is replaced by Q ′ that has a single
node labeled ‘a’. Then Σ0 becomes satisfiable. Indeed, consider
graph G having a single node v labeled ‘b’ with v .A = v .B = 7.
ThenG |= Σ0. However, Σ0 is not strongly satisfiable, since for any
graph G ′, if all patterns in Σ0 find a match in G ′, then there must
exist nodes labeled ‘a’, and the conflicts above arise again.

Similarly, one can verify that the NGDs below are not (strongly)
satisfiable: φ7 = Q[x](x .A ≤ 3 → x .B > 6), φ8 = Q[x](x .A > 3 →

x .B > 6), and φ9 = Q[x](∅ → x .B < 6 ∧ x .A , 0). 2

These show that the presence of either linear arithmetic expres-
sions or built-in comparison predicates beyond equality makes the
satisfiability analysis more intriguing than that of GFDs [23, 24].

(2) Implication. A set Σ of NGDs implies another NGD φ, denoted
by Σ |= φ, if for all graphs G, if G |= Σ, then G |= φ. That is, the
NGD φ is a logical consequence of the set Σ of NGDs.

The implication problem for NGDs is to determine, given a set Σ
of NGDs and another NGD φ, whether Σ |= φ.

As remarked in Section 1, the practical need for studying these
problems is evident, besides theoretical interest, for determining
whether data quality rules discovered from possibly dirty data are
sensible, and for optimizing data quality rules, among other things.
Complexity. We next settle the complexity of these problems. The
proofs of the results below are quite involved. For the lack of space,
we provide proof sketches for all the results of the paper, and defer
the detailed proofs for satisfiability of Theorems 1 and 3 to [28].

Recall that the satisfiability problem for relational functional de-
pendencies (FDs) is trivial, i.e., for any set Σ of FDs over a relation
schema R, there always exists a nonempty database instance of R
that satisfies Σ [18]. Moreover, the implication problem for FDs is
in linear-time (cf. [4]). It is known that the satisfiability and implica-
tion problems for GFDs are coNP-complete and NP-complete [24],
respectively. These are comparable to their counterparts for rela-
tional CFDs, which are NP-complete and coNP-complete, respec-
tively [19]. In contrast, NGDs make our lives harder.
Theorem 1: For NGDs, (a) the satisfiability problem and strong
satisfiability problems are both Σ

p
2 -complete, and (b) the implication

problem is Πp
2 -complete. 2

Here Σ
p
2 is the class of decision problems that are solvable in

NP by calling an NP oracle, i.e., Σp2 = NPNP. It is considered more
intriguing than NP unless P = NP. Similarly, Πp

2 = coNPNP, which
is also above NP in the polynomial hierarchy (see [47] for details).
Proof: (1) For the upper bound of the satisfiability problem, we first
show a small model property: if a set Σ of NGDs is satisfiable, then
there exists a graphGΣ of size at most 3(|Σ| + 1)5 such thatGΣ |= Σ.
The proof needs attribute normalization so that the total size of the
attributes inGΣ is also bounded by a function of |Σ|. This is verified
by means of bounded-length solution to the linear programming
problem [14] preserving the satisfiability of the conditions enforced
by Σ, and by transforming all built-in predicates to inequality ≤.

Based on this property, we give an Σp2 algorithm to checkwhether
a given set of NGDs is satisfiable: guess a graph Gm such that
|Gm | ≤ 3(|Σ| + 1)5 and a pattern Q from Σ, and check whether (a)
Q has a match in Gm in PTIME and (b) Gm |= Σ in coNP.

We prove the lower bound by reduction from the generalized
subset sum problem (GSSP) [50]. GSSP is to decide, given two
vectors ū1 and ū2 of integers, and another integer w , whether
∃v̄1∀v̄2(ūT1 ·v̄1+ūT2 ·v̄2 , w), where v̄1 and v̄2 refers to Boolean vec-
tors, and ūT1 (resp. ūT2 ) is the transpose of ū1 (resp. ū2). It is known
that GSSP is Σp2 -complete [50]. In the reduction, we use a set of
three NGDs that share the same pattern Q to encode GSSP. We en-
code the existential semantic of vector v̄1 with one NGD, such that
there arem nodes carrying A-attributes with Boolean values in its
model. The universal semantic of vector v̄2 is encoded by another
NGD and wildcards in the graph pattern to arbitrarily match two
nodes with value 0 and 1, respectively, of another attribute B. The
third NGD encodes ū1 and ū2, and checks the condition in GSSP.
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(2) The proof above is extended to the strong satisfiability problem.
In particular, to prove the small model property, we build such a
model that all patterns in Σ find a match in it. The lower bound
proof of the satisfiability problem in (1) carries over here, since all
NGDs in the set Σ used there share the same pattern.
(3)We also show a small model property for the implication problem:
if Σ ̸ |= φ, then there exists a graphG(Σ,φ) that “witnesses” Σ ̸ |= φ, i.e.,
G(Σ,φ) |= Σ whileG(Σ,φ) ̸ |= φ, such that |G(Σ,φ) | ≤ 3(|Σ| + |φ | + 1)5.
Given this, we develop an Σ

p
2 algorithm to check whether Σ ̸ |= φ.

The Πp
2 -hardness is shown by reduction from the complement of

GSSP, using NGD φ and Σ of a single NGD.
None of the lower bound proofs uses ,, <, ≤, >, ≥. 2

One might think that the complexity comes from interactions
between arithmetic operations and comparison predicates. This is
not the case: the lower bounds still hold when either arithmetic
expressions or built-in predicates are present, not necessarily both.
Corollary 2: For NGDs, the satisfiability, strong satisfiability and
implication problems remain Σ

p
2 -complete, Σp2 -complete and Π

p
2 -

complete, respectively, even in the absence of either (a) arithmetic
operations, or (b) comparison predicates ,, <, ≤, >, ≥. 2

Proof: The upper bounds inherit from Theorem 1, as well as the
lower bounds in the absence of ,, <, ≤, >, ≥, since the reductions
given there use no such predicates. However, new lower bound
proofs are required for NGDs that carry only comparison predi-
cates. We show these by reductions from their counterparts for an
extension of GEDs with built-in predicates only [23]. 2

Undecidability. Onemightwant to support arithmetic expressions
that are not necessarily linear, defined as

e ::= t | |e | | e + e | e − e | e × e | e ÷ e .
That is, e is built up from terms by closing them under arithmetic
operators, not necessarily of degree at most 1. A literal is defined
as e1 ⊗ e2 as before, where e1 and e2 are arithmetic expressions of
Q[x̄], and ⊗ is one of =,,, <, ≤, >, ≥.

This extension, however, makes the static analyses undecidable,
even forNGDswith literals of a bounded degree. The undecidability
justifies our choice of linear arithmetic expressions for NGDs.
Theorem 3: The satisfiability, strong satisfiability and implication
problems become undecidable for NGDs extended with non-linear
arithmetic expressions, even when

◦ no arithmetic expressions in the NGDs have degree above 2,
◦ and none of ,, <, ≤, >, ≥ predicate is present. 2

Proof:We show the undecidability for the extended NGDs by re-
ductions from the Hilbert’s 10th problem (HTP) [36, 44] and its
complement, respectively. HTP is to decide, given a polynomial
Diophantine equation

n∑
i=1

aiy
n1,i
1 . . .y

nm,i
m = 0, where a1, . . . ,an

are integer coefficients and n1,i , . . . ,nm,i are non-negative inte-
ger exponents for each i ∈ [1,n], whether there exists an integer
solution for (y1, . . . ,ym ). It is known that HTP is undecidable [44].

The reductions are a little complicated. For the (strong) satisfia-
bility problem, we use a set Σ consisting of a single NGD to encode
the computation of polynomials in the given Diophantine equation
in a recursive manner, and to check the existence of feasible so-
lutions. Moreover, the degree of each arithmetic expression in Σ
is at most 2, and only built-in predicate = is used. Especially, we

decompose each polynomial aiy
n1,i
1 . . .y

nm,i
m into coefficient and

exponentiation that are represented by distinct nodes in the pattern
of the NGD, and encode its computation recursively through the
encoding of sub-expression aiy

n1,i
1 . . .y

nm−1,i
m−1 and suffix exponen-

tiation ynm,i
m . For implication, we use a singleton set Σ and another

NGD φ to encode the equation, again in a recursive manner. 2

5 DETECTING ERRORS WITH NGDS
We have seen that NGDs provide uniform rules for capturing in-
consistencies in graphs, numeric or not (Section 3). We next study
error detection in graphs by using NGDs as data quality rules.

5.1 Detecting Inconsistencies in Graphs
To state the error detection problem, we borrow the following
notations from [24]. Given an NGD φ = Q[x̄](X → Y ) and a graph
G, we say that a match h(x̄) of Q in G is a violation of φ if Gh ̸ |= φ,
where Gh is the subgraph induced by h(x̄). For a set Σ of NGDs,
we denote by Vio(Σ,G) the set of all violations of NGDs in G, i.e.,
h(x̄) ∈ Vio(Σ,G) if there exists an NGD φ in Σ such that h(x̄) is a
violation of φ in G. That is, h(x̄) violates at least one NGD in Σ.

The error detection problem is stated as follows.
◦ Input: A set Σ of NGDs and a graph G.
◦ Output: The set Vio(Σ,G) of violations.

That is, when NGDs in Σ are used as data quality rules, it is to find
the set Vio(Σ,G) of all inconsistent entities in G.

Its decision version is the validation problem to decide, given a
set Σ of NGDs and a graph G, whether G |= Σ, i.e., Vio(Σ,G) = ∅.

It is known that the validation problem for GFDs is coNP-
complete [24]. The good news is that the problem gets no harder
for NGDs, despite their increased expressive power.
Corollary 4: The validation problem for NGDs remains coNP-
complete. 2

Proof: We develop an NP algorithm to check whether Vio(Σ,G) ,
∅: guess an NGD φ = Q[x̄](X → Y ) in Σ and a mapping h from Q
toG , and check whether (a) h is a match ofQ inG; and (b) h(x̄) |= X
but h(x̄) ̸|= Y . Checking (a) and (b) are in PTIME. Hence NGD
validation is in coNP. The lower bound follows from [23], since
NGDs subsume GFDs, and GFD validation is coNP-complete. 2

Using GFDs as data quality rules, parallel algorithms have been
developed for error detection [24]. The algorithms are parallel scal-
able, i.e., they guarantee to reduce the running time of a yardstick se-
quential algorithm when more processors are used (see Section 6.1).
Hence they can scale with real-life graphs by adding resources
when the graphs grow big. The experimental study of [24] has
validated the parallel scalability and efficiency of the algorithms.

A close examination of the algorithms of [24] reveals that the
algorithms can be readily extended to NGDs. Indeed, for the algo-
rithms to work with NGDs on a graph G that is fragmented and
distributed across different processors, the only change involves
local checking ofNGDs in each fragment ofG , by adding arithmetic
and comparison calculations; the generation of matches of graph
patterns, which dominates the cost of the algorithms, remains un-
changed. The workload estimation and balancing strategies of [24]
remain intact for NGDs. These strategies make the algorithms par-
allel scalable. As a result, the algorithms remain parallel scalable
when they employ NGDs instead of GFDs.
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Hence there are parallel scalable algorithms to uniformly detect
semantic inconsistencies in graphs, numeric or not, with NGDs.

5.2 Incremental Error Detection
Error detection is costly in large G, and real-life graphs are fre-
quently updated. This highlights the need for studying incremental
error detection: we compute Vio(Σ,G) once, and then incremen-
tally compute Vio(Σ,G ⊕ ∆G) in response to updates ∆G toG . This
is more efficient than recomputing Vio(Σ,G ⊕ ∆G) starting from
scratch when ∆G is small, as often found in practice.

We define a unit update as edge insertion (insert e) or deletion
(delete e), which can simulate certain modifications. An insertion
possibly introduces new nodes carrying labels, attributes, and val-
ues drawn from Γ, Θ and U , respectively, while deletions just re-
move the links, leaving the nodes otherwise unaffected. We formal-
ize the problem as follows. We consider batch update ∆G consisting
of a sequence of insertions and deletions of edges. Denote by

∆Vio+(Σ,G,∆G) = Vio(Σ,G ⊕ ∆G) \ Vio(Σ,G),
∆Vio−(Σ,G,∆G) = Vio(Σ,G) \ Vio(Σ,G ⊕ ∆G),
∆Vio(Σ,G,∆G) = (∆Vio+(Σ,G,∆G),∆Vio−(Σ,G,∆G)),

new errors introduced by ∆G, removed by ∆G and their combina-
tion, respectively. The incremental error detection problem is:

◦ Input: Graph G, NGDs Σ, and batch update ∆G to G.
◦ Output: The changes ∆Vio(Σ,G,∆G) to Vio(Σ,G).

We do not require Vio(Σ,G) as part of the input, since the set may
be exponential in size and is costly to store.

It is not surprising that the problem is nontrivial. Its decision
problem is to decide whether ∆Vio(Σ,G,∆G) = ∅.
Theorem 5: It is coNP-complete to decide, given a set Σ of NGDs, a
graph G and a batch update ∆G, whether ∆Vio(Σ,G,∆G) is empty,
even when both G and ∆G have constant sizes. 2

Proof:To prove the upper bound, we give anNP algorithm to check,
given Σ, G and ∆G , whether ∆Vio(Σ,G,∆G) , ∅. The lower bound
is verified by reduction from the complement of the 3-colorability
problem [47]. The latter problem is to decide, given an undirected
graph G, whether there exists a proper 3-coloring γ of G such
that for each edge (u,v) in G, γ (u) , γ (v). The problem is NP-
complete [47]. The reduction uses a graphG ′ of 3-clique and a single
NGD Q[x̄](∅ → x1.A = 3) to encode the 3 colors and the structure
of graphG , respectively. The tricky part is to encode an undirected
graph G using an NGD, which is defined on directed graphs (see
Section 3) and also used for verifying possible 3-colorings. The
reduction employs a constant-size graph G ′, and a batch update
∆G ′ of 3 edge insertions (constant size) with the same edge label.2

In the rest of the paper we focus on (parallel) algorithms for
incrementally detecting inconsistencies in graphs, by using NGDs.
The algorithms complement the batch algorithms of [24], forNGDs
used as data quality rules. As remarked earlier, we are not aware
of prior work on incremental error detection in graphs, and the
static workload partitioning strategy of [24] hampers the parallel
scalability of the batch algorithms when being incrementalized.

6 INCREMENTAL DETECTION ALGORITHMS
Despite the challenges noted in Theorem 5, we develop two practical
algorithms to incrementally detect errors in graphs withNGDs. We
show that the algorithms have certain performance guarantees.

We first review the performance guarantees (Section 6.1). We
then present a sequential incremental error detection algorithm
(Section 6.2), followed by a parallel algorithm (Section 6.3).

To simplify the discussion, we focus onNGDs definedwith graph
patterns Q that are connected, i.e., there exists a path between
any two vertices in Q when Q is treated as an undirected graph.
The algorithms can be readily extended to process NGDs that are
defined with possibly disconnected patterns. More specifically, one
can first compute (candidate) partial violations, by finding matches
of distinct connected components in Q following the same update-
driven approach to be given shortly in this section. These partial
matches are then combined to evaluate attribute dependencies. that
go across multiple connected components, to identify violations.

6.1 Performance Guarantees
We first review two characterizations of the effectiveness of (paral-
lel) incremental error detection algorithms.
(1) Locality. We first adapt a criterion from [20]. (a) In a graph G,
a node v ′ is within d hops of v if dist(v,v ′) ≤ d by taking G as an
undirected graph, where dist(v,v ′) is the shortest distance between
v and v ′ in G . (b) We denote by Vd (v) the set of all nodes in G that
are within d hops of v . (c) The d-neighbor of v , denoted by Gd (v),
is the subgraph of G induced by Vd (v) (see Section 2).

The diameter dQ of a pattern Q is the minimum dist(v,v ′) for
all nodes v and v ′ in Q . For a set Σ of NGDs, the diameter dΣ of Σ
is the maximum diameter dQ for all patterns Q that appear in Σ.

An incremental error detection algorithm A is localizable if
given a set Σ of NGDs, a graph G, and a batch update ∆G to G, its
cost is determined only by the size |Σ| of NGDs and the sizes of the
dΣ-neighbors of those nodes on the edges of ∆G.

The notion of localizable was proposed in [20] and has proven
effective for graph queries, by reducing computation on a (large)
graph to small areas surrounding ∆G . We specialize it to incremen-
tal validation, to compute ∆Vio(Σ,G,∆G) by checking onlyGdΣ (v)
for nodes v that appear in ∆G. In practice, GdΣ (v) is often small.
Indeed, (a) Q is typically small, e.g., 98% of real-life patterns have
radius 1 [30], which also indicate patterns in rules [29]; and (b)G is
sparse, e.g., the average node degree is 14.3 in social graphs [12].
(2) Parallel scalability. The second criterion is adapted from [40],
which has been widely used in practice to characterize the effective-
ness of parallel algorithms. Consider a sequential algorithm A for
incremental error detection, with cost t(|G |, |Σ|, |∆G |) measured in
the sizes of graph G, Σ of NGDs and batch update ∆G.

A parallel algorithm Ap for incremental error detection is said
to be parallel scalable relative to yardstick A if its parallel running
time by using p processors can be expressed as follows:

T (|G |, |Σ|, |∆G |,p) = O
( t(|G |, |Σ|, |∆G |)

p

)
,

where p ≪ |G |, i.e., the number of processors is much smaller than
real-life graphs G, as commonly found in the real world.

Intuitively, parallel scalability measures speedup over sequen-
tial algorithms by parallelization. It is a relative measure w.r.t. a
yardstick algorithm A. A parallel scalable Ap “linearly” reduces
the running time of A when p increases. Hence a parallel scalable
algorithm is able to scale with large G by adding processors as
needed. It makes incremental detection feasible by increasing p.
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6.2 A Sequential Localizable Algorithm
We first develop an exact localizable algorithm, denoted by IncDect.
Given a set Σ of NGDs, a graph G and a batch update ∆G,
IncDect computes ∆Vio(Σ,G,∆G) with a single processor. Algo-
rithm IncDect incrementalizes subgraph matching by following
update-driven evaluation, and checks dependencies with arithmetic.
Subgraph matching. We start by reviewing the general frame-
work of subgraph matching, denoted asMatchn.

A number of subgraph matching algorithms have been devel-
oped for graphs, mostly following a backtracking-based procedure
Matchn [43]. Given a pattern Q and a graphG ,Matchn first identi-
fies a set C(u) of candidate matches for each node u in Q . Then its
main subroutine SubMatchn recursively expands partial solution
M , by matching one pattern node of Q with a node of G in each
round, whereM is a set of node pairs (u,v) indicating thatv matches
pattern node u. Subgraph homomorphism algorithms [26, 49] can
also be characterized by the generic Matchn and SubMatchn.

More specifically, given a partial solutionM , SubMatchn selects
a pattern node u that is not yet matched, and refinesC(u) following
certain matching order selection and pruning strategies. For each
refined candidate v in C(u), it checks whether v can make a valid
match of u by inspecting the correspondence between edges adja-
cent to u in Q and those edges connected to v in G. The qualified
node pair (u,v) is added toM , and SubMatchn is called recursively
for further expansion, until all the pattern nodes are matched. The
partial solutionM is restored when SubMatchn backtracks.
Algorithm. IncDect incrementalizes batch algorithm Matchn to
process G, Σ and ∆G = (∆G+,∆G−), where ∆G+ and ∆G− in-
clude insert(v,v ′) and delete(v,v ′), respectively. (1) It starts with
∆Vio+(Σ,G,∆G) = ∅ and ∆Vio−(Σ,G,∆G) = ∅. (2) For each NGD
φ = Q[x̄](X → Y ) in Σ, it invokes a procedure IncMatch revised
from Matchn to expand ∆Vio+(Σ,G,∆G) (resp. ∆Vio−(Σ,G,∆G))
with those matches h(x̄) of Q in G ⊕ ∆G (resp. G) such that (a)
h(u) = v and h(u ′) = v ′ for some (u,u ′) ∈ EQ and insert(v,v ′) in
∆G+ (resp. delete(v,v ′) in ∆G−), and (b) h(x̄) ̸|= X → Y .

Intuitively, edge insertions may introduce new violations and
hence expand ∆Vio+(Σ,G,∆G), but do not remove existing ones; on
the other hand, deletions expand ∆Vio−(Σ,G,∆G) only. IncMatch
computes the newly added (resp. removed) violations; this is done
by identifying those matches that have nodes connected by edges
in ∆G+ (resp. ∆G−) and violating the attribute dependency.
Procedure IncMatch. We next give details of IncMatch and its sub-
routine IncSubMatch for processing NGD Q[x̄](X → Y ). Follow-
ing update-driven evaluation, we extendMatchn and SubMatchn to
conduct (1) initial partial solution selection; (2) candidates filtering;
and (3) arithmetic and comparison calculations.
(1) Given pattern Q , IncMatch first finds out whether each edge
(v,v ′) in ∆G is a candidate match of some pattern edge (u,u ′) inQ
by checking the labels. This is in contrast to Matchn that searches
candidates in the entire graph. If (v,v ′)makes a candidate, it forms
an initial partial solution hup(u,u

′) = (v,v ′), referred to as an
update pivot ofQ triggered by unit update of edge (v,v ′). IncMatch
then expands hup(u,u ′) by recursively invoking IncSubMatch as
inMatchn to compute update-driven violations h(x̄).

(2) In each call, IncSubMatch searches candidates from the neigh-
bors of those nodes that are already in a partial solution, starting
from the update pivot. Each time IncSubMatch picks a pattern node
that is connected to some already matched ones. For a match h(x̄)
of Q to be included in ∆Vio+(Σ,G,∆G), (a) it must be expanded
from a pivot triggered by insertion, and (b) there exist no v and v ′

in h(x̄) such that h(u) = v and h(u ′) = v ′ for any (u,u ′) ∈ EQ while
delete(v,v ′) is in ∆G−. Therefore, it leaves out edges in ∆G− when
retrieving candidates to expand the solutions from update pivots
triggered by edge insertions. Similarly, it does not consider edges
insert(v,v ′) in ∆G+ when expanding ∆Vio−(Σ,G,∆G).

As an optimization strategy, IncMatch marks the combination
of multiple update pivots in partial solutions to prevent the same
match from being enumerated more than once.
(3) The validation of arithmetic expressions is performed by apply-
ing candidate pruning in IncSubMatch. More specifically, it evalu-
ates a literal l in X as long as all the variables are instantiated, i.e.,
every variable in l is already matched or is being matched by the
candidates under process, and prunes those when l is evaluated to
be false. Literals in Y are handled similarly except that candidates
contributing to true evaluations are pruned. Indeed, only matches
h(x̄) that satisfy h(x̄) |= X and h(x̄) ̸|= Y are returned as violation.

Finally, those matches expanded from update pivots triggered
by edge insertions (resp. deletions) and violating X → Y , referred
to as update-driven violations, are returned by IncMatch and added
to ∆Vio+(Σ,G,∆G) (resp. ∆Vio−(Σ,G,∆G)) by algorithm IncDect.

Example 6: Suppose that the edge (NatWest Help, 1) is deleted
from G4 of Fig. 1. Given NGD φ4 of Example 3, IncDect calls
IncMatch to detect update-driven violations. It first finds that the
deleted edge is a candidate match of (x , s1) in Q4. That is, an up-
date pivot hup(x , s1) = (NatWest Help, 1) is built. IncMatch then
expands hup(x , s1) recursively by inspecting the neighbors of candi-
date matches until all pattern nodes ofQ4 are matched. For instance,
node 22000 in G4 is the only candidate match form1. Finally, it re-
turns violation hup(x̄) to be removed, which includes all the nodes
of G4, and NatWest_Help is found a fake account.

Besides delete(NatWest Help, 1), suppose that four edges are in-
serted intoG4 to indicate that another account NatWest_Help1 has
1 following and 2 followers, and refers to company NatWest with
status 1. Given this batch update, IncDect computes the same viola-
tion to be removed as above. Indeed, there are no newly introduced
violations since all matches expanded from update pivots triggered
by edge insertions are pruned by literal validation. 2

Analysis. The correctness of IncDect is warranted by the follow-
ing. The violations in ∆Vio+(Σ,G,∆G) (resp. ∆Vio−(Σ,G,∆G)) are
matches ofQ inG⊕∆G (resp.G) that contain inserted (resp. deleted)
edges of ∆G and violate dependencyX → Y for anNGDQ[x̄](X →

Y ) in Σ, i.e., update-driven violations found by IncMatch.
IncDect runs in O(|Σ| |GdΣ (∆G)|

|Σ |) time, where GdΣ (∆G) de-
notes the union of dΣ-neighbors of nodes involved in ∆G. Hence
it is localizable. Indeed, (a) the computation performed by each
invocation of IncMatch is confined in the dΣ-neighbors of an unit
update in ∆G . (b) The cost of checking linear arithmetic expressions
is much less than the cost of candidate selection in matching.
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6.3 A Parallel Scalable Algorithm
Algorithm IncDect takes exponential time in the worst case. It is
costly if Σ or ∆G is large, orG is dense. This motivates us to develop
algorithm PIncDect that is parallel scalable relative to IncDect, to
reduce response time by adding more processors when needed.
Overview. Algorithm PIncDect works with p processors S1, . . . , Sp
on a graph G that is partitioned via edge-cut [9] or vertex-cut [37].
In a nutshell, PIncDect finds update pivots of patterns in Σ triggered
by unit updates, and distributes these partial solutions as work units
to p processors. Then each processor handles its workload and
identifies violations in parallel, driven by updates like in IncDect.

However, there are two challenges. (1) The dΣ-neighbor of a
node may reside in different fragments. (2) The workloads of some
processors may be skewed, since (a) the workload assignment may
be unbalanced; and (b) some work unit may take much longer, e.g.,
when accessing a large dΣ-neighbor. Note that work stealing and
shedding [11, 33] do not solve (b) by re-assigning work units.

To cope with this, PIncDect does the following. It finds and dis-
tributes the candidate neighborhood of each update pivot. Then all
the processors interact with each other asynchronously to expand
and verify partial solutions, by accessing the candidate neighbor-
hoods only. To reduce skewness, PIncDect (a) splits and parallelizes
the work unit of filtering and verifying a candidate, based on cost
estimation, and (b) periodically redistributes the partial solutions
(work units) to be expanded from busy processors to thosewith light
loads. This makes PIncDect parallel scalable relative to IncDect.
Candidate neighborhood. Similar to IncDect, initially PIncDect
checks whether each unit update of edge (v,v ′) in ∆G triggers an
update pivot hup(u,u ′) = (v,v ′) of some pattern nodes u and u ′ in
Q , at each processor. It then identifies the dQ -neighbor of v in G ⊕

∆G+, i.e., the candidate neighborhood NC (hup(u,u ′)) for hup(u,u ′).
When node v is involved in multiple update pivots, only the union
of their neighborhoods is extracted. The processors coordinate to
extract such an area when it is fragmented, by notifying each other
the remaining size to be explored via messages passed through
crossing edges in edge cut or entry and exit nodes in vertex cut.

All processors broadcast the data extracted such that the union
NC (∆G, Σ) of candidate neighborhoods for update pivots is repli-
cated at each processor. We find that NC (∆G, Σ) is often much
smaller than G when ∆G and Σ are small, as found in practice.

Moreover, for each nodev in NC (∆G, Σ), PIncDect evenly “parti-
tions” its adjacency list v .adj by annotating local partition (instead
of physically breaking it up), such that each processor Si holds a
partial copy v .adji . The update pivots are also evenly partitioned
into p disjoint sets. Each Si maintains one set BVioi as its workload.
A partial solution to be expanded is a work unit.
Parallel validation. All processors expand partial solutions to find
update-driven violations in parallel. For each partial solution in
BVioi , Si expands it by matching a pattern node that is not matched
yet, until a complete violation is found. This is done by candidate
filtering followed by verification. It adopts a hybrid processing strat-
egy to split and parallelize skewed work units. Algorithm PIncDect
also periodically balances workloads across p processors, to reduce
skewed workloads with a large number of work units.

We next give the insights of the two steps for expanding partial
solutions, which dominate the cost of algorithm PIncDect.

Candidate filtering. Consider hup(u0, . . . ,uk ) in BVioi , a partial so-
lution forQ to be expanded at processor Si . The next pattern node to
be matched isuk+1 such that it is connected tour inQ for r ∈ [0,k].
The candidates for uk+1 are selected from the neighbors of hup(ur ),
just like in procedure IncSubMatch (Section 6.2). Here it estimates
the sequential cost as |hup(ur ).adj|, and the parallel cost as

C · (k + 1) + |hup(ur ).adj|/p,
for expanding the partial solution by matching uk+1, where C is a
constant referred to as communication latency, andC ·(k+1) denotes
the broadcasting cost. It conducts expansion at processor Si directly
by inspecting candidates from hup(ur ).adj, if the sequential cost is
less than the parallel one. Otherwise, hup(u0, . . . ,uk ) is broadcast
to all the processors, and is expanded in parallel by checking the
partial copy hup(ur ).adjj reserved at each Sj for j ∈ [1,p]. This
allows us to reduce a skewed work unit with large adjacency lists.
Verification. After hup(u0, . . . ,uk ) is expanded with uk+1 at proces-
sor Si , PIncDect checks the edges between the candidate hup(uk+1)
and other matches hup(u0), . . . , hup(uk ), to verify the validity of the
expansion. It may split the verification work. Here the sequential
cost is estimated as |hup(uk+1).adj| and the parallel cost is

C · (k + 2) + |hup(uk+1).adj|/p.
If the parallel cost is smaller, it broadcasts hup(u0, . . . ,uk ,uk+1) to
check at each Sj by using its partial copy hup(uk+1).adjj ; the results
are sent back to Si to decide the qualification of the partial solution,
which are added to BVioi for further expansion if qualified.
Workload balancing. The workload of a processor Si is skewed if
BVioi contains far more work units than the others at the same time.
This happens even if we start with evenly distributed update pivots,
as different partial solutions may trigger radically different number
of new work units. We define the skewness of Si as ||BVioi ||

avgt∈[1,p] ||BViot ||
.

To cope with this, PIncDect checks the skewness of processors
at a time interval intvl. If the skewness of Si exceeds a threshold η
(3 in experiments), it evenly distributes the work units in BVioi to
those Sj ’s having skewness belowη′ (0.7 in experiments), extending
BVioj ’s. We allow processors to send and receive work units at
any time, without being blocked by synchronization barriers.
Algorithm. Putting these together, we present the main driver
of algorithm PIncDect in Fig. 3. It first identifies the candidate
neighborhood for each update pivot (lines 1-3), and replicates their
union at all processors (line 4). The update pivots are also evenly
distributed (line 5). Then PIncDect invokes procedure PIncMatch
at each processor Si with initial workload BVioi , in parallel for
i ∈ [1,p] (line 6). It periodically balances workload (line 8), until
all processors complete their work (line 9). At this point, PIncDect
collects local violations Vioi ’s from all processors. The union of all
Vioi ’s is ∆Vio(Σ,G,∆G) (line 10) and is returned (line 11).

At each processor Si , procedure PIncMatch expands a partial
solution by filtering candidate matches (lines 3-6), followed by
verification (lines 7-10). Both steps split skewed work units by
applying the hybrid processing strategy based on cost estimation,
as described earlier. The local violations Vioi and workload BVioi
are updated accordingly (lines 11-13). It returns Vioi when no work
units remain in BVioi , i.e., when Si finishes its workload (line 14).
Example 7: Consider a graphG revised fromG4 of Fig. 1 by includ-
ing additional 98 accounts NatWest_Helpi for i ∈ [1, 98], where
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Algorithm: PIncDect
Input: A fragmented graph G across p processors S1, . . .Sp ,

a set Σ of NGDs, and a batch update ∆G .
Output: The set ∆Vio(Σ, G, ∆G) of violations.
1. for each unit update of (v, v ′) in ∆G and pattern edge (u, u′) in

Q of NGD ψ = Q [x̄ ](X → Y ) ∈ Σ having LQ (u) = L(v),
LQ (u′) = L(v), and LQ (u, u′) = L(v, v ′) do

2. construct update pivot hup(u, u′) = (v, v ′);
3. identify the dQu -neighbor of v ;
4. construct NC (∆G, Σ) in parallel and replicate it at all processors;
5. evenly partition adjacency lists and work units across p processors;
6. invoke PIncMatch(BVioi ) at processor Si for all i ∈ [1, p];
7. repeat
8. periodically balance workload across p processors at interval intvl;
9. until all Si ’s return Vioi ;
10. ∆Vio(Σ, G, ∆G) :=

⋃
i Vioi ;

11. return ∆Vio(Σ, G, ∆G);

Procedure PIncMatch /* executed at each worker Si in parallel */
Input: Workload BVioi .
Output: The set Vioi of local violations.
1. Vioi := ∅;
2. while there exists a partial solution to be expanded do
3. for each hup(u0, . . . , uk ) ∈ BVioi by matching uk+1

with neighbors of hup(ur ) do
4. if |hup(ur ).adj | ≤ C(k + 1) + |hup(ur ).adj |/p then
5. expand hup(u0, . . . , uk ) at Si ;
6. else broadcast hup(u0, . . . , uk ) and expand it in parallel;
7. for each hup(u0, . . . , uk , uk+1) to be verified at Si do
8. if |hup(uk+1).adj | ≤ C(k + 2) + |hup(uk+1).adj |/p then
9. verify hup(u0, . . . , uk+1) at Si ;
10. else broadcast hup(u0, . . . , uk+1) and verify it in parallel;
11. if hup(u0, . . . , uk , uk+1) is a valid partial solution then
12. if it is a complete match then add it to Vioi ;
13. else add it to BVioi ;
14. return Vioi ;

Figure 3: Algorithm PIncDect

each one has 1 following and 2 followers and refers to company
NatWest with status 1. Assume that G is fragmented across 4 pro-
cessors. Recall NGD φ4 and delete(NatWest Help, 1) from Exam-
ple 6. After generating update pivot hup(x , s1) as in Example 6,
algorithm PIncDect identifies in parallel NC (hup(x , s1)), which is
the 3-neighbor of node NatWest Help. This subgraph is replicated
at all 4 processors. Moreover, the adjacency lists are evenly “parti-
tioned” by annotating partial copies. For instance, each processor
maintains a partial copy of 25 nodes (i.e., accounts) for the adjacency
list of the company node NatWest. Then it expands hup(x , s1).

Suppose that hup(x , s1,m1,n1,w) is to be expanded at Sj , where
w is mapped to NatWest, and the next to be matched is y. Then
it is broadcast by Sj , and PIncDect expands it in parallel at each
processor by mapping y to NatWest_Helpi for some i ∈ [1, 98] or
NatWest_Help, using the partial copies maintained for the adja-
cency list of NatWest. Here the estimated parallel cost 30 is less
than the sequential cost 100; thus parallel computation is favored.

Now consider a partial solution ofhup(x , s1,m1,n1,w,y) to be ex-
panded at processor Sj . Algorithm PIncDect expands it locally at Sj
with the entire adjacency list of hup(y), since the size of hup(y).adj,
i.e., sequential cost of 4, is less than the estimated parallel cost.

Finally, a total of 99 violations are identified and added to
∆Vio−(Σ,G,∆G), in which NatWest_Helpi and NatWest_Help are
validated to be fake for each i ∈ [1, 98]. 2

Theorem 6: PIncDect is parallel scalable relative to IncDect. 2

Proof: We show that with p processors, PIncDect runs in
O(|Σ| |GdΣ (∆G)|

|Σ |/p) time, where p < |GdΣ (∆G)|. Obviously, iden-
tifying the candidate neighborhoods for update pivots triggered by
∆G and Σ takes O(|GdΣ (∆G)|) time. We next analyze the cost for
parallel expansion. The total time for candidate filtering in process-
ing partial solutions of size k is at mostNk (k+1)(Ck+ |GdΣ (∆G)|/p),
and their verification needs at most Nk+1(C(k + 1)+ |GdΣ (∆G)|/p))
time, where Nk denotes the number of partial matches of size
k . Moreover, it inspects partial solutions with size less than |VΣ |,
where VΣ denotes the set of all pattern nodes in Σ. Hence parallel
expansion takes at most

∑ |VΣ |−1
k=2

(
Nk (k + 1)(Ck + |GdΣ (∆G) |

p ) +

Nk+1(C(k + 1) + |GdΣ (∆G) |

p )
)
<

4C |Σ |(1−|GdΣ (∆G) | |Σ|−1) |GdΣ (∆G) |2

(1−|GdΣ (∆G) |)p =

O(
|Σ | |GdΣ (∆G) | |Σ|

p ) time, which dominates the cost of PIncDect. This
verifies the relative parallel scalability of PIncDect. 2

7 EXPERIMENTAL STUDY
Using real-life and synthetic graphs, we evaluated the impact of
(a) the size |∆G | of updates; (b) the size |G | of graphs; (c) the com-
plexity of sets Σ of NGDs; (d) the number p of processors, and the
parameters C and intvl for workload balancing on our (parallel)
incremental algorithm; and (e) the effectiveness of NGDs.
Experimental setting. We used three real-life graphs: (a)DBpedia
[1], a knowledge base with 28 million entities of 200 types and 33.4
million edges of 160 types; (b) YAGO2, an extended knowledge
graph of YAGO [53] with 3.5 million nodes of 13 types and 7.35
million edges of 36 types; and (c) Pokec [3], a social network with
1.63 million nodes of 269 types and 30.6 million links of 11 types.
The density (defined as |E |

|V | ·( |V |−1) ) is 6.5 × 10−7, 6 × 10−7 and
1.1 × 10−5, and the average diameter of connected components is
4.8, 4.0 and 5.2, for DBpedia, YAGO2 and Pokec, respectively.

We also generated synthetic graphs G (Synthetic) with labels
and attributes drawn from an alphabet L of 500 symbols and values
from a set of 2000 integers. It is controlled by the numbers of nodes
|V | and edges |E |, up to 80 million and 100 million, respectively.
NGDs. We extended the algorithm of [22] to discover NGDs from
the graphs. The algorithm interleaves “vertical levelwise expansion”
for mining frequent patterns Q and “horizontal levelwise expan-
sion” for mining literals in X → Y , in a single process. Numeric
attributes are identified and composed to form expressions up to
a predefined bound on the lengths. The NGDs discovered from a
graph G are strongly satisfied by its subgraphs. We picked a set Σ
of 100 meaningful and diverse NGDs for each graph from the dis-
covered ones, such that at least 90% of them have different patterns,
including trees, DAGs (directed acyclic graphs) and cyclic graphs.
They carry patterns of diameters from 1 to 6, and 1 to 4 literals,
with linear arithmetic expressions of lengths from 1 to 10.
∆G . Updates ∆G to graph G are randomly generated, controlled by
the size |∆G | and a ratio γ of edge insertions to deletions. The ratio
γ is 1 unless stated otherwise, i.e., the size |G | remains unchanged.
Algorithms. In Java, we implemented (1) sequential IncDect (Sec-
tion 6.2) vs. Dect, a batch error detection algorithm with NGDs,
extended from the algorithm for GFDs [24]; (2) parallel PIncDect
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Figure 4: Performance evaluation

(Section 6.3) vs. PDect, an extension of the parallel batch detection
algorithm in [24] toNGDs; and (3) parallel PIncDectns, PIncDectnb
and PIncDectNO, variants of PIncDect with no work unit splitting,
no workload balancing, and neither of the two, respectively.

We deployed the algorithms on a cluster of up to 20 machines,
each with 32GB DDR4 RAM and two 1.90GHz Intel(R) Xeon(R)
E5-2609 CPU, running 64-bit CentOS7 with Linux kernel 3.10.0.
Each experiment was run 5 times and the average is reported here.

Experimental results. We next report our findings. The graphs
are fragmented using METIS [2]. We took Synthetic G with 40
million nodes and 60 million edges as default. We fixed the latency
parameterC = 60, interval intvl = 45s , and the number of processors
p = 8 for parallel algorithms unless stated otherwise.

Exp-1: Effectiveness of incremental error detection. We first
evaluated the incremental algorithms against their batch counter-
parts. Fixing ||Σ|| = 50 anddΣ = 5, we varied the size |∆G | of updates
from 5% up to 40% in 5% increments. The results are reported in
Figures 4(a)–4(d) over DBpedia, YAGO2, Pokec and Synthetic G,
respectively (y-axis in logarithmic scale). We find the following.
(a) When |∆G | varies from 5% to 25% of |G |, IncDect is 8.8 to 1.7
(resp. 8.5 to 2.6, 9.8 to 2.6, and 6.6 to 1.7) times faster than Dect over
the four graphs, respectively; PIncDect outperforms PDect by 5.6

to 1.6 (resp. 9.8 to 1.8, 9.4 to 2.5, and 5.6 to 1.6) times. PIncDect and
IncDect beat their batch counterparts even when |∆G | is 33% of |G |.
These justify the need for incremental error detection.
(b) On average, PIncDect outperforms PIncDectns, PIncDectnb and
PIncDectNO by 1.29, 1.33 and 1.61 times on DBpedia (resp. 1.31,
1.43, 1.81 on YAGO2, 1.33, 1.45, 1.81 on Pokec, and 1.27, 1.36, 1.5 on
Synthetic) in the same setting. This verifies the effectiveness of our
hybrid workload balancing strategy. It also suggests that workload
balancing should be combined with work unit splitting.
(c) The larger |∆G | is, the slower all incremental algorithms are,
while the batch algorithms Dect and PDect are indifferent to |∆G |,
as expected. In all cases, PIncDect performs the best.
(d) Incremental error detection is feasible in practice: PIncDect
takes 693s on DBpedia when |∆G | is 25% of |G |, and IncDect takes
5840s, as opposed to 1121s (resp. 9878s) by PDect (resp. Dect).
(e) All incremental algorithms are insensitive to the ratio γ of edge
insertions to deletions, which is verified by varying γ (not shown).
(f) We found that the additional cost of checking linear arithmetic
expressions is negligible (not shown). This confirms Corollary 4,
i.e., NGDs do not make the validation problem harder than GFDs.
Exp-2: Impact of |G |. We evaluated the impact of |G | using syn-
thetic graphs. Fixing |∆G | as 15% of |G | and using the sameNGDs as
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in Exp-1, we varied |G | from (10M,20M) to (80M,100M). As shown in
Fig. 4(e), (a) all the algorithms take longer on largerG , as expected,
(b) incremental algorithms are less sensitive to |G | than their batch
counterparts, and (c) PIncDect does the best among all.
Exp-3: Complexity ofNGDs. We also evaluated the impact of the
complexity of sets Σ of NGDs. We fixed |∆G | = 15%|G |.
Varying ||Σ||. Fixing dΣ = 5, we varied ||Σ|| from 50 to 100 (our
industry collaborator uses at most 95 rules [10]). As shown in
Figures 4(f) and 4(g) on DBpedia and YAGO2, respectively, (a) the
more NGDs are in Σ, the longer time is taken by all the algorithms,
as expected, and (b) PIncDect and IncDect scale well with ||Σ||. The
results on Pokec and Synthetic are consistent (not shown).
Varying dΣ. Fixing ||Σ|| = 50, we varied dΣ from 2 to 6. Figure 4(h)
shows that all algorithms take longer over larger dΣ on DBpedia.
This is consistent with our analysis that the costs of our incremental
algorithms increase when dΣ gets larger. Nonetheless, PIncDect is
feasible with real-life NGDs, e.g., it takes 489s on DBpedia when
dΣ = 6, as opposed to 1197s by PDect and 7532s byDect. The results
on YAGO2, Pokec and Synthetic are consistent.
Exp-4: Scalability of parallel algorithms. Using the sameNGDs
as in Exp-1 and fixing |∆G | = 15%|G | for all the graphs, we evaluated
the scalability of parallel algorithm PIncDect vs. PDect, PIncDectns,
PIncDectnb and PIncDectNO, by varying the number p of proces-
sors, the parameter C of latency, and interval intvl.
Varying p. Fixing C = 60 and intvl = 45s , we varied p from 4 to 20.
As shown in Figures 4(i), 4(j), 4(k) and 4(l) over DBpedia, YAGO2,
Pokec and Synthetic, respectively, when p changes from 4 to 20, (a)
PIncDect and PDect perform much better and are on average 3.7
and 3.8 times faster than IncDect and Dect, respectively, and (b)
PIncDect consistently outperforms PDect, PIncDectns, PIncDectnb
and PIncDectNO: on average it is 2.47 to 3.14, 1.32 to 1.37, 1.44 to
1.53, and 1.53 to 1.72 times better, respectively.

These also verify the effectiveness of the hybrid workload par-
tition strategy. It improves PIncDectNO from 1.53 to 1.72 times.
Moreover, work unit splitting or workload balancing alone does
not work very well, as verified by the gap between the performance
of PIncDect and that of PIncDectns and PIncDectnb, respectively.
Varying C . Fixing p = 8 and intvl = 45s , we evaluated the impact of
latency parameter on PIncDect and PIncDectnb by tuningC from 20
to 100 in 20 increments. As shown in Fig. 4(m) over Pokec, PIncDect
performs the best whenC is 80, taking 198s. On one hand, PIncDect
favors parallel computation with smaller C to split work units; on
the other hand, PIncDect has a bias towards local computation with
larger latency C to reduce the communication cost. The results on
DBpedia, YAGO2 and Synthetic are consistent.
Varying intvl. Fixing p = 8 and C = 60, we varied intvl from 15s to
65s in 15s increments, to evaluate impact of intervals for monitoring
workloads on PIncDect and PIncDectns. As shown in Figure 4(n) on
YAGO2, the “optimal” intvl is 45s for PIncDect. Similar to latency
C , while smaller intvl helps workload balancing, it incurs more
communication cost. Hence we need to strike a balance. The results
on DBpedia, Pokec, and Synthetic are consistent.
Exp-5: Effectiveness study. The NGDs captured 415, 212, and
568 errors in DBpedia, YAGO2 and Pokec, respectively, ranging

from wrong attribute values such as strings and numeric values,
to structural errors, i.e., incorrect relationship between entities.
Among these, 92% can only be caught beNGDs, beyond the capacity
of GFDs. Below are some errors caught, along with the NGDs.
NGD1 is Q5[x̄](y.val < 1800 → z.val , “living people”), stating
that any person with birth year before 1800, i.e., aged over 210, can
no longer be categorized as living people. It identifies an error in
DBpedia that a living person John Macpherson was born in 1713.
NGD2 is Q6[x̄](w .type = “Olympic” → z.val ≤ y.val), which
states that the number of participating nations in an Olympic event
should not be larger than the number of competitors, i.e., each
athlete represents at most one nation. It detects that 24 athletes
representing 34 countries participated in the Women’s Sailboard
Competition at the 1992 Summer Olympics, in DBpedia.
NGD3 is Q7[x̄](∅ → x .numberOfWins ≥ w1.numberOfWins +
w2.numberOfWins). This NGD states that in the Formula One
racing, the total number of competitions won by two drivers is no
larger than that of the team they represent during the same year.
In DBpedia, it catches that Sebastian Vettel and Max Verstappen
won 1 competition in 2016; however their team Scuderia Ferrari
won none of the races. In fact, Max did not race for Ferrari in 2016.
This shows that NGDs also help us detect the erroneous links.

Summary. We find the following. (1) Our incremental algorithms
scale well with |∆G |, |G |, ||Σ|| and dΣ. IncDect and PIncDect outper-
form Dect from 6.7 to 2.1 times and from 52 to 13 times on average,
respectively, when |∆G | varies from 5% to 25% of |G | over real-file
and synthetic graphs. They perform better even when |∆G | is up to
33% of |G |. (2) The incremental algorithms are much less sensitive to
|G | than the batch algorithms, and are able to deal with large-scale
graphs. (3) Better still, parallel PIncDect scales well with the num-
ber p of processors used: its runtime is improved by 3.7 times on
average when p increases from 4 to 20. (4) IncDect and PIncDect
are feasible in practice: on real-life graphs, they take 1659s and
130s on average (with p = 20), respectively. (5) The hybrid work-
load balancing strategy is effective: it improves the performance of
PIncDect by 1.73 times on average and works well with large p.

8 CONCLUSION
We have proposed a class of NGDs with arithmetic and compari-
son expressions to catch semantic inconsistencies in graphs. We
have justified NGDs by establishing the complexity of the satisfia-
bility and implication analyses of NGDs and their extensions. We
have developed the first incremental algorithms to detect errors in
graphs, with provable performance guarantees. We have empiri-
cally verified that NGDs and the algorithms yield a promising tool
for detecting errors in graph-structured data, numeric or not.

One topic for future work is to extend NGDs by supporting ag-
gregations. Another topic is to study graph repairing with NGDs.
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